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REPRESENTATION OF SOLUTIONS TO BSDEs ASSOCIATED
WITH A DEGENERATE FSDE

BY JANFENG ZHANG
University of Southern California

In this paper we investigate a class of decoupled forward—backward
SDEs, where the volatility of the FSDE dggenerate and the terminal value
of the BSDE is adiscontinuous function of the FSDE. Such an FBSDE
is associated with a degenerate parabolic PDE with discontinuous terminal
condition. We first establish a Feynman—Kac type representation formula
for the spatial derivative of the solution to the PDE. As a consequence, we
show that there exists a stopping timesuch that the martingale integrand
of the BSDE is continuous beforeand vanishes after. However, it may
blow up att, as illustrated by an example. Moreover, some estimates
for the martingale integrand before are obtained. These results are
potentially useful for pricing and hedging discontinuous exotic options (e.g.,
digital options) when the underlying asset’s volatility is small, and they
are also useful for studying the rate of convergence of finite-difference
approximations for degenerate parabolic PDEs.

1. Introduction. In this paper we investigate the following decoupled
forward—backward SDE:

' '
Xt:x+f b(r,Xr)dr—i-/ o(r, X;)dW,,
(1.1) 0 0

T T
Y, = g(X1) +f P X Y, 20 dr —f Z, dWw,,
t t

whereW is a standard Brownian motioa, b, f andg are deterministic functions.

It is well known that, in mathematical finance theory, the solution trijleY, Z)

can be interpreted as underlying asset price, option price and hedging strategy,
respectively (see, e.g., [2]). The equations of type (1.1) were first studied by
Pardoux and Peng [9]. We refer the readers to the book of Ma and Yong [5] for
more details on the subject. Among other things, Pardoux and Peng [9] showed
that (1.1) was related to the following quasilinear parabolic PDE:

Uy + %Uzuxx +bux + f(t,x,u,uxﬁ) :0’

u(T, x) = g(x),

(1.2)
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in the sense that
(1.3) Yi =u(t, X;), Zy = (uyo)(t, Xy).

For the purpose of applications, we are particularly interested in pathwise prop-
erties of the procesg. In the literature there are typically two types of conditions
to ensure the regularity ¢f. One is to assume that the coefficiehts, f andg
are sufficiently smooth (e.g., [9] and [4]) so that (1.2) has a classical solution
and, thus/Z is continuous. The other is to assume #as uniformly nondegener-
ate (e.g., [3], [6] and [7]) so th& 1 has a density (see, e.g., [8]) and, thug, x)
is smooth inx for r < T, thanks to the nonlinear Feynman—Kac formula.

It is our goal of this paper to remove both conditions above. We will abow
to be degenerate and g to be discontinuous. We note that in this case (1.2)
is a degenerate PDE which, in general, has no smooth solution. A trivial
counterexample is that = b = f =0 andg = 1,0y, thenu(z, x) = Li,~q for
vVt € [0, T], and, hencey is discontinuous inc. However, by (1.3) and noting that
o = 0, one may still viewZ, = 0 in this example. In factZ, = 0 is indeed the
solution to (1.1).

A less obvious example is Example 1 in Section 4.1, in which the pragess
blows up at and only at some time< T'. It turns out that this is already the worst
case one might encounter. We will show that, under certain conditions, there exists
a stopping timer such thatZ; is continuous for <t andZ, =0 for¢ > 7. So
along each path, the only possible discontinuous poirff;of . Moreover, we
have an explicit rule to locate and we have an estimate f@f whenr < t.

The main tool of our approach is a nhew Feynman—Kac type representation
formula foru, (andZ) by using Malliavin calculus. As in [3] and [6], this formula
does not involve the derivatives gf or g (thus, g can be discontinuous!). But
unlike those two works which require to be uniformly nondegenerate, our new
formula allowso to be degenerate. As a payoff, due to this degeneracy, our
estimates for, are technically much more involved than those in [6].

At this point we would like to mention that the discontinuity gfis mainly
motivated by digital options for whiclg(x) = 1.~ k). Degenerate diffusion also
appears quite often in applications (noting that even in the standard Black—Scholes
model, the stock price equation is degenerate!). For example, in option pricing
theory one may face a situation where the underlying asset market is quite stable
during a random time period (sois small) or there is a risk that the underlying
corporation may go bankrupt at some random time {se O afterward). Our
results are potentially useful for pricing and hedging options in these markets.
Also, the regularity ofu plays a very important role for studying the rate of
convergence of finite-difference approximations for degenerate PDE (1.2) (see,
e.g., [11]).

For technical reasons, in this paper we assume that all processes are one-
dimensional and thaf is linear onZ. More general cases are left for future
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research. We note that in a recent paper Bally [1] studied the density of a
degenerate multidimensional diffusion. We hope that his work may bring us some
insights into our problem.

