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THE SIZES OF THE PIONEERING, LOWEST CROSSING AND
PIVOTAL SITES IN CRITICAL PERCOLATION ON

THE TRIANGULAR LATTICE

BY G. J. MORROW AND Y. ZHANG

University of Colorado

LetLn denote the lowest crossing of a square 2n×2n box for critical site
percolation on the triangular lattice imbedded inZ2. Denote also byFn the
pioneering sites extending below this crossing, andQn the pivotal sites on
this crossing. Combining the recent results of Smirnov and Werner [Math.
Res. Lett. 8 (2001) 729–744] on asymptotic probabilities of multiple arm
paths in both the plane and half-plane, Kesten’s [Comm. Math. Phys. 109
(1987) 109–156] method for showing that certain restricted multiple arm
paths are probabilistically equivalent to unrestricted ones, and our own
second and higher moment upper bounds, we obtain the following results.
For each positive integerτ , asn → ∞:
1. E(|Ln|τ ) = n4τ/3+o(1).
2. E(|Fn|τ ) = n7τ/4+o(1).
3. E(|Qn|τ ) = n3τ/4+o(1).
These results extend to higher moments a discrete analogue of the recent
results of Lawler, Schramm and Werner [Math. Res. Lett. 8 (2001) 401–411]
that the frontier, pioneering points and cut points of planar Brownian motion
have Hausdorff dimensions, respectively, 4/3, 7/4 and 3/4.

1. Introduction. Consider site percolation on the triangular lattice. Each
vertex of the lattice is open with probabilityp and closed with probability
1 − p and the sites are occupied independently of each other. We will realize the
triangular lattice with vertex setZ2. For a given(x, y) ∈ Z2, its nearest neighbors
are defined as(x ± 1, y), (x, y ± 1), (x + 1, y − 1) and (x − 1, y + 1). Bonds
between neighboring or adjacent sites therefore correspond to vertical or horizontal
displacements of one unit, or diagonal displacements between two nearest vertices
along a line making an angle of 135◦ with the positivex-axis.

Recall that the triangular lattice may also be viewed with sites as hexagons in a
regular hexagonal tiling of the plane. This point of view is convenient to describe
the fact that whenp = 1/2 (critical percolation) and the hexagonal mesh tends
to zero, the percolation cluster interface has a conformally invariant scaling limit,
namely, the stochastic Loewner evolution process SLE6 [11]. Smirnov and Werner
[12] combine the convergence of the cluster interface with recent results on the
probabilities of crossings of annular and semi-annular regions by SLE6 calculated
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by Lawler, Schramm and Werner [6, 7, 9] to obtain corresponding probabilities for
the critical site percolation on the triangular lattice.

We will use the Smirnov and Werner [12] estimates in the case of three-arm,
two-arm and four-arm paths to establish results, respectively, on the length of the
lowest crossing, the size of the pioneering sites extending below this crossing and
the number of pivotal sites on this crossing of a square box with sides parallel
to the coordinate axes inZ2. Here and throughout the paper we will be working
with the critical percolation model. To illustrate how our work fits in with known
results for planar Brownian motion, we describe various geometric features of the
Brownian paths as follows. Define the hullKt at time t of a planar Brownian
motion βs , s ≥ 0, as the union of the Brownian pathβ[0, t] := {βs,0 ≤ s ≤ t}
with the bounded components of its complementR2\β[0, t]. The frontier or outer
boundary ofβ[0, t] is defined as the boundary ofKt . By contrast, a pioneer point
of the Brownian path is defined as any pointβs at some times ≤ t such thatβs is in
the boundary ofKs , that is, such thatβs is on the frontier ofβ[0, s]. A point βs for
some 0< s < t is called a cut point ofβ[0, t] if β[0, s] ∩ β(s, t] = ∅. Lawler,
Schramm and Werner [8] have shown that the frontier, pioneer points and cut
points of a planar Brownian motion have Hausdorff dimensions, respectively, 4/3,
7/4 and 3/4. We answer an open question ([12], question 2) to find an analogue
of this result in the case of critical percolation on the triangular lattice. Indeed,
we asymptotically evaluate all moments of the sizes of the corresponding lowest
crossing, pioneering sites and pivotal sites that we define below.

It turns out that our method requires a more careful analysis in the four-arm
case than in the two and three-arm cases. As pointed out in [12], the probability
estimates of annular crossings of multiple-arm paths [see (2.3) below] lead
naturally to a prediction of our first moment results. Only in the pivotal (four-arm)
case do we need to apply the estimate of Smirnov and Werner [12] for probabilities
of multiple-arm crossings of semi-annular regions, in addition to the basic annular
estimates to actually establish the prediction. In all cases, however, the methods
of Kesten [4] are essential to construct the probability estimates for our moment
calculations. This calculation handles, in particular, the probability of four-arm
paths near the boundary of the box used to define the pivotal sites.

Denote byT the full triangular lattice graph whose vertex set isZ2 and
whose edges are the nearest neighbor bonds. Define‖x‖ := max{|x|, |y|} for
x = (x, y) ∈ Z2. For any real numberr ≥ 0, we denote the square box of vertices
B(r) := {x ∈ Z2 :‖x‖ ≤ r}. A path is a sequence of distinct vertices connected
by nearest neighbor bonds. Thus, a path is simple. Following Grimmett [2], the
boundary or surface of a setX of vertices is the set∂X of vertices inX that are
adjacent to some vertex not inX. A path is open (closed) from a setX to a setY if
each vertex of the path is open (closed) and contained inZ2 \ (X ∪ Y) except for
the endpoints in∂X and∂Y which may or may not be open (closed). The interior
of X is defined by int(X) = X \ ∂X. A setX of vertices is connected if the graph
induced byX is connected as a subgraph ofT. LetR be a connected set of vertices
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lying within a finite union of rectangles with sides parallel to the coordinate axes.
We say that a path is “inR” if its vertices remain inR except possibly for its
endpoints. If, in addition,R is a single such rectangle, a horizontal open (closed)
crossing ofR is an open (closed) path inR from the left side ofR to the right side
of R. A vertical crossing is defined similarly.

Let n be a positive integer. For eachx ∈ B(n), we define the event

L(x, n) := there exists a horizontal open crossing ofB(n)

containing the vertexx, and there exists a
closed path inB(n) from x to the bottom ofB(n).

(1.1)

The lowest crossing for any given configuration of vertices for which a horizontal
open crossing ofB(n) exists is known (see [2]) to be the unique horizontal open
crossingγn of B(n) that lies in the region on or beneath any other horizontal
open crossing. In fact, on any given configuration we may also represent the set of
vertices inγn as equal to the setLn := {x :L(x, n) occurs}. Although this fact is
well known, we briefly review its proof. First, any vertexx of γn admits a closed
path to the bottom ofB(n) [so thatL(x, n) occurs], else one could construct a
crossing strictly lower thanγn. Therefore,γn ⊂ Ln. On the other hand, to show
Ln ⊂ γn, assume the eventL(x, n). The open path in this event lies aboveγn, so
the closed path in this event has to crossγn, unlessx ∈ γn. Thus, the set of vertices
of γn is preciselyLn.

We introduce next the pioneering sites extending below the lowest crossing of a
configuration inB(n). Define the event

F (x, n) := x is open and there exist two open paths inB(n)

started fromx, one to the left side and one to the
right side ofB(n), and there exists a closed path
in B(n) from x to the bottom ofB(n).

(1.2)

Note that (1.1) implies (1.2). The difference is that in (1.2) the two open paths
need not be disjoint, whereas in (1.1) the horizontal crossing throughx breaks up
into two disjoint open paths. We define the set of pioneering sites as the setFn :=
{x :F (x, n) occurs}. Geometrically,Fn consists of the union of the lowest crossing
with the many complicated orbs and tendrils hanging from it; the vertices of these
latter sets do not admit two disjoint paths to the sides ofB(n). Alternatively,Fn is
the set of open sites discovered through the exploration process that starts at the
lower left corner ofB(n) and runs until it meets the right side, that determines the
interface between the lowest spanning open cluster inB(n) and the closed cluster
attaching to its bottom side. This description ofFn explains its correspondence to
the trace of SLE6.
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Finally, we define the pivotal sites lying along the lowest crossing. Define the
event

Q(x, n) := there exists a horizontal open crossing ofB(n)

containing the vertexx, and there exist two
disjoint closed paths inB(n) started fromx, one
to the top side and one to the bottom side ofB(n).

(1.3)

We define the set of pivotal sites as the setQn := {x :Q(x, n) occurs}. The
two closed “arms” emanating from a pivotal (and therefore open) sitex force
any horizontal open crossing ofB(n) to pass throughx. Let Cn be the open
cluster containing the lowest crossing whenever such a horizontal open crossing
exists. That a pivotal site exists implies that this cluster also contains the highest
horizontal open crossing and that the site belongs to both the highest and lowest
crossing.

We can now state our main result. Here and throughoutP and E denote,
respectively, the probability and expectation for the critical percolation.

THEOREM 1. For each positive integer τ , as n → ∞:

1. E(|Ln|τ ) = n4τ/3+o(1).
2. E(|Fn|τ ) = n7τ/4+o(1).
3. E(|Qn|τ ) = n3τ/4+o(1).

Note that probability upper bounds follow immediately by Markov’s inequality
from the τ th moment upper bounds in Theorem 1. On the other hand, a bound
on the distribution of small values of|Ln| is obtained in [5]. LetL denote the
event that there is a horizontal open crossing ofB(n). These authors show that
there exist constantsα, c > 0 andC1 < ∞ such thatP(|Ln| ≤ n1+c|L) ≤ C1n

−α

([5], Theorem 2). We conjecture that this result continues to hold for the triangular
lattice case if the exponent 1+ c is replaced by 4/3− δ for anyδ > 0, where now
α > 0 may depend onδ.

A one arm version of Theorem 1 is obtained by Kesten [3]. He shows that
there exists a limiting measureµ on configuration space, conditioned by the
event that the origin is connected to∂B(n) as n → ∞ such that, with respect
to µ, there is a unique open clusterW connected to the origin with probability 1
([3], Theorem 3). He then provesEµ(|W ∩ B(n)|τ ) � (n2πn)

τ , whereπn :=
P [0 is connected by an open path to(n,∞) × R] ([3], Theorem 8). We do not
study here the number of sites inB(n) from which a five-arm path to the∂B(n)

exists. By the results of Smirnov and Werner [12] [see (2.3)], the expected number
of such sites is predicted to beno(1).

Results analogous to the above-mentioned Hausdorff dimension properties of
certain planar Brownian motion point sets but now for the stochastic Loewner
evolution process SLE6 itself have been obtained as follows: the dimension of the
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SLE6 curve (or trace) is 7/4 [1]; the dimension of the (outer) frontier of SLE6 is
4/3 [7], and the dimension of the set of cut points of SLE6 is 3/4 [6]; see Remark 5
of [12]. Perhaps for both the Brownian and SLE processes one can obtain moment
estimates on the number of disks of radiusε > 0 needed to cover a given one of
the above point sets similar to the moment estimates presented here. Some results
for the expected number of such disks have been obtained by Rhode and Schramm
[10] concerning both the SLEκ curve and hull withκ in a range of values including
the caseκ = 6 that corresponds to the critical percolation of this paper.

Finally we mention that items 1 and 2 of Theorem 1 may be proved by
the same method that Kesten [3] uses to establish the one-arm case mentioned
above. However, that method does not extend to the four-arm case since then the
exponent in expression (2.3) becomes less than−1; see Section 3.1 for further
details. We emphasize that the difficulty in this paper lies in the case of higher
moments (τ ≥ 2) for pivotal sites wherein we study the organization ofτ vertices
in the boxB(n) at which four-arm events occur. We develop a disjoint boxes
method (Section 4) that yields a proof of items 1 and 2 and that also lays a
groundwork for the proof of item 3 of Theorem 1. Our organization of the disjoint
boxes leads to two developments. First, it allows for the construction of certain
horseshoe estimates governed by Lemma 5 that are critical in establishing the
correct asymptotic order for even the first moment in the pivotal case. We carry out
these constructions in Sections 5 and 6. Second, it allows for the analysis of groups
of vertices that are closely clustered together in the analysis of second and higher
moments by a separate method based on Lemmas 7 and 8 shown in Section 7.
These lemmas are extensions of Kesten’s [4] Lemmas 4 and 5. This latter work
indeed forms the technological foundations for much of the current paper.

2. Lower bounds. In this section we establish lower bounds for each of the
moment estimates of Theorem 1. To do this, we begin by writing down the known
asymptotic probabilities of multiple-arm paths from [12]. Next Kesten’s method is
applied to obtain lower bounds for the probabilities of certain restricted multiple-
arm path events. The expectation lower bounds then follow easily.

Note thatL(x, n) is a certain sub-event of a so-called three-arm path that we
now introduce. DefineB(x,m) := x + B(m). Assume thatB(x,m) belongs to the
interior ofB(n). Denote

A(x,m;n) := B(n) \ int
(
B(x,m)

)
.(2.1)

The event of a three-arm path fromB(x,m) to ∂B(n) is defined by

U3(x,m;n) := there exist two disjoint open paths in
A(x,m;n) from ∂B(x,m) to ∂B(n),

and there exists a closed path in
A(x,m;n) from ∂B(x,m) to ∂B(n).

(2.2)

We denoteU3(x, n) := U3(x,0;n). We shall use the following estimate
from [12].
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LEMMA 1. For each fixed m ≥ 0, P(U3(0,m;n)) = n−2/3+o(1) as n → ∞.

PROOF. The proof follows by a direct translation of Theorem 4 of [12] as
follows. Consider the event that there existκ disjoint crossings of the annulus
A(r0, r) := {z ∈ C : r0 < |z| < r}, not all closed nor all open, for the hexagonal
tiling of fixed mesh 1 inC. Let Hκ(r0, r) denote generically any of the sub-events
defined by a specific ordering of closed and open crossings among theκ disjoint
crossings. Then for eachκ ≥ 2,

P
(
Hκ(r0, r)

) = r−(κ2−1)/12+o(1) asr → ∞.(2.3)

Choose now two open and one closed crossings in the definition ofH3(r0, r).
Then Lemma 1 follows by applying (2.3) forκ = 3 and noting, on account of
the mild change in geometry between the hexagonal and present models for the
triangular lattice, that the eventU3(0,m;n) satisfiesH3(m/2, n) ⊂ U3(0,m;n) ⊂
H3(2m,n/2). �

Similar to (2.2), we define the events of two-arm and four-arm paths from
B(x,m) to ∂B(n) by

U2(x,m;n) := there exist two paths inA(x,m;n)

from ∂B(x,m) to ∂B(n),

one of them being open and the other closed
(2.4)

and

U4(x,m;n) := there exist two disjoint open paths in
A(x,m;n) from ∂B(x,m) to ∂B(n),

and there exist two disjoint closed paths in
A(x,m;n) from ∂B(x,m) to ∂B(n).

(2.5)

We also denoteUκ(x, n) := Uκ(x,0;n), κ = 2,4. As in the proof of Lemma 1,
except now withκ = 2 andκ = 4, respectively in (2.3), we obtain the following.

LEMMA 2. For fixed m ≥ 0, P(U2(0,m;n)) = n−1/4+o(1) and
P(U4(0,m;n)) = n−5/4+o(1) as n → ∞.

We now make precise the notion of restricted multiple-arm paths. Letπ be the
probability of a givenκ-arm path from a given vertex insideB(n/4) to ∂B(n). We
restrict theκ-arm path by specifying disjoint intervals of length proportional ton

and separated by intervals also proportional ton on the∂B(n) for the hitting sets
of the various arms. Kesten [4] shows that there is only a multiplicative constant
cost in the probabilityπ of this restricted event. In fact, Kesten shows a little more
that we will describe explicitly for the Lemmas 3 and 4. To begin, define certain
rectangles that sit on the four sides ofB(n), counting counterclockwise from
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the left side ofB(n), by R1 := [−n,−n/2] × [−n/2, n/2],R2 := [−n/2, n/2] ×
[−n,−n/2],R3 := [n/2, n] × [−n/2, n/2] andR4 := [−n/2, n/2] × [n/2, n]. Let
R be a rectangle with sides parallel to the coordinate axes and sharing one side
with the boundary of a boxB. We say that a pathh-tunnels throughR on its
way to ∂B if the intersection of the path with the smallest infinite vertical strip
containingR remains inR. Thus, the path may weave in and out ofR but not
through the top or bottom sides ofR, and comes finally to∂B. Likewise, we say
that a pathv-tunnels throughR on its way to∂B if the roles of horizontal and
vertical are interchanged in the preceding definition. This definition is consistent
with the requirements of Kesten’s [4] Lemma 4. Accordingly, for eachx ∈ B(n/4),
we define a certain restricted three-arm path event by

T3(x, n) := ∃ two disjoint open paths inB(n) started fromx,

one to the left side ofB(n) thath-tunnels through
R1, and one to the right side ofB(n) thath-tunnels
throughR3, and there is a closed path inB(n) from x
to the bottom ofB(n) thatv-tunnels throughR2.

Further, there are vertical open crossings of each ofR1
andR3, and there is a horizontal closed crossing ofR2.

(2.6)

By the proof of Kesten’s [4] Lemma 4, we obtain the following.

LEMMA 3. There exists a constant C3 such that uniformly for all x ∈ B(n/4),
P(U3(x, n)) ≤ C3P(T3(x, n)).

Note by Lemma 3 that, forx ∈ B(n/4), the probabilities ofL(x, n),
U3(x, n) andT3(x, n) are all comparable.

We next define certain restricted two-arm and four-arm path events. In the two-
arm case we introduce rectangles that cut off the top and bottom sides ofB(n) by
S2 := [−n,n]× [−n,−n/2] andS4 := [−n,n]× [n/2, n]. In the four-arm case we
have the similar picture as the three-arm case, except now there is one more closed
arm thatv-tunnels throughR4 on the way to the top ofB(n). We thus define for
anyx ∈ B(n/4),

T2(x, n) := there exists an open path inB(n) from x
to the top ofB(n) thatv-tunnels throughS4,

and a closed path inB(n) from x to the
bottom ofB(n) thatv-tunnels throughS2.

Further, there exists a horizontal open crossing
of S4 and a horizontal closed crossing ofS2

(2.7)
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and

T4(x, n) := ∃ two disjoint open paths inB(n) started fromx,

one to the left side ofB(n) thath-tunnels through
R1, and one to the right side ofB(n) thath-tunnels
throughR3, and∃ two disjoint closed paths inB(n)

from x, one to the bottom ofB(n) thatv-tunnels
throughR2 and one to the top ofB(n) thatv-tunnels
throughR4. Further, there are vertical open crossings
of each ofR1 andR3, and there are
horizontal closed crossings of each ofR2 andR4.

(2.8)

Again, by the proof of Kesten [4], we have the following.

LEMMA 4. There are constants C2 and C4 such that uniformly for x ∈
B(n/4), P(Uκ(x, n)) ≤ CκP (Tκ(x, n)), κ = 2,4.

