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REPRESENTATION OF SOLUTIONS TO BSDEs ASSOCIATED
WITH A DEGENERATE FSDE

BY JIANFENG ZHANG

University of Southern California

In this paper we investigate a class of decoupled forward–backward
SDEs, where the volatility of the FSDE isdegenerate and the terminal value
of the BSDE is adiscontinuous function of the FSDE. Such an FBSDE
is associated with a degenerate parabolic PDE with discontinuous terminal
condition. We first establish a Feynman–Kac type representation formula
for the spatial derivative of the solution to the PDE. As a consequence, we
show that there exists a stopping timeτ such that the martingale integrand
of the BSDE is continuous beforeτ and vanishes afterτ . However, it may
blow up at τ , as illustrated by an example. Moreover, some estimates
for the martingale integrand beforeτ are obtained. These results are
potentially useful for pricing and hedging discontinuous exotic options (e.g.,
digital options) when the underlying asset’s volatility is small, and they
are also useful for studying the rate of convergence of finite-difference
approximations for degenerate parabolic PDEs.

1. Introduction. In this paper we investigate the following decoupled
forward–backward SDE:

Xt = x +
∫ t

0
b(r,Xr) dr +

∫ t

0
σ(r,Xr) dWr;

(1.1)

Yt = g(XT ) +
∫ T

t
f (r,Xr,Yr,Zr) dr −

∫ T

t
Zr dWr,

whereW is a standard Brownian motion,σ, b, f andg are deterministic functions.
It is well known that, in mathematical finance theory, the solution triple(X,Y,Z)

can be interpreted as underlying asset price, option price and hedging strategy,
respectively (see, e.g., [2]). The equations of type (1.1) were first studied by
Pardoux and Peng [9]. We refer the readers to the book of Ma and Yong [5] for
more details on the subject. Among other things, Pardoux and Peng [9] showed
that (1.1) was related to the following quasilinear parabolic PDE:

ut + 1
2σ 2uxx + bux + f (t, x, u,uxσ ) = 0;

(1.2)
u(T , x) = g(x),
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in the sense that

Yt = u(t,Xt), Zt = (uxσ )(t,Xt).(1.3)

For the purpose of applications, we are particularly interested in pathwise prop-
erties of the processZ. In the literature there are typically two types of conditions
to ensure the regularity ofZ. One is to assume that the coefficientsb,σ,f andg

are sufficiently smooth (e.g., [9] and [4]) so that (1.2) has a classical solutionu

and, thus,Z is continuous. The other is to assume thatσ is uniformly nondegener-
ate (e.g., [3], [6] and [7]) so thatXT has a density (see, e.g., [8]) and, thus,u(t, x)

is smooth inx for t < T , thanks to the nonlinear Feynman–Kac formula.
It is our goal of this paper to remove both conditions above. We will allowσ

to be degenerate and g to be discontinuous. We note that in this case (1.2)
is a degenerate PDE which, in general, has no smooth solution. A trivial
counterexample is thatσ = b = f = 0 andg = 1{x>0}, thenu(t, x) = 1{x>0} for
∀ t ∈ [0, T ], and, hence,u is discontinuous inx. However, by (1.3) and noting that
σ = 0, one may still viewZt = 0 in this example. In fact,Zt = 0 is indeed the
solution to (1.1).

A less obvious example is Example 1 in Section 4.1, in which the processZ

blows up at and only at some timet < T . It turns out that this is already the worst
case one might encounter. We will show that, under certain conditions, there exists
a stopping timeτ such thatZt is continuous fort < τ andZt = 0 for t ≥ τ . So
along each path, the only possible discontinuous point ofZt is τ . Moreover, we
have an explicit rule to locateτ and we have an estimate forZt whent < τ .

The main tool of our approach is a new Feynman–Kac type representation
formula forux (andZ) by using Malliavin calculus. As in [3] and [6], this formula
does not involve the derivatives off or g (thus,g can be discontinuous!). But
unlike those two works which requireσ to be uniformly nondegenerate, our new
formula allowsσ to be degenerate. As a payoff, due to this degeneracy, our
estimates forux are technically much more involved than those in [6].

At this point we would like to mention that the discontinuity ofg is mainly
motivated by digital options for whichg(x) = 1{x>K}. Degenerate diffusion also
appears quite often in applications (noting that even in the standard Black–Scholes
model, the stock price equation is degenerate!). For example, in option pricing
theory one may face a situation where the underlying asset market is quite stable
during a random time period (soσ is small) or there is a risk that the underlying
corporation may go bankrupt at some random time (soσ = 0 afterward). Our
results are potentially useful for pricing and hedging options in these markets.
Also, the regularity ofu plays a very important role for studying the rate of
convergence of finite-difference approximations for degenerate PDE (1.2) (see,
e.g., [11]).

For technical reasons, in this paper we assume that all processes are one-
dimensional and thatf is linear onZ. More general cases are left for future
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research. We note that in a recent paper Bally [1] studied the density of a
degenerate multidimensional diffusion. We hope that his work may bring us some
insights into our problem.

The rest of the paper is organized as follows. In Section 2 we give all the
necessary preparations. In Section 3 we study two “good” cases which extend
some results of [9] and [6], respectively. In Section 4 we study the case thatf = 0
and derive a new representation formula forZ. Finally, in Section 5 we study the
general case.

2. Preliminaries. Let (�,F ,P ) be a complete probability space on which

is defined a one-dimensional Brownian motionW = (Wt)t≥0, andF
�= {Ft }t≥0 be

the natural filtration generated byW , augmented by theP -null sets ofF .
The following spaces will be frequently used in the sequel: LetO be an open

subset of[0, T ] × R
k for some integerk,

• C(O) is the space of all Lebesgue measurable functions on[0, T ] × R
k such

that they are continuous inO;
• C0,1(O) is the space of thoseϕ ∈ C(O) such that they are continuously

differentiable on the spatial variable(s) inO;
• C

0,1
b (O) is the space of thoseϕ ∈ C0,1(O) such that all the partial derivatives

in O are uniformly bounded (butϕ itself can be unbounded).

WhenO = [0, T ] × R
k , we omit it. For example,C0,1 = C0,1([0, T ] × R

k).
In this paper we assume all the processes involved are one-dimensional; and we

shall use the followingStanding Assumptions:

(A1) b,σ ∈ C
0,1
b ;

(A2) σ is uniformly continuous int ;
(A3) f ∈ C([0, T ] × R

3), andf is uniformly Lipschitz continuous inx, y, z;

(A4) g is Lebesgue measurable and|g(x)| ≤ ψ(x)
�= K(1 + |x|p0) for some

constantK and somep0 ≥ 1.

We note that, by assuming (A1),

E

{
sup

0≤t≤T

ψ(Xt)
p

}
≤ Cpψ(x)p ∀p ≥ 1.(2.1)

In fact, this is the only property ofψ we will utilize in the rest of the paper. We also
note that (A2) is equivalent to limε→0 δ(ε) = 0, where

δ(ε)
�= inf

{
|t1 − t2| : 0≤ t1, t2 ≤ T , sup

x∈R

|σ(t1, x) − σ(t2, x)| > ε

}
.(2.2)

Obviously, for anyx ∈ R and|t1 − t2| ≤ δ(ε), we have|σ(t1, x) − σ(t2, x)| ≤ ε.
In order to simplify the presentation, we will also adopt the following

assumption:
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(A5) σ, b are bounded.

However, without assuming it, all the results in the paper still hold true after some
slight modification (see Remark 5.4).

Throughout the paper, we use a generic constantK to denote all the Lipschitz
constants involved. We also assume that|σ(t, x)| + |b(t, x)| + |f (t,0,0,0)| ≤ K .
Moreover, we use positive constantsC andc, which may vary from line to line but
depend only onK,T and the functionψ in (A4), to denote upper bounds and lower
bounds of estimates, respectively. Furthermore, if the bounds depend on somep

as well, we denote them byCp andcp, respectively.
We now review some basic results, especially those concerningZ, in the

literature. First, for any(t, x) ∈ [0, T ) × R, let (Xt,x
s , Y t,x

s ,Zt,x
s )t≤s≤T denote the

solution to the following FBSDE:

Xt,x
s = x +

∫ s

t
b(r,Xt,x

r ) dr +
∫ s

t
σ (r,Xt,x

r ) dWr;
(2.3)

Y t,x
s = g(X

t,x
T ) +

∫ T

s
f (r,Xt,x

r , Y t,x
r ,Zt,x

r ) dr −
∫ T

s
Zt,x

r dWr.

When t = 0, (2.3) is the same as (1.1), and we still use(X,Y,Z) to denote

its solution. Next, we defineu(t, x)
�= Y

t,x
t . It is well known that, under certain

conditions,u is the unique viscosity solution to (1.2) andYt = u(t,Xt). Moreover,
if u ∈ C0,1, then (1.3) holds true (see, e.g., [6]). Throughout the paper, we useu to
denote this function.

The following result, which concerns the Malliavin derivatives of(X,Y,Z) and
provides another representation ofZ, is due to Pardoux and Peng [9] (or see [6]).

LEMMA 2.1. Assume (A1), (A3); and that f ∈ C
0,1
b , g ∈ C1

b(R). Let (∇X,

∇Y,∇Z) denote the solution to the following linear SDEs:

∇Xt = 1+
∫ t

0
bx(r,Xr)∇Xr dr +

∫ t

0
σx(r,Xr)∇Xr dWr;

∇Yt = g′(XT )∇XT(2.4)

+
∫ T

t
[fx∇Xr + fy∇Yr + fz∇Zr ]dr −

∫ T

t
∇Zr dWr.

Then it holds that, for t ≤ r ≤ T ,

DtXr = ∇Xr [∇Xt ]−1σ(t,Xt);
DtYr = ∇Yr [∇Xt ]−1σ(t,Xt);(2.5)

DtZr = ∇Zr [∇Xt ]−1σ(t,Xt),

where D is the Malliavin derivative operator. Moreover, u ∈ C
0,1
b and it holds that

ux(t, x) = ∇Y
t,x
t ; Zt = DtYt = ∇Yt [∇Xt ]−1σ(t,Xt).(2.6)
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We note that Lemma 2.1 relies heavily on the differentiability ofg. The next
lemma, which gives a Feynman–Kac type representation formula ofux , assumes
instead thatσ is nondegenerate. The proof can be found in [6].