The rest of the paper is organized as follows. In Section 2 we give all the
necessary preparations. In Section 3 we study two “good” cases which extend
some results of [9] and [6], respectively. In Section 4 we study the cas¢ thdl
and derive a new representation formula farFinally, in Section 5 we study the
general case.

2. Preliminaries. Let (22, #, P) be a complete probability space on which

is defined a one-dimensional Brownian motidh= (W,);>o0, andF £ {Fi}i=0 be
the natural filtration generated 3, augmented by th@-null sets of¥ .

The following spaces will be frequently used in the sequel: Qdbe an open
subset of0, T'] x R¥ for some integek,

e C(0) is the space of all Lebesgue measurable functionfpfi] x R¥ such
that they are continuous iQ;

e C%1(0) is the space of those € C(0) such that they are continuously
differentiable on the spatial variable(s) dn

° C,?’l(O) is the space of thosg € C%1(0) such that all the partial derivatives
in O are uniformly bounded (but itself can be unbounded).

Wheno = [0, T'] x R¥, we omit it. For exampleC %1 = c%1([0, T'] x R¥).
In this paper we assume all the processes involved are one-dimensional; and we
shall use the followin@anding Assumptions:

(A1) b,o e CO*;
(A2) o is uniformly continuous im;
(A3) f e C([0,T]xR3), andf is uniformly Lipschitz continuous in, y, z;

(A4) g is Lebesgue measurable apgx)| < ¥ (x) 2 K (1 + |x|P0) for some
constant and somepg > 1.

We note that, by assuming (A1),

(2.1) ef sup vxpr| scpuer vpz1
0<t<T

In fact, this is the only property af we will utilize in the rest of the paper. We also

note that (A2) is equivalent to lim,98(¢) = 0, where

(2.2) 4(¢e) 2 inf{|t1 —12]:0=<11,tp < T, sup|o(t1,x) — o (t2, x)| > s}.
xeR
Obviously, for anyx € R and|#1 — r2] < 8(e), we havelo (t1, x) — o (2, x)| < ¢.
In order to simplify the presentation, we will also adopt the following
assumption:
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(A5) o, b are bounded.

However, without assuming it, all the results in the paper still hold true after some
slight modification (see Remark 5.4).

Throughout the paper, we use a generic conskatd denote all the Lipschitz
constants involved. We also assume fdt, x)| + |b(¢t, x)| + | f(2,0,0,0)| < K.
Moreover, we use positive constaidtsandc, which may vary from line to line but
depend only orK, T and the function in (A4), to denote upper bounds and lower
bounds of estimates, respectively. Furthermore, if the bounds depend orpsome
as well, we denote them by, andc,, respectively.

We now review some basic results, especially those concerding the
literature. First, for anyz, x) € [0, T) x R, let (X!~ Y!-*, ZI-*¥), -, denote the
solution to the following FBSDE:

) S
X :x—l-/ b(r, Xﬁ’x)dr—i-/ o(r, XL dW,;
(2.3) .
Y”‘—g(X“‘)+f flr, X0 yhs 785y dr — / Ztr dw,.

Whent =0, (2.3) is the same as (1.1), and we still US& Y, Z) to denote

its solution. Next, we defina(z, x) Y/*. It is well known that, under certain
conditionsu is the unique viscosity solutlon to (1.2) alig= u(¢, X;). Moreover,
if u e C%1, then (1.3) holds true (see, e.g., [6]). Throughout the paper, we tese
denote this function.

The following result, which concerns the Malliavin derivatives 8f Y, Z) and
provides another representationzfis due to Pardoux and Peng [9] (or see [6]).

LEMMA 2.1. Assume (Al), (A3); and that f € Cb lee Ci(R). Let (VX,
VY, VZ) denote the solution to the following linear SDESs:

t t
VX;:1+/ by (r, Xr)Verr—i-f oy (r, X, ) VX, dW,;
0
(2.4) VY, =g (X7)VXr

+ / LAVX, + fyVY, + £V Z,1dr — ftT VZ,dW,.
Then it holdsthat, for r <r < T,
DX, =VX, VX, Yo, X,):
(2.5) DY, = VY, [VX,] Yo (t, X,);
D:Z, =VZ, VX1 Yo, X)),
where D isthe Malliavin derivative operator. Moreover, u € Cg’l and it holds that

(2.6) ue(t,x)=VY"S;  Z,=DY, = VY[VX] o (t, Xy).
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We note that Lemma 2.1 relies heavily on the differentiabilitygofThe next
lemma, which gives a Feynman—Kac type representation formulg,adssumes
instead that is nondegenerate. The proof can be found in [6].

LEMMA 2.2. Assume (Al), (A3),0 > % and that g is Lipschitz continuous.