2.1. Proof of lower bounds. We now obtain expectation lower bounds for the
sizes of the lowest crossing, pioneering sites and pivotal sites. By definition, we
have|Ln| = ∑

x∈B(n) 1L(x,n). Thus,

E|Ln| =
∑

x∈B(n)

P
(
L(x, n)

) ≥ ∑
x∈B(n/4)

P
(
L(x, n)

)
.(2.9)

By Lemmas 1 and 3 and the inclusion{x is open} ∩ T3(x, n) ⊂ L(x, n), we
have 2P(L(x, n)) ≥ (1/C3)P (U3(x, n)) ≥ (1/C3)P (U3(0,5n/4)) ≥ n−2/3+o(1),
uniformly for x ∈ B(n/4). Therefore, summing onx ∈ B(n/4) in (2.9), we obtain

E|Ln| ≥ (n/4)2n−2/3+o(1) = n4/3+o(1).(2.10)

In exactly the same way, but using now Lemmas 2 and 4 and the inclusions
{x is open} ∩ T2(x, n) ⊂ F (x, n) and{x is open} ∩ T4(x, n) ⊂ Q(x, n), we have

E|Fn| ≥ (n/4)2n−1/4+o(1) = n7/4+o(1)(2.11)

and

E|Qn| ≥ (n/4)2n−5/4+o(1) = n3/4+o(1).(2.12)

Note finally that theτ th moment lower bounds in Theorem 1 follow immediately
from (2.10)–(2.12) and Jensen’s inequality for allτ ≥ 1.

3. Lowest crossing and pioneering sites. In this section we carefully study
an upper bound for the first and second moments of|Ln| and|Fn|. We do this to
establish a dyadic summation construction alternative to Kesten’s [3] method that
we will later incorporate in our analysis of the pivotal case in Sections 5 and 6.
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We introduce the following concentric square annuli of vertices inB(n). Let
j0 = j0(n) be the smallest integerj such that 2−jn ≤ 1. Define

A0 := B(n/2),

Aj := B
((

1− 2−(j+1)
)
n
)∖

B
(
(1− 2−j )n

)
, 1≤ j < j0,

Aj0 := B(n)
∖ j0−1⋃

j=0

Aj = ∂B(n).

(3.1)

The annuliAj become thinner as they approach the boundary ofB(n) such that,
for j < j0, the distance from a pointx ∈ Aj to ∂B(n) is comparable with 2−jn

and also comparable with the width ofAj . SinceAj0 = ∂B(n), we will use instead
the property, valid for allj ≤ j0, that if x ∈ Aj and ‖y − x‖ < 2−(j+1)n, then
y ∈ B(n). Notice that the annuliAj are natural for an approach based on disjoint
boxes by the following reasoning. For any vertexx ∈ B(n), we will construct a
boxB(x, r) centered atx that is roughly as large as it can be yet stays insideB(n).
The collection of verticesx that give rise to boxesB(x, r) with radii r � 2−jn

correspond to the annuliAj . Therefore, roughly speaking, the sizes of largest
disjoint boxes may be organized by arranging the centers of the boxes in these
annuli.

If the sizes of the setsAj were defined by areas of the regions between
concentric squares rather than by cardinalities of subsets of vertices ofB(n),
we would obtain an upper bound for the sizes of these sets immediately by
using the fact that(2n)2(1 − 2−(j+1))2 − (2n)2(1 − 2−j )2 ≤ 2−j+2n2. An error
in approximating|Aj | by the area between concentric squares may come about
due to inclusion or exclusion of a ring of vertices. However, ifj < j0, then the
thickness of a given annulus is 2−(j+1)n ≥ 1/2 so the area estimate may only be
an under-estimate by a factor of at most 4. Therefore, since the boundary ofB(n)

has cardinality 8n − 4, we have, for all 0≤ j ≤ j0, that

|Aj | ≤ 2−j+4n2.(3.2)

3.1. Expectation upper bound. We write the expectation of the size of the
lowest crossing as

E|Ln| =
∑

x∈B(n)

P
(
L(x, n)

) =
j0∑

j=0

∑
x∈Aj

P
(
L(x, n)

)
.(3.3)

We note that by (2.2), forx ∈ Aj ,

P
(
L(x, n)

) ≤ P
(
U3

(
0,2−(j+1)n

))
.(3.4)

Let ε > 0. By Lemma 1, there exists a constantCε such that

P
(
U3(0, r)

) ≤ Cεr
−2/3+ε for all r ≥ 1.(3.5)
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Here and in the sequel we allowCε to be a constant depending onε that may vary
from appearance to appearance. Thus, by (3.2)–(3.5), we obtain

E|Ln| ≤ Cε

j0∑
j=0

|Aj |(2−(j+1)n
)−2/3+ε ≤ Cεn

4/3+ε
∞∑

j=0

2−j/3.(3.6)

Since the geometric series in (3.6) converges, we obtain by (3.6) that

E|Ln| ≤ n4/3+o(1).(3.7)

By the same argument, we construct an upper bound forE |Fn|. Indeed, letε > 0.
By Lemma 2, there exists a constantCε such that

P
(
U2(0, r)

) ≤ Cεr
−1/4+ε for all r ≥ 1.(3.8)

Therefore, just as in (3.3) and (3.6) but using now (3.8) in place of (3.5), we find
E|Fn| ≤ n7/4+o(1). The proof of the upper bounds forτ = 1 of items 1 and 2 of
Theorem 1 is thus complete.

We comment that the exponent(−1/4 + ε) that takes the place of(−2/3 + ε)

in the upper bound forE|Fn| does not affect the convergence of the geometric
sum because the exponents in (3.5) and (3.8) are greater than−1. Note, however,
that a four arm calculation similar to that shown above would require the use
of an exponent(−5/4 + ε) so that the corresponding geometric sum would not
converge. It is precisely for this reason that we must establish an alternative to
Kesten’s [3] method of proof to obtain our Theorem 1 for the pivotal case. The
approach we have shown above for the first moment upper bound may be extended,
in fact, to all moments, though we will not show the general case due to the fact
mentioned earlier that Kesten’s method may be applied successfully to obtain a
generalτ th moment bound in the one, two- and three-arm cases. We only show in
addition below a second moment upper bound for the lowest crossing because it
demonstrates the way we extend our dyadic summation method to higher moments
in all cases, including the pivotal one.

3.2. Second moment upper bound. We show an estimation of the second
moment of|Ln|. Write

E(|Ln|2) = ∑
x∈B(n)

∑
y∈B(n)

P
(
L(x, n) ∩ L(y, n)

)
.(3.9)

Recall the definition ofj0 = j0(n) andAj in (3.1). Consider first the “diagonal”
contribution to (3.9) defined by

I :=
j0∑

j=0

∑
x∈Aj

∑
y∈B(x,2−(j+2)n)

P
(
L(x, n) ∩ L(y, n)

)
.(3.10)
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Fix j ≤ j0 andx ∈ Aj and work on the inner sum in (3.10). For this purpose, we
introduce a net of concentric square annuliam = am(x) whose union is the box
B(x,2−(j+2)n) as follows:

am(x) := B(x,2−mn) \ B
(
x,2−(m+1)n

)
, j + 2≤ m ≤ j0 − 1,

(3.11)
aj0(x) := B(x,2−j0n).

Notice thataj0 may consist of only the single pointx. By this decomposition, we

have that
∑j0

m=j+2
∑

y∈am
P (L(x, n)∩L(y, n)) is equal to the inner sum in (3.10).

By (3.11), the size ofam is easily estimated by

|am| ≤ 2−2m+2n2 all j + 2≤ m ≤ j0.(3.12)

Furthermore, forx ∈ Aj andy ∈ am, with j + 2 ≤ m < j0, by halving the distance
betweenx andy, we have that

B
(
x,2−(m+2)n

) ∩ B
(
y,2−(m+2)n

) = ∅.(3.13)

Also, for y ∈ am with m ≥ j + 2, since‖y − x‖ ≤ 2−(j+2)n and 2−(m+2)n +
2−(j+2)n < 2−(j+1)n, we have that bothB(x,2−(m+2)n) andB(y,2−(m+2)n) are
subsets ofB(n). Therefore, sinceL(x, n) ∩ L(y, n) implies that for each of the
boxes in (3.13) there exists a three-arm path from the center of the box to its
boundary, we have by (3.13), independence and (3.5) that, for ally ∈ am with
m < j0,

P
(
L(x, n) ∩ L(y, n)

) ≤ Cε(2
−mn)−4/3+2ε.(3.14)

Also, trivially, (3.14) continues to hold withm = j0, since then 2−mn ≥ 1/2. Thus,
by (3.14), we have

j0∑
m=j

∑
y∈am

P
(
L(x, n) ∩ L(y, n)

) ≤ Cε

∞∑
m=j

2−2mn2(2−mn)−4/3+2ε

(3.15)

≤ Cεn
2/3+2ε2−2j/3.

Therefore, by (3.10), (3.15) and (3.2), we have

I ≤ Cεn
2/3+2ε

∞∑
j=0

|Aj |2−2j/3 ≤ Cεn
8/3+2ε

∞∑
j=0

2−5j/3 ≤ Cεn
8/3+2ε.(3.16)

We next consider the off-diagonal part of the sum (3.9) defined by

II :=
j0∑

j=0

∑
x∈Aj

j0∑
k=0

∑
y∈Ak

χ{‖x−y‖>2−j−2n}P
(
L(x, n) ∩ L(y, n)

)
.(3.17)

Here χA denotes the indicator function of the given set of verticesA. In the
sum II, for all eligible verticesx ∈ Aj andy ∈ Ak with k ≥ j , we have that the
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boxesB(x,2−j−3n) andB(y,2−k−3n) are disjoint and lie insideB(n), while if
k < j , the same holds true by (3.1) when we replace these boxes, respectively, by
B(x,2−j−3n) andB(y,2−k−5n). Therefore, by (3.5), (3.17) and (3.2) we have

II ≤ Cε

j0∑
j=0

|Aj |
j0∑

k=0

|Ak|(2−jn)−2/3+ε(2−kn)−2/3+ε

(3.18)

= Cε

( j0∑
j=0

|Aj |(2−jn)−2/3+ε

)2

≤ Cεn
8/3+2ε.

Therefore, by definitions (3.9), (3.10) and (3.17), and by collecting the estimates
(3.16) and (3.18), we obtain

E(|Ln|2) ≤ n8/3+o(1).(3.19)

We handle an upper bound for the second moment of the number of pioneering
sites by the same method. Thus, we have established the upper bound forτ = 2 of
items 1 and 2 of Theorem 1. This concludes our discussion of these items.

4. Method of disjoint boxes. Denote pn,τ (x1,x2, . . . ,xτ ) =
P(

⋂τ
i=1 Q(xi , n)). Recall the definition ofj0 = j0(n) and Aj in (3.1). Define,

for all j1 ≤ j2 ≤ · · · ≤ jτ ,

�j1,j2,...,jτ := ∑
x1∈Aj1

∑
x2∈Aj2

· · · ∑
xτ ∈Ajτ

pn,τ (x1, . . . ,xτ ).(4.1)

By symmetry, to obtain an upper bound for theτ th moment of the number of
pivotal sites, it suffices to estimate the sum

�0 :=
j0∑

j1=0

j0∑
j2=j1

· · ·
j0∑

jτ =jτ−1

�j1,j2,...,jτ .(4.2)

Moreover, by induction onτ in Theorem 1, we may assume that all the vertices
in (4.1)–(4.2) are distinct. In this section we establish a parametrization of certain
boxes centered at the verticesx1,x2, . . . ,xτ that are both mutually disjoint and
large enough to yield convergence of the sum (4.2) in our method for estimating
this sum shown in Sections 5 and 6. Indeed, we are led naturally to a certain graph
G defined below that organizes the vertices and their relative distances from one
another. Although this organization is somewhat complicated, it will allow us to
introduce estimations ofpn,τ (x1,x2, . . . ,xτ ) that refine the estimation approach
based solely on disjoint boxes (illustrated in Section 3.2) because our estimation
will depend also on the configuration of the graph.

We lay the groundwork for the definition of the graphG as follows. Letc ≥ 2
be a positive integer depending only onτ that we will specify later. We say a
vertexv is “near to” a vertexu, for someu ∈ Aj , if v ∈ B(u,2−j−2cn), and write
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this (asymmetric) relation asvNu. If v is not near tou, we write insteadvÑu.
Let now xi ∈ Aji

, 1 ≤ i ≤ τ , with j1 ≤ j2 ≤ · · · ≤ jτ . We say that a sequence of
verticesxf1, . . . ,xfk

is a chain that leads fromxf1 to xfk
if xfi

Nxfi+1 for each
i = 1, . . . , k − 1. Definee1 := 1 and

V1 := {
xe : e = e1, and there exists a chain fromxe to xe1

}
.

Thus,V1 is the set of all vertices that lead toxe1. Note thatx1 may lead tox2, but if
x2 does not lead tox1, thenxe2 /∈ V1. We denote inductively, byEi := {e : xe ∈ Vi},
the set of indices corresponding to vertices inVi , i = 1,2, . . . , that we now
continue to define. Note that the cardinalities ofEi and Vi are the same since
we have assumed the verticesxe are distinct. Lete2 be the smallest index with
e2 > e1 such thate2 /∈ E1. Define

V2 := {
xe : e /∈ ({e1, e2} ∪ E1), and there exists a chain fromxe to xe2

}
.

Thus, no element ofV2 begins a chain that leads toxe1. It may be thatxe1 leads
to xe2, but we leavexe1 out of V2 as defined. Continuing in this fashion, we take
e3 to be the smallest index withe3 > e2 such thate3 /∈ (E1 ∪ E2). Define

V3 := {
xe : e /∈ ({e1, e2, e3} ∪ E1 ∪ E2), and∃a chain fromxe to xe3

}
.

Finally, we obtain a disjoint collection of sets of verticesV1, . . . , Vr , where some
of theVi may be empty. We say thatVi is the set of vertices chained to the rootxei

.
Thus, for example, ifτ = 3 and bothx3Nx1 and x2Nx1, thenV1 = {x2,x3}

and e2 is undefined. Also ifx3Nx1 and x2Ñx1 but insteadx2Nx3, then again
V1 = {x2,x3} and e2 is undefined. If, on the other hand,x2Nx1, x3Ñx1
and x3Ñx2, then V1 = {x2} and e2 = 3 and V2 is empty. Further, ifx2Ñx1,
x3Ñx1 and x3Nx2, then V1 is empty ande2 = 2 and V2 = {x3}. Finally, if
x2Ñx1, x3Ñx1 andx3Ñx2, thenei = i andVi is empty,i = 1,2,3.

Suppose now, in general, thatei is defined fori = 1, . . . , r . Thus, r is the
number of root vertices. Note by definition that the vertexx1 is always counted
among the roots. We say that a vertexxei

is isolated ifVi = ∅. At nonisolated
roots we introduce a decomposition of the setsVi themselves by means of a local
“near to” relation. It turns out that we will be able to work with one original
root xei

and its corresponding set of verticesVi at a time in constructing the
moment estimates of Sections 5 and 6, so in what follows we only write out a
decomposition ofV1. We will represent this decomposition as a graphG1 below,
where, in general, a connected graphGi with vertex set{xei

} ∪ Vi is associated
with the root vertexxei

. The graphG on all vertices is defined simply as the union
of the component graphsGi .

Let |V1| ≥ 1. We denoteV1 := {y1,y2, . . .}, where the names of the vertices have
been changed such thaty1 ∈ ap1(x1),y2 ∈ ap2(x1), . . . , for p1 ≥ p2 ≥ · · ·, where
y1 is determined such thaty1Nx1 and such thaty1 minimizes the distance tox1.
Therefore,p1 ≥ j1 + 2c by (3.11). We now say thatvMwu for someu ∈ am(w),
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if v ∈ B(u,2−m−2cn). We call Mw a local relation, wherew fixes the locale of
the relation. We describe how to decomposeV1 via a collection of local relations
starting withMx1 in a way wholly similar to the decomposition of the original set
of vertices{x1, . . . ,xτ } via theN -relation. Indeed, setf1 = 1, renamey1 asw1,
and defineW1 as all the vertices ofV1 \ {w1} that are chained to the rootw1 by
means of a chain of relations for the relationMx1. We renamepf1 = m1 so that
w1 ∈ am1(x1). Let f2 be the smallest index withf2 > f1 such thatyf2 /∈ W1. We
renameyf2 = w2 and alsopf2 = m2 so thatw2 ∈ am2(x1). Note, in particular, that
w2M̃x1w1. Define

W2 := {
yf : yf /∈ ({w1,w2} ∪ W1), and∃aMx1-chain fromyf to w2

}
.

Continuing in this way, we define alsof3 < f4 < · · · as long as these exist and
so also local rootswi = yfi

and corresponding setsWi , i = 3,4, . . . , chained to
them by the relationMx1. We also define indices for the locations of the local
roots. Indeed, following the example above for our definitions ofm1 andm2, we
definemi such thatwi ∈ ami

(x1) for all i such thatwi exists. Note by definition,
sincemi = pfi

andp1 ≥ p2 ≥ · · ·, we have thatm1 ≥ m2 ≥ · · ·. In general, for
eachi, we further decompose the setWi into a disjoint union:

({wi,1} ∪ Wi,1) ∪ ({wi,2} ∪ Wi,2) ∪ · · · .

Here for eachj = 1,2, . . . , Wi,j is a set of vertices chained to the corresponding
local root wi,j by the relationMwi

as follows. AssumeW1 is not empty, else
w1,1 andW1,1 are undefined. SinceW1 is the set of elements chained tow1, we
know there existsy ∈ W1 such thatyMx1w1. We takew1,1 as such a vertexy
that minimizes the distance tow1. We define the indexm1,1 by the property:
w1,1 ∈ am1,1(w1). Therefore, by definition ofMx1 and the fact thatw1 ∈ am1(x1),
we havem1,1 ≥ m1 + 2c. Note by definition ofw1,1, that for anyy ∈ W1, we
havey ∈ ap(w1) with somep ≤ m1,1. We defineW1,1 as the set of vertices in
W1 \ {w1,1} that are chained to the local rootw1,1 by the relationMw1. We perform
a similar procedure starting withW2 to define the local rootw2,1. In particular,
w2,1Mx1w2. Likewise, as long asWi is not empty, we definewi,1 ∈ Wi and a
setWi,1 chained towi,1 by the relationMwi

. Here the indicesm2,1,m3,1, . . . are
defined such thatwi,1 ∈ ami,1(wi), i = 2,3, . . . . Again, we choosewi,1 such that
mi,1 is maximal, that is, there does not existy ∈ am(wi) ∩ Wi with m > mi,1.

We definew1,2 andW1,2 if W1 \ (W1,1 ∪ {w1,1}) is not empty. We do this in the
same way that we definedw2 andW2 from V1 \ (W1 ∪ {w1}). Thus, we order the
vertices inW1 asw1,1, y2, y3, . . . , whereyi ∈ api

(w1) with m1,1 ≥ p2 ≥ p3 ≥ · · ·.
Among all elements ofW1\{w1,1} that are not chained to the local rootw1,1 by the
relationMw1, we choosew1,2 to be the vertexyi with least index. Correspondingly,
we defineW1,2 as the elements ofW1 \ (W1,1 ∪ {w1,1,w1,2}) that are chained
to w1,2 by the relationMw1. Note, in particular, thatw1,2 ∈ am1,2(w1) with
m1,2 ≤ m1,1. Similarly, we define local rootsw1,j , j = 3,4, . . . and for eachi ≥ 2,
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the rootswi,j , j = 2,3, . . . . We definemi1,i2, for i2 = 1,2, . . . , as indices such that
wi1,i2 ∈ am(wi1) with m = mi1,i2. Again by definitionmi,1 ≥ mi,2 ≥ · · ·, and, since
wi,1 ∈ ami,1(wi ) andwi,1Mx1wi , we have thatmi,1 ≥ mi + 2c.