LEMMA 2.2. Assume (A1), (A3), σ ≥ 1
K

and that g is Lipschitz continuous.

Then u ∈ C
0,1
b ([0, T ) × R), and (1.3)holds true in [0, T ) × R. Moreover, we have

the following representation formula of ux (and thus of Z):

ux(t, x) = Et,x

{
g(XT )N̄ t

T +
∫ T

t
f (r,Xr,Yr,Zr)N̄

t
r dr

}
,(2.7)

where the superscript t,x indicates that the processes (X,Y,Z) under expectation
are solutions to (2.3) [instead of (1.1)], and

N̄ t
r

�= 1

r − t

∫ r

t
σ−1(s,Xs)∇Xs dWs [∇Xt ]−1.(2.8)

The following estimates are easy to prove (see, e.g., [2]).

LEMMA 2.3. Assume that b̃, σ̃ :� × [0, T ] × R 	→ R and f̃ :� × [0, T ] ×
R

2 	→ R are F-adapted random fields, such that they are uniformly Lipschitz
continuous with respect to the spatial variable(s) and

E

{∫ T

0
[|b̃(t,0)|2 + |σ̃ (t,0)|2 + |f̃ (t,0,0)|2]dt

}
< ∞.

For any ξ ∈ L2(FT ), denote (X,Y,Z) to be the solution to the following SDEs:

Xt = x +
∫ t

0
b̃(s,Xs) ds +

∫ t

0
σ̃ (s,Xs) dWs;

Yt = ξ +
∫ T

t
f̃ (s, Ys,Zs) ds −

∫ T

t
Zs dWs.

Then, for any p ≥ 2, there exists a constant Cp > 0, depending only on T ,p and
the Lipschitz constants of b̃, σ̃ , f̃ , such that

E

{
sup

0≤t≤T

|Xt |p
}

(2.9)

≤ CpE

{
|x|p +

∫ T

0
[|b̃(t,0)|p + |σ̃ (t,0)|p]dt

}
;

E

{
sup

0≤t≤T

|Yt |p +
(∫ T

0
|Zt |2 dt

)p/2}
(2.10)

≤ CpE

{
|ξ |p +

∫ T

0
|f̃ (t,0,0)|p dt

}
.



BSDEs WITH DEGENERATE FSDE 1803

We end this section with the exponential inequality (see, e.g., [10]).

LEMMA 2.4. Assume M is a continuous local martingale vanishing at 0.

Let M∗
T

�= sup0≤t≤T |Mt | and [M]T denote its quadratic variation. Then for any
x, y > 0,

P(M∗
T > x, [M]T < y) ≤ exp

(−x2

2y

)
.

3. Two “good” cases. In this section we study two cases which generalize
Lemmas 2.1 and 2.2, respectively. The first one assumes thatg is differentiable.
Since the proof is more or less standard, we will just sketch it.

THEOREM 3.1. Assume (A1), (A3), (A4) and that f ∈ C
0,1
b , g ∈ C1(R) such

that |g′(x)| ≤ Cψ(x), where ψ is defined in (A4). Then, for ∀ (t, x) ∈ [0, T ]×R:

(i) u ∈ C0,1, and (1.3)holds true;
(ii) the following representation holds true:

ux(t, x) = Et,x

{
g′(XT )∇XT +

∫ T

t
[fx∇Xr + fy∇Yr + fz∇Zr ]dr

}
;(3.1)

(iii) |ux(t, x)| ≤ Cψ(x).

PROOF. First, if |g′(x)| ≤ C, then one gets (i) and (ii) immediately from
Lemma 2.1. In general, by standard approximating arguments, one can prove
(i) and (ii). Finally, by (3.1), (2.10) and (2.1), one can easily show that|ux(t, x)| =
|∇Y

t,x
t | ≤ Cψ(x). �

The next result is an extension of Lemma 2.2. We do not requireg to be
continuous. Instead, we assume thatσ(T , ·) is nondegenerate.

THEOREM 3.2. Assume (A1), (A3), (A4) and that there exists δ0 > 0 such
that 1

K
≤ |σ(t, x)| ≤ K for ∀ (t, x) ∈ [T − δ0, T ] × R. Then:

(i) u ∈ C0,1([0, T ) × R), and (1.3)holds true;
(ii) the following estimates hold true: for 0≤ t ≤ T ,

|u(t, x)| ≤ Cψ(x); |ux(t, x)| ≤ Cψ(x)√
T − t

.

PROOF. First, by Lemma 2.3, one can easily prove|u(t, x)| ≤ Cψ(x).
We now prove (i) and estimateux . We proceed in three steps.
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Step 1. We restrictt ∈ [T − δ0, T ] and assume thatg ∈ C1
b . Then by Lemma 2.2,

obviously, (i) holds true in[T − δ0, T ) × R. Moreover, the representation
formula (2.7) holds true. That is,

ux(t, x) = Et,x

{
g(XT )N̄ t

T +
∫ T

t
f (r,Xr, u,uxσ )(r,Xr)N̄

t
r dr

}
.(3.2)

We shall use (3.2) to estimateux . We note that in the following the constantC

will not depend on the upper bound ofg′. Define

At
�= √

T − t sup
x

|ux(t, x)|
ψ(x)

; Bt
�= sup

t≤s≤T

As.

Recalling (2.8), one can check directly that, forT − δ0 ≤ t < r ≤ T , E{|N̄ t
r |p} ≤

C(r − t)−p/2. Note that 1+ |x| ≤ Cψ(x), |u(t, x)| ≤ Cψ(x), and|σ(t, x)| ≤ K .
Then by (3.2), we have

|ux(t, x)| ≤ CEt,x

{
ψ(XT )|N̄ t

T |

+
∫ T

t
[1+ |Xr | + |u(r,Xr)| + |(uxσ )(r,Xr)|]|N̄ t

r |dr

}

≤ CEt,x

{
ψ(XT )|N̄ t

T | +
∫ T

t
ψ(Xr)

[
1+ Ar√

T − r

]
|N̄ t

r |dr

}

≤ Cψ(x)

(
1√

T − t
+

∫ T

t

[
1+ Ar√

T − r

]
dr√
r − t

)

≤ Cψ(x)

(
1√

T − t
+ Bt

∫ T

t

dr√
(T − r)(r − t)

)

= Cψ(x)

(
1√

T − t
+ Bt

∫ 1

0

dr√
r(1− r)

)
≤ C0ψ(x)

(
1√

T − t
+ Bt

)
,

where the last equality is due to the substitutionr = t + (T − t)r ′. Thus,
At ≤ C0[1 + Bt

√
T − t ]. Obviously,Bt is decreasing, so fort ≤ s ≤ T , As ≤

C0[1 + Bs

√
T − s ] ≤ C0[1 + Bt

√
T − t ]. Therefore,Bt ≤ C0[1 + Bt

√
T − t ].

Without loss of generality, we assumeδ0 < (2C0)
−2. ThenC0

√
T − t ≤ 1

2, and,

thus,Bt ≤ 2C0. This obviously implies that|ux(t, x)| ≤ 2C0ψ(x)√
T −t

. We note again

thatC0 does not depend on the bound ofg′.
Step 2. We now assume thatg satisfies only (A4), but still restrictt ∈ [T −

δ0, T ]. One can easily findgn ∈ C1
b such that|gn(x)| ≤ 1 + ψ(x) for the same

function ψ and limn→∞ gn(x) = g(x) for dx-a.s.x ∈ R, wheredx denotes the
Lebesgue measure onR. Let (Y n,Zn) denote the solution to the BSDE:

Yn
t = gn(XT ) +

∫ T

t
f (r,Xr,Y

n
r ,Zn

r ) dr −
∫ T

t
Zn

r dWr,
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and then defineun(t, x)
�= Y

n,t,x
t . Sincegn ∈ C1

b , by the above arguments, we
haveZn

t = (un
xσ )(t,Xt), the representation formula (2.7) holds true forun

x , and
|un

x(t, x)| ≤ Cψ(x)√
T −t

, whereC is independent ofn.

Noting thatσ(t, x) ≥ 1
K

, XT is absolutely continuous with respect todx (see,
e.g., [8]). Thus, limn→∞ gn(XT ) = g(XT ), P -a.s. Then by standard arguments
(see, e.g., [2]), one can show that

lim
n→∞E

{
sup

T −δ0≤t≤T

|Yn
t − Yt |2 +

∫ T

T −δ0

|Zn
t − Zt |2 dt

}
= 0,(3.3)

which implies that limn→∞ un(t, x) = u(t, x). Moreover, recalling that

|Yt | ≤ Cψ(Xt), |Zt | ≤ C√
T − t

ψ(Xt)|σ(t,Xt )|,

applying the dominated convergence theorem, one gets that limn→∞ un
x(t, x) =

v(t, x), where

v(t, x) = Et,x

{
g(XT )N̄ t

T +
∫ T

t
f (r,Xr,Yr,Zr)N̄

t
r dr

}
.

Obviously,|v(t, x)| ≤ Cψ(x)√
T −t

andZt = (vσ )(t,Xt ). It remains to show thatv is
continuous, andux = v. To this end, we note that, for anyε > 0, there exists an
open setOε ⊂ R and a continuous functiongε such that: (i) the Lebesgue measure
|Oε| ≤ ε; (ii) gε(x) = g(x) for all x /∈ Oε; and (iii) |gε(x)| ≤ 1+ ψ(x). Denote

vε(t, x) = Et,x

{
gε(XT )N̄ t

T +
∫ T

t
f (r,Xr,Yr,Zr)N̄

t
r dr

}
.(3.4)

We note that in (3.4)(Y,Z) is still the solution to the BSDE with terminal
valueg(XT ) [not gε(XT )!]. Then

|vε(t, x) − v(t, x)| = |Et,x{[gε(XT ) − g(XT )]N̄ t
T }|

≤ Et,x{[|gε(XT )| + |g(XT )|]|N̄ t
T |;XT ∈ Oε}

≤ Cψ(x)√
T − t

√
P(X

t,x
T ∈ Oε).