Thenu € cf,”l([o, T) x R), and (1.3)holdstruein [0, T) x R. Moreover, we have
the following representation formula of «, (and thus of Z):

i} T _
2.7) ue(t,x) = E”x{g(XT)NtT +/ fr, X, Y., Z,)N! dr},
t

where the superscript *** indicates that the processes (X, Y, Z) under expectation
are solutionsto (2.3) [instead of (1.1)], and

_ 1 r
(2.8) N2 —/ oL, X\ ) VX dW, [VX,]7L.

r—tJe
The following estimates are easy to prove (see, e.g., [2]).
LEMMA 2.3. Assumethat 5,5:2 x [0,7] x R+ R and f: x [0, T] x

R? > R are F-adapted random fields, such that they are uniformly Lipschitz
continuous with respect to the spatial variable(s) and

T ~ ~
EL/[waﬂnﬂ+ﬁax»F+LﬂnQonﬁm}<oo
0
For any & € L2(F7), denote (X, Y, Z) to be the solution to the following SDEs:

t t
X,=x+/ b(s,Xs)ds—l—f (s, Xg)dWs;
0 0

T _ T
Yt:§+/ f(SSYS7ZS)dS_/ Z_gdWs.
t t

Then, for any p > 2, there exists a constant C;, > 0, depending only on 7', p and
the Lipschitz constants of b, &, f, such that

Etggww}
(2.9) == )
SCM4MW+AHQL®W+W%®WM4;
T 5 p/2
g (e
(2.10) =

T ~
prE{|$|p+fo If(t,0,0)lpdt}.
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We end this section with the exponential inequality (see, e.g., [10]).

LEMMA 2.4. Assume M is a continuous local martingale vanishing at O.

Let M7 2 SURy<;<7 |M;| and [M]r denote its quadratic variation. Then for any
x,y >0,

2
P(ME > x, [M]r <) < eXp(z—x).
y

3. Two “good” cases. In this section we study two cases which generalize
Lemmas 2.1 and 2.2, respectively. The first one assumeg tisadifferentiable.
Since the proof is more or less standard, we will just sketch it.

THEOREM3.1. Assume (Al), (A3), (A4)and that f € C2%, g € C1(R) such
that |g'(x)| < Cy(x), where ¢ isdefined in (A4). Then, for V (7, x) € [0, T] x R:

(i) ueC®l and (1.3)holdstrue;
(i) thefollowing representation holds true:

T
(3.1)  ux(t,x) :El’x{g/(XT)VXT +/ [fxVX, + [, VY, +fZVZr]dr};
(i) Jux(t, )| < C¥(x).

PROOF First, if |g’(x)| < C, then one gets (i) and (ii) immediately from
Lemma 2.1. In general, by standard approximating arguments, one can prove
(i) and (ii). Finally, by (3.1), (2.10) and (2.1), one can easily show g, x)| =
VY| <Cy(x). O

The next result is an extension of Lemma 2.2. We do not reggite be
continuous. Instead, we assume thél, -) is nondegenerate.

THEOREM 3.2. Assume (Al), (A3), (A4) and that there exists §o > 0 such
that + < |o(t,x)| < K for ¥ (t,x) € [T — 0, T] x R. Then:

(i) ueC%L(0, T) x R), and (1.3)holds true;

(ii) thefollowing estimates hold true: for 0<t < T,

Cr(x)
VT =1

PROOF First, by Lemma 2.3, one can easily prquér, x)| < Cy (x).
We now prove (i) and estimaig.. We proceed in three steps.

lu(t, x)| < C¥(x); lux (2, x)] <
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Sep 1. We restrict € [T — §p, T] and assume thate Cbl. Then by Lemma 2.2,
obviously, (i) holds true in[T — 8o, T) x R. Moreover, the representation
formula (2.7) holds true. That is,

(B2) uy(t,x)= E”x{g(XT)IW + fT [ Xy, u,u,0)(r, X)) Ny dr}-
t

We shall use (3.2) to estimatg . We note that in the following the constafit
will not depend on the upper bound gif Define

t,
2 JT —isu lu"( x)|, B 2 sup As.

x Y(x) t<s<T

Recalling (2.8), one can check directly that, o 8o <t <r < T, E{|N!|’} <
C(r —t)~P/?2. Note that 1+ x| < Cyr(x), lu(t, x)| < C¥(x), and|o (¢, x)| < K.
Then by (3.2), we have

s (t, )] < CE”{WXT)WH

T .
+/ (141X, + lu(r, Xp)| + [(uxo) (r, Xr)I]INrtIdi”}
t

t,x N1 T [ Ar :| N1 }
<ce {weeniffl+ [y = AL

SCWx)(ﬂl—_*/T[“ J%]\/frfr)

= CW)(J— +5 / W)