We inductively continue this procedure such that for a given local rootwi1,...,ik

and associated local elementsWi1,...,ik chained to it, we decompose

Wi1,...,ik = ({
wi1,...,ik,1

} ∪ Wi1,...,ik,1
) ∪ ({

wi1,...,ik,2
} ∪ Wi1,...,ik,2

) ∪ · · ·
by means of the relationMw for w = wi1,...,ik . We continue in this way until no
further local roots may be defined. In general, fork ≥ 1, we havewi1,...,ik,1 ∈
am(wi1,...,ik ) for m = mi1,...,ik,1 and

wi1,...,ik,1Mwi1,...,ik−1
wi1,...,ik .

Here whenk = 1, wi1,...,ik−1 becomesx1. We also define the indexmi1,...,ik+1, in
general, by the property thatwi1,...,ik+1 ∈ am(wi1,...,ik ) with m = mi1,...,ik+1. We
have that, for allk ≥ 0, mi1,...,ik,1 ≥ mi1,...,ik,2 ≥ · · · andmi1,...,ik,1 ≥ mi1,...,ik + 2c,
where fork = 0, mi1,...,ik denotesj1.

We now use our parameterc to obtain one further property of the indices not
mentioned in the previous paragraph. First, sinceW1 consists of all verticesw that
may be chained tow1 by the relationMx1, we argue thatc may be chosen such
that

w ∈ ap(x1) with p ≥ m1 − 1, for all w ∈ W1.(4.3)

Indeed, since there are at mostτ − 1 relations with respect toMx1 that must be
satisfied, ifc is large enough and ifw ∈ am(x1) for somem ≤ m1 − 2, then the
chain will not be able to cross the square annulusam1−1(x1) to reachw1 ∈ am1(x1).
Therefore, we choosec sufficiently large to guarantee (4.3). Note that the value
of c so chosen does not depend on the valuem1 or the locationx1. Now, since
we have control on the indexp for the location ofw, it is easy by estimating the
sum of distances between successive vertices in a chain of relations leading tow1
by (τ − 1)2−m1+1−2cn that again, by choosingc somewhat larger if necessary,
we havem1,i2 ≥ m1 + c for all i2 = 2,3 . . . , while, of course, we still have that
m1,1 ≥ m1 + 2c. By the same argument based at any local root, we have, for all
k ≥ 0, that

mi1,...,ik,ik+1 ≥ mi1,...,ik + c for ik+1 = 2,3, . . . ,
(4.4)

mi1,...,ik,1 ≥ mi1,...,ik + 2c.

We now define the graphG1 alluded to above. The vertices ofG1 are{x1} ∪V1.
We assume|V1| ≥ 1, else the graph is trivial. Ifwi1,...,ik is a local root, we say
that the root is at levelk. We define a (horizontal) edge at levelk between
wi1,...,ik and wi1,...,ik+1 whenever both these local roots exist. In our diagram
below we make the edge go horizontally to the left fromwi1,...,ik to wi1,...,ik+1
to recall the fact that the associated indices satisfymi1,...,ik+1 ≤ mi1,...,ik . Next,
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FIG. 1. The graph G1.

we call w1 an immediate successor ofx1. Similarly, if wi1,...,ik is a local root
of level k and if the rootwi1,...,ik,1 exists at levelk + 1, then we call this local
root the immediate successor of the former local root. We now define that a
(vertical) edge exists between two immediate successors. In our diagram the level
increases vertically withk. We illustrateG1 for the following example in Figure 1:
|V1| = 10,|W1| = 3, |W1,1| = 0, |W1,2| = 1 and|W1,2,1| = 0; |W2| = 5, |W2,1| = 2,
|W2,2| = 1, |W2,2,1| = 0, |W2,1,1| = 0 and|W2,1,2| = 0.

4.1. Representation of disjoint boxes. We fix the graphG1 and study the
problem of verifying that certain boxes centered at its vertices that we now
construct are indeed disjoint. Assume|V1| ≥ 1. For each vertexw = wi1,...,ik ∈ G1,
we define

m(w) =
{

mi1,i2,...,ik,1, if wi1,i2,...,ik,1 exists,

mi1,i2,...,ik , if wi1,i2,...,ik,1 does not exist.
(4.5)

Note that since we assume thatw1 exists, we also havem(x1) = m1. We set the
constant values := 2c + 4 wherec appears in (4.4).

PROPOSITION 1. The collection of boxes B(w,2−m(w)−sn), w ∈ G1, are
mutually disjoint.

PROOF. Let k ≥ 0 and letw = wi1,...,ik andw′ = wi′1,...,i′k′ be distinct vertices

in G1. Definel as the largest nonnegative integer such thati ′1 = i1, . . . , i
′
l = il and

set z := wi1,...,il . If one of w or w′ is x1, then we setl = 0 and putz = x1. We
consider two cases, namely, (a) one ofw or w′ is equal toz, or (b) neitherw norw′
is equal toz. In case (a) we assume, without loss of generality, thatw = z. Note
therefore that with this choice in case (a),l = k, k′ > k, andw′ ∈ Wi1,...,ik since
wi1,...,ik,1 exists. In case (b) we must have bothk ≥ l + 1 andk′ ≥ l + 1, else we
are in case (a) again. Thus, in case (b) we may switch the designation of the primed
vertex if necessary such thati ′l+1 > il+1.
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We work first with case (a). Sincew′ ∈ Wi1,...,ik , we have that

w′ ∈ ap(w) for somep ≤ mi1,...,ik,1.(4.6)

Indeed, (4.6) holds by the definition ofmi1,...,ik,1 as the maximalm such that
y ∈ am(w) among ally ∈ Wi1,...,ik \ {w}. Now by (4.5), we havem(w) = mi1,...,ik,1,
so by (4.6),

B
(
w′,2−m(w)−2n

)
and B

(
w,2−m(w)−2n

)
are disjoint.(4.7)

Consider first a special case of (a), namely, that

w′ ∈ {
wi1,...,ik,1

} ∪ Wi1,...,ik,1(4.8)

so thatw′ is either the immediate successor ofw or is one of the descendants of this
immediate successor. It follows by (4.8) thati ′k+1 = 1. Therefore, sincek′ ≥ k + 1,
we have, by (4.4) and (4.8), that

mi′1,i′2,...,i′k′ ,1 ≥ mi′1,i′2,...,i′k′ + 2c ≥ mi1,i2,...,ik,1 + 2c.

Therefore, by (4.5), we have thatm(w′) ≥ m(w) whether or not the vertex
wi′1,i′2,...,i′k′ ,1 exists. Hence, it follows by (4.7) that

B
(
w′,2−m(w′)−sn

)
and B

(
w,2−m(w)−sn

)
are disjoint.

Thus, we have established disjoint boxes under condition (4.8) in case (a).
Suppose next for case (a) thatk′ ≥ k + 1 with i ′k+1 ≥ 2. Thus, we consider the

remaining descendantsw′ of w that were not considered in the special case (4.8).
Put w̃ := wi1,...,ik,i

′
k+1

, so eitherw′ = w̃ (whenk′ = k + 1) or w′ is a descendant
of w̃:

w′ ∈ {w̃} ∪ Wi1,...,ik,i
′
k+1

.

For all suchw′, we have that

w′ ∈ ap(w) for somep ≤ mi1,...,ik,i
′
k+1

.(4.9)

Indeed, by definition, the vertex̃w lies in the annulusam(w) wherem is maximal:

if some y ∈ Wi1,...,ik \ ⋃i′k+1−1
i=1 (Wi1,...,ik,i ∪ {wi1,...,ik,i}) lies also inap(w), then

m ≥ p. Therefore, since indeedw′ is one such vertexy, the assertion (4.9) is
verified. Hence, by (3.13),

B(w′,2−p−2n) and B(w,2−p−2n) are disjoint.

But, by definition of the indices and (4.9), we have

m(w) = mi1,...,ik,1 ≥ mi1,...,ik,i
′
k+1

≥ p.

Also, by (4.4) and (4.5), sincel = k andk′ ≥ k + 1, we have that

m(w′) ≥ mi′1,...,i′k′ ≥ mi1,...,ik,i
′
k+1

+ c ≥ p + c ≥ p.
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Thus, sinces ≥ 2, we obtain the desired conclusion. This completes the proof of
disjoint boxes for case (a).

We now proceed to study case (b). We first note that sincek, k′ ≥ l + 1,

(i) w ∈ {
wi1,...,il ,il+1

} ∪ Wi1,...,il ,il+1,

(ii) w′ ∈ {
wi1,...,il ,i

′
l+1

} ∪ Wi1,...,il ,i
′
l+1

.
(4.10)

Therefore, just as in (4.9), we find by (4.10) that

(i) w ∈ ap(z) for somep ≤ mi1,...,il ,il+1,

(ii) w′ ∈ ap′(z) for somep′ ≤ mi1,...,il ,i
′
l+1

.
(4.11)

Now we claim that forp given in (4.11), we have

w′ /∈ B(w,2−p−2cn).(4.12)

Indeed, on the contrary, we would havew′Mzw. Therefore, we could chainw′ to
wi1,...,il ,il+1 by the relationMz. Indeed, ifl ≤ k − 2, thenw is already chained in
this way towi1,...,il ,il+1, while if l = k − 1, thenw = wi1,...,il ,il+1 so we would have
directly thatw′Mzwi1,...,il ,il+1. Therefore, on the one hand, we have the inclusion

(ii) of (4.10) and, on the other hand, we would have thatw′ ∈ ⋃il+1
i=1 Wi1,...,il ,i since

w′ is chained towi1,...,il ,il+1. But these two inclusions are in contradiction since
i ′l+1 > il+1. Hence, we must not have that this chain relation exists and, therefore,
(4.12) holds.

To finish the argument for case (b), suppose first thatp′ < p−2. Then by (4.11)
alone and (3.11), we have thatB(w′,2−p′−2n) andB(w,2−p−2n) are disjoint. But
by (4.4) and (4.5),

m(w′) ≥ mi1,...,il ,i
′
l+1

≥ p′ and m(w) ≥ mi1,...,il ,il+1 ≥ p.

Thus, sinces ≥ 2, we obtain the desired disjoint boxes condition. Suppose finally
that p′ ≥ p − 2. We have by (4.12) and (3.13) thatB(w′,2−p−2c−2n) and
B(w,2−p−2c−2n) are disjoint. Therefore, we obtain the disjoint boxes condition
by using (4.4), (4.5) and (4.11) to obtain the following two strings of inequalities:

m(w′) + s ≥ mi′1,...,i′k′ + s ≥ mi1,...,il ,i
′
l+1

+ s ≥ p′ + s ≥ p + 2c + 2

and

m(w) + s ≥ mi1,...,ik + s ≥ mi1,...,il ,il+1 + s ≥ p + s ≥ p + 2c + 2.

This completes the proof of case (b). Therefore, the proof of Proposition 1 is
complete. �
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5. Upper bounds in the pivotal case. In this section we will prove in detail
upper bounds for the first and second moments of|Qn|. To do this, we will recall
the approach of Kesten [4] to lay the groundwork that allows us to establish certain
“horseshoe” estimates that we describe below. LetB1 ⊂ B(n) be a box centered
at x near the right boundary ofB(n) such that the right boundary ofB1 lies on
the right boundary ofB(n), and letB2 ⊂ B(n) be a box containingB1 such
that the right edge ofB1 is centered in the right edge ofB2. Thus,B2 \ B1 is a
semi-annular region that we call a horseshoe. To estimateE(|Qn|), we bound the
P(Q(x, n)) by the product of probabilities of two subevents ofQ(x, n), namely,
(i) there exists a four-arm path fromx to ∂B1, and (ii) there exists a three-arm
crossing of the horseshoe. The probability of the latter event will be handled
by Lemma 5. To organize the sizes of the larger boxesB2 that fit insideB(n),
we introduce a partition of the boxB(n) that is dual to the original partition
of concentric annuli introduced in Section 3. For the second moment, we must
estimateP(Q(x, n)∩Q(y, n)). We employ the same “near to” definition employed
in Section 4. WhenyÑx, so thatx andy are isolated root vertices, we determine
first whether these vertices are separated sufficiently to give rise to one or two
horseshoes. The boxes and horseshoes we construct for our probability estimates
will remain disjoint. We then utilize independence of events and Lemma 5 applied
to each horseshoe that appears in our construction. From this point of view, our
method for the pivotal case may be termed the method of disjoint horseshoes.
However, ifyNx, then it does not suffice to simply apply a disjoint boxes argument
combined with Lemma 2, because this leads to a divergent sum in our dyadic
summation method. Thus we need another result, namely, Lemma 7, that is proved
in the Appendix.

Let B1 = B1(2ρ) ⊂ B(n) be a fixed box of radius 2ρ and for eachν ≥ ρ such
thatν − ρ is an integer, letB2 = B2(2ν) ⊂ B(n) be a box of radius 2ν containing
B1 such that the right edge of∂B1 is centered in the right edge of∂B2. Denote
by H := H(ρ, ν) := B2(2ν) \ B1(2ρ) the corresponding horseshoe. Consider∂H

with the right edges in common with the right edge of∂B2 removed. The resulting
set of vertices consists of two concentric semi-rings of vertices in∂H . The smaller
semi-ring we denote by∂1H and call the inner horseshoe boundary and the larger
semi-ring we denote by∂2H and call the outer horseshoe boundary. Define the
event

J(ρ, ν) := there exists an open pathr1 in H = H(ρ, ν) that
connects∂2H to ∂1H and there exist two disjoint
closed pathsr2 andr4 in H(ρ, ν) that connect
∂2H to ∂1H ; r4 is oriented counterclockwise and
r2 clockwise fromr1 as viewed from∂2H.

(5.1)

LEMMA 5. Define the event that there is a three-arm crossing of the horseshoe
H(ρ, ν) in B(n) with inner radius 2ρ and outer radius 2ν by (5.1). Then there
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is a function ε(u) → 0 as u → ∞ and constant C such that P(J(ρ, ν)) ≤
C2ρ(2+ε(ρ))/2ν(2+ε(ν)).

PROOF. The first main step is to establish (5.2). To do this, we have to recall
the proof of Kesten’s [4] Lemma 4. Since Kesten’s connection arguments will
continue to play a role in our proof of Lemma 7, we repeat the main outlines
of these arguments here for the sake of completeness. For any boxB = B(x, r),
we define theith side,i = 1,2,3,4, as the part of the boundary ofB, that is,
respectively, on the left, bottom, right or top ofB. Define disjoint filled squares
βi = βi(ρ), i = 1,2,4, that lie outside but adjacent to the sides ofB1(2ρ), where
the indexi refers to theith side, so that the squares are listed in counterclockwise
order around the boundary ofB(y,2ρ). Here and in the sequel a square will be
synonymous with a boxB(x, r) for some centerx and radiusr . We assume that the
squaresβi are of radius 2ρ−3 with spacing 7(2ρ−3) on either side. See Figure 2.
Define the eventH(ρ, ν) as the eventJ(ρ, ν) with the additional requirements
that the pathr1 h-tunnels throughβ1 and the pathsr2 and r4 v-tunnel through
β2 andβ4, respectively, and further, there is a vertical open crossing ofβ1 and
there are horizontal closed crossings ofβ2 andβ4. We will show

P
(
J(ρ, ν)

) ≤ CP
(
H(ρ, ν)

)
.(5.2)

Define H(ρ1, ν) := B2(2ν) \ B2(2ρ1) for any ρ ≤ ρ1 ≤ ν, where by our
definition above,B2(2ρ1) = B1(2ρ) for ρ1 = ρ. We now takeρ1 = ν − k

and so view a nested sequence of boxesB2(2ν−k), k ≥ 1, each in a similar
relationship to the boxB1(2ρ) as the original boxB2(2ν). Introduce disjoint
squaresαi = αi(ν − k), i = 1,2,4, of radii 2ν−k−3 that lie now inside but adjacent
and centered to theith sides ofB2(2ν−k), k = 0, . . . , ν − ρ − 1. Likewise, by
similarity to the squaresβi(ρ) on the outside ofB1(2ρ), introduce corresponding
squaresβi(ν − k − 1) of radii 2ν−k−4 on the outside ofB2(2ν−k−1). First note for
the casek = 0, that, by the existence of vertical open crossings of the squares
α1(ν) and β1(ν − 1) and horizontal closed crossings of the squaresαi(ν) and
βi(ν − 1), i = 2,4, and by the existence of appropriate connecting paths that
h-tunnel through bothα1(ν) andβ1(ν − 1) and thatv-tunnel throughαi(ν) and
βi(ν − 1) for eachi = 2,4, and by FKG, there exists a constantc1 such that

P
(
H(ν − 1, ν)

) ≥ c1.

Now we iterate this argument withk ≥ 1, while keeping track of the probability
of connecting paths from one step to the next. Indeed, we replace in the above
argument the squaresαi(ν) andβi(ν − 1) by the squaresα1(ν − k) andβ1(ν −
k − 1), and only require, besides the horizontal closed crossings and vertical open
crossings, the existence of connecting paths that, as appropriate, eitherh-tunnel or
v-tunnel through all three ofβi(ν − k) andαi(ν − k), andβi(ν − k − 1), to show
by induction that there exists a constantc2 such that

P
(
H(ν − k − 1, ν)

) ≥ c1c
−k
2 all k = 0, . . . , ν − ρ − 1.(5.3)
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FIG. 2. Arrangement of the connection boxes in the proof of Lemma 5. Here ρ1 = ρ + 1.