Again, by [8], one can easily show thatX
t,x
T has a bounded density function with

respect todx (the bound may depend on1
T −t

, however). Thus,

|vε(t, x) − v(t, x)| ≤ C(T − t, x)
√|Oε| ≤ C(T − t, x)

√
ε.

HereC(T − t, x) is a constant depending onT − t andx. Now for any(t, x) ∈
[T − δ0, T ] × R and(tn, xn) ∈ [T − δ0, T ] × R such that limn→∞(tn, xn) = (t, x),
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we have

|v(tn, xn) − v(t, x)|
≤ |v(tn, xn) − vε(tn, xn)| + |vε(tn, xn) − vε(t, x)| + |vε(t, x) − v(t, x)|
≤ [C(T − tn, xn) + C(T − t, x)]√ε + |vε(tn, xn) − vε(t, x)|.

Sincegε is continuous, by standard arguments, one can show that limn→∞ vε(tn,

xn) = vε(t, x). Thus, lim supn→∞ |v(tn, xn)−v(t, x)| ≤ C
√

ε. Sinceε is arbitrary,
we have

lim
n→∞|v(tn, xn) − v(t, x)| = 0.

That is,v is continuous.
Finally, for any(t, x) ∈ [T − δ0, T ) × R, note that

un(t, x) = un(t,0) +
∫ x

0
un

x(t, y) dy.

Let n tend to∞ and apply the dominated convergence theorem, we have

u(t, x) = u(t,0) +
∫ x

0
v(t, y) dy.

Since v is continuous, we know thatu ∈ C0,1 and ux = v. Therefore, for
t ∈ [T − δ0, T ), (i) holds true and|ux(t, x)| ≤ Cψ(x)√

T −t
.

Step 3. Fort ∈ [0, T −δ0], one may consider (1.1) as an FBSDE over[0, T −δ0]
such that the BSDE has terminal valueu(T − δ0,XT −δ0). By step 2, we have
|ux(T − δ0, x)| ≤ C√

δ0
ψ(x). Then applying Theorem 3.1, we know (i) holds true

in [0, T − δ0] and|ux(t, x)| ≤ C√
δ0

ψ(x) ≤ Cψ(x)√
T −t

. �

REMARK 3.3. All the results in this section hold true for high-dimensional
FBSDEs.

4. The case f = 0. In this section we study the case thatf = 0. In this case
the BSDE in (1.1) becomes

Yt = g(XT ) −
∫ T

t
Zr dWr.(4.1)

4.1. A counterexample. Note that both in Theorem 3.1 and in Theorem 3.2,
ux(t, x) exists for all t < T . When σ is degenerate andg is not Lipschitz
continuous, however,ux(t, x) may not exist for somet < T . An obvious example
is thatσ = b = 0 andg = 1{x>0}, thenu(t, x) = 1{x>0} for ∀ t ∈ [0, T ], and, hence,
u is discontinuous inx. But, sinceσ = 0, in light of (1.3) in this example, one may
still view Zt = 0. In fact,Yt = 1{Xt>0}, Zt = 0 are indeed the solution to (4.1).

The following example shows thatZt may also blow up for somet < T .
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EXAMPLE 1. Assume α ∈ (0,1) and β ∈ (0, α
2(1−α)

). Let T = 2, and

g(x)
�= x

|x|α ; b(t, x)
�= 0 ∀ t ∈ [0,2];

σ(t, x)
�=

{
(1− t)β, t ∈ [0,1],
0, t ∈ (1,2].

Then Zt may blow up at t = 1.

PROOF. For t ∈ [1,2], obviouslyu(t, x) = g(x) andZt = 0. Fort ∈ [0,1), we
have

u(t, x) = Et,x{u(1,X1)} = E

{
g

(
x +

∫ 1

t
(1− s)β dWs

)}
.

Note that
∫ 1
t (1 − s)β dWs has normal distribution with mean 0 and variance

σ 2
0

�= ∫ 1
t (1− s)2β ds = 1

1+2β
(1− t)1+2β . Thus,

u(t, x) = 1√
2πσ0

∫
R

g(y)exp
(
−(y − x)2

2σ 2
0

)
dy.

Therefore,

ux(t,0) = 1√
2πσ0

∫
R

g(y)
y

σ 2
0

e−y2/(2σ2
0 ) dy = 1√

2πσ 3
0

∫
R

|y|2−αe−y2/(2σ2
0 ) dy.

By using the substitutiony = σ0y
′, we get

ux(t,0) = Cσ−α
0 = C(1− t)−α(1+2β)/2.

Thus,

(uxσ )(t,0) = C(1− t)−α(1+2β)/2+β = C(1− t)β(1−α)−α/2.

Since β ∈ (0, α
2(1−α)

), we have limt↑1(uxσ )(t,0) = ∞. That implies that, if
X1 = 0, thenZt → ∞ ast ↑ 1. �

4.2. Location of discontinuous points. Note that in Example 1,Zt blows
up only at t = 1. In fact, for quite general FBSDEs, along each pathZt is
discontinuous at most at one point. In this section we locate this possible
discontinuous point and we shall prove later thatZt is continuous elsewhere.

To this end, we introduce the following notation. For∀ (t, x) ∈ [0, T ) × R, let
ηt,x· be the (deterministic) characteristic of the FSDE in (2.3). That is,ηt,x· is the
solution to the following integral equation:

ηt,x
s = x +

∫ s

t
b(r, ηt,x

r ) dr.(4.2)
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As usual, we omit the superscript0,x whent = 0. Define

0 �=
{
(t, x) : max

t≤s≤T
|σ(s, ηt,x

s )| > 0
}
;

(4.3)

n �=
{
(t, x) : max

t≤s≤T
|σ(s, ηt,x

s )| ≥ 1

n

}
;


�= {(t, x) : |σ(t, x)| > 0};

(4.4)
τ

�= inf{0≤ t ≤ T : (t,Xt) /∈ 0}.
Note that maxt≤s≤T |σ(s, ηt,x

s )| is continuous in(t, x), then the following results
are obvious.

LEMMA 4.1. Assume (A1). Then:

(i)  ⊂ 0 = ⋃∞
n=1 n, and ,n are open for ∀n ≥ 0;

(ii) For ∀ (t, x) ∈ 0, sups∈[t,T ] |σ(s,Xt,x
s )| > 0, a.s.;

(iii) τ is a stopping time;
(iv) (t,Xt) ∈ 0 for all t < τ ;
(v) (t,Xt) /∈ 0 and σ(t,Xt) = 0 for all t ≥ τ .

4.3. Representation formula. In this section we formally derive a new
Feynman–Kac type representation formula forux(t, x) (and, hence, forZt ) in 0.
We shall follow the arguments in [6].

Fix (t, x) ∈ 0. We first assume that (A1), (A2) hold true and thatg ∈ C1
b(R).

Note thatu(t, x) = Et,x{g(XT )} and that∇Xt is the derivative of the flowXx
t with

respect to initial valuex (see [9]). Then

ux(t, x) = Et,x{g′(XT )∇XT }.(4.5)

For t < s < T , by Lemma 2.1, we have

Dsg(XT ) = g′(XT )DsXT = g′(XT )∇XT [∇Xs]−1σ(s,Xs).

Multiply both sides by∇Xsσ(s,Xs) and integrate over[t, T ], we get∫ T

t
∇Xsσ(s,Xs)Dsg(XT )ds = g′(XT )∇XT

∫ T

t
σ 2(s,Xs) ds.

Denote

γt
�= σ(t,Xt); �t

r

�=
∫ r

t
γ 2
s ds.(4.6)

Since(t, x) ∈ 0, by Lemma 4.1, we have�t
T > 0, a.s. Then

g′(XT )∇XT =
∫ T

t

γs∇Xs

�t
T

Dsg(XT )ds.
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Recalling (4.5) and applying the integration by parts formula of Malliavin calculus,
we have

ux(t, x) = Et,x

{
g(XT )

∫ T

t

1

�t
T

γs∇Xs dWs

}

= Et,x

{
g(XT )

[
1

�t
T

∫ T

t
γs∇Xs dWs −

∫ T

t
Ds

(
1

�t
T

)
γs∇Xs ds

]}
.

Note that

Ds

(
1

�t
T

)
γs∇Xs = −Ds�

t
T

|�t
T |2 γs∇Xs

= − 2

|�t
T |2

∫ T

s
σx(r,Xr)γrDsXr dr γs∇Xs

= − 2

|�t
T |2

∫ T

s
σx(r,Xr)γr∇Xr dr γ 2

s .

Thus,

ux(t, x) = Et,x

{
g(XT )

[
1

�t
T

∫ T

t
γs∇Xs dWs

+ 2

|�t
T |2

∫ T

t

∫ T

s
σx(r,Xr)γr∇Xr dr γ 2

s ds

]}

= Et,x

{
g(XT )

[
1

�t
T

∫ T

t
γs∇Xs dWs

+ 2

|�t
T |2

∫ T

t
σx(r,Xr)γr∇Xr

∫ r

t
γ 2
s ds dr

]}
.

Denote

Nt
r

�= 1

�t
r

[∫ r

t
γs∇Xs dWs + 2

∫ r

t

�t
s

�t
r

σx(s,Xs)γs∇Xs ds

]
[∇Xt ]−1.(4.7)

Noting that∇X
t,x
t = 1, we have

ux(t, x) = Et,x{g(XT )Nt
T }.(4.8)

REMARK 4.2. In (2.8) one has to assumeσ(t, x) �= 0 for all (t, x). But
in (4.7), even ifσ(t, x) = 0, one can still defineNt,x

r as long as�t
r > 0.

4.4. Estimate of [�t
r ]−1. In light of (4.7) and (4.8), obviously one needs to

estimate[�t
r ]−1. We have the following result.
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LEMMA 4.3. Assume (A1), (A2) and (A5). If (t, x) ∈ n for some n ≥ 1, then
for any p ≥ 1, there exists a constant Cp depending on p,K and T , such that

Et,x{|�t
r |−p} ≤ Cp[n2pδ−p

n + n3p+1δn],
where δn

�= δ( 1
4n

) ∧ r−t
2 and δ(·) is defined in (2.2).