1

— @ (———+ B ) = cov 0 ——— + B,).
(=) vra=s) ==+ 2)

where the last equality is due to the substitution= ¢ + (T — 7)r’. Thus,
A; < Co[l+ B;,/T —t]. Obviously, B, is decreasing, so far<s < T, Ay <
Coll+ B,/T —s] < Co[l+ B;~/T —t]. Therefore,B; < Co[l + B;~/T —t].
Without loss of generality, we assurig < (2Co)~2. ThenCo/T —1 < % and,

thus, B, < 2Co. This obviously implies thau, (7, x)| < % We note again
that Co does not depend on the boundgof

Sep 2. We now assume that satisfies only (A4), but still restrict € [T —
30, T]. One can easily fing, € Cl} such that|g,(x)| < 1+ ¥ (x) for the same
function ¢ and lim,_,« g,(x) = g(x) for dx-a.s.x € R, wheredx denotes the

Lebesgue measure @& Let (Y", Z") denote the solution to the BSDE:

T T
Ytn=gn(XT)+/ f(r,Xr,Y,",Zf)dr—/ Z!dw,,
t t
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and then define:/”* (¢, x) 2 y;"""*. Sinceg, € C}, by the above arguments, we
haveZ} = (u’o)(t, X;), the representation formula (2.7) holds true #¢r and
(£, x)| < % whereC is independent of .

Noting thato (¢, x) > % X7 is absolutely continuous with respectdo (see,
e.g., [8]). Thus, lim_ g, (X7) = g(X71), P-a.s. Then by standard arguments

(see, e.g., [2]), one can show that

T
(3.3) lim E{ sup |Y'-Y,]°+ |Z" — Z,)%dt} =0,
n—oo ! !
T—8g<t<T T—éo

which implies that lim_, o 4" (z, x) = u(z, x). Moreover, recalling that

Y] = Cy(Xy), 1Z:| <

C
mw(x,)la(t, Xl

applying the dominated convergence theorem, one gets that, ka’l (z, x) =
v(t, x), where

a T _
v(t,x):E”x{g(XT)N§ +/ fr, X, Yr,Z,)Nr’dr}.
t

Obviously, [v(z, x)| < % andZ, = (vo)(t, X;). It remains to show that is
continuous, and, = v. To this end, we note that, for any> 0, there exists an
open seD, C R and a continuous functiogi such that: (i) the Lebesgue measure
|0:| <e¢; (i) g-(x) =g(x) forall x ¢ O,; and (iii) |g.(x)| <1+ ¥ (x). Denote

_ T _
(3.4) ve(r,x>=E”X{g8<xT>N§+ / f(r,xr,Yr,an:dr}.
t

We note that in (3.4)XY, Z) is still the solution to the BSDE with terminal
valueg(Xr) [not g.(X7)!']. Then
|05 (7, %) — v(1, )| = | E"*{[ge (X7) — (XT)INT}]
< E""{[Ige(X )| + [g(XDIINE|; X7 € O}
_ Sy
VT -t
Again, by [8], one can easily show thXQx has a bounded density function with
respect taix (the bound may depend qﬁ: however). Thus,

P(X7" € Op).

Ve (£, x) — v(t, x)| < C(T —1,x)y/|0s| < C(T — 1, x)4/e.

Here C(T — ¢, x) is a constant depending dh— ¢ andx. Now for any (¢, x) €
[T — 80, T]1x Rand(z,, x,) € [T — 8o, T] x R such that lim)_, oo (#,, x,) = (¢, x),
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we have
[v(tn, xn) — v(t, X)|
< [v(tn, Xn) — Ve(tn, Xn)| + (Ve (tn, Xn) — Ve (t, X)| + |ve (2, x) — v(Z, X))
<[C(T —ty, x,) + C(T —t,x)1/& + |ve (tn, X) — Ve (2, X)|.

Sinceg, is continuous, by standard arguments, one can show that. ligv, (¢,
Xn) = ve(f, x). Thus, limsup_,  |v(t,, x,) — v(t, x)| < C4/e. Sincee is arbitrary,
we have

lim |v(#,, x,) —v(t, x)|=0.
n— oo

That is,v is continuous.
Finally, for any(z, x) € [T — 80, T) x R, note that

u(t,x) =u"(t,0) +/ u't(t, y)dy.
0

Let n tend tooo and apply the dominated convergence theorem, we have
X
u(t,x)=u(,0) —}—/ v(t, y)dy.
0

Since v is continuous, we know that € C%! and u, = v. Therefore, for
t € [T — 80, T), (i) holds true andu, (¢, x)| < %

Sep 3. Fort € [0, T — 8p], one may consider (1.1) as an FBSDE o&IT" — §¢]
such that the BSDE has terminal valuél’ — 8o, X7_5,). By step 2, we have
lux (T — 80, x)| < %w(x). Then applying Theorem 3.1, we know (i) holds true

in [0, T — 8ol and|uy (¢, x)| < \/%T,W(X) < f/% 0

REMARK 3.3. All the results in this section hold true for high-dimensional
FBSDEs.