We may assume thatν > ρ + 2, so we now do so. Define the eventJ(ρ + 2, ν)

by replacing the horseshoeH(ρ, ν) in (5.1) by H(ρ + 2, ν), so that obviously
J(ρ, ν) ⊂ J(ρ+2, ν). Consider the eventK(ρ+2, ν) that the pathsri , i = 1,2,4,
defining J(ρ + 2, ν) can be chosen such that each has a certain fence around
it at the location that it meets the inner horseshoe boundary∂1H(ρ + 2, ν); see
[4], page 134, for the precise definition of the fence. Kesten shows, by adroit
application of the FKG inequality (see [4], Lemma 3), that each fence, in turn, will
allow an extension of the chosen pathri into H(ρ,ρ + 2) by means of a certain
corridor it will travel through, with the result that there is only a multiplicative
constant cost in probability that the path willh-tunnel orv-tunnel, as appropriate,
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through the corresponding squareβi :

P
(
K(ρ + 2, ν)

) ≤ Cf P
(
H(ρ, ν)

)
,(5.4)

whereCf depends on the parameter of the fence.
On the exceptional set, where one of the pathsri cannot be chosen to have such

a fence, one obtains, following Kesten [4], page 131, a bound

P
(
J(ρ + 2, ν) \ K(ρ + 2, ν)

) ≤ δP
(
J(ρ + 3, ν)

)
.(5.5)

The parameterδ can be made as small as desired by adjusting the parameter of the
fence (see [4], Lemma 2). Therefore, by (5.1) and (5.5), one obtains

P
(
J(ρ, ν)

) ≤ P
(
J(ρ + 2, ν)

) ≤ P
(
K(ρ + 2, ν)

) + δP
(
J(ρ + 3, ν)

)
.(5.6)

By iteration of (5.6) and by applying (5.4) and (5.3) at the end, one obtains, just as
in [4], page 131, that

P
(
J(ρ, ν)

) ≤ ∑
t≥0

δtP
(
K(ρ + 3t + 2, ν)

) + Cδ(ν−ρ)/3

≤ ∑
t≥0

Cf δtP
(
H(ρ + 3t, ν)

) + C(δc3
2)

(ν−ρ)/3P
(
H(ρ, ν)

)
(5.7)

≤ P
(
H(ρ, ν)

)(∑
t≥0

Cf c−1
1 (δc3

2)
t + C(δc3

2)
(ν−ρ)/3

)
.

Sinceδ is arbitrary, by (5.7), the desired estimate (5.2) follows.
We continue the proof of the lemma. Lety′ be the center vertex of the right side

of B1 := B1(2ρ). Recall that∂1H denotes the inner horseshoe boundary of the
horseshoeH(ρ, ν). Let the squaresαi(ρ), i = 1,2,4, as defined above lie inside
the boundary ofB2(2ρ) = B1(2ρ). Define the events

E(ρ) := there exists an open pathr1 in B1(2ρ) from y′ to
∂1H and there exist two disjoint closed paths
r2 andr4 in B1(2ρ) from y′ to ∂1H ;
r2 is oriented counterclockwise andr4
clockwise fromr1 as viewed from the vertexy′

(5.8)

and

D(ρ) := E(ρ) occurs, the pathr1 h-tunnels throughα1(ρ),

and, for eachi = 2,4, the pathsri v-tunnel throughαi(ρ).

Further, there exists a vertical open crossing ofα1(ρ)

and horizontal closed crossings ofα2(ρ) andα4(ρ).

(5.9)

By Kesten’s arguments again,P(E(ρ)) ≤ CP(D(ρ)) andP(H(ρ, ν))P (D(ρ)) ≤
CP(E(ν)). Therefore, by (5.2) and these two inequalities,P(J(ρ, ν))P (E(ρ)) ≤
CP(H(ρ, ν))P (D(ρ)) ≤ CP(E(ν)). Therefore,

P
(
J(ρ, ν)

) ≤ CP(E(ν))/P (E(ρ)).(5.10)
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Finally, to complete the proof of the lemma, we recall Smirnov and Werner’s
semi-annulus version of Lemma 1 (Theorem 3 of [12]) as follows. LetGκ(r0, r)

denote the event that there existκ disjoint crossings of the semi-annulus
A+(r0, r) = {z ∈ C : r0 < |z| < r,�z > 0} for the hexagonal tiling of fixed mesh 1
in C. Then for allκ ≥ 1,

P
(
Gκ(r0, r)

) = r−κ(κ+1)/6+o(1) asr → ∞.(5.11)

Therefore, by (5.11) withκ = 3, we have

P(E(ρ)) = 2−ρ(2+o(1)) asρ → ∞.(5.12)

Hence, by (5.10) and (5.12), the proof of the lemma is complete.�

For our proof of Lemma 7, we will also need the following result that is a
restatement of Kesten’s [4] Lemma 5. LetB(l) be a box centered at the origin
with radius l ≥ 2, and letB(x,m) ⊂ B(l/2). Define disjoint filled squaresβi ,
i = 1,2,3,4, that lie outside but adjacent to the sides ofB(x,m), where the indexi
refers to theith side. We take the squares to have radiim/8 and to be centered in the
sides ofB(x,m). Let U4(x,m; l) be as defined in (2.5). LetV4(x,m; l) be defined
by (2.5) with the following additional requirements: the open pathsr1 andr3 that
exist from ∂B(l) to ∂B(x,m) will h-tunnel throughβ1 andβ3, respectively, on
their ways to∂B(x,m), and, likewise, the closed pathsr2 and r4 will v-tunnel
throughβ2 andβ4, respectively, on their ways to∂B(x,m), and, further, there exist
vertical open crossings ofβ1 andβ3 and horizontal closed crossings ofβ2 andβ4.

LEMMA 6. There is a constant C such that

P
(
U4(x,m; l)) ≤ CP

(
V4(x,m; l)).

5.1. Expectation bound for pivotal sites. We are now ready to estimate
E(|Qn|). We will refine the partition of the boxB(n) defined by the concentric
annuli Aj of (3.1) by cutting these annuli transversally. Define an increasing
sequence of regionsB∗(j∗), j∗ ≥ 0, each lying insideB(n) by

B∗(j∗) := {
(x1, x2) ∈ B(n) : min{|x1|, |x2|} ≤ (1− 2−j∗−1)n

}
.(5.13)

The setB∗(j∗) is the boxB(n) with squares of diameter 2−j∗−1n removed from
each of its corners. We define the dual sets to the annuliAj by taking the successive
differences of the setsB∗(j∗):

A∗
0 := B∗(0),

(5.14)
A∗

j∗ := B∗(j∗) \ B∗(j∗ − 1), j∗ ≥ 1.
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Thus, forj∗ > 0, A∗
j∗ consists of four “L”-shaped regions. For each such region,

the “L” cuts off a square in the corresponding corner ofB(n). The collection
{A∗

j∗, j∗ ≥ 0} is a partition ofB(n). Moreover, the following properties hold:

Aj ∩ A∗
j∗ = ∅, j∗ > j,

is a union of eight rectangles, if 0 < j∗ < j,

is a union of four corner squares, if 0 < j∗ = j,

is a union of four rectangles, if j∗ = 0 andj > 0,

one central square, if j∗ = j = 0.

(5.15)

Note, by (3.1), (5.13) and (5.14), that we have the estimate

|Aj ∩ A∗
j∗ | ≤ C2−j−j∗

n2 all 0≤ j∗ ≤ j, n ≥ 1(5.16)

for some constantC. Let {Aj , 0 ≤ j ≤ j0} be the partition ofB(n) defined
by (3.1). Thus, by (5.15), the collection{Aj ∩ A∗

j∗, 0 ≤ j∗ ≤ j ≤ j0} comprises a
joint partition ofB(n). Hence, we can write

E(|Qn|) = ∑
x∈B(n)

P
(
Q(x, n)

) =
j0∑

j=0

j∑
j∗=0

∑
x∈Aj∩A∗

j∗
P

(
Q(x, n)

)
.(5.17)

Now for any 0≤ j∗ ≤ j , we considerx ∈ Aj ∩ A∗
j∗ . Choose real numbers

ρ = ρ(j, n) and ν = ν(j∗, n) such that 2ρ � 2−jn and 2ν � 2−j∗
n and ν − ρ

is integer. Heref � g over a range of arguments for the functionsf and g

means that there exists a constantC > 0 such that(1/C)g ≤ f ≤ Cg over this
range. We chooseB1(2ρ) to have centerx and make the definition ofρ such that
B1(2ρ) ⊂ B(n), but also such that∂B1(2ρ) ⊂ ∂B(n). This is possible since the
box B(x,2−j−2n) lies interior toB(n) by construction, so now we expand the
radius of this box such that its boundary just meets that ofB(n). Notice therefore
that whileρ is not independent ofx, the value of 2ρ only varies by a constant
factor withx. We also construct a boxB2(2ν) ⊂ B(n) containingB1(2ρ), as in the
context of Lemma 5, such thatB2(2ν) andB1(2ρ) share boundary points along
the side ofB(n) corresponding to the side of the annulusAj that x belongs to.
This is possible by our construction of the dualA∗

j∗ . Thus, by the definition (5.1)
of J (ρ, ν) and the definition of the four-arm path (2.5), and by independence, we
have that

P
(
Q(x, n)

) ≤ P
(
U4(0,2ρ)

)
P

(
J(ρ, ν)

)
.(5.18)

Let ε > 0. By Lemma 2, there exists a constantCε,1 such that

P
(
U4(0, r)

) ≤ Cε,1r
−5/4+ε all r ≥ 1.

Similarly, by Lemma 5, there exists a constantCε,2 such thatP(J(ρ, ν)) ≤
Cε,22(ρ−ν)(2−ε), all ρ ≤ ν. Therefore, by these considerations withr = C2−jn ≥
C/2 and with 2−jn and 2−j∗

n in place of 2ρ and 2ν , respectively, we have, by
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(5.16) and (5.18), that there exists a constantCε such that

E(|Qn|) ≤ Cε

j0∑
j=0

j∑
j∗=0

2−j−j∗
n2(2−jn)−5/4+ε2(−j+j∗)(2−ε)

(5.19)

≤ Cεn
3/4+ε

∞∑
j=0

2−3j/4 ≤ Cεn
3/4+ε.

This concludes the caseτ = 1 of item 3 of Theorem 1.

5.2. Second moment for pivotal sites. In the case of second and higher
moments we will have to consider the condition that a given root vertexxei

is
not isolated (so that|Vi | ≥ 1; see Section 4). To handle the need for an extra
convergence factor in our dyadic summation method, in this case we introduce the
following lemma. We will use this lemma, in particular, to estimate the probability
of the eventQ(x, n)∩Q(y, n) in caseyNx for the second moment estimate below.
Let R be a filled-in rectangle of vertices with sides parallel to the coordinate axes.
For any vertexw contained in the interior ofR, denote the event

U4(w;R) := ∃a four-arm path inR from w to ∂R.(5.20)

This is simply an extension of the definitionU4(w, n) in (2.5) with R in place
of B(n). Recall also definition (2.8).

LEMMA 7. Let R = R(x′) be a rectangle centered at x′ with its shortest half-
side of length l ≥ 1 and longest half-side of length L ≥ 1 such that 1 ≤ L/l ≤ 2.
Let R contain a vertex x such that ‖x − x′‖ ≤ l/2. Suppose further that R contains
a collection of disjoint boxes Bi := B(yi ,2λi ), i = 1, . . . , v, which also have the
property that for each i = 1, . . . , v, x /∈ Bi . Then there exist constants C, d and c1,
depending only on v, such that

P

(
U4(x;R) ∩

(
v⋂

i=1

U4(yi;R)

))
≤ CP

(
T4(0, l/d)

) v∏
i=1

P
(
U4(0,2λi−c1)

)
.

We prove Lemma 7 in the Appendix.
We are now ready to estimate the second moment of|Qn|. As in the estimation

of the first moment, we use the partition{Aj ∩ A∗
j∗, 0 ≤ j∗ ≤ j ≤ j0} of B(n).

Denotepn(x,y) := P(Q(x, n) ∩ Q(y, n)). Hence, as in (4.1)–(4.2), it suffices to
estimate

�0 :=
j0∑

j=0

j∑
j∗=0

∑
x∈Aj∩A∗

j∗

j0∑
k=j

k∑
k∗=0

∑
y∈Ak∩A∗

k∗
pn(x,y).(5.21)

Recall that, as mentioned at the beginning of Section 4, we may assume that the
verticesx andy are distinct in (5.21). We now define a diagonal sub-sum of the
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sum (5.21) according to the conditiony ∈ B(x,2−j−2cn) that is yNx. For this
case, we recall by (3.11) that

⋃j0
m=j+2c am(x) = B(x,2−j−2cn), wherec is defined

in Section 4 by (4.4). Therefore, we write this diagonal sum as

I :=
j0∑

j=0

j∑
j∗=0

∑
x∈Aj∩A∗

j∗

j0∑
m=j+2c

∑
y∈am(x)

pn(x,y).(5.22)

Let ε > 0. We estimateI . We use that ify ∈ am(x), then (3.13) holds. Ifm ≥ j +
2c + 4, we apply Lemma 7 withv = 1 andx′ = x for a squareR ⊂ B(n) with half-
sidel � 2−jn such thatB(y,2−m−2n) ⊂ R. Note that, indeed,x /∈ B(y,2−m−2n)

for y ∈ am so that the hypothesis of Lemma 7 is satisfied with 2λ1 = 2−m−2n. If
insteadj +2c ≤ m < j +2c+4, then we can still define the squareR for the same
asymptotic size ofl but such that now the boxB(y,2−m−2n) ⊂ B(n) is disjoint
from R. In this latter case we simply apply independence of events. Finally, we
find a boxB1 in B(n) of radius 2ρ � 2−jn, one of whose edges lies in∂B(n) and
that contains bothR and the boxB(y,2λ1). For x ∈ Aj ∩ A∗

j∗ , we construct a box
B2 ⊂ B(n) of radius 2ν � 2−j∗

n such that the horseshoe pair(B1,B2) conforms
to the context of Lemma 5. Therefore, since on the eventQ(x, n) ∩ Q(y, n) there
must be a three-arm crossing of the horseshoe, by Lemma 5, independence and
Lemma 7, and by Lemma 2 applied to bothP(U4(0,2λ1−c1)) andP(U4(0, l/d))

for l � 2ρ , we have that

pn(x,y) ≤ Cε2(ρ+λ1)(−5/4+ε)+(ρ−ν)(2−ε) ≤ Cεn
−5/2+2ε22j∗+(−3j+5m)/4.(5.23)

Therefore, by (3.12), (5.16), (5.22) and (5.23), we have that

I ≤ Cεn
−5/2+2ε

∞∑
j=0

j∑
j∗=0

|Aj ∩ A∗
j∗ |

∞∑
m=j

|am|22j∗+(−3j+5m)/4

(5.24)

≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
m=j

2j∗+(−7j−3m)/4 ≤ Cεn
3/2+2ε

∞∑
j=0

2−3j/2.

We now turn to the remaining sumII := �0 − I . The verticesx and y
left to consider in this sum are isolated root vertices, so thatyÑx. We would
like to construct a horseshoe along the side ofB(n) for each vertex in this
pair of vertices. But boxes centered at these vertices, defined by the condition
that each box just comes to the side ofB(n), may overlap. To treat this case,
we define an (asymmetric) horseshoe relationship as follows. We writeyKx if
y ∈ B(x,2−j+6n). If yKx, then we define one root horseshoe vertex, that is,x,
while if yK̃x, then bothx andy are defined as root horseshoe vertices. We shall
refer to these cases, respectively, by the numberh of root horseshoe vertices,
namely,h = 1 or h = 2. The horseshoe relationship provides a useful way to
organize our construction of estimates.
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Consider first thath = 1 and writeII1 for the sum over pairs of vertices inII
corresponding to this condition. Though there are few verticesy nearx that satisfy
both the conditions‖x − y‖ > 2−j−2cn andh = 1, the fact thaty may lie near
the boundary ofB(n) requires us to construct a horseshoe aty if k is much larger
thanj . So we writeII1 = II1a + II1b, where the sumsII1a andII1b correspond,
respectively, to the cases (a)j ≤ k ≤ j + 2c + 2, and (b)k > j + 2c + 2. In
case (a), becauseh = 1, we can fit two disjoint boxes centered at our vertices
each with radius asymptotic to 2−jn inside a boxB1 that has a radius 2ρ � 2−jn

of the same asymptotic order. YetB1 also has one edge in∂B(n). Again, we find
a boxB2 ⊂ B(n) of radius 2ν � 2−j∗

n such that the pair(B1,B2) conforms to the
context of Lemma 5. Note that the size of the set of vertices thaty is confined to by
the conditionsh = 1 and (a) is bounded byC2−2jn. Therefore, in a similar fashion
as the estimation ofI but now without the use of Lemma 7, we have that

II1a ≤ Cεn
−5/2+2ε

∞∑
j=0

j∑
j∗=0

|Aj ∩ A∗
j∗ |2−2jn222ρ(−5/4+ε)+(ρ−ν)(2−ε)

(5.25)

≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

2j∗−5j/2.

To estimateII1b, we first construct a pair of boxes(B1,B2) as in the context
of Lemma 5 with the parameterσ playing the role ofρ as follows. We find
B1 := B(y,2σ ) ⊂ B(n) with 2σ � 2−kn such thatB1 has one side in the boundary
of B(n). We takeB2 accordingly by defining its radius 2ν � 2−jn such thatB2 is
disjoint from B(x,2ρ) for 2ρ = 2−j−2c−1n. That B1 and B2 will exist follows
by (b) and the assumption that the vertices are isolated roots. Now sinceh = 1,
we can also find another inner horseshoe boxB̃1 with radius 2ρ1 � 2−jn that
now contains bothB(x,2−j−2c−1n) andB2. We pair the boxB̃1 with an outer
horseshoe box̃B2 with radius 2ν1 � 2−j∗

n. Thus, we have the horseshoe formed
by the pair(B1,B2) nested inside the horseshoe formed by(B̃1, B̃2). Hence, by
independence and Lemmas 2 and 5, we find that

pn(x,y) ≤ P
(
U4(0,2ρ)

)
P

(
U4(0,2σ )

)
P

(
J(σ, ν)

)
P

(
J(ρ1, ν1)

)
(5.26)

≤ Cεn
−5/2+2ε22j∗+(5j−3k)/4.

Therefore, since there are only on the order of 2−j−kn2 verticesy accounted for
wheny ∈ Ak in the sumII1b, we find by (5.26) that

II1b ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

2j∗+(−3j−7k)/4.(5.27)

Consider next thath = 2. Write II2 for the sum over pairs of vertices falling
underII that correspond to this condition. In this wayII = II1 + II2. As before,
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we definej , j∗, k andk∗ by the inclusionsx ∈ Aj ∩ A∗
j∗ andy ∈ Ak ∩ A∗

k∗ . We
consider two cases: either (a)|k∗ − j∗| ≤ 1 or (b) |k∗ − j∗| > 1. Accordingly,
we will break up the sumII2 into the sumII2 = II2a + II2b with summands
corresponding, respectively, to these cases.