PROOF. Without loss of generality, we prove the result only fort = 0 and
r = T . To this end, we fix(0, x) ∈ n,n ≥ 1, and omit the superscripts0,x

whenever there is no confusion. So it suffices to prove that

E{�−p
T } ≤ Cp[n2pδ−p

n + n3p+1δn],(4.9)

whereδn
�= δ( 1

4n
) ∧ T

2 . Note that

E{�−p
T } = p

∫ ∞
0

P {�T < u}u−p−1 du.(4.10)

We shall estimateP {�T < u} for smallu below.
Since(0, x) ∈ n, there existsT0 ∈ [0, T ] such that|σ(T0, ηT0)| > 1

n
. Note that

P {�T < u} = I1(u) + I2(u),(4.11)

where

I1(u)
�= P

{
�T < u,

∣∣γT0

∣∣ >
1

2n

}
; I2(u)

�= P

{
�T < u,

∣∣γT0

∣∣ ≤ 1

2n

}
.

We first estimateI2(u). Denote

�Xt
�= Xt − ηt .(4.12)

Then one can easily get

I2(u) ≤ P

{
�T < u,

∣∣�XT0

∣∣ ≥ 1

2Kn

}
≤ P

{
�T0 < u,

∣∣�XT0

∣∣ ≥ c

n

}
.(4.13)

Note that

�Xt =
∫ t

0
γs dWs +

∫ t

0
βs�Xs ds,

whereβs
�= b(s,Xs)−b(s,ηs)

�Xs
is bounded. Denote

Lt
�= exp

(
−

∫ t

0
βs ds

)
; Mt

�=
∫ t

0
Lsγs dWs.(4.14)

Then �XT0 = L−1
T0

MT0. Moreover, bothLt and L−1
t are bounded, andMt is a

martingale. Then one has∣∣�XT0

∣∣ ≤ C
∣∣MT0

∣∣; [M]T0 =
∫ T0

0
L2

t γ
2
t dt ≤ C�T0.
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Now applying Lemma 2.4, we get from (4.13) that

I2(u) ≤ P

{
[M]T0 < Cu,

∣∣MT0

∣∣ ≥ c

n

}
≤ exp

(
− c

n2u

)
.(4.15)

We next estimateI1(u). To this end, we recall thatδn
�= δ( 1

4n
) ∧ T

2 . Denote

δu
�= 64n2u;

�u
�= [T0 − δu, T0 + δu] ∩ [0, T ];

�0
�= [T0 − δn, T0 + δn] ∩ [0, T ].

Foru ≤ δn

64n2 , obviously we have

δu ≤ δn; �u ⊂ �0; |�u| ≥ δu.

Using the facts that

�T ≥
∫
�u

γ 2
t dt ≥ |�u| inf

t∈�u

|γt |2 ≥ δu inf
t∈�u

|γt |2 = 64n2u inf
t∈�u

|γt |2,
and that ∣∣σ (

t,XT0

) − σ
(
T0,XT0

)∣∣ ≤ 1

4n
∀ t ∈ �u ⊂ �0,

we have

I1(u) = P

{
�T < u,

∣∣γT0

∣∣ >
1

2n
, inf
t∈�u

|γt | < 1

8n

}

≤ P

{
�T < u, sup

t∈�u

∣∣σ(t,Xt) − σ
(
t,XT0

)∣∣ ≥ 1

8n

}

≤ P

{
�T < u, sup

t∈�u

∣∣Xt − XT0

∣∣ ≥ 1

8Kn

}
.

Since

XT0 − Xt =
∫ T0

t
b(s,Xs) ds +

∫ T0

t
γs dWs,

we have

I1(u) ≤ I11(u) + I12(u),(4.16)

where

I11(u)
�= P

{∫
�u

|b(t,Xt )|dt ≥ 1

16Kn

}
;

I12(u)
�= P

{
�T < u, sup

t∈�u

∣∣∣∣∫ T0

t
γs dWs

∣∣∣∣ ≥ 1

16Kn

}
.



1812 J. ZHANG

Note that

I11(u) ≤ Cpnp+1E

{(∫
�u

|b(t,Xt)|dt

)p+1}
(4.17)

≤ Cp(nδu)
p+1 = Cpn3p+3up+1.

Moreover, analogous to (4.15), by applying Lemma 2.4, one can show that

I12(u) ≤ exp
(
− c

n2u

)
.(4.18)

Plugging (4.17) and (4.18) into (4.16), we get

I1(u) ≤ Cpn3p+3up+1 + exp
(
− c

n2u

)
.

Noting that exp(− c
n2u

)u−p−1 takes its maximum value atu = c
n2(p+1)

, the above
inequality, together with (4.15), (4.11) and (4.10), implies that

E{�−p
T } ≤ Cp

[∫ δn/(64n2)

0

[
n3p+3up+1 + e−c/(n2u)]u−p−1 du

+
∫ ∞
δn/(64n2)

u−p−1 du

]

≤ Cp

[
n3p+1δn + n2(p+1) δn

n2 + (n2δ−1
n )p

]
≤ Cp[n3p+1δn + (n2δ−1

n )p],
which proves (4.9), and whence the lemma.�

4.5. Main results. Now we are ready to state the main result of this section.

THEOREM 4.4. Assume (A1), (A2), (A4), (A5) and f = 0. Then:

(i) u ∈ C0,1(0);

(ii) Zt =
{

(uxσ )(t,Xt), t < τ ;
0, t ≥ τ ;

(iii) ux(t, x) = Et,x{g(XT )Nt
T } ∀ (t, x) ∈ 0;

(iv) |ux(t, x)| ≤ Cnψ(x)√
T − t

∀ (t, x) ∈ n.

REMARK 4.5. By Lemma 4.1(iv), we have(t,Xt) ∈ 0 for t < τ . Thus, by
(i) and (ii) of Theorem 4.4,Zt is continuous along each path except possibly at
t = τ . But as we see in Example 1,Zt may have no finite left limit att = τ .

PROOF OFTHEOREM 4.4. First, for∀ (t, x) ∈ n, by (4.7) and Lemma 4.3,
one can easily prove that

Et,x{|Nt
T |2} ≤ Cn

T − t
.(4.19)
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Then (iv) is a direct consequence of (iii).
We now prove (i)–(iii). To this end, we first assumeg ∈ C1

b(R). Then by
applying Theorem 3.1, we know thatu ∈ C0,1 and Zt = (uxσ )(t,Xt) for all
t ∈ [0, T ]. Especially, fort ≥ τ , by Lemma 4.1(v), we knowσ(t,Xt) = 0, and,
thus, Zt = 0. Moreover, for∀ (t, x) ∈ 0, by Lemma 4.1(i), there exists some
n ≥ 1 such that(t, x) ∈ n. Then by (4.19), we knowEt,x{|g(XT )Nt

T |} < ∞.
Now (iii) follows the arguments in Section 4.3.

In general case, that is,g satisfies only (A4), we follow the arguments in
step 2 of the proof for Theorem 3.2. Letgm ∈ C1

b(R) such that|gm(x)| ≤ ψ(x)

and limm→∞ gm(x) = g(x) for dx-a.s.x ∈ R. Define (Ym,Zm) and um as in
Theorem 3.2. Note that0,n and τ are independent ofg, and so isN . Now
for ∀ (t, x) ∈ n and anym,

um
x (t, x) = Et,x{gm(XT )Nt

T }; |um
x (t, x)| ≤ Cnψ(x)√

T − t
.

By the dominated convergence theorem, we have

um
x (t, x) → v(t, x)

�= Et,x{g(XT )Nt
T }, m → ∞.

By a line by line analogy of step 2 of the proof for Theorem 3.2, one can show
that v is continuous andux(t, x) = v(t, x). That proves (i) and (iii). Moreover,
Zm → Z, then (ii) holds true. �

5. General case.

5.1. Main results. In this section we investigate FBSDE (1.1) with nonlin-
earf . We shall modify some assumptions:

(A2′) σ is uniformly Hölder-α continuous int for someα > 1
2.

(A3′) f is independent ofz, that is,f (t, x, y, z) = f (t, x, y). Moreover,f is
continuous int and uniformly Lipschitz continuous inx, y.

(A3′′) f (t, x, y, z) = f1(t, x, y) + f2(t, x)z, where f1, f2 are continuous and
uniformly Lipschitz continuous inx, y. Moreover,f2 is bounded.

The following result gives an important estimate forux .

THEOREM 5.1. Assume (A1), (A2′), (A3′), (A4), (A5) and that f ∈ C
0,1
b and

g ∈ C1
b . Then for any (t, x) ∈ n, we have

|ux(t, x)| ≤ Cnψ(x)√
T − t

,

where Cn depends on K,T ,α,ψ and n, but does not depend on the upper bound
of g′.
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The main result of the paper is the following theorem.

THEOREM 5.2. Assume (A1), (A2′), (A3′′), (A4) and (A5). Then:

(i) u ∈ C0,1(), and for ∀ (t, x) ∈ , we have

ux(t, x) = Et,x

{
g(XT )Nt

T +
∫ T

t
f (r,Xr,Yr,Zr)N

t
r dr

}
.

(ii) u is locally Lipschitz continuous in x in 0, and there exists a constant Cn

depending on K,T ,α,ψ and n such that

|ux(t, x)| ≤ Cnψ(x)√
T − t

∀ (t, x) ∈ n.

Here ux(t, x) is understood as a generalized derivative if u is not differentiable
in x at (t, x).

(iii) Understanding ux as in (ii), we have

Zt =
{

(uxσ )(t,Xt), t < τ ,

0, t ≥ τ .

REMARK 5.3. Zt is continuous except possibly att = τ . In fact, for t < τ , if
(t,Xt) ∈ , thenZt is continuous by Theorem 5.2(i). If(t,Xt) ∈ 0\, we have
Zt = 0 and by the estimate in Theorem 5.2(ii), we knowZt is also continuous.

REMARK 5.4. If we remove (A5) in Theorems 5.1 and 5.2, then analogously
one can show that

|ux(t, x)| ≤ Cn√
T − t

(1+ |x|)ψ(x) ∀ (t, x) ∈ n.