4. Thecase f =0. In this section we study the case that= 0. In this case
the BSDE in (1.1) becomes

T
(4.1) Y, = g(X7) — f, Z, dW,.

4.1. A counterexample. Note that both in Theorem 3.1 and in Theorem 3.2,
uy(t,x) exists for allt < T. When o is degenerate ang is not Lipschitz
continuous, however, (¢, x) may not exist for some < 7. An obvious example
isthato = b =0 andg = 1,~q), thenu(z, x) =1~ for V¢ € [0, T'], and, hence,

u is discontinuous irx. But, sinces = 0, in light of (1.3) in this example, one may
still view Z; = 0. In fact,Y; = 1;x,~0, Z; = 0 are indeed the solution to (4.1).
The following example shows that; may also blow up for some< T'.
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EXAMPLE 1. Assumea € (0,1) and 8 € (O, ﬁ).LetT:Z,and
g2 br,x)20  V¥rel0,2);
x|
_ B
o) 2 1-0F, t €10,1],
0, te(l,2].

Then Z, may blowup at r = 1.

PrROOFE Fort €[1, 2], obviouslyu(t, x) = g(x) andZ; = 0. Fort € [0, 1), we
have

1
u(t,x)=E"{u(l, X1} = E{g(x +/ (1—s)’3dWs)}.
t

Note thatf,l(l — 5)PdW, has normal distribution with mean 0 and variance
022 [*a—s)Pds = 25 (1= % Thus,

(o) = —— / ()eX< (y_x)z)d
u(t,x)= _ )
N 2mog ]Rg y) & 205 Y
Therefore,
1 y 2 /(952 1 2 /(952
u,(t,0) = / eV @29%) gy — / 2—a ,—y?/(205) gy
(2,0 Nz Rg(y)ag y 203 RIyl y

By using the substitution = ogy’, we get
uy(t,0) = Ccro“" =C(l— t)—a(1+2f3)/2‘
Thus,
(uyo)(t,0) = C(L— 1) @AF2B)/248 — (1 — 1)pL-0—e/2,

Since 8 € (0, 2(1+a), we have limy1(u o)(t,0) = oo. That implies that, if
X1=0,thenZ;, > occastt1. O

4.2. Location of discontinuous points. Note that in Example 17Z; blows
up only atr = 1. In fact, for quite general FBSDEs, along each pdthis
discontinuous at most at one point. In this section we locate this possible
discontinuous point and we shall prove later tAais continuous elsewhere.

To this end, we introduce the following notation. Foft, x) € [0, T) x R, let
n"* be the (deterministic) characteristic of the FSDE in (2.3). Tha{'i$,is the
solution to the following integral equation:

(4.2) Nyt =x+ / b(r,n"") dr.
t
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As usual, we omit the superscript whent = 0. Define

A
ros {(t,x) :tgg);kf(s, neH| > 0};

(4.3)
A 1
F"z{a,x): max | (s, 7)] > —};
t<s<T n
T2, x): |0, x)| > 0);
(4.4)

t2infl0<r<T:(1,X;) ¢ T
Note that max;<r o (s, n’*)| is continuous in(z, x), then the following results
are obvious.
LEMMA 4.1. Assume (Al). Then:

() Tcr®=, ", and T, " areopen for Vn > 0;
(i) ForV(t,x) eI, supcy rlo(s, Xi*)| > 0,as,;
(i) T isastopping time;

(iv) (¢t,X,) elOforallt <rt;
(v) (t,X) ¢T%ando(r, X;)=0forall r > .

4.3. Representation formula. In this section we formally derive a new
Feynman-Kac type representation formulaif¢s, x) (and, hence, fog,) in I'°.
We shall follow the arguments in [6].

Fix (¢, x) € 0. We first assume that (A1), (A2) hold true and tgat CL(R).
Note thatu(z, x) = E"*{g(X7)} and thatV X, is the derivative of the flowX;" with
respect to initial value (see [9]). Then

(4.5) uy(t,x) = E""{g'(X7)VXr}.
Fort <s < T, by Lemma 2.1, we have

Dyg(X7) =g (X1)Ds X7 = g (X7)VXT[VX,]1 Y0 (5, X,).
Multiply both sides byV X0 (s, X;) and integrate ovdr, T'], we get

T T

f VXso(s,Xs)Dsg(XT)ds:g/(XT)VXT/ o2(s, X;) ds.