We first work with the case (a). Sincek∗ is almost equal toj∗, we shall in effect
lengthen the setAk ∩A∗

j∗ in the long directions ofAk , and denote this lengthening
by

Ak,j∗ := Ak ∩
( j∗+1⋃

k∗=j∗−1

A∗
k∗

)
.(5.28)

Consider one of the eight connected componentsA′
k,j∗ ⊂ Ak,j∗ that is a

rectangular section ofAk on the same side ofAk thatx belongs to inAj . The other
components ofAk,j∗ can be handled similarly. Note that by (5.28) and (5.16),
A′

k,j∗ has dimensions on order of 2−kn by 2−j∗
n. Assume, without loss of

generality, thatx = (x1, x2) andy = (y1, y2) ∈ A′
k,j∗ both belong to the right side

Aj andAk , respectively.
We introduce bands of verticesbv := bv(x, j, k, j∗) in A′

k,j∗ , for v ≥ 1, by

bv := {(y1, y2) ∈ A′
k,j∗ :v2−j+5n < |x2 − y2| ≤ (v + 1)2−j+5n}.(5.29)

Here v ranges up to ordervmax � 2j−j∗
. By our construction, these bands of

vertices crossA′
k,j∗ transversally. Note that by the assumptionh = 2 thaty ∈ bv

only for somev ≥ 2 so thatA′
k,j∗ = ⋃vmax

v=2 bv . As for the sizes of the bandsbv , we
have by the definition ofAk and (5.29) that, independent ofj∗ andv,

|bv| ≤ C2−j−kn2.(5.30)

Now choose 2ρ � 2−jn such that the right edge ofB1(x) := B(x,2ρ) just
meets∂B(n). Also, for y ∈ bv , define 2σ � 2−kn such that the right edge of
B1(y) := B(y,2σ ) just meets∂B(n). These are the inner boxes of horseshoes
we will construct at each ofx and y. For eachv = 2, . . . , vmax, we define an
exponentν by 2ν � v2−j n, uniformly in v ≥ 2, so that boxesB2(x) ⊂ B(n) and
B2(y) ⊂ B(n), each with radius 2ν , exist and are disjoint such that(B1(x),B2(x))

and(B1(y),B2(y)) each form a horseshoe pair as in the context of Lemma 5. The
outer boxes remain inB(n) by (5.28) and the expression forvmax. Moreover, the
outer boxesB2(x) and B2(y), while disjoint, are nested inside another boxB̃1
of radiusC2ν whose right edge lies in∂B(n). Since we are in case (a), we may
again pairB̃1 with an outer horseshoe box̃B2 of radius 2ν1 � 2−j∗

n. Therefore,
by independence and by application of Lemma 5 to the horseshoe pairs, and by
Lemma 2, we obtain

pn(x,y) ≤ Cε2(ρ+σ)(−5/4+ε)+(σ+ρ−ν−ν1)(2−ε)

(5.31)
≤ Cεn

−5/2+2εv−2+ε22j∗+(5j−3k)/4.



1860 G. J. MORROW AND Y. ZHANG

Hence, by (5.16), (5.30) and (5.31), we have

II2a ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

∞∑
v=1

v−2+ε2j∗+(−3j−7k)/4.(5.32)

Finally, we turn to the sumII2b. By (b) we have|x2 − y2| ≥ 2−j∗−1n ≥ 2−k∗
n

if k∗ > j∗ + 1, while |x2 − y2| ≥ 2−k∗−1n ≥ 2−j∗
n if k∗ < j∗ − 1. We can

therefore define two different values ofν, namely,ν1 and ν2, by 2ν1 � 2−j∗
n

and 2ν2 � 2−k∗
n to obtain two disjoint horseshoes with outer radii 2ν1 and 2ν2.

In detail, we have two pairs of boxes(B1,B2), where each pair of boxes conforms
to the context of Lemma 5, and where both larger boxesB2 are disjoint and belong
to B(n). In one pairB1 = B(x,2ρ) andB2 has radius 2ν1 and in the other pair
B1 = B(y,2σ ) andB2 has radius 2ν2. Here 2ρ � 2−jn and 2σ � 2−kn are chosen
such that the inner boxesB1 lie along the boundary ofB(n) and are disjoint by
h = 2. See Figure 3. Therefore, by independence and Lemmas 2 and 5, we estimate

FIG. 3. Horseshoes for τ = 2 in case |j∗ − k∗| > 1; x ∈ A2 ∩ A∗
0, y ∈ A3 ∩ A∗

2.
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that

pn(x,y) ≤ Cε2(ρ+σ)(−5/4+ε)+(ρ+σ−ν1−ν2)(2−ε)

(5.33)
≤ Cεn

−5/2+2ε2(2j∗+2k∗)2(−3j−3k)/4.

Hence, by (5.16) and (5.33), we have

II2b ≤ Cεn
3/2+2ε

∞∑
j=0

j∑
j∗=0

∞∑
k=j

k∑
k∗=0

2j∗+k∗+(−7j−7k)/4.(5.34)

Thus, by (5.17), (5.24), (5.25), (5.27), (5.32) and (5.34), we have proved item 3 of
Theorem 1 forτ = 2.

6. Higher moments for pivotal sites. In this section we show how to
generalize the first and second moments for the number of pivotal sites shown
in the previous section. We will outline the main ingredients for establishing a
generalτ th moment by considering in some detail the caseτ = 3. The main
issues not covered so far will be to determine (a) the sizes and numbers of
horseshoes to construct, (b) the manner in which Proposition 1 is applied, and
(c) the way that Lemma 7 is applied. We recall the definitionpn,τ (x1, . . . ,xτ ) :=
P(

⋂τ
i=1 Q(xi , n)) and the sum�0 that we must estimate in (4.1)–(4.2). As in the

previous section, we assume that each of the vertices in (4.1) belongs to the right
side of its respective annulusAji

.
To organize our construction of estimates, we generalize the horseshoe relation

K on the set of root verticesxei
, i = 1, . . . , r , defined in Section 4. Write

xek
Kxei

if xek
∈ B

(
xei

,2−jei
+6n

)
.

The constant in the exponent allows some breathing room so that, in particular, if
xek

K̃xei
, then there existsl � 2−jek n such that the right edge of the boxB(xek

, l)

lies on∂B(n) and such that‖xei
− xek

‖ ≥ 4l.
We define root horseshoe vertices among the set of root vertices by analogy with

the definition of root vertices in Section 4 but now for the horseshoe relationship.
We denote these root horseshoe vertices byxfa , a = 1, . . . , h, for someh ≤ r

wherefa = eia and, in particular,f1 = 1. We shall define the setsUa of root
vertices chained to the root horseshoe verticesxfa in a way that is different from
the default definition given by the method of Section 4. The reason for this is that
the organization of certain probability estimates we make below is sensitive to the
order of the indices in the roots that are not root horseshoe vertices. We proceed
inductively as follows. First, ifxe2Kxe1, thenxe2 ∈ U1, else by our definition of
root horseshoe verticesxe2 is the root horseshoe vertexxf2. Suppose now that
f2 = e2 so indeedxe2 is the second root horseshoe vertex. Then ifxe3Kxe1 but
xe3K̃xf2, we put xe3 ∈ U1. This is the default arrangement that we spoke of.
However, if insteadxe3Kxf2, then we put insteadxe3 ∈ U2. In general, if eachxek

,



1862 G. J. MORROW AND Y. ZHANG

1 ≤ k ≤ i, has been designated as some root horseshoe vertexxfa with some
1 ≤ a ≤ b or placed as an element ofUa for some 1≤ a ≤ b, then we determine
the designation or placement ofxei+1 by the following rule. Ifxei+1K̃xek

for all
1 ≤ k ≤ i, thenei+1 = fb+1, that is, we have a new root horseshoe vertex. Else
we placexei+1 in the setUa of highest indexa such thatxei+1 is related to some
vertex in the current set{xfa } ∪ Ua . Thus, the setsUa are continuously updated,
but elements may only be added and not subtracted, and they are only added at the
highest possible level subject to a chain condition available at the current step. As
a consequence, we obtain after construction that ifi < j and if xei

∈ {xfa } ∪ Ua ,
and ifxej

∈ {xfb
}∪Ub for someb < a, thenxej

K̃xei
since indeedxej

is not related
to any element of{xfa } ∪ Ua . To see how this property is used, see the comments
of Section 6.1.5 following (6.32).

6.1. The third moment. We organize our discussion of the caseτ = 3 at first
according to the value ofr . Subsequent levels of organization derive from the
values ofh and a further parametert ≤ h that we shall define below.

6.1.1. τ = 3, r = 1. We assumer = 1 so that|V1| = 2. Thus,G = G1 has
vertices given by either (i){x1,w1,w1,1} or (ii) {x1,w1,w2}. We writeI to denote
the sub-sum of�0 that corresponds tor = 1. We also writeI = I i + I ii, where
the sumsI i andI ii correspond, respectively, to the cases (i) and (ii).

Assume first that (i) holds. Consider now the following subcases under (i):

(a) m1,1 ≥ m1 + s + 2,
(b) m1,1 < m1 + s + 2,

wheres is the constant 2c + 4. Partition the sumI i = I ia + I ib accordingly.
Consider first subcase (a). PutR := B(w1, l), for l := 2−m1−s . Since w1,1 ∈
am1,1(w1), we have by (a) thatB(w1,1,2−m1,1−2n) ⊂ R, while also w1 /∈
B(w1,1,2−m1,1−2n). Therefore, we may apply Lemma 7 withv = 1, x′ = x = w1,
y1 = w1,1, and 2λ1 = 2−m1,1−2n. We also apply Proposition 1 to the subgraph of
G1 with vertex set{x1,w1} only. Therefore,B(x1, l) andR are disjoint. Hence, by
these results and independence, we find that

pn,3(x1,w1,w1,1) ≤ P
(
U4(0, l)

)
P

(
U4(0,2λ1−c1)

)
P

(
U4(0, l/d)

)
.(6.1)

Note that automatically, becauser = 1, we have thath = 1 in any case. Therefore,
we may construct a horseshoe with inner radius 2ρ � 2−j1n and outer radius
2ν � 2−j∗

1 n for x ∈ Aj1 ∩ A∗
j∗
1

whose inner box contains all the boxes discussed
above. Hence, by Lemma 5, we will be able to improve the estimate (6.1) by a
factor 2(ρ−ν)(2−ε). Thus, by (6.1), Lemma 2 and this last observation, we estimate
that

pn,3(x1,w1,w1,1) ≤ Cεn
−15/4+3ε22j∗

1 −2j1+5(2m1+m1,1)/4.(6.2)
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Since we apply the size estimate (3.12) for each of the indicesm = m1 and
m = m1,1, we obtain by (6.2) that

I ia ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m1=j1

∞∑
m1,1=m1

2j∗
1 −3j1+(2m1−3m1,1)/4.(6.3)

Now consider subcase (b). By Proposition 1 applied directly toG1, we have
that the boxesB(w1,1,2−m1,1−sn), B(w1,2−m1−2s−2n) andB(x1,2−m1−sn) are
mutually disjoint under (i). Then sincem1,1 is at most a constant different thanm1
by (b) and (4.4), by independence and Lemma 2 alone, we obtain that (6.2)
continues to hold withm1 in place of m1,1. Therefore, by substitution ofm1
for m1,1 also in the size estimate ofam1,1 and by eliminating the sum onm1,1,
we obtain

I ib ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m1=j1

2j∗
1 −3j1−m1/4.(6.4)

To help with case (ii), as well as further cases arising in higher moment
calculations, we first state a general consequence of Proposition 1 that we will
use to set up our application of Lemma 7.

PROPOSITION2. Consider the graph G1 = {x1,w1, . . .}. Set D := 2−j1−2cn.
There exists a constant c0 and a rectangle R centered at x̃1 with smallest half-
side of length l satisfying D/10 ≤ l ≤ D/5 and largest half-side of length L

satisfying L/l ≤ 2 and with center satisfying ‖̃x1 − x1‖ ≤ l/2 such that each box
B ′(w) := B(w,2−m(w)−s−c0n), w ∈ G1, w = x1, lies either entirely inside R or
entirely outside R.

PROOF. First, by Proposition 1, the boxesB(w) = B(w,2−m(w)−sn), w ∈ G1,
are mutually disjoint. Since the sum of the radii of the boxesB(w), w = x1, is
bounded by(τ − 1)D, we may choosec0 so large that the sum of the diameters of
the corresponding shrunken boxesB ′(w) is at mostD/16. Therefore, by the same
argument as given in the proof of Lemma 7 in the Appendix for the construction
of R̃, with D here playing the role there of the distanceDv , the proof is complete.

�

We now continue our discussion of case (ii). We apply Proposition 2 directly
to the graphG1 to obtain the rectangleR having the properties stated there so
that, in particular,B(x1, l/2) ⊂ R ⊂ B(x1,D/5) for D := 2−j1−2cn. We apply
Lemma 7 withv = 2, x = x1, and 2λi = 2−m(wi )−s−c0n. Hence, by Lemma 2, and
by independence applied to any shrunken box lying outsideR, we have that

pn,3(x1,w1,w2) ≤ CP
(
U4(0, l/d)

) 2∏
i=1

P
(
U4(0,2λi−c1n)

)
(6.5)

≤ Cεn
−15/4+3ε25(j1+m1+m2)/4.
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As in case (i), we may construct a horseshoe with inner radius 2ρ and outer
radius 2ν as chosen above, whose inner box contains all the boxes implied by
the estimate (6.5). So we may improve this estimate by the same factor coming
from Lemma 5 as before. Therefore, by (6.5), this repeated observation, and the
size estimate (3.12) for each indexm = m1 andm = m2, we obtain

I ii ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m2=j1

∞∑
m1=m2

2j∗
1 +(−7j1−3m2−3m1)/4.(6.6)

6.1.2. τ = 3, r = 2. We first assume that|V1| = 1 and|V2| = 0. For simplicity,
we assume thatx3 is the second root. Thus, the graphG1 has vertices{x1,w1} and
the graphG2 is trivial over the (isolated) root vertex{x3}. Next we determine
whether we have a horseshoe relationship between the two root vertices or not. If
x3Kx1, then we haveh = 1, else we haveh = 2.

We work first with the caseh = 1. Similar to our analysis of the corresponding
case of the second moment estimation, we have two possibilities underh = 1:
either (a),j1 ≤ j3 ≤ j1 + 2c + 2, or (b), j3 > j1 + 2c + 2. We write II1 to
denote the sub-sum of�0 that corresponds tor = 2 andh = 1. We also write
II1 = II1a + II1b, where the sumsII1a and II1b correspond, respectively, to the
cases (a) and (b). We study first case (a). We apply Proposition 2 to the graphG1
to obtain a rectangleR such thatB(x1, l/2) ⊂ R ⊂ B(x1,D/5) for D := 2−j1−2cn

andl ≥ D/10, so thatB ′(w1) lies either inside or outsideR. By construction of the
original roots and by the casesm1 = j1 + 2c or m1 ≥ j1 + 2c + 1, we find that the
box B(x3,2−j3−4c−2n) is disjoint from bothR and the boxB(w1,2−m1−2c−2n)

[see (7.4)]. Hence, we can apply independence and Lemmas 2 and 7 to estimate

pn,3(x1,w1,x3) ≤ P
(
U4(0, l/d)

)
P

(
U4(0,C2−m1n)

)
P

(
U(0,C2−j3n)

)
(6.7)

≤ Cεn
−15/4+3ε25(2j1+m1)/4,

where the last inequality holds because under (a),j3 is within a constant ofj1.
Since h = 1, it is again an easy matter to construct a horseshoe as in each
case of Section 6.1.1 with inner radius 2ρ � 2−j1n and outer radius 2ν � 2−j∗

1 n

whose inner box contains all the boxes implied by the estimate (6.7). So we
may improve the estimate (6.7) by an application of Lemma 5. Hence, because
|am1| ≤ C2−2m1n2 and since there are onlyC2−2j1n2 verticesx3 to account for
whenh = 1 and (a) holds, we have that

II1a ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m1=j1

2j∗
1 +(−10j1−3m1)/4.(6.8)

We next study case (b). Sinceh = 1, we have that the rectangleR exists as
constructed above. But now becausej3 is sufficiently larger thanj1 and sincex3
is isolated, there is room to construct a pair of boxesB1 andB2 as in the context
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of Lemma 5 withB1 centered atx3 as follows. We findB1 = B(x3,2ρ3) ⊂ B(n),
with 2ρ3 � 2−j3n such that the right-hand side ofB1 lies in ∂B(n). We takeB2
accordingly by defining its radius as 2ν3 � 2−j1n such thatB2 is disjoint from
both B ′(w1) andR, whereB ′(w1) is the shrunken box given by Proposition 2.
Hence, by independence and Lemmas 2, 5 and 7, we find

pn,3(x1,w1,x3) ≤ P
(
U4(0, l/d)

)
× P

(
U4(0,C2−m1n)

)
P

(
U4(0,2ρ3)

)
P

(
J(ρ3, ν3)

)
(6.9)

≤ Cεn
−5/2+2ε2(j1+m1+j3)(5/4−ε)2(j1−j3)(2−ε).

Again we may improve this estimate by introducing a horseshoe whose inner box
containsR, B ′(w1) and the horseshoe pair(B1,B2). So we multiply the right-
hand side of (6.9) by the factor 2(ρ−ν)(2−ε), where the radii 2ρ and 2ν are defined
up to multiplicative constants in the previous case (a). Since byh = 1, there are
only C2−j1−j3n2 verticesx3 accounted for withx1 ∈ Aj1 andx3 ∈ Aj3, we find by
these observations that

II1b ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m1=j1

∞∑
j3=j1

2j∗
1 +(−3j1−3m1−7j3)/4.(6.10)

We now pass to the caseh = 2. Note that the sum overx3 in II2 is no longer
localized strictly nearbyx1 via the horseshoe relation, so we will be able to
construct a larger horseshoe atx3, but how large now depends on the relation
between the dual indices of the original two roots. Letxi ∈ A∗

j∗
i
, i = 1,3. There

are two cases to consider regarding the dual indices:

either (a)|j∗
1 − j∗

3 | ≤ 1 or (b)|j∗
1 − j∗

3 | ≥ 2.

Define sumsII2a andII2b by partitioning the sumII2 according to these cases.
We work first with case (a). As in Section 5, we havex3 ∈ Aj3,j

∗
1

where
the latter set is defined by (5.28). For convenience, we rewrite the bandsbv =
bv(x1, j1, j3, j

∗
1 ) of (5.29) by

bv := {
(y1, y2) ∈ A′

j3,j
∗
1

:v2−j1+5n < |(x1)2 − y2| ≤ (v + 1)2−j1+5n
}

for eachv = 1,2, . . . , vmax, with vmax � 2j1−j∗
1 . Here we have simply substituted

x1, j1, j3 andj∗
1 for x, j , k andj∗, respectively, in the original definition. Notice

by the definition of the horseshoe relation thatx3 ∈ bv only for v ≥ 2. We utilize
the rectangleR and the boxB ′(w1) we have constructed forh = 1. First choose
the radius 2ρ3 � 2−j3n such that the right edge ofB1(x3) := B(x3,2ρ3) just meets
∂B(n). Also choose 2ρ1 � 2−j1n such that the right edge ofB1(x1) := B(x1,2ρ1)

just meets∂B(n). These are the inner boxes of horseshoes we will construct at each
of x3 andx1, respectively. Note thatB1(x1), in fact, contains bothR andB ′(w1)

because these latter sets are chosen via the constantc of Section 4 to both lie
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within a box of radius 2−j1−cn centered atx1. For eachv = 2, . . . , vmax, we define
2ν � v2−j1n, uniformly in v ≥ 2, so that boxesB2(x1) ⊂ B(n) and B2(x3) ⊂
B(n), each with radius 2ν , exist and are disjoint such that(B1(x1),B2(x1)) and
(B1(x3),B2(x3)) each form a horseshoe pair as in the context of Lemma 5. The
outer boxes remain inB(n) by (5.28) and the expression forvmax. Moreover, the
outer boxesB2(x1) andB2(x3), while disjoint, are nested inside another boxB̃1 of
radiusC2ν whose right edge also lies in∂B(n). Since we are in case (a), we may
again pairB̃1 with an outer horseshoe box̃B2 of radius 2ν1 � 2−j∗

1 n. Therefore,
by independence and by application of Lemma 5 to the horseshoe pairs, and by
an application of Lemma 7 as in the caseh = 1, for x3 ∈ bv , we have that, for all
v ≥ 2, pn := pn,3(x1,w1,x3) satisfies

pn ≤ Cεn
−5/2+2ε2(j1+m1+j3)(5/4−ε)2(ρ1+ρ3−ν−ν1)(2−ε)

(6.11)
≤ Cεn

−15/4+3εv−2+ε22j∗
1 +(5j1+5m1−3j3)/4.