We do not know whether or not similar results will hold true iff is nonlinear
on z. The proof of Theorems 5.1 is quite lengthy. We split it into several lemmas.

5.2. Fine estimates of [�t
r ]−1. We first prove two lemmas which improve

Lemma 4.3.

LEMMA 5.5. For any p ≥ 1 and 0 < µ < 1
2, there exists a constant Cp,µ,

depending only on p,µ, such that for any T and any square integrable process γt ,
it holds that

E

{[(
sup

0≤t≤T

|γt |
)−1

sup
0≤t1<t2≤T

∫ t2
t1

γt dWt

(t2 − t1)µ

]p}
≤ Cp,µT (1/2−µ)p < ∞,

where the integrand 0
0 is considered as 0.
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PROOF. We proceed in two steps.
Step 1. We prove the following estimate:

E

{∣∣∣∣( sup
0≤t≤T

|γt |
)−1 ∫ T

0
γt dWt

∣∣∣∣p}
≤ CpT p/2.(5.1)

We first assume 0< c ≤ |γt | ≤ C < ∞. Denote

Mt
�=

∫ t

0
γs dWs; γ ∗

t

�= sup
0≤s≤t

|γs |.

Note thatγ ∗
t is increasing andγ 2

t ≤ |γ ∗
t |2. Then applying Itô’s formula, we have

d

(
Mt

γ ∗
t

)2

= 2Mt dMt + γ 2
t dt

|γ ∗
t |2 − 2M2

t

|γ ∗
t |3 dγ ∗

t ≤ 2Mt

|γ ∗
t |2 dMt + dt.

Obviously, limt↓0
Mt

γ ∗
t

= 0, thus,E{(Mt

γ ∗
t
)2} ≤ t . Similarly,

d

(
Mt

γ ∗
t

)2n

= n

(
Mt

γ ∗
t

)2(n−1)

d

(
Mt

γ ∗
t

)2

+ n(n − 1)

2

(
Mt

γ ∗
t

)2(n−2) 4M2
t

|γ ∗
t |4γ 2

t dt

≤ n

(
Mt

γ ∗
t

)2(n−1) 2Mt

|γ ∗
t |2 dMt + Cn

(
Mt

γ ∗
t

)2(n−1)

dt.

By induction, one can proveE{(Mt

γ ∗
t
)2n} ≤ Cnt

n. Then (5.1) holds true for any
p ≥ 1.

Whenγ is unbounded or degenerate, by standard truncation procedure, one can
easily prove (5.1).

Step 2. We follow the proof of Kolmogorov’s continuity criterion (see, e.g., [10],
Theorem 1.2.1). First, similar to (5.1), one can easily show that, for any
0≤ t1 < t2 ≤ T ,

E

{∣∣∣∣(γ ∗
T )−1

∫ t2

t1

γt dWt

∣∣∣∣p}
≤ E

{∣∣∣∣( sup
t1≤t≤t2

|γt |
)−1 ∫ t2

t1

γt dWt

∣∣∣∣p}
(5.2)

≤ Cp(t2 − t1)
p/2.

For any integern ≥ 1, let Dn
�= {i2−nT : i = 1, . . . ,2n} andD

�= ⋃
n Dn. Denote

Kn
�= sup1≤i≤2n |Mi2−nT − M(i−1)2−nT |. Forp > 2, by (5.2), we have

E{|γ ∗
T |−pKp

n } ≤
2n∑
i=1

E
{|γ ∗

T |−p
∣∣Mi2−nT − M(i−1)2−nT

∣∣p}
(5.3)

≤ C

2n∑
i=1

2−np/2T p/2 = C2−n(p−2)/2T p/2.
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Now for any t1, t2 ∈ D such thatt2 − t1 ≤ 2−nT , one can easily show that
|Mt2 − Mt1| ≤ 2

∑∞
m=n Km. Denote

M∗ �= sup
{ |Mt2 − Mt1|

(t2 − t1)µ
; t1, t2 ∈ D

}
.

Then

M∗ ≤
∞∑

n=0

sup
2−(n+1)T ≤|t2−t1|≤2−nT

{ |Mt2 − Mt1|
(t2 − t1)µ

; t1, t2 ∈ D

}

≤
∞∑

n=0

2(n+1)µT −µ sup
|t2−t1|≤2−nT

{∣∣Mt2 − Mt1

∣∣; t1, t2 ∈ D
}

≤
∞∑

n=0

21+(n+1)µT −µ
∞∑

m=n

Km ≤ CT −µ
∞∑

n=1

2nµKn.

Now for p > 2
1−2µ

, we have

∥∥|γ ∗
T |−1M∗∥∥

p ≤ CT −µ
∞∑

n=1

2nµ
∥∥|γ ∗

T |−1Kn

∥∥
p

≤ CT −µ
∞∑

n=1

2nµ2−n(p−2)/(2p)T 1/2

= C

∞∑
n=1

2−n(1/2−1/p−µ)T 1/2−µ = CT 1/2−µ.

Now applying Fatou’s lemma, we prove the lemma forp > 2
1−2µ

. Then by the
Schwarz inequality, the lemma holds true for smallerp. �

From now on we useγt to denoteσ(t,Xt) again.

LEMMA 5.6. Assume (A1), (A2) and (A5). Then for any (t, x) ∈ 0 and any
β ≥ 0, there exists a constant C, depending only on K , such that

|�t,x
r |−1 ≤ C|γ t,x,∗

r |−2
[
δ

(
(r − t)βγ t,x,∗

r

4

)−1

+ (r − t)−β |γ t,x,∗
r |−1 + |ξ t,x

r |3
(r − t)−3β

+ 1G
t,x
r

r − t

]
,

where

γ t,x,∗
r

�= sup
t≤s≤r

|γ t,x
s |; ξ t,x

r

�= 1

γ
t,x,∗
r

sup
t≤s1<s2≤r

∣∣∣∣
∫ s2
s1

γ t,x
s dWs

(s2 − s1)1/3

∣∣∣∣;
(5.4)

Gt,x
r

�=
{

sup
t≤s≤r

|γ t,x
s − σ(t, x)| ≤ |σ(t, x)|(r − t)β

}
.
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PROOF. Without loss of generality, we assumet = 0, r = T andT ≤ 1. In the
following we omit the superscript0,x . We shall prove that

�−1
T ≤ C|γ ∗

T |−2
[
δ

(
T βγ ∗

T

4

)−1

+ T −β |γ ∗
T |−1 + T −3βξ3

T + T −11GT

]
.(5.5)

First, there exists̃τ such thatγτ̃ = γ ∗
T . We note that, in general,τ̃ is not a stopping

time. Denote

τ̃−
�= sup

{
t ∈ [0, τ̃ ] : |γt | =

(
1− T β

2

)
γ ∗
T

}
,

τ̃+
�= inf

{
t ∈ [τ̃ , T ] : |γt | =

(
1− T β

2

)
γ ∗
T

}
,

where we take the convention that supφ = 0 and infφ = T for the empty setφ.

Then for∀ t ∈ [τ̃−, τ̃+], we have|γt | ≥ γ ∗
T
2 . Therefore,

�T ≥ 1
4|γ ∗

T |2(τ̃+ − τ̃−).(5.6)

So it suffices to estimate(τ̃+ − τ̃−)−1.
To this end, we note that, if̃τ− > 0, then

T βγ ∗
T

2
= |γτ̃ − γτ̃−| ≤ |σ(τ̃ ,Xτ̃ ) − σ(τ̃−,Xτ̃ )| + K|Xτ̃ − Xτ̃−|

≤ |σ(τ̃ ,Xτ̃ ) − σ(τ̃−,Xτ̃ )| + K

[∫ τ̃

τ̃−
|b(t,Xt)|dt +

∣∣∣∣∫ τ̃

τ̃−
γt dWt

∣∣∣∣]
≤ |σ(τ̃ ,Xτ̃ ) − σ(τ̃−,Xτ̃ )| + C0[(τ̃ − τ̃−) + ξT γ ∗

T (τ̃ − τ̃−)1/3].
Thus, one of the following three inequalities must hold true:

|σ(τ̃ ,Xτ̃ ) − σ(τ̃−,Xτ̃ )| ≥ T βγ ∗
T

4
,

(τ̃ − τ̃−)−1 ≤ 8C0

T βγ ∗
T

,

(τ̃ − τ̃−)−1/3 ≤ 8C0ξT

T β
.

From the first inequality above, we haveτ̃ − τ̃− ≥ δ(
T βγ ∗

T
4 ). So in all three cases,

we have

(τ̃ − τ̃−)−1 ≤ C

[
δ

(
T βγ ∗

T

4

)−1

+ T −β |γ ∗
T |−1 + T −3βξ3

T

]
.(5.7)

Similarly, if τ+ < T , then

(τ̃+ − τ̃ )−1 ≤ C

[
δ

(
T βγ ∗

T

4

)−1

+ T −β |γ ∗
T |−1 + T −3βξ3

T

]
.(5.8)
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Finally, if τ− = 0 andτ+ = T , then(τ+ − τ−)−1 = T −1. Moreover, in this case we
have|γt | ≥ (1− T β

2 )γ ∗
T for all t ∈ [0, T ]. In particular, we have(

1− T β

2

)
|γ0| ≤

(
1− T β

2

)
γ ∗
T ≤ |γt | ≤ γ ∗

T ≤
(

1− T β

2

)−1

|γ0|.

Note thatγt is continuous, so allγt have the same sign. Then one can easily prove
that |γt − γ0| ≤ T β |γ0|, ∀ t . That is,1GT

= 1.
Combining the above three cases, we know that the following inequality holds

true:

(τ̃+ − τ̃−)−1 ≤ C

[
δ

(
T βγ ∗

T

4

)−1

+ T −β |γ ∗
T |−1 + T −3βξ3

T + T −11GT

]
,(5.9)

which, combined with (5.6), obviously implies (5.5), and whence the theorem.�

We note that ifσ is uniformly Hölder-α continuous int , thenδ(ε) ≥ ε1/α . The
following result is a direct consequence of Lemma 5.6.