t t

Denote

(4.6) i 2o, X); Aiéf vl ds.
t

Since(t, x) € ro, by Lemma 4.1, we havA’T >0, a.s. Then

/ T Vs VX
§(XT)VXr= — D g(Xr)ds.
? T

A
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Recalling (4.5) and applying the integration by parts formula of Malliavin calculus,
we have

U (1, %) = E”{g<XT)f tnvx dwé}

:E”x{g(XT)[ f vs VXgdWy — f < )ysvx ds“
Note that

1 Dy At
Ds A_IT VsVXs: |A |ZVSVX

2 T
= |A |2/ ox(r, X;)yr Ds X, dr ys VX

2 T
=0 |2/ ox(r, X))y, VX, dry?.
Thus,

1 T
”x(tax)zEt’x{g(XT)l:_,/ Ys VX5 dW;
A7 Ji
2 T T ,
+ W/ / ox (r, Xp)yr VX, dry; ds]}
T t s

= E"* X i ! VX,d
= g(Xr) At Vs sdWs
t

2 T
|A |2/ ox(r, Xy)yr VX, / Vs dsdr“

Denote

4.7 N2 = [/ VeV X, dW, +2f ax(s X5)ys VX, ds][VX,] 1
Noting thatV X!* = 1, we have

(4.8) uy(t,x) = E""{g(X7)N7}.

REMARK 4.2. In (2.8) one has to assunadr, x) # 0 for all (¢, x). But
in (4.7), even ifo (t, x) = 0, one can still defin&//* as long asA’ > 0.

4.4. Estimate of [Aj]‘l. In light of (4.7) and (4.8), obviously one needs to
estimate[Ai]‘l. We have the following result.
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LEMMA 4.3. Assume (Al), (A2) and (A5). If (¢, x) € T for somen > 1,then
for any p > 1, there exists a constant C,, depending on p, K and 7', such that

EV{IALITP} < Cpln®P 8,7 + TS, ),
where s, = 8() A 5t and §(-) is defined in (2.2).
PrROOE Without loss of generality, we prove the result only foe= 0 and

r = T. To this end, we fix(0,x) € I'",n > 1, and omit the superscripfs*
whenever there is no confusion. So it suffices to prove that

(4.9) E(A;F) < Cpn?P8P 4+ %115,
wheres, 2 8(3) A 5. Note that
0
(4.10) E{A;") = p/ P{Ar <ulu~""Ldu.
0

We shall estimat&® {A 1 < u} for smallu below.
Since(0, x) e I'", there existdp € [0, T'] such thalo (To, n1,)| > % Note that
(4.12) P{AT <u}=11(u) + L),

where

A 1 A 1
I1(u) = P{AT <u,|yr| > —}; Io(u) = P{Ar <u,lyn| < —}.

2n 2n
We first estimatd(x). Denote

(4.12) AX, 2 X, —n,.
Then one can easily get
1 c
(413) Iz(u) < P{AT <u, AXTO| > m} < P{ATO <u, AXTO‘ > ;}
Note that
t t
X = [ yeaw+ [ paxds,
0 0
whereg, 2 bl X D) s hounded. Denote
A ! N
(4.14) L;= exp(—/ Bs ds); M, =/ Lsys dWs.
0 0

Then AXy, = L;OlMTO. Moreover, bothZL, and L;* are bounded, and/; is a
martingale. Then one has

}AXT0| 5C|MT0

o 55
L M= [ LE2dr=Cag,



BSDEs WITH DEGENERATE FSDE 1811

Now applying Lemma 2.4, we get from (4.13) that

¢ ¢
n néu

We next estimatdy (). To this end, we recall tha, 2 8(%) A % Denote

(4.15) D) < P{[M]T0 < Cu,

Su éG4n2u;
Ay 2 [To— 84, To+8,1N [0, T1;

Ao 2 [To— 8, To+ 8,1 N[0, T).

obviously we have
Su < y; A, C Ag; |Au|28u

= 54

Using the facts that

ATzf y2dt > |A,| inf |2 =68, inf |2 =64n%u inf |y2,
Ay teAy teAy teAy

and that
1
|°(t’XTo)_G(T0’XTo)|§E Vie A, C Ao,
we have
. 1
I(u)=P{AT <u,|yr| > E’rlergu lyel < 5}
1
< P{Ar <u, suplo(t,X,;) —o(t, Xn)| > —}
teA, 8n
<PiA sup|X; — Xz,| > ! }
<u, >
= T IEAEJ t — &1y 8Kn
Since
To To
Xy = X; = [ bis. Xods + [ ysaw,,
t t
we have
(4.16) I1(u) < Ia(u) + I12(u),
where
A 1
Ia(w) 2 P{f 1b(t. X)) di > —}
Ay 16
Io(u) 2 P{A o aw
= , Su =
12(u) { T<u teAE) Vs s 16Kl’l}
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Note that
p+1
I1(u) < c,,n”“E{ (/ Ib(t, X,)| dt) }
Ay
< Cp(nau)p+l _ Cpn3p+3up+l'