Hence, by (6.11), (5.16), (3.12) and the estimate|bv| ≤ C2−j1−j3n2 [cf. (5.30)],
we have

II2a ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
m1=j1

∞∑
j3=j1

∞∑
v=1

v−2+ε2j∗
1 +(−3j1−3m1−7j3)/4.(6.12)

Consider next case (b) underh = 2. The difference with case (a) is that now the
outer boxesB2(x1) andB2(x3) found there may be chosen with larger radii while
still remaining disjoint. Thus, the horseshoe pair(B̃1, B̃2) is no longer needed in
this case. Indeed, we may now take the radii of these outer boxes as 2ν1 � 2−j∗

1 n

and 2ν3 � 2−j∗
3 n, respectively. By definition of the dual partition, these larger

boxes still remain inB(n) and are disjoint. Therefore, we obtain in place of (6.11)
the bound

pn ≤ Cεn
−5/2+2ε2(j1+m1+j3)(5/4−ε)2(ρ1+ρ3−ν1−ν3)(2−ε)

(6.13)
≤ Cεn

−15/4+3ε22j∗
1 +2j∗

3 +(−3j1+5m1−3j3)/4.

Hence, by (6.13), we have

II2b ≤ Cεn
9/4+3ε

∞∑
j1=0

∞∑
m1=j1

∞∑
j3=j1

j1∑
j∗
1 =0

j3∑
j∗
3 =0

2j∗
1 +j∗

3 +(−7j1−3m1−7j3)/4.(6.14)

Finally, in the case that the isolated root vertex is insteadx1 (soV1 = ∅) and the
second root vertex isx2 (soV2 = {x3}), we obtain a wholly analogous estimation
by writing out the cases (a)j2 ≤ j1 + 2c + 2, and (b)j2 > j1 + 2c + 2 underh = 1
and by writing out the cases (a)|j∗

2 − j∗
1 | ≤ 1, and (b)|j∗

2 − j∗
1 | > 1 underh = 2.
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6.1.3. τ = 3, r = 3. In the caser = 3 we must have three isolated roots
relative to the original partition{Aj } that are simplyx1, x2 andx3. The basic plan
in all that follows is that a horseshoe must be constructed whenever there is room at
a given level of algebraic or dyadic division to do so. Algebraic levels of division
arise according to placement of a root vertex in a bandbv or in another closely
related bandb′

u that we define in Section 6.1.4. The horseshoe structure depends
on the room that exists between root vertices. This spacing will be accounted for
by various joint inequalities in the dyadic indicesji , or in another spacing relation
that we introduce for the dual indicesj∗

i in Section 6.1.5.

6.1.4. τ = 3, r = 3, h = 1. We assume first thath = 1. The set of root vertices
chained tox1 by the horseshoe relationship is thereforeU1 = {x2,x3}. We write
III1 to denote the sub-sum of�0 that corresponds tor = 3 andh = 1. We write
four conditions:

(a1)j1 ≤ j2 ≤ j1 + 2c + 8, (b1) j2 > j1 + 2c + 8,

(a2)j2 ≤ j3 ≤ j2 + 2c + 8, (b2) j3 > j2 + 2c + 8.
(6.15)

We also write III1 = III1a1a2 + III1b1a2 + III1a1b2 + III1b1b2, where the
summands correspond, respectively, to these four joint cases.

For any vertexxi ∈ U1, we define bands of verticesb′
u = b′

u(xi , ji), for all
u = 0,1, . . . andi ≥ 2, that divideR0 := B(x1,2−j1+6+τ n) ∩ B(n) into horizontal
sections by

b′
u := {(y1, y2) ∈ R0 :u2−ji+5n < |(xi )2 − y2| ≤ (u + 1)2−ji+5n},(6.16)

whereu ranges up toumax � 2ji−j1 for i ≥ 2. Here the exponent in the definition
of R0 is chosen such that, by the definition of the horseshoe relation, any vertex
in U1 lies in R0. The main difference between the bandsb′

u and the bandsbv that
we defined in (5.29) is that, contrary to that definition, here we place no restriction
that b′

u lie in some single annulusAjk
. Although these new bands play a similar

role as the original ones, we apply them at a different level of the construction of
estimates. We apply, in general, theb′

u within a horseshoe setUa with Ua = ∅. We
apply thebv instead in a region between such horseshoe sets. Now, by (6.16), for
any annulusAjk

, we have that∣∣b′
u(xi , ji) ∩ Ajk

∣∣ ≤ C2−ji−jkn2 for all u ≥ 0.(6.17)

Study first the joint case (a1)–(a2). In this case all three vertices are located
either in Aj1 or a nearby annulus. Therefore, sinceh = 1, x2 and x3 are each
confined to a set of vertices of size at mostC2−2j1n2. We call such a size estimate
a confinement factor. Since the roots are isolated, we may construct disjoint boxes
with centers at the verticesxi , i = 1,2,3, such that each has a radius 2ρ1 � 2−j1n

and each lies inR0. Construct a boxB1 of radius 2ρ � 2−j1n whose right edge
meets∂B(n) and that containsR0. Pair B1 with an associated outer horseshoe
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box B2 of radius 2ν � 2−j∗
1 n. Hence, by independence and Lemmas 2 and 5, and

the confinement factors, we easily have

III1a1a2 ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

2j∗
1 −13j1/4.(6.18)

Under the joint case (b1)–(a2) we study two subcases,

either (i)x3 ∈ b′
0(x2, j2) or (ii) x3 ∈ b′

u(x2, j2) for someu ≥ 1.(6.19)

Partition the sumIII1b1a2 accordingly:III1b1a2 = III1b1a2i + III1b1a2ii. Study
first subcase (i) under (b1)–(a2). Since the vertices are isolated roots, by (a2),
we can choose radii 2σ � 2−j2n and 2ρ � 2−j1n such that the boxesB(x1,2ρ),
B(x2,2σ ) and B(x3,2σ ) lie in B(n) and are mutually disjoint. Moreover, by
(b1) and (i), the boxes centered atx2 andx3 are both contained in a boxB1 of radius
C2σ ≤ 2−j1−2n whose right edge lies on∂B(n), where we choose 2ρ such that
B1 is also disjoint from the box centered atx1. We construct a second boxB2 so
that the pair(B1,B2) conforms to the context of Lemma 5 where the outer box has
radiusC2ρ and is disjoint from the box centered atx1. We also construct an inner
horseshoe box̃B1 of radius 2ρ1 � 2−j1n that contains all the boxes constructed so
far and pair it with an outer horseshoe box̃B2 of radius 2ν1 � 2−j∗

1 n. Thus, by
independence and Lemma 2 and two applications of Lemma 5, we have

pn,3(x1,x2,x3) ≤ Cε2(ρ+2σ)(−5/4+ε)+(σ+ρ1−ρ−ν1)(2−ε)

(6.20)
≤ Cεn

−15/4+3ε22j∗
1 +(5j1+2j2)/4.

Since underh = 1 and (a2) the confinement factor forx2 is C2−j1−j2n2, and since
under the added condition (i) the confinement factor forx3 is C2−2j2n2, we obtain
by (6.20) that

III1b1a2i ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

2j∗
1 +(−3j1−10j2)/4.(6.21)

Consider next subcase (ii) under (b1)–(a2). The difference with case (i) is that
we now create two disjoint inner horseshoes instead of just one. We take inner
boxesB1(xi ) centered atxi , i = 2,3, with radii 2ρi � 2−j2n, i = 2,3, such that
these inner boxes meet the boundary ofB(n) and are disjoint and are, moreover,
disjoint from a box centered atx1 with radius 2ρ � 2−j1n. We take the associated
outer boxesB2(xi ), i = 2,3, each with a radius 2ν � u2−j2n, for u ranging up
to order 2j2−j1. Both outer boxes of these horseshoes are disjoint fromB(x1,2ρ)

by (b1). Further, we construct a third horseshoe by taking an inner boxB1 of
radiusC2ν that contains both the outer boxesB2(xi ), i = 2,3, and that admits an
outer boxB2 of radius 2ρ1 � 2−j1n that is still disjoint from the boxB(x1,2ρ).
Finally, we construct a fourth horseshoe pair(B̃1, B̃2) such that̃B1 contains all the
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previous outer boxes, as well as the boxB(x1,2ρ). We take the inner and outer
radii of this last pair to be, respectively,C2ρ1 and 2ν1 � 2−j∗

1 n. Therefore, we
obtain

pn,3(x1,x2,x3) ≤ Cε2(ρ+ρ2+ρ3)(−5/4+ε)+(ρ2+ρ3−ν−ν1)(2−ε)

(6.22)
≤ Cεn

−15/4+3εu−2+ε22j∗
1 +(5j1+2j2)/4.

Now by (a2) and (6.17), we have that|b′
u ∩ Aj3| ≤ C2−2j2n2. Also, x2 is confined

to a region of sizeC2−j1−j2n2. Therefore, by independence and Lemmas 2 and 5,
we obtain by (6.22) the estimate

III1b1a2ii ≤ Cεn
9/4+3ε

(6.23) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
u=1

u−2+ε2j∗
1 +(−3j1−10j2)/4.

We now consider the joint case (a1)–(b2). Sincej3 is sufficiently larger thanj2
and the roots are isolated, we can construct a horseshoe atx3 with inner radius
2ρ3 � 2−j3n and outer radius 2ν � 2−j2n � 2−j1n and choose the radius 2ρ �
2−j1n so that the outer box of this horseshoe will be disjoint from both the boxes
B(x1,2ρ) and B(x2,2ρ) that lie in B(n) and are themselves constructed to be
disjoint. Again, we construct a large horseshoe pair(B̃1, B̃2) with inner and outer
radii 2ρ1 and 2ν1, respectively, as in the previous cases such thatB̃1 contains the
smaller horseshoe, as well as the boxesB(x1,2ρ) andB(x2,2ρ). Therefore, by
independence and Lemmas 2 and 5, and by (a1), we have that

pn,3(x1,x2,x3) ≤ Cε2(2ρ+ρ3)(−5/4+ε)+(ρ1+ρ3−ν−ν1)(2−ε)

(6.24)
≤ Cεn

−15/4+3ε22j∗
1 +(10j1−3j3)/4.

By h = 1 and (a1), we have thatx2 is confined by the factor 2−2j1n2, while by
h = 1 alone,x3 is confined by the factor 2−j1−j3n2. Therefore, since by (a1) we
eliminate the sum overj2, we obtain by (6.24) that

III1a1b2 ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j3=j1

2j∗
1 +(−6j1−7j3)/4.(6.25)

Consider finally the joint case (b1)–(b2). Again we apply the dichotomy (6.19).
We partition the sumIII1b1b2 = III1b1b2i + III1b1b2ii accordingly. In sub-
case (i), under (b1)–(b2), we take a horseshoe atx3 with inner radius 2ρ3 � 2−j3n

and outer radius 2ν3 � 2−j2n, where the outer box is disjoint from the boxes cen-
tered atx2 andx1 of radii 2σ � 2−j2n and 2ρ � 2−j1n, respectively. These last two
boxes are chosen to be small enough that, even doubling their radii, they would
not meet∂B(n). We next take a horseshoe(B1,B2) such thatB1 has a radius
2ρ2 � 2−j2n and contains both the box centered atx2 and the horseshoe atx3.
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We takeB2 to have a radius 2ν2 � 2−j1n that is disjoint from the box centered

at x1. Again we construct a large horseshoe pair(B̃1, B̃2) with inner and outer
radii 2ρ1 and 2ν1, respectively, as in the previous cases such thatB̃1 contains both
the smaller nested horseshoes, as well as the boxB(x1,2ρ). Therefore, we obtain
by independence and Lemmas 2 and 5 that

pn,3(x1,x2,x3) ≤ Cε2(ρ+σ+ρ3)(−5/4+ε)+(ρ1+ρ2+ρ3−ν1−ν2−ν3)(2−ε)

(6.26)
≤ Cεn

−15/4+3ε22j∗
1 +(5j1+5j2−3j3)/4.

By h = 1, we have thatx2 is confined by the factor 2−j1−j2n2, while in addition
by (i), x3 is confined by the factor 2−j2−j3n2. Therefore, we obtain by (6.26) that

III1b1b2i ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j1

2j∗
1 +(−3j1−3j2−7j3)/4.(6.27)

Finally, in subcase (ii), under (b1)–(b2), we take inner boxesB1(xi ) centered
atxi , i = 2,3, with radii 2ρi � 2−ji n, i = 2,3, such that these inner boxes meet the
boundary ofB(n) and are disjoint and are, moreover, disjoint from a box centered
at x1 with radius 2ρ � 2−j1n. We take the associated outer boxesB2(xi ), i = 1,2,
each with a radius 2ν � u2−j2n, for u ranging up to order 2j2−j1. Both outer boxes
of these horseshoes are disjoint fromB(x1,2ρ) by (b1). This almost looks like
subcase (ii) under (b1)–(a2), except notice that here the boxB1(x3), while still
having a radius distinct from the boxB1(x2), has now an asymptotically smaller
radius since we are in case (b2). All the remaining arrangements of boxes and
horseshoes are exactly as in subcase (ii) of (b1)–(a2), with the same formulae for
asymptotic radii. Thus, we have a total of four horseshoes. Therefore, we obtain

pn,3(x1,x2,x3) ≤ Cε2(ρ+ρ2+ρ3)(−5/4+ε)+(ρ2+ρ3−ν−ν1)(2−ε)

(6.28)
≤ Cεn

−15/4+3εu−2+ε22j∗
1 +(5j1+5j2−3j3)/4.

Now by (6.17), we have that|b′
u ∩ Aj3| ≤ C2−j2−j3n2. Also, x2 is confined to

a region of sizeC2−j1−j2n2 by h = 1. Therefore, by independence and Lemmas
2 and 5, we obtain by (6.22) the estimate

III1b1b2ii ≤ Cεn
9/4+3ε

(6.29)

×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∞∑
u=1

u−2+ε2j∗
1 +(−3j1−3j2−7j3)/4.

This concludes our analysis of the caseh = 1.
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6.1.5. τ = 3, r = 3, h = 2. We consider next thath = 2. We assume first that
U1 = {x2} so that we have root horseshoe verticesx1 andx3. Again, becauser = 3,
all the roots are isolated and, moreover, the rootx3 is an isolated root horseshoe
vertex. We writeIII2 for the part of the sum�0 corresponding to this arrangement.
Recall that we locate the vertices in the dual partition, in general, by the dual
indicesj∗

i such thatxi ∈ A∗
j∗
i
, i = 1,2, . . . .

Perhaps by now part of the outline is clear. Initially, we consider two
possibilities:

either (a)j2 ≤ j1 + 2c + 8 or (b)j2 > j1 + 2c + 8.

However, while we will construct a horseshoe atx3 in either case, we must
delineate its size. Its outer radius may be as small asCv2−j2n when x3 ∈
bv(x2, j2, j3, j

∗
1 ), and it may be as large asC2−j∗

1 whenx3 ∈ A∗
j∗
3

for |j∗
3 −j∗

1 | ≥ 2.
So, in general, we need to know the manner in which the root horseshoe vertices
xfa are separated in the dual partition. We have already seen such an analysis
in caser = 2 andh = 2. We generalize the approach shown there. For any dual
indicesk∗ and j∗ of root horseshoe vertices (we call such indices also as dual
horseshoe indices), write thatk∗J ∗j∗ if |k∗ − j∗| ≤ 1. We say that a dual index
j∗
f ′ of a root horseshoe vertexxf ′ is chained to the dual indexj∗

f of another root
horseshoe vertexxf if there exists a sequence ofJ ∗ relations fromj∗

f ′ to j∗
f . By the

method of Section 4, we define root dual horseshoe indicesj∗
f ∗

1
< j∗

f ∗
2

< · · · < j∗
f ∗

t
,

with f ∗
1 = f1 and somet ≤ h, wherexf1 = x1 is the first root horseshoe vertex.

In the current case we have eithert = 1 or t = 2, wheret = 1 means that
|j∗

3 − j∗
1 | ≤ 1 andt = 2 means that the opposite inequality holds. We writeIIIh,t

for the part of the sum�0 corresponding tor = 3 and the given values ofh andt .
Since hereh = 2 andt = 1 or 2, we haveIII2 = III2,1 + III2,2. We further partition
III2,1 = III2,1a + III2,1b and III2,2 = III2,2a + III2,2b for the arrangements of
vertices corresponding, respectively, to cases (a) and (b).