COROLLARY 5.7. Assume (A1), (A2′) and (A5). Then

|�t,x
r |−1 ≤ C|γ t,x,∗

r |−2
[
(r − t)−β/α|γ t,x,∗

r |−1/α

+ (r − t)−β |γ t,x,∗
r |−1 + |ξ t,x

r |3
(r − t)3β

+ 1G
t,x
r

r − t

]
.

For notational convenience, in the sequel we denoteE{ξ ;A} �= E{ξ1A} for a
random variableξ and an eventA.

LEMMA 5.8. Assume (A1), (A2′), (A5) and T ≤ T0. Recall (4.12)and denote

p
�= 24α

1+22α > 1, where α is as in (A2′). Then for any c > 0, there exists a
constant C, depending only on K,T0, α and c, such that:

(i) E0,x{|Nt |p; |�Xt | ≥ ct} ≤ Ct−p;
(ii)

∫ T
0 E0,x{|Nt |p; |�Xt | ≥ ct}1/p dt ≤ C.

PROOF. Again we omit the superscript0,x . Denote

β
�= 2α − 1

12α
; µ

�= 1+ 10α

24α

and

It
�= E{|Nt |p; |�Xt | ≥ ct}1/p; I

�=
∫ T

0
It dt.
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Recalling (4.7), we have

I
p
t ≤ CE

{
1

�
p
t

[∣∣∣∣∫ t

0
γs∇Xs dWs

∣∣∣∣p +
∣∣∣∣∫ t

0

�s

�t

σx(s,Xs)γs∇Xs ds

∣∣∣∣p]
;

|�Xt | ≥ ct

}
(5.10)

≤ CE

{
1

�
p
t

|γ ∗
t ∇X∗

t |p[ξ̃ p
t + tp]; |�Xt | ≥ ct

}
,

where

∇X∗
t

�= sup
0≤s≤t

|∇Xs |; ξ̃t
�=

[
sup

0≤s≤t

|γs∇Xs |
]−1 ∫ t

0
γs∇Xs dWs.

Now applying Corollary 5.7, one has

I
p
t ≤ C[Ip

1,t + I
p
2,t ],(5.11)

where

I
p
1,t

�= E{|γ ∗
t |−p|∇X∗

t |p(tp + ξ̃
p
t )[|tβγ ∗

t |−p/α + t−pβ |γ ∗
t |−p + t−3pβξ

3p
t ];

|�Xt | ≥ ct};
I

p
2,t

�= t−pE{|γ ∗
t |−p|∇X∗

t |p[tp + ξ̃
p
t ];Gt, |�Xt | ≥ ct}.

We estimateIp
1,t first. By Lemma 2.3, it holds thatE{|∇X∗

t |q} ≤ Cq,∀q ≥ 1.
Recalling (5.1), we have

I
p
1,t ≤ Ctp/2E

{
t−2pβ/α|γ ∗

t |−2p(1+1/α) + t−2pβ |γ ∗
t |−4p

(5.12)
+ t−6pβ |γ ∗

t |−2pξ
6p
t ; |�Xt | ≥ ct

}1/2
.

Now we recall (4.14). Note that�Xt = L−1
t Mt and bothLt andL−1

t are bounded,
then by (5.1), one can easily show that, for allq ≥ 2,

E{|γ ∗
t |−q; |�Xt | ≥ ct} ≤ Ct−qE{|γ ∗

t |−q |�Xt |q}
≤ Ct−qE{|(Lγ )∗t |−q |Mt |q} ≤ Ct−q/2.

Thus, by (5.12) and applying Lemma 5.5, we have

I
p
1,t ≤ Ctp/2[t−(p/(2α))(2β+α+1) + t−p(β+1) + t−3β] ≤ Ct−(p/2α)(2β+1),

thanks to the fact thatβ < 1
4. Sinceα > 1

2, we have 2β + 1< 2α and therefore,

I
p
1,t ≤ Ct−p;

∫ T

0
I1,t dt ≤ C

∫ T

0
t−(2β+1)/2α dt ≤ C.(5.13)
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It remains to estimateI2,t . To this end, we recall that

Gt =
{

sup
0≤s≤t

|γs − γ0| ≤ |γ0|tβ
}
.

If γ0 = 0, then inGt , we haveγs = 0 for all s ∈ [0, t] and, thus,�Xt = 0. That is,
if γ0 = 0, thenP {Gt,�Xt ≥ ct} = 0, which implies thatI2,t = 0. Now we assume
γ0 �= 0. Without loss of generality, we assumeγ0 > 0. We note again that in the
sequel the constantsC andc may vary from line to line, but they are independent
of 1

γ0
. One can check directly that

{Gt, |�Xt | ≥ ct} ⊂ {Gt, |Mt | ≥ ct}
⊂

{
γ0|Wt | ≥ ct

2

}
∪

{
Gt,

∣∣∣∣∫ t

0
[Lsγs − γ0]dWs

∣∣∣∣ ≥ ct

2

}
.

Denote

λt
s

�= Lsγs − γ0

γ0tβ
; ξ

�=
[

sup
0≤s≤t

|γ t
s |

]−1∣∣∣∣∫ t

0
λt

s dWs

∣∣∣∣.
Note thatβ < 1. In Gt and for∀ s ≤ t , we have

|Lsγs − γ0| ≤ |Ls − 1|γ0 + Ls |γs − γ0| ≤ C[γ0s + γ0t
β] ≤ Cγ0t

β,

which implies that|λt
s | ≤ C in Gt . Thus,{

Gt,

∣∣∣∣∫ t

0
[Lsγs − γ0]dWs

∣∣∣∣ ≥ ct

}
⊂

{
Gt, γ0t

β

∣∣∣∣∫ t

0
λt

s dWs

∣∣∣∣ ≥ ct

}
⊂ {γ0t

βξ ≥ ct}.
Therefore,

{Gt, |�Xt | ≥ ct} ⊂ {γ0|Wt | ≥ ct} ∪ {γ0t
βξ ≥ ct}.

Now by the definition ofI2,t , we have

I
p
2,t ≤ I

p
3,t + I

p
4,t ,(5.14)

where

I
p
3,t

�= t−pE{|γ ∗
t |−p|∇X∗

t |p[tp + ξ̃
p
t ];γ0|Wt | ≥ ct};

I
p
4,t

�= t−pE{|γ ∗
t |−p|∇X∗

t |p[tp + ξ̃
p
t ];γ0t

βξ ≥ ct}.
Note that

I
p
3,t ≤ t−pE

{
|γ ∗

t |−p|∇X∗
t |p[tp + ξ̃

p
t ]

(
γ0|Wt |

ct

)p}
≤ Ct−2pE{|∇X∗

t |p[tp + ξ̃
p
t ]|Wt |p}

(5.15)
≤ Ct−2pE{|∇X∗

t |3p}1/3E{t3p + ξ̃
3p
t }1/3E{|Wt |3p}1/3

≤ Ct−2ptp/2tp/2 = Ct−p,
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where the last inequality is thanks to Lemma 2.3 and (5.1). Similarly, applying
Lemma 5.5, one can prove

I
p
4,t ≤ Ctp(β−1).(5.16)

Sinceα > 1
2, one hasβ > 0. Then by (5.14), (5.15) and (5.16), we have

I
p
2,t ≤ Ct−p,

which, combined with (5.13), proves (i).
To prove (ii), first by (5.16), we have∫ T

0
I4,t dt ≤ C

∫ T

0
tβ−1 dt = C < ∞.(5.17)

Moreover, by the definition ofI3,t and applying Lemma 2.3 and (5.1), again we
have∫ T

0
I3,t dt ≤

∫ T

0
(γ0t)

−1E{|∇X∗
t |p[tp + ξ̃

p
t ];γ0|Wt | ≥ ct}1/p dt

=
[∫ γ 2

0

0
+

∫ T

γ 2
0

]
(γ0t)

−1E{|∇X∗
t |p[tp + ξ̃

p
t ];γ0|Wt | ≥ ct}1/p dt

≤
∫ γ 2

0

0

1

γ0t
E{|∇X∗

t |p[tp + ξ̃
p
t ]}1/p dt

+
∫ T

γ 2
0

1

γ0t
E

{
|∇X∗

t |p[tp + ξ̃
p
t ]

(
γ0|Wt |

ct

)2p}1/p

dt

≤ C

∫ γ 2
0

0
(γ0t)

−1t1/2 dt + C

∫ T

γ 2
0

(γ0t)
−1t1/2γ 2

0 t−1 dt

= Cγ −1
0 t1/2|t=γ 2

0
t=0 − Cγ0t

−1/2|t=T

t=γ 2
0

≤ C < ∞,

which, combined with (5.17) and (5.13), proves (ii).�

5.3. A localizing result. In this section we prove a localizing version of
Theorem 3.1, which will play a very important role in the proof of Theorem 5.1.
To this end, we first introduce a notion called “ε-neighbor.”

DEFINITION 5.9. Fix K as an upper bound of|bx |. For any(t0, x0) ∈ [0,

T ) × R and anyε > 0, theε-neighbor of(t0, x0) is the set

Dε(t0, x0)
�= {

(t, x) : t0 ≤ t ≤ T , |x − η
t0,x0
t | ≤ ε

[
eK(t−t0) − 1

]}
.

The following lemma gives a basic property ofε-neighbors.
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LEMMA 5.10. If (t1, x1) ∈ Dε(t0, x0), then Dε(t1, x1) ⊂ Dε(t0, x0).

PROOF. Assume (t1, x1) ∈ Dε(t0, x0) and (t2, x2) ∈ Dε(t1, x1). Denote

ηi �= ηti ,xi for i = 0,1. Then∣∣x1 − η0
t1

∣∣ ≤ ε
[
eK(t1−t0) − 1

]; ∣∣x2 − η1
t2

∣∣ ≤ ε
[
eK(t2−t1) − 1

]
.

Note that, fort ≥ t1,

η0
t = η0

t1
+

∫ t

t1

b(s, η0
s ) ds; η1

t = x1 +
∫ t

t1

b(s, η1
s ) ds.

Denote

�ηt
�= η1

t − η0
t ; αt

�= b(t, η1
t ) − b(t, η0

t )

�ηt

.