Moreover, analogous to (4.15), by applying Lemma 2.4, one can show that
(4.18) () < exp(—%).

n<u
Plugging (4.17) and (4.18) into (4.16), we get

Ii(u) < Cp113p+3uerl + exp(—%).
nu

(4.17)

Noting that exp)—ﬁ)u‘f”‘1 takes its maximum value at= m, the above
inequality, together with (4.15), (4.11) and (4.10), implies that

81/(64n2)
E(A7} < Cp U [0 3P4 o= R0 Lt
0

o0
—i—/ u_P_ldu:|
8n/(64n2)

b
< Cp |:n3p+18n + n2([7+l)n_’£ + (n28n—l)p:| < Cp[n3p+18n + (nz(sn—l)P]’
which proves (4.9), and whence the lemmal
4.5. Mainresults. Now we are ready to state the main result of this section.

THEOREM4.4. Assume (Al), (A2), (A4), (A5)and f = 0. Then:

(i) uecOiTo);
" | (uxo) (2, Xy), t<rT,
(ii) Z’_{O, ! >
(i) ux(r,x) = E""{g(X7)Ny}  V(1,x) el

(V) ux(t,x)| < CJ;/’_(_XI) V(t,x) eI

REMARK 4.5. By Lemma 4.1(iv), we havé, X,) € I'? for t < . Thus, by
(i) and (ii) of Theorem 4.4Z, is continuous along each path except possibly at
t = 7. But as we see in Example Z, may have no finite left limit at = 7.

PROOF OFTHEOREM 4.4. First, forV (¢, x) € I'", by (4.7) and Lemma 4.3,
one can easily prove that

Cn
(4.19) E"Y{INLI?) < -
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Then (iv) is a direct consequence of (iii).

We now prove (i)—(iii). To this end, we first assungee Cl}(R). Then by
applying Theorem 3.1, we know thate C%! and Z, = (u,0)(z, X,) for all
t € [0, T]. Especially, forr > t, by Lemma 4.1(v), we knows (¢, X;) = 0, and,
thus, Z; = 0. Moreover, for¥ (t,x) € I'?, by Lemma 4.1(i), there exists some
n > 1 such that(z, x) € I'". Then by (4.19), we knowE"*{|g(X7)N%}|} < oo.
Now (iii) follows the arguments in Section 4.3.

In general case, that ig satisfies only (A4), we follow the arguments in
step 2 of the proof for Theorem 3.2. Lgt, < C,}(]R{) such that|g,, (x)| < ¥ (x)
and lim,,— 0o gm(x) = g(x) for dx-a.s.x € R. Define (Y™, Z™) andu™ as in
Theorem 3.2. Note that®, I'”* andt are independent of, and so isN. Now
for v (¢, x) e I'" and anym,

Chn
uy (t,x) = E""{gm(XT)NT}; lu” (¢, x)| < ;{/(x),

By the dominated convergence theorem, we have

W, x) = v(t,x) 2 EM {g(XT)NL),  m— oo

By a line by line analogy of step 2 of the proof for Theorem 3.2, one can show
that v is continuous andk, (¢, x) = v(t, x). That proves (i) and (iii). Moreover,
Z"™ — 7, then (ii) holds true. O

5. General case

5.1. Main results. In this section we investigate FBSDE (1.1) with nonlin-
ear f. We shall modify some assumptions:

(A2") o is uniformly Holdere: continuous irr for somea > %

(A3) f is independent of, that is, f(z,x, y,z) = f(t,x,y). Moreover, f is
continuous irr and uniformly Lipschitz continuous i, y.

(A3") f(t,x,y,z) = fa(t,x,y) + fa(t,x)z, Where f1, fo are continuous and
uniformly Lipschitz continuous i, y. Moreover, f is bounded.

The following result gives an important estimate fqr.

THEOREM5.1. Assume (A1), (A2), (A3'), (A4), (A5)and that f € C;'* and
g € CL. Thenfor any (¢, x) € I'", we have

Cny (x)
VT =1’

where C,, dependson K, T, «, ¥ and n, but does not depend on the upper bound
of g'.

lux(t, x)] <
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The main result of the paper is the following theorem.

THEOREMb5.2. Assume (Al), (A2'), (A3"), (A4) and (A5). Then:

() ueCOYI),andfor V¥ (r, x) e T, we have
T
uy(t,x) = E”x{g(XT)N§ +/ fr, X, Y, Z,)N! dr}.
t

(i) u islocally Lipschitz continuousin x in T'°, and there exists a constant C,,
dependingon K, T, «, ¥ and n such that

et )] < SV G e,
T —t

Here u, (¢, x) is understood as a generalized derivative if u is not differentiable
inx at (¢, x).
(i) Understanding u, asin (i), we have

{(uxc)(t, Xy), t<rt,
Z[ =
0, t>T.