We consider first an estimate ofIII2,1a so that, in particular,t = 1. Putbv :=
bv(x2, j2, j3, j

∗
1 ). Sinceh = 2 and t = 1, we havex3 ∈ bv for somev ≥ 2 (cf.

the caseh = 2 of Section 6.1.2). Herev ranges up tovmax � 2j2−j∗
1 ≤ C2j1−j∗

1

by (a). We choose a radius 2ρ3 � 2−j3n, so that the right boundary of the box
B1(x3) := B(x3,2ρ3) meets∂B(n). This is the inner box of a horseshoe atx3.
We construct boxesB(xi ,2ρ), i = 1,2, lying insideB(n) with a common radius
2ρ � 2−j1n that are themselves disjoint and also disjoint fromB1(x3). This is
possible sincer = 3 andh = 2 and with the given radius fori = 2 by (a). Yet by
(a) again, the vertexx2, although in a horseshoe relationship tox1, may stray as
far away asv02−j2n from x1 for some constant integerv0 ≥ 2 since we are here
measuring the distance in terms of the exponentj2. This can easily be dealt with
by breaking up the analysis into the subcasesv ≤ 4v0 andv > 4v0. Forv ≤ 4v0 we
take the outer boxB2(x3) of a horseshoe atx3 to have radius 2ν3 � 2−j2n � 2−j1n.
For v ≤ 4v0, we do not yet construct a second horseshoe of outer radius 2ν3. For
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v > 4v0, we do construct another such horseshoe as follows. We construct an inner
horseshoe boxB1 that containsB(xi ,2ρ) for eachi = 1,2 that has radiusC2ρ and
is disjoint also fromB1(x3) by our choice of large enoughv. Accordingly, we
adjust the radiusB2(x3) upward to 2ν3 � v2−j2n � v2−j1n and also define an
outer boxB2 paired withB1 in a horseshoe formation, by taking the radius ofB2
as also 2ν3 � v2−j1n. We choose this radius such thatB2(x3) andB2 are disjoint.
Hence, ifv > 4v0 then we have two horseshoes of equal outer radii. The outer
boxes remain inB(n) by (5.28) forv ≤ vmax. Moreover, these outer boxes are
nested inside another box̃B1 of radiusC2ν3 whose right edge also lies in∂B(n).
Since we are in caset = 1, we may again pair̃B1 with an outer horseshoe box̃B2 of
radius 2ν1 � 2−j∗

n. By (a), we have that the confinement factor forx2 is C2−2j1n2.
The confinement factor forx3 at levelv is by (a) and (5.30),|bv| ≤ C2−j1−j3n2,
independent ofv. Therefore, by independence and Lemmas 2 and 5, and by using
(a) to eliminate the sum onj2, we obtain the following estimation:

III2,1a ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j3=j1

∑
v≥1

v−2+ε2j∗
1 +(−6j1−7j3)/4.(6.30)

Consider next an estimation ofIII2,1b. We have two subcases as follows.
Subcase (i):x3 belongs to the bandb1,v1 := bv1(x2, j1, j2, j

∗
1 ) for somev1 ≥ 2,

where v1 ranges up tov1,max with v1,max � 2j1−j∗
1 . But since we may have

x3 ∈ ⋃1
v1=0 b1,v1, we have also subcase (ii):x3 belongs to the bandb2,v2 :=

bv2(x2, j2, j3, j
∗
1 ) for some v2 ≥ 2, where nowv2 only ranges up tov2,max

with v2,max � 2j2−j1. These subcases comprise a dichotomy sincex3 is not in a
horseshoe relation to eitherx2 or x1. Partition the sumIII2,1b = III2,1bi + III2,1bii

accordingly. We study first subcase (ii) under (b). Sincej2 is sufficiently larger
thanj1, we will now be able to construct horseshoes at bothx2 andx3 with outer
radii of each given as 2ν3 � v22−j2n. We also construct a horseshoe with inner box
of radiusCv22−j2n containing both the horseshoes atx2 andx3, and with outer
radius 2ρ � 2−j1n. We choose 2ρ small enough subject to this asymptotic relation
so that the boxB(x1,2ρ) is outside this last horseshoe. We also construct a large
horseshoe pair(B̃1, B̃2) with inner and outer radii 2ρ1 � 2−j1n and 2ν1 � 2−j∗

1 n,
respectively, as in the previous cases such thatB̃1 contains both the smaller
nested horseshoes, as well as the boxB(x1,2ρ). The confinement factor forx2
is C2−j1−j2n2, while that forx3 under subcase (ii) isC2−j2−j3n2. Therefore, we
obtain

III2,1bii ≤ Cεn
9/4+3ε

(6.31) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
v2≥1

v−2+ε
2 2j∗

1 +(−3j1−3j2−7j3)/4.

We turn to subcase (i) under (b). Now‖x3 − xi‖ ≥ C2−j1n, i = 1,2, for all
v1 ≥ 2. Similar as in case (a), we delay the construction of a horseshoe nearx1
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until v1 > 4 since we may have‖x2 − x1‖ ≥ v12−j1+5 for somev1 ≤ 2. But since
this will not affect the estimate, we assumev1 > 4. We still construct an inner
horseshoe atx2 with inner horseshoe boxB1(x2) of radius 2σ � 2−j2n, and outer
horseshoe boxB2(x2) of radius 2ν2 � 2−j1n. We takeB2(x2) to be disjoint from a
boxB(x1,2ρ) of radius 2ρ1 � 2−j1n. We construct an inner horseshoe boxB1(x3)

of radius 2ρ3 � 2−j3n and an associated outer horseshoe boxB2(x3) of radius
2ν3 � v12−j1n. We also construct a boxB1 whose right edge meets the boundary
of B(n) that also contains the outer horseshoe boxB2(x2) and the boxB(x1,2ρ)

that were already constructed to be disjoint. We pairB1 with an outer horseshoe
boxB2 of radius 2ν3 so thatB2(x3) andB2 are disjoint. We finally construct a large
horseshoe pair(B̃1, B̃2) but now with a new inner radiusC2ν3, while the outer
radius remains 2ν1 � 2−j∗

1 n. So we have four horseshoes in all. The confinement
factor forxi is C2−j1−ji n2, i = 2,3. Therefore, we obtain

III2,1bi ≤ Cεn
9/4+3ε

(6.32)
×

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
v1≥1

v−2+ε
1 2j∗

1 +(j1−7j2−7j3)/4.

We comment on the situation that insteadU1 = {x3} andxf2 = x2 with U2 = ∅

whenh = 2 andt = 1. In this case we do not have to consider the possibility that
x3Kx2 since, by our definition of the setsUa , if this relation did hold, then we
would instead have the caseU1 = ∅ andU2 = {x3} that is analogous to the one
we have just considered. We consider now the cases (a)j3 ≤ j2 + 2c + 8, and
(b) j3 > j2 + 2c + 8. In case (a) we have an analogous situation as in the previous
case (a) except now we havex3 ∈ bv(x2, j2, j3, j

∗
1 ), so in the generic case thatv is

sufficiently large, we construct horseshoes at each ofx2 andx3 of asymptotically
equal inner radii by condition (a) of order 2−j2n and equal outer radii of order
v2−j2n. We obtain an estimate for the corresponding sumIII′

2,1a as

III′
2,1a ≤ Cεn

9/4+3ε
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

2j∗
1 +(−3j1−10j2)/4.

In case (b) we break up the analysis by the dichotomy (i)x3 ∈ bv2(x2, j2, j3, j
∗
1 )

for somev2 ≥ 2, or (ii) x2 ∈ bv1(x1, j1, j2, j
∗
1 ) for somev1 ≥ 2. With this minor

change in notation, we obtain estimates for the sum corresponding to these cases
with the same forms of estimation as shown forIII2,1bi and III2,1bii. This
concludes our discussion of the caset = 1 underh = 2.

We next discuss the caset = 2. We assume, as in the original discussion of
h = 2 andt = 1, thatU1 = {x2}. Now, however, the second root horseshoe index is
far from bothx2 andx1 by assumption, that is, the length scale of this distance is
max{2−j∗

3 n,2−j∗
1 n} as compared to 2−j1n for the length scale betweenx2 andx1.

In the generic case thatj2 is sufficiently larger thanj1, we construct a horseshoe
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at x2 of inner box of radius 2ρ2 � 2−j2n and outer box of radius 2ν2 � 2−j1n that
remains disjoint from a boxB(x1,2ρ) with radius 2ρ � 2−j1n. This horseshoe is
nested in a large horseshoe(B̃1(x1), B̃2(x1)) with inner radius 2ρ1 � 2−j1n and
outer radius 2ν1 � 2−j∗

1 n. We also construct a horseshoe(B̃1(x3), B̃2(x3)) with
inner box of radius 2ρ3 � 2−j3n and outer box of radius 2ν3 � 2−j∗

3 n such that
the outer boxes̃B2(x1) andB̃2(x3) are disjoint. Thus, in this generic case (b) we
obtain an estimate

III2,2b ≤ Cεn
9/4+3ε

∞∑
j1=0

j1∑
j∗
1 =0

∞∑
j3=j1

j3∑
j∗
3 =0

2j∗
1 +j∗

3 +(−3j1−7j2−7j3)/4.(6.33)

This concludes our discussion of the caseh = 2.

6.1.6. τ = 3, r = 3, h = 3. We finally consider the caseh = 3. Write III3
to denote the sub-sum of�0 that corresponds toh = 3. We partition III3 =
III3,1 + III3,2 + III3,3 according to the casest = 1,2,3, respectively. Consider
first thath = 3 andt = 1. We takex3 ∈ bv(x1, j1, j3, j

∗
1 ) with somev ≥ 2. We

takex2 ∈ bu(x1, j1, j2, j
∗
1 ) with someu ≥ 2. We have three cases forv ≥ u:

(a) 2u ≥ v ≥ u + 2, (b) v > 2u and (c) 0≤ v − u ≤ 1.

PartitionIII3,1 = III3,1a + III3,1b + III3,1c accordingly.
We study first case (a). We define inner horseshoe boxesB1(xi ) of radii

2ρi � 2−ji n, i = 1,2,3, for the three respective vertices. We define the radii of
the associated outer horseshoe boxesB2(xi ) for i = 2,3 to both equal 2ν2 �
(v − u)2−j1n. We define the radius of the associated outer horseshoe boxB2(x1)

to be 2ν1 � u2−j1n. These asymptotic relations are chosen such that all three
of B2(xi ), i = 1,2,3, are disjoint. We also construct a horseshoe(B1,B2) with
inner boxB1 of radiusC2ν2 containing both outer boxesB2(xi ), i = 2,3, and
with outer boxB2 of radius 2ν1 and disjoint fromB2(x1). We finally construct
a large horseshoe pair(B̃1, B̃2) with an inner radiusCu2−j1n and outer radius
C2−j∗

1 n such thatB̃1 contains all the previous outer horseshoe boxes. We have
three inner horseshoes, two of which are nested in a fourth horseshoe, and all four
of these are nested in a fifth horseshoe. See Figure 4. The confinement factors for
xi are 2−j1−ji , i = 2,3. Therefore, after the substitution� := v − u, we obtain an
estimate

III3,1a ≤ Cεn
9/4+3ε

(6.34) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u,�≥2

(u�)−2+ε2j∗
1 +(j1−7j2−7j3)/4.

In case (b) we change the three inner horseshoe pairsB1(xi ),B2(xi ), i = 1,2,3,
as follows. We use the same asymptotic formulae 2ρi � 2−ji n as in case (a) for
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FIG. 4. Horseshoe construction for the estimate of III3,1a.

the inner radii, and we still write 2ν1 � u2−j1n and 2ν2 � (v − u)2−j1n, but now
define the outer horseshoe radii by changing the vertex at which the larger outer
box sits fromx1 to x3. Indeed, we now take the outer boxesB2(xi ), i = 1,2, to
have radii 2ν1, and the outer boxB2(x3) to have radius 2ν2 such that all three of
these outer boxes are disjoint. Therefore, much as in case (a), by the substitution



1876 G. J. MORROW AND Y. ZHANG

� := v − u, we obtain

III3,1b ≤ Cεn
9/4+3ε

(6.35) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u≥2,�≥u

(u�)−2+ε2j∗
1 +(j1−7j2−7j3)/4.

Finally, in case (c) we still takex2 ∈ bu(x1, j1, j2, j
∗
1 ) with someu ≥ 2 but

now considerx3 ∈ bw(x2, j2, j3, j
∗
1 ) with somew ≥ 2, wherew ranges up to

order 2j2−j1. We again construct three inner horseshoe pairsB1(xi ),B2(xi ), i =
1,2,3. We again take the corresponding inner radii to be 2ρi � 2−ji n. We take the
radii of the outer boxesB2(xi ), i = 2,3, to be 2ν3 � w2−j2n, so that, by the range
of w, this is asymptotically no larger than 2−j1n. We take the radius of the outer
box B2(x1) to be 2ν1 � u2−j1n. We choose the boxes subject to these asymptotic
formulae such that all three outer boxes are disjoint. We also construct a fourth
horseshoe(B1,B2) with inner boxB1 of radiusC2ν3 containing both outer boxes
B2(xi ), i = 2,3, and with outer boxB2 of radius 2ν1 that is disjoint fromB2(x1).
We finally construct a large horseshoe pair(B̃1, B̃2) with an inner radiusCu2−j1n

and outer radiusC2−j∗
1 n such thatB̃1 contains all the previous outer horseshoe

boxes. Therefore, since the confinement factor forx3 is now instead 2−j2−j3,

III3,1c ≤ Cεn
9/4+3ε

(6.36) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

∑
u≥2,w≥2

(uw)−2+ε2j∗
1 +(−3j1−3j2−7j3)/4.

If instead we considerv < u in the original setting, we apply the same method but
with the roles ofu andv switched. This completes our discussion of the caset = 1.

Consider next thatt = 2. Say thatj∗
3 is the second root dual horseshoe index.

We let x2 ∈ bu(x1, j1, j2, j
∗
1 ) for someu ≥ 2. We construct three horseshoe pairs

(B1(xi ),B2(xi )), i = 1,2,3, with inner radii 2ρi � 2−ji n. We take the radii of
B2(xi ), i = 1,2, to be 2ν1 � u2−j1n, but becausex3 is now far from bothx1 andx2,
we construct the radius of the outer boxB2(x3) to be 2ν3 � 2−j∗

3 n. As before,
we construct these three outer boxes to be disjoint. Finally, we construct a fourth
horseshoe pair(B1,B2) with inner boxB1 of radiusC2ν1 containing both outer
boxesB2(xi ), i = 1,2, and with outer boxB2 of radius 2−j∗

1 n that is disjoint from
B2(x3). This is possible due to the separation of the dual indices, whereu ranges
up to order 2j

∗
1 −j1. Therefore, since|bu| ≤ 2−j1−j2, we have by (5.15) that

III3,2 ≤ Cεn
9/4+3ε

(6.37) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

∞∑
j3=j2

j3∑
j∗
3 =0

∑
u≥2

(u)−2+ε2j∗
1 +j∗

3 +(−3j1−7j2−7j3)/4.



MOMENTS OF THE NUMBER OF PIVOTAL SITES 1877

We consider finally the caset = 3. This is the easiest case. It refers to widely
separated vertices. We construct three horseshoesB1(xi ),B2(xi ), i = 1,2,3, with
inner radii 2ρi � 2−ji n and outer radii 2νi � 2−j∗

i n, i = 1,2,3, respectively.
Therefore, by (5.15), we obtain

III3,3 ≤ Cεn
9/4+3ε

(6.38) ×
∞∑

j1=0

j1∑
j∗
1 =0

∞∑
j2=j1

j2∑
j∗
2 =0

∞∑
j3=j2

j3∑
j∗
3 =0

2j∗
1 +j∗

2 +j∗
3 +(−7j1−7j2−7j3)/4.

This completes our discussion of the caseh = 3 whenr = 3.

7. The general case. We show in this section a two-fold argument for
establshing the generalτ th moment for the number of pivotal sites. The first part
of the argument is to isolate discussion of the (nonroot) vertices that are chained
to a given root. This is accomplished by utilizing Lemma 7 and its generalization
in Lemma 8, together with Proposition 1. Lemma 8 is required to handle the case
τ ≥ 5. This part of the analysis does not require any horseshoe estimates. The
second part of the argument is to explain the general strategy for the construction
of horseshoes at root vertices, as well as the construction of nested horseshoes.

7.1. Nonroot vertices. We begin with an example to understand how to
generalize the argument of Section 6.1.1. Letτ = 5 and r = 1. AssumeG1 =
{x1,w1,w1,1,w1,2,w1,2,1}. Consider the following dichotomy:

either (i)m1,2 ≥ m1 + s1 + 2 or (ii) m1,2 < m1 + s1 + 2.

Define boxesR1 := B(w1, l1), for l1 := 2−m1−s1n and R1,2 := B(w1,2, l1,2),
for l1,2 := 2−m1,2−s1n, and more generally,Ri1,...,ik := B(wi1,...,ik , li1,...,ik ), for
li1,...,ik := 2−mi1,...,ik

−s1n, wheres1 is the constants1 := s + s0 for s = 2c + 4 (see
Section 4) and somes0 > 0 to be determined below.

We study first the generic case (i). Sincew1,2 ∈ am1,2(w1), we have thatR1,2 ⊂
B(w1,2,2−m1,2−2n) ⊂ R1 while alsow1 /∈ B(w1,2,2−m1,2−2n), so, in particular,
w1 /∈ R1,2. Consider now the following subcases:

(a1) m1,1 ≥ m1 + s1 + 2 or (b1)m1,1 < m1 + s1 + 2,
(a2) m1,2,1 ≥ m1,2 + s1 + 2 or (b2)m1,2,1 < m1,2 + s1 + 2.

Consider first the generic joint subcase (a1)–(a2) under case (i). By the very
same reasoning as given for (i), by (a1), we have thatB(w1,1,2−m1,1−2n) ⊂ R1
while also w1 /∈ B(w1,1,2−m1,1−2n), so, in particular,w1 /∈ R1,1. By the same
reasoning again under (a2),R1,2,1 ⊂ B(w1,2,1,2−m1,2,1−2n) ⊂ R1,2 while also
w1,2 /∈ B(w1,2,1,2−m1,2,1−2n), so, in particular,w1,2 /∈ R1,2,1. Furthermore, by
Proposition 1, we have thatR1,1 andR1,2 are disjoint. Hence, we have in all the
following picture:R1,2,1 ⊂ R1,2 ⊂ R1 andR1,1 ⊂ R1 with R1,1 ∩ R1,2 = ∅. See
Figure 5. We note that the context of Lemma 7 may be generalized to the present
circumstance as follows.



1878 G. J. MORROW AND Y. ZHANG

LEMMA 8. Let R = R(x′) be a rectangle centered at x′ with its shortest half-
side of length l ≥ 1 and longest half-side of length L ≥ 1 such that 1 ≤ L/l ≤ 2.
Let R contain a vertex x such that ‖x − x′‖ ≤ l/2. Suppose that R contains a
collection of boxes Bi = B(yi ,2λi ), i = 1, . . . , v, such that for every i, x /∈ Bi .
Assume that any two of the boxes Bi are either disjoint or one of them is contained
entirely within the other and that whenever box Bi ⊂ Bj , the smaller box Bi does
not contain the center yj of the larger box Bj . Denote V := {yi : i = 1, . . . , v}
and DV = DV (x) := maxyi∈V ‖yi − x‖ and assume that

∑
yi∈V 2λi ≤ 1

64DV (x).
For any W ⊂ V such that Bi ⊂ Bi0 for all yi ∈ W and some yi0 ∈ V \ W ,
denote also the maximal distance DW(yi0) := maxyi∈W ‖yi − yi0‖, and assume
that

∑
yi∈W 2λi ≤ 1

64DW(yi0). Then the conclusion of Lemma 7 continues to hold.

FIG. 5. Configuration of boxes Ri1,...,ik in joint subcase (a1)–(a2)under (i).
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The proof of Lemma 8 follows by induction onv and is an extension of the proof
of Lemma 7. To show first how to apply Lemma 8 for our construction, we work on
the current example. We begin with the assumption that we are in the joint subcase
(a1)–(a2) of (i). TakeR = R1, x = w1 andv = 3, where the centersyi , i = 1,2,3,
are the verticesV := {w1,1,w1,2,w1,2,1}. The boxesBi are the corresponding
boxesRi1,...,ik with radii 2λi = li1,...,ik as above. We assume thats0 is so large in the
definition of the radii of these boxes through the parameters1 = s + s0 that we do
not need to shrink these boxes to establish the sum of diameters conditions. This
is possible since we do not change the positions of the vertices ofG1 (we do not
changes = 2c + 4), but only adjust the increments0 so that the radii of the boxes
centered at these vertices change. In particular, forW = V , we have that the sum of
all the diameters of the boxes is at most 2τ2−m1,2−s−s0n since bothm1,2,1 ≥ m1,2
andm1,1 ≥ m1,2 while DV (w1) ≥ 2−m1,2−2n, so it suffices for this case to finds0
such that 8τ2−s−s0 < 1. If insteadW = {w1,1}, thenDW(w1) ≥ 2−m1,1−2n while
the radius of the boxR1,1 is 2−m1,1−s−s0n. For the caseW = {w1,2,1}, we subtract
to find

‖w1,2,1−w1‖ ≥ ‖w1,2−w1‖−‖w1,2−w1,2,1‖ ≥ 2−m1,2−2−2−m1,2−c ≥ 2−m1,2−3

by our choice ofc in Section 4. Hence, againDW(w1) ≥ C2−m1,2 ≥ 642−m1,2,1−s1.
In summary, we can see that the sum of diameters condition for the maximal
distanceDW(w1) is satisfied because, first, the quantityDW(w1) is estimated
below by a constant times the distance‖w1 − w1,j‖ (and this distance is at least
2−m1,j−2) for the maximalj ≥ 1 such that some vertexw1,j,i3,...,ik ∈ W . Second,
the radius of each box whose center is inW is at most 2−m1,j−s−s0. We shall
construct below a nested or disjoint boxes condition for each joint subcase referred
to above such that the boxesBi that will be contained in a given boxBi0 with
centeryi0 = w0 (or a rectangular variant ofBi0) will correspond to centers that are
children of w0. Therefore, we see by the graphical structure of Section 4 that
the argument above for verifying the sum of diameters condition is independent
of the joint subcase. We fix the value ofs1 in the definitions of the radiili1,...,ik and
in the conditions (i), (ii), (a1), (a2), (b1) and (b2). Thus, the disjoint and nested
relations of our joint subcase (a1)–(a2) of (i) are preserved as in Figure 5 and
so we have verified the hypothesis of Lemma 8 for this case. We next verify the
conclusion of Lemma 8 for this case as well.