Then|αt | ≤ K , and

�ηt = x1 − η0
t1

+
∫ t

t1

αs�ηs ds.

Thus,

�ηt = (
x1 − η0

t1

)
exp

(∫ t

t1

αs ds

)
.

Therefore,∣∣�ηt2

∣∣ ≤ ∣∣x1 − η0
t1

∣∣exp
(∫ t2

t1

αs ds

)
≤ ε

[
eK(t1−t0) − 1

]
eK(t2−t1).

Then∣∣x2 − η0
t2

∣∣ ≤ ∣∣x2 − η1
t2

∣∣ + ∣∣�ηt2

∣∣
≤ ε

[
eK(t2−t1) − 1

] + ε
[
eK(t2−t0) − eK(t2−t1)

] = ε
[
eK(t2−t0) − 1

]
,

which proves that(t2, x2) ∈ Dε(t0, x0). �

The following lemma is the key part for the proof of Theorem 5.1.

LEMMA 5.11. Assume that all the conditions in Theorem 5.1 hold true.
Assume further that T ≤ T0 and that, for some (t0, x0) ∈ [0, T ) × R and some
constants ε1, ε2 > 0, |ux(t, x)| ≤ K0 for ∀ (t, x) ∈ Dε2(t0, x0)∩ ([T − ε1, T ]×R).
Then

|ux(t0, x0)| ≤ C[K0 + ψ(x0)],
where C depends on K,α, ε1, ε2 and T0, but not on the upper bound of g′.
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PROOF. Without loss of generality, we assumet0 = 0 and omit the super-

script0,x0. DenoteDε2

�= Dε2(0, x0). For t ∈ [0, T ], denote

At
�= sup

{x : (t,x)∈Dε2}
|ux(t, x)|.

Applying Theorem 3.1, we have sup0≤t≤T At < ∞. Moreover, by assumption,
we have

At ≤ K0 ∀ t ∈ [T − ε1, T ].(5.18)

We claim that

At ≤ C

[
K0 + sup

{x : (t,x)∈Dε2}
ψ(x) +

∫ T

t
As ds

]
∀ t ∈ [0, T − ε1].(5.19)

For (t, x) ∈ Dε2, we have

|x| ≤ |x − ηt | + |ηt − x0| + |x0| ≤ ε2[eKt − 1] + Ct + |x0| ≤ |x0| + C.

Thus,

ψ(x) ≤ C[ψ(x0) + ψ(C)] ≤ Cψ(x0),

which, combined with (5.19) and (5.18), implies that

At ≤ C

[
K0 + ψ(x0) +

∫ T

t
As ds

]

≤ C

[
K0 + ψ(x0) +

∫ T −ε1

t
As ds

]
∀ t ∈ [0, T − ε1].

Then the lemma follows the Gronwall inequality.
It remains to prove (5.19). By Lemma 5.10, it suffices to prove it att = 0. In

this case, (5.19) becomes

|ux(0, x0)| ≤ C

[
K0 + ψ(x0) +

∫ T

0
At dt

]
.(5.20)

Note that

u(0, x) = Ex

{
g(XT ) +

∫ T

0
f (r,Xr,Yr) dr

}
.

Thus,

ux(0, x0) = E

{
g′(XT )∇XT +

∫ T

0
[fx∇Xt + fy∇Yt ]dt

}
.
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For anyt ∈ (0, T ], let ϕ(t, x) be a smooth function ofx satisfying that

ϕ(t, x) =


1, if |x − ηt | ≥ ε2[eKt − 1],
0, if |x − ηt | ≤ ε2

2
[eKt − 1],

|ϕ(t, x)| ≤ 1; |ϕx(t, x)| ≤ C

t
.

Then we have

ux(0, x0) = E

{
g′(XT )∇XT ϕ(T ,XT )

+
∫ T

0
[fx∇Xt + fy∇Yt ]ϕ(t,Xt) dt

(5.21)
+ g′(XT )∇XT

(
1− ϕ(T ,XT )

)
+

∫ T

0
[fx∇Xt + fy∇Yt ](1− ϕ(t,Xt)

)
dt

}
.

Since∇ can be considered as the differential operator with respect tox, by the
chain rule, one can easily get that

g′(XT )∇XT ϕ(T ,XT ) = [∇g(XT )]ϕ(T ,XT )

= ∇(
g(XT )ϕ(T ,XT )

) − g(XT )ϕx(T ,XT )∇XT .

Note that whenϕ(T ,XT ) �= 0, one has|�XT | ≥ ε2
2 (eKT − 1), which implies that

(0, x0) ∈ 0 and, thus,�T > 0. Then following the arguments in Section 4.3, one
can easily prove that

E{g′(XT )∇XT ϕ(T ,XT )} = E{g(XT )[ϕ(T ,XT )N0
T − ϕx(T ,XT )∇XT ]}.

Similarly, we have

E{[fx∇Xt + fy∇Yt ]ϕ(t,Xt)} = E{f (t,Xt , Yt )[ϕ(t,Xt)N
0
t − ϕx(t,Xt)∇Xt ]}.

So one can rewrite (5.21) as

ux(0, x0) = I1 + I2 + I3,

where

I1
�= E{g(XT )[ϕ(T ,XT )NT − ϕx(T ,XT )∇XT ]}

I2
�= E

{∫ T

0
f (t,Xt , Yt )[ϕ(t,Xt)Nt − ϕx(t,Xt)∇Xt ]dt

}
I3

�= E

{
g′(XT )∇XT

(
1− ϕ(T ,XT )

)
+

∫ T

0
[fx∇Xt + fyux∇Xt ](1− ϕ(t,Xt)

)
dt

}
.



BSDEs WITH DEGENERATE FSDE 1825

We shall estimateI1 − I3 separately. First, it is obvious that

|I3| ≤ C

[
AT +

∫ T

0
(1+ At) dt

]
≤ C

[
K0 +

∫ T

0
At dt

]
.(5.22)

Denotep
�= 24α

1+22α > 1 as in Lemma 5.8. Letq be the conjugate ofp. Applying
Lemma 5.8, we have

E{|g(XT )ϕ(T ,XT )NT |} ≤ E

{
|g(XT )NT |; |�XT | ≥ ε2

2
[eKT − 1]

}
≤ E{|g(XT )NT |; |�XT | ≥ cT }

(5.23)
≤ ‖g(XT )‖q[E{|NT |p; |�XT | ≥ cT }]1/p

≤ Cψ(x0)T
−1 ≤ Cψ(x0),

where the last inequality is thanks to the fact thatT ≥ ε1. Moreover,

E{|g(XT )ϕx(T ,XT )∇XT |} ≤ C

T
E{|g(XT )∇XT |} ≤ Cψ(x0),

which, combined with (5.23), implies that

|I1| ≤ Cψ(x0).(5.24)

It remains to estimateI2. By the arguments in Section 4.3, we have

E{ϕx(t,Xt)∇Xt } = E{ϕ(t,Xt )Nt } ∀ t ∈ (0, T ].
Thus,

I2 = E

{∫ T

0

[
f

(
t,Xt , u(t,Xt)

) − f
(
t, ηt , u(t, ηt )

)]
(5.25)

× [
ϕ(t,Xt )Nt − ϕx(t,Xt)∇Xt

]
dt

}
.

By (2.10),

|u(t, x)| = |Y t,x
t | ≤ Cψ(x),(5.26)

which implies that∣∣f (
t, ηt , u(t, ηt )

)∣∣ ≤ C[1+ |ηt | + |u(t, ηt )|] ≤ Cψ(ηt );∣∣f (
t,Xt , u(t,Xt)

)∣∣ ≤ Cψ(Xt).

Then by (2.1) and applying Lemma 5.8, again we have∫ T

0
E

{∣∣[f (
t,Xt , u(t,Xt)

) − f
(
t, ηt , u(t, ηt )

)]
ϕ(t,Xt)Nt

∣∣}dt

(5.27)

≤ Cψ(x0)

∫ T

0
E{|Nt |p; |�Xt | > ct}1/p dt ≤ Cψ(x0).
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Moreover, noting thatϕx(t,Xt) = 0 when|�Xt | ≥ ε2[eKt − 1], we have∫ T

0
E

{∣∣[f (
t,Xt , u(t,Xt)

) − f
(
t, ηt , u(t, ηt )

)]
ϕx(t,Xt)∇Xt

∣∣}dt

≤ C

∫ T

0
E

{∣∣∣∣[f (
t,Xt , u(t,Xt)

) − f
(
t, ηt , u(t, ηt )

)]1

t
∇Xt

∣∣∣∣;
|�Xt | ≤ ε2[eKt − 1]

}
dt

≤ C

∫ T

0
E{|�Xt |(1+ At)∇Xt |; |�Xt | ≤ ε2[eKt − 1]} dt

t

≤ C

[
1+

∫ T

0
At dt

]
,

which, combined with (5.27) and (5.25), implies that

|I2| ≤ C

[
ψ(x0) +

∫ T

0
At dt

]
.(5.28)

Now combining (5.22), (5.24) and (5.28), we prove (5.20), and hence the lemma.
�

5.4. Proof of Theorem 5.1. We first prove a simple case.

LEMMA 5.12. Assume that all the conditions in Theorem 5.1 hold true, and
that |σ(t0, x0)| ≥ 1

n
. Then the result of Theorem 5.1holds true at (t0, x0).

PROOF. Without loss of generality, we assumet0 = 0 and omit the super-
script 0,x0 as before. Thenγ ∗

t ≥ |σ(0, x0)| ≥ 1
n

for ∀ t ≥ 0. Choosingβ = 0 in
Lemma 5.6, we get

|�−1
t | ≤ Cn[1+ |ξt |3 + t−1].(5.29)

Then one can easily get

E{|N0
t |2|} ≤ Cn

t
∀ t > 0.(5.30)

By Theorem 3.1, we knowux(0, x0) exists. By the same arguments as in
Section 4.3 or as in the proof of Lemma 5.11, one can show that

ux(0, x0) = E

{
g(XT )N0

T +
∫ T

0
f (t,Xt , Yt )N

0
t dt

}
,

which, together with (2.1) and (5.26), implies that

|ux(0, x0)| ≤ Cn

[
ψ(x0)√

T
+

∫ T

0

ψ(x0)√
t

dt

]
≤ Cnψ(x0)√

T
.
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That proves the lemma.�

PROOF OFTHEOREM 5.1. Fix (t0, x0) ∈ n. Without loss of generality, we
assumet0 = 0 again. First if|σ(0, x0)| ≥ 1

2n
, then by Lemma 5.12, the results

hold true.
Now we assume|σ(0, x0)| < 1

2n
. Since(0, x0) ∈ n, there existst1 ∈ (0, T ]

such that |σ(t1, ηt1)| ≥ 1
n
. Since σ, b are Lipschitz continuous inx and σ

is Hölder-α continuous int , there exist constantsε1, ε2 > 0, depending only

on K,n andα such that for any(t, x) ∈ D̄ε1,ε2(t1, ηt1)
�= {(t, x) : t ∈ [t1 − ε1, t1],

|x − ηt | ≤ ε2}, it holds that|σ(t, x) − σ(t1, ηt1)| ≤ 1
2n

. Thus,|σ(t, x)| ≥ 1
2n

for
any (t, x) ∈ D̄ε1,ε2(t1, ηt1). We note that this also implies thatt1 > ε1. Now we

chooset2
�= t1 − ε1

2 , δ2
�= ε1

2 . Obviously, there existsδ3 > 0, depending only
on K,n and α such thatDδ3(0, x0) ∩ ([t2 − δ2, t2] × R) ⊂ D̄ε1,ε2(t1, ηt1). Now
for ∀ (t, x) ∈ Dδ3(0, x0) ∩ ([t2 − δ2, t2] × R), by Lemma 5.12, we have

|ux(t, x)| ≤ Cnψ(x)√
T − t

≤ Cnψ(x)√
t1 − t2

= Cnψ(x)√
δ2

= Cnψ(x) ≤ Cnψ(x0),

where the last inequality is thanks to the fact that(t, x) ∈ Dδ3(0, x0). Then
applying Lemma 5.11, we get|ux(0, x0)| ≤ Cn[Cnψ(x0) + ψ(x0)] = Cnψ(x0).

�

5.5. Proof of Theorem 5.2. We first prove the theorem under (A3′) instead
of (A3′′).

LEMMA 5.13. Assume (A1), (A2′), (A3′), (A4) and (A5). Then all the results
in Theorem 5.2hold true.

PROOF. First if f ∈ C
0,1
b , g ∈ C1

b , then by Theorem 3.1, we know
u ∈ C0,1([0, T ] × R) ⊂ C0,1() and Zt = (uxσ )(t,Xt). Sinceσ(t,Xt) = 0 for
t > τ , so (iii) holds true. (ii) is due to Theorem 5.1. Finally, for(t, x) ∈ , we
have|σ(t, x)| ≥ 1

n
for somen. Then the representation formula in (i) follows the

proof of Lemma 5.12.
For the general case, one can easily prove the theorem by following the

approximating arguments in the proof of Theorem 4.4 (or Theorem 3.2).�

We now assume only (A3′′). In this case (1.2) can be rewritten as

ut + 1
2σ 2uxx + b̃ux + f1(t, x, u) = 0;

(5.31)
u(T , x) = g(x),
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whereb̃
�= b + f2σ . Recall that(X,Y,Z) is the solution to FBSDE (1.1). Define

η̃t = x +
∫ t

0
b̃(r, η̃r ) dr; ̃0 �=

{
(t, x) : sup

t≤s≤T

|σ(s, η̃t,x
s )| > 0

}
;

τ̃
�= inf{t : (t,Xt) /∈ ̃0}; ̃n �=

{
(t, x) : sup

t≤s≤T

|σ(s, η̃t,x
s )| ≥ 1

n

}
;

dW̃t
�= dWt − f2(t,Xt) dt.

ThenW̃ is a Brownian motion under another probability and one can rewrite (1.1)
as

Xt = x +
∫ t

0
b̃(r,Xr) dr +

∫ t

0
σ(r,Xr) dW̃r;

(5.32)

Yt = g(XT ) +
∫ T

t
f1(r,Xr, Yr) dr −

∫ T

t
Zr dW̃r .

LEMMA 5.14. Assume (A1) and (A3′′). Then:

(i) ̃0 = 0, τ̃ = τ .
(ii) There exist a constant C > 1, depending only on K , such that n ⊂ ̃Cn

and ̃n ⊂ Cn, for any n ≥ 1.

PROOF. (i) If (t, x) /∈ 0, then σ(s, ηt,x
s ) = 0 for ∀ t ≤ s ≤ T . So it holds

that b̃(s, ηt,x
s ) = b(s, ηt,x

s ). Since η is the solution to (4.2), we haveηt,x
s =

x + ∫ s
t b̃(r, ηt,x

r ) dr , which implies that η̃t,x
s = ηt,x

s . Therefore,σ(s, η̃t,x
s ) =

σ(s, ηt,x
s ) = 0, and, hence,(t, x) /∈ ̃0. That is,̃0 ⊂ 0. Similarly, one can prove

that0 ⊂ ̃0. Sõ0 = 0. Thenτ̃ = τ follows immediately.

(ii) Fix (t, x). Denote�ηs
�= η̃t,x

s − ηt,x
s . Then

�ηs =
∫ s

t
[βr�ηr + (f2σ)(r, η̃t,x

r )]dr,

whereβr
�= b(r,η̃

t,x
r )−b(r,η

t,x
r )

�ηr
is bounded. Thus, we have

sup
t≤s≤T

|�ηs | ≤ C sup
t≤s≤T

|σ(s, η̃t,x
s )|.

Note that

|σ(s, ηt,x
s ) − σ(s, η̃t,x

s )| ≤ C|�ηs |.
Then supt≤s≤T |σ(s, ηt,x

s )| ≤ C supt≤s≤T |σ(s, η̃t,x
s )|, and therefore,n ⊂ ̃Cn.

On the other hand, sinceb = b̃ − f2σ , one can similarly show that̃n ⊂ Cn.
�
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PROOF OF THEOREM 5.2. (iii) is a direct consequence of Lemmas
5.13(iii) and 5.14(i). As to (ii), for any(t, x) ∈ n, by Lemma 5.14(ii),(t, x) ∈ ̃Cn

for some constantC. Applying Lemma 5.13, we getux(t, x) ≤ Cnψ(x)√
T −t

.

It remains to prove (i). By Lemma 5.13 and (5.31), we haveu ∈ C0,1().
To prove the representation theorem, by standard approximating arguments,
it suffices to show that the integral in the right-hand side of the formula converges.
To this end, we fix an(t0, x0) ∈ . That is,|σ(t0, x0)| > 0. Assume|σ(t0, x0)| ≥ 1

n

for somen. Without loss of generality, we assume again thatt0 = 0 and that
σ(0, x0) ≥ 1

n
. Recall the proof of Lemma 5.12. By (5.30) and noting that

|Yt | = |u(t,Xt)| ≤ Cψ(Xt), one can easily show that

E

{
|g(XT )N0

T | +
∫ T

0
|f1(t,Xt , Yt )N

0
t |dt

}
≤ Cn,T ψ(x0) < ∞.(5.33)

HereCn,T may depend onT −1 as well.
We finally show that

E

{∫ T

0
|f2(t,Xt)ZtN

0
t |dt

}
≤ Cn,T ψ(x0) < ∞.(5.34)

To this end, we define

τ1
�= inf

{
t :σ(t,Xt) = 1

2n

}
∧ T .

Then for t ≤ τ1, it holds thatσ(t,Xt) ≥ 1
2n

. Thus, by (ii) and (iii), we have

|Zt | = |(uxσ )(t,Xt)| ≤ Cnψ(Xt )√
T −t

. Therefore,

E

{∫ T

0
|f2(t,Xt)ZtN

0
t |dt

}

≤ CE

{[∫ τ1

0
+

∫ T

τ1

]
|ZtN

0
t |dt

}

≤ CnE

{∫ τ1

0

1√
T − t

ψ(Xt)|N0
t |dt

}
+ CE

{∫ T

τ1

1√
t

∣∣Zt

√
tN0

t

∣∣dt

}
(5.35)

≤ Cn

∫ T

0

ψ(x0)√
t (T − t)

dt

+ CE

{∫ T

0
|Zt |2 dt

}1/2

E

{∫ T

0
t2|N0

t |4 dt

}1/4

E

{∫ T

τ1

1

t2 dt

}1/4

≤ Cnψ(x0) + Cnψ(x0)E{τ−1
1 }1/4.

We follow the arguments in Lemma 5.6 to estimateτ−1
1 . If τ1 = T , thenτ−1

1 = 1
T

.
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Now we assumeτ1 < T , thenσ(τ1,Xτ1) = 1
2n

. Note thatσ(0, x0) ≥ 1
n
. Thus,

1

2n
≤ σ(0, x0) − σ

(
τ1,Xτ1

) ≤ |σ(0, x0) − σ(τ1, x0)| +
∣∣σ(τ1, x0) − σ

(
τ1,Xτ1

)∣∣
≤ C

[
τα

1 + ∣∣Xτ1 − x0
∣∣] ≤ C

[
τα

1 +
∣∣∣∣∫ τ1

0
b(t,Xt) dt

∣∣∣∣ + ∣∣∣∣∫ τ1

0
γt dWt

∣∣∣∣]
≤ C[τα

1 + τ1 + τ
1/3
1 ξ ],

where ξ
�= sup0≤t≤T

| ∫ t
0 γs dWs |

t1/3 . Then at least one of the following inequalities
holds true:

τα
1 ≥ 1

6Cn
; τ1 ≥ 1

6Cn
; τ

1/3
1 ξ ≥ 1

6Cn
.

In any case, we have

τ−1
1 ≤ C

[
1

T
+ n1/α + n + n3ξ3

]
.

Since|γt | ≤ C, applying Lemma 5.5, we getE{ξ3} ≤ C < ∞. Thus,E{τ−1
1 } ≤

Cn < ∞. Plugging this into (5.35) we get (5.34) and complete the proof for (i).
�
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