The induction hypothesis is the conclusion of Lemma 8 for some number of
boxesBi , i = 1, . . . , u, with u in place ofv. The proof of the induction hypothesis
for v = 1 in Lemma 8 is the same as the proof forv = 1 in the original statement
of Lemma 7 with 2λ1 in place of 2λ1−1 in (A.1). We establish the inductive step
of Lemma 8 for the current example. We construct a rectangleR̃1, as in the
proof of Lemma 7, that has a centerx̃′

1 such that‖̃x′
1 − w1‖ ≤ 1

20DV ≤ l̃1/2 for
1
5DV ≤ l̃1 ≤ 1

10DV andDV ≤ l1. Let us assign indices byB1 = R1,1, B2 = R1,2
andB3 = R1,2,1, so thatB3 does not contain the center ofB2 andB3 ⊂ B2. By
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the proof of Lemma 7, all the boxesBi are either entirely inside or outsidẽR1.
Therefore, if one ofB1 or B2 does lie insidẽR1, then because at least one other
does lie outsidẽR1, we can apply the induction hypothesis applied to the rectangle
R̃1 in place ofR. So let us assume that there are no boxesBi inside R̃1. In this
case we proceed to construct a second rectangleR̃2 = B(w1,2, r) inside R1,2,
as in the proof of the initial case of Lemma 7 applied withR = R1,2 and with
r = ‖w1,2,1 − w1,2‖/4, so thatB3 is disjoint from R̃2. That is, we apply the
induction step only to the context of a single boxB3 inside the boxR = R1,2.
Explicitly, we have that

P

(
U4(w1;R) ∩

( 3⋂
i=1

U4(yi;R)

))
(7.1) ≤ (

U4(w1; R̃1)
)
P

(
U4(w1,1;R1,1)

)
× P

(
U4(0,2λ3)

)
P

(
U4(w1,2; R̃2)

)
P

(
U4(0,5r; l1,2/2)

)
,

where 2λ3 = 2m1,2,1−s1n and where if 24r ≥ l1,2, we omit the last factor in
this inequality. If 24r < l1,2, then the product of the last two factors in this
inequality is bounded byCP(T4(0; l1,2/d)), as in the proof of the casev = 1
of Lemma 7. Therefore, we obtain the desired conclusion of Lemma 8 for the
particular example.

Consider next subcase (a1)–(b2) under (i). We still have the boxesBi , i =
1,2,3, as defined above, but now they may not satisfy the nested or disjoint
condition of Lemma 8. But, by (b2),m1,2 + s1 + s + 2 > m1,2,1 + s. Therefore,
the boxesB(w1,2,2−m1,2−s1−s−2n) and B(w1,2,1,2−m1,2,1−sn) are disjoint by
Proposition 1. Therefore, since this last box containsB3 (becauses1 > s), in fact,
we may shrink the boxB2 by the constant factor 2−s to obtain a boxB ′

2 such
that now the boxesB1, B ′

2, B3 are mutually disjoint. Also, due to the geometric
series estimate‖w1,2,1 − w1‖ ≤ 2−m1,2−1n, we have by (i) thatB3 ⊂ R1. Hence,
in fact, we may apply Lemma 7 with theB ′

2 in place of theB2 and withB1 andB3
as before and still withR = R1 to again reach the desired conclusion. This trick
must be modified in general. In subcase (b1)–(a2) under (i) we have that the boxes
B(w1,2−m1−s1−s−2n) and B1 = B(w1,1,2−m1,1−s1n) are disjoint by (b1) and
Proposition 1, and, moreover,B3 is nested inB2 by (a2). Further, by Proposition 1
applied to the trimmed graphG1 without the vertexw1,2,1, we have thatB1 andB2
are disjoint. To obtain a nested or disjoint condition, we apply the method of
Proposition 2 withw1 playing the role of the root andB2 = B(w1,2,2−m1,2−s1)

playing the role of a shrunken box, and withD = 2−s−2l1 = 2−m1−s1−s−2. Since
m1,2 ≥ m1, the diameter of the boxB2 is small compared withD, depending on
the parameters0, so we may adjust this parameter upward if necessary to construct
a rectangleR′

1 with centerx′ that satisfies‖x′ − w1‖ ≤ l′1/2, whereR′
1 has half

sidesl′1 andL′
1 with 1 ≤ L′

1/l′1 ≤ 2 such that bothB2 andB3 lie either nested
together insideR′

1 or nested together outsideR′
1. Here in the method of proof of
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Lemma 7 we takeD/10 ≤ l′1 ≤ D/5 so thatR′
1 ⊂ B(w1, l

′) ⊂ B(w1,2−s−2l1).
Thus, we obtain thatB1 lies outsideR′

1. By working again with the method of
Proposition 2, this time withD = C2−j1n, for any of the joint subcases, we may
enclosex1 by a suitable rectangleR′

0 with shortest half-sidel � 2−j1n such thatR′
0

satisfies a nested or disjoint condition with the other rectangles constructed thus
far. Now Lemma 8 is applied withx = x1 and the rectangles contained byR′

0 if
any such exist. IfR′

1 is disjoint fromR′
0, then we apply Lemma 8 separately with

x = w1 and the rectangles contained byR′
1. Thus, in each joint subcase organized

as above, there will exist a specific arrangement of boxes and rectangles with radii
given asymptotically by 2−mi1,...,ik n such that Lemma 8 will apply to disjoint pieces
of the arrangement. As shown in Section 6.1.1, we may alternatively choose to
apply Lemma 8 first withR = R′

1 and use thatB(x1,2−m1−sn) is disjoint fromR1
and all other boxes by Proposition 1. However, it is convenient to use the more
general format withx = x1 andR = R′

0 for one application of Lemma 8 to obtain
the same result in all joint subcases, namely, by Lemma 2, that

pn,3(x1, . . . ,w1,2,1) ≤ Cεn
−25/4+5ε25(j1+m1+m1,1+m1,2+m1,2,1)/4.(7.2)

Hence, by using the confinement factors (3.12), by (7.2) and by constructing one
horseshoe atx1, we have that any sub-sum of�0 corresponding toτ = 5 andr = 1
under the eight different joint subcase combinations is bounded by

Cεn
15/4+5ε

∞∑
j1=0

· · ·
∞∑

m1,2,1=m1,2

2j∗
1 +(−7j1−3m1−3m1,2−3m1,1−3m1,2,1)/4,(7.3)

where the intervening summations are indexed by the conditions 0≤ j∗
1 ≤ j1,

m1 ≥ j1, m1,2 ≥ m1 andm1,1 ≥ m1,2. In conclusion, since the confinement factor
for each vertexwi1,...,ik ∈ V1 is of the form 2−2mi1,...,ik n2, we are able to establish a
convergent sum analogous to (7.3) for any graphG1 since we have shown that we
can take 2λi � 2−mi1,...,ik n corresponding to the vertexwi1,...,ik in Lemma 8.

It remains to make some comments about the case when there is a second
graph G2 with root xe. We argued briefly in the lines preceding (6.7) of
Section 6.1.2 that, even withh = 1, there would exist a boxB = B(xe, l) with
radius l � 2−jen such thatB is disjoint from all the rectangles constructed as
above in Section 7.1 with centers or mock centers at vertices inG1. The argument
is based on the fact that if, in the construction of the verticesV1 for G1, we obtain
m1 = j1 + 2c, then of course sinceje + 4c + 2 ≥ j1 + 4c + 2 ≥ m1 + 2c + 2, the
boxes mentioned in the line preceding (6.7) withxe in place ofx3 are disjoint. If,
on the other hand,m1 = j1 + 2c + 1, then, for allwi1,...,ik ∈ W1 with k ≥ 2, we
have

‖w − x1‖ ≤ 2−j1−2c−1 + 2−m1−c ≤ 3 · 2−j1−2c−2.(7.4)

Hence, againB(xe,2−je−4c−2n) is disjoint from B(wi1,...,ik ,2−mi1,...,ik
−2c−2n).

This last statement continues to hold withk ≥ 1 andi1 ≥ 2 since we may similarly
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argue fori ≥ 2 thatj1 + c ≤ mi ≤ j1 + 2c or mi ≥ j1 + 2c + 1. Therefore, we may
extend the analysis of (7.3) to the case of a second graphG2 with an appropriate
horseshoe at the second root vertexxe. In conclusion of this section, we have
shown a convergent dyadic sum process up to the construction of horseshoes at
the root vertices.

7.2. Horseshoes. The remainder of the general argument is based on a pattern
of nonoverlapping horseshoes and the corresponding probability estimates that
provide for convergence factors in the pivotal case. We have shown in Section 6 a
parametrization of spacing between the root vertices provided by the definitions
of the root vertices, the root horseshoe vertices, certain bands dividing space
between nearby roots and the separation of dual horseshoe indices. These levels of
organization determine confinement factors associated to each root vertex in terms
of the dyadic indicesji and dual indicesj∗

i . In fact, there exists a sufficiently
large constantC0 in this parametrization such that as long as a root vertexxk

is not confined to belong to a set of vertices of size at mostC02−2jkn2, then a
horseshoe is constructed at this vertex. We have, in particular, that a horseshoe is
constructed at each root vertexxk such that its dyadic indexjk does not satisfy
ji ≤ jk ≤ ji + c0 for some root vertexxi with i < k and dyadic indexji , where
c0 is a constant positive integer. If indeed the conditionji ≤ jk ≤ ji + c0 does hold
and if in addition the vertexxk is in a horseshoe relation toxi , then the vertexxk

is confined to belong to a set of vertices of size at mostC2−2ji n2. In this case a
convergence factor for this vertex is accounted for by its confinement factor alone.
This follows because the probability that a four-arm path issues from the center
of a box of radius 2ρ � 2−jkn and then exits this box is at mostCε25jk/4n−5/4+ε.
Thus, by multiplying the confinement factor by the probability and by substitution
of ji for jk due to the condition on these indices, we obtain the convergence factor
2−3ji/4. This situation is an exception wherein a horseshoe is not constructed for
lack of space. It represents an analogue of the confinement that is associated to
each nonroot vertex. Note, on the other hand, that additional horseshoes besides
those at roots may need to be constructed in general to fill in spaces between the
dyadic annuli inB(n). Such is the case because horseshoes are not allowed to
overlap. Therefore, if one vertex belongs to a band associated with another, then
the horseshoes associated to each can only grow so large (with equal outer radii).
Then a larger horseshoe containing both the horseshoes that have grown together
must be constructed as though the two vertices had become one (cf. Figure 4). We
can summarize this strategy by observing that a maximal number of horseshoes
is introduced for a given parametrization of spacing of root vertices. Due to the
nesting of two horseshoes with equal outer radii inside a single larger horseshoe,
the algebraic factors (e.g.v−2+ε) associated to the confinement of vertices in bands
remain always with exponents(−2 + ε), so contribute only convergent terms in
our method. Due to this allowance for nesting of horseshoes, the additional dyadic



MOMENTS OF THE NUMBER OF PIVOTAL SITES 1883

convergence factors that arise from Lemma 5 compensate in exactly the same way
a confinement factor would if there were to be no room for a horseshoe.

In conclusion, each vertex in our estimation method for the pivotal sites, be it
a root or nonroot, contributes a convergence factor with the same exponent−3

4.
Thus, each arrangement of the vertices that defines a sub-sumJ of �0 in
(4.1)–(4.2) by the above division of cases yieldsJ ≤ Cεn

3τ/4+τε ∑∞
j1=0 2−3τj1/4.

By contrast, when we apply our method to the case of items 1 or 2 in Theorem 1,
we omit the construction of horseshoes altogether. We also omit the need for
Lemmas 7 and 8. Then by Proposition 1 and Lemma 2 alone, the root vertices
and nonroot vertices contribute convergence factors with exponents−1

3 and−4
3,

respectively, in the case of the lowest crossing and exponents−3
4 and −7

4,
respectively, in the case of pioneering sites.

APPENDIX

PROOF OFLEMMA 7. We proceed by induction on the number of boxesv.
We establish first the statement of the lemma forv = 1. Definer := ‖x − y1‖/4.
We have that

B(x, r) is disjoint fromB(y1,2λ1−1).(A.1)

Indeed, 2λ1−1 < ‖x − y1‖/2= 2r . Note thatL ≥ ‖x − y1‖ = 4r , sol ≥ L/2 ≥ 2r .
Therefore,

B(x, r) ⊂ B(x, l/2) ⊂ R,(A.2)

where the last inclusion follows because‖x − x′‖ ≤ l/2 andB(x′, l) ⊂ R. Now we
use (A.1), (A.2), the assumptionB(y1,2λ1) ⊂ R and independence to obtain by
(2.5) and (5.20) that

P
(
U4(x;R) ∩ U4(y1;R)

) ≤ P
(
U4(0, r)

)
P

(
U4(0,2λ1−1)

)
.(A.3)

We consider now two cases,l ≤ 24r and l > 24r . If l ≤ 24r , then by Lemma 4
with κ = 4, we have

P
(
U4(0, r)

) ≤ P
(
U4(0, l/24)

) ≤ C4P
(
T4(0, l/24)

)
so we are done by (A.3) in this case. If insteadl > 24r , then, since‖x − y1‖ = 4r

implies that

B(x, r),B(y1, r) ⊂ B(x,5r)

and since also by (A.2) the annulusx + A(0,5r; l/2) ⊂ R, we have that

P
(
U4(x;R) ∩ U4(y1;R)

)
(A.4)

≤ P
(
U4(0, r)

)
P

(
U4(0,2λ1−1)

)
P

(
U4(0,5r; l/2)

)
.
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We now apply Lemmas 4 and 6 and construct connections across the annulus
x + A(0, r;5r) to show first that

P
(
U4(0, r)

)
P

(
U4(0,5r; l/2)

) ≤ C4P
(
T4(0, r)

)
P

(
U4(0,5r; l/2)

)
≤ CP

(
U4(0, l/2)

)
.

Then we apply Lemma 4 again to establish that this last probability is at most

C′P
(
T4(0, l/2)

)
.

Therefore, by (A.4) and these last two observations, we have established the lemma
for v = 1 in the casel > 24r . Thus, by comparing the two cases, we can take
d = 24 andc1 = 1 in the statement of the lemma whenv = 1.

We now proceed to show the inductive step. Assume the statement of the lemma
is true with a positive integeru in place ofv for someu < v and withv ≥ 2. Define

Dv := max
i=1,...,v

‖yi − x‖.

Note thatl ≥ L/2 ≥ Dv/2, so thatB(x, 1
4Dv) ⊂ B(x, l/2) ⊂ R. Consider now the

shrunken boxesB ′
i := B(yi ,2λi−3v), i = 1, . . . , v. SinceDv > 2λi for all i, we

have that the sum of the diameters of these boxes satisfies

2
v∑

i=1

2λi−3v ≤ 2vDv2−3v ≤ 1
16Dv

for all v ≥ 2. Therefore, even if all the shrunken boxes were packed inside the
subsetB(x, 1

4Dv) of the rectangleR, there would be a gap in thez1 coordinates
of the verticesz ∈ B(x, 1

4Dv) somewhere in the interval[x1 + 1
10Dv,x1 + 1

5Dv]
and also in the interval[x1 − 1

5Dv,x1 − 1
10Dv], where we denotex = (x1, x2).

Indeed, each of these intervals has width1
10Dv which is strictly greater than the

sum of the diameters of the boxesB ′
i . Similarly, there must be gaps in thez2

coordinates of the verticesz ∈ B(x, 1
4Dv) somewhere in corresponding intervals

for the second coordinate. Therefore, by constructing a rectangle with sides along
some vertical and horizontal lines through the gaps in these intervals, we have that
there exists a rectanglẽR := R̃(̃x′) ⊂ B(x, 1

5Dv) ⊂ R with shortest and longest

half-sides̃l and L̃, respectively, satisfying̃L/̃l ≤ 2 such that its center satisfies
‖̃x′ − x‖ ≤ 1

20Dv ≤ l̃/2 and such that a certain proper subset{B ′
i1
, . . . ,B ′

iu
} of the

set of shrunken boxes lies entirely insideR̃ and the others lie entirely outsidẽR. To
see that the subset will be proper so that the numberu < v, note that if the indexi0
yields the maximum in the definition ofDv , then 2λi0−3v < 1

64Dv so that

B
(
yi0,2λi0−3v) ∩ B

(
x, 1

4Dv

) = ∅.
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We now apply the inductive hypothesis withu < v. First we note that for alli,
B ′

i ⊂ B(x,12̃l) since 12̃l ≥ 12
10Dv . We consider again two cases. If 12l̃ ≤ l/8, then

by this construction, we have that

P

(
U4(x;R) ∩

(
v⋂

i=1

U4(yi;R)

))

≤ P

(
U4(x; R̃) ∩

(
u⋂

a=1

U4
(
yia ; R̃

)))
(A.5)

× P
(
U4(0,12̃l; l/2)

) ∏
i =ia

P
(
U4(0,2λi−3v)

)
.

If instead 12̃l > l/8, we omit the factorP(U4(0,12̃l; l/2)) in this inequality. By
the induction hypothesis, we have that

P

(
U4(x; R̃) ∩

(
u⋂

a=1

U4
(
yia ; R̃

)))

≤ C(u)P
(
T4

(
0; l̃/d(u)

)) u∏
a=1

P
(
U4

(
0,2λia −c1(u))).

We take now the constantsd(u) := 96u andc1(u) := 3u. Thus, if 12̃l > l/8, we
are done by this last inequality and (A.5). If, on the other hand, 12l̃ ≤ l/8, then we
estimate by Lemmas 4 and 6 that

P
(
T4

(
0; l̃/d(u)

))
P

(
U4(0,12̃l; l/2)

) ≤ CP
(
U4(0, l/2)

) ≤ C′P
(
T4

(
0, l/d(v)

))
.

This completes the proof of the inductive step and therefore of the lemma.�
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