REMARK 5.3. Z; is continuous except possiblyat 7. In fact, fort < 7, if
(t, X;) € T, thenZ, is continuous by Theorem 5.2(i). {f, X;) € I°\I", we have
Z; = 0 and by the estimate in Theorem 5.2(ii), we kn@wis also continuous.

REMARK 5.4. If we remove (A5) in Theorems 5.1 and 5.2, then analogously
one can show that

Cn
T —t

We do not know whether or not similar results will hold truefifis nonlinear
onz. The proof of Theorems 5.1 is quite lengthy. We split it into several lemmas.

lux(t, x)| <

A+ xDyx) V(t,x)eI™".

5.2. Fine estimates of [Aﬁ]—l. We first prove two lemmas which improve
Lemma 4.3.

LEMMA 55. Foranyp>landO< u < % there exists a constant C, ,,,
depending only on p, u, such that for any T and any square integrable process y,
it holds that

-1 2y, dW; 7P
E{|:< sup |)/t|) sup L] }f CP’MT(l/Z*M)P < 00,
0<t<T O<ty<tp<T (f2 — )M

where the integrand 8 isconsidered as 0.
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PROOF We proceed in two steps.
Sep 1. We prove the following estimate:

(5.1) E{'( sup |yt|)1/0T yr dW;

O<t<T

p
} <C,T"?
We first assume & ¢ < |y;| < C < oo. Denote

A ! A
M’:/o vedWy: v 2 sup Il

O<s=<t

Note thaty,* is increasing angt? < |y;*|2. Then applying Itd’s formula, we have

e 2M
v < LM, +dr.

|Vt*|2

d(%)ZZ 2M, dM; +yfdt  2M7

8 Ly |2 ly* |3
. . Mt _ Mt 2 . .

Obviously, lim o = 0, thus,E{(=$)<} < t. Similarly,

Vi
d (—t )
yf

MN2"D M = 1) (M N\2"2 AME
n| — d\l— ) +————\|— v dt
Vi 2 Vi |

Ve lyy
- (Mf)zm_l) 2M: in, 1 C (Mt)Z(n_l) dt
<n|— — :

v 2 Ty

By induction, one can prove?{(%)zn} < C,t". Then (5.1) holds true for any
p=>1. l

Wheny is unbounded or degenerate, by standard truncation procedure, one can
easily prove (5.1).

Sep 2. We follow the proof of Kolmogorov’s continuity criterion (see, e.g., [10],
Theorem 1.2.1). First, similar to (5.1), one can easily show that, for any

O<n<mp<T,
p =1 5 p
}sEH( sup nl) [ paw, }

1n=<t<t 11
For any integen > 1, let D,, £ {(i2z"T.i=1,...,2%" andD £ U, D». Denote
A
Ky =SUp;<on IMjp—ny — M(;_1y2-7|. FOr p > 2, by (5.2), we have

1 [
EH(y;‘)— vy dW,

41

(5.2)

< Cplt — )P/

2”
E{ly;I"PKP} < ZE{ly}krp’Miz*"T — M _12-n7|"}
i=1
211
<C Z 2=np/21p/2 — co—n(p=2)/2Tp/2
i=1

(5.3)
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Now for any 1, € D such thatr, — 1y < 27"T, one can easily show that
|M;, — My, | <2307 K. Denote

M, — M
M* 2 su M; 1,12 € D}.
(t2 — t)#
Then
o0
M., — M
M*<y sup {7' = t1|;t1,t2€D}
=02 DT <l <2y U (22 = 1)H

o0
< Z 2(”+1)MT_I'L sup {|M12 —

n=0 [to—t1|<27"T

l‘zeD}

< 221+(n+1)/LT u Z K, <CT~ uzznu

m=n n=1

Now for p > m, we have

o0
[y~ tm* ], < cT7# 3 2" Iy Kal),
n=1

o0
<CT Z onuo—n(p=2)/2p)1/2
n=1

o0
-C Z 2—n(1/2=1/p=)p1/2=p _ c7l/2—1
n=1

Now applying Fatou’s lemma, we prove the lemma for 15— 2 . Then by the
Schwarz inequality, the lemma holds true for smajier [

From now on we usg; to denotes (¢, X;) again.

LEMMA 5.6. Assume (A1), (A2) and (A5). Then for any (z, x) € 'Y and any
B > 0, there exists a constant C, depending only on K, such that

_ /3 tx, kN —1
N L e

+

1,x|3 T,tx
B, tx,x—1 |5r | Gr’i|

—t ,
DR I s R

where
f LY AW,
(s2 — S1)1/ 3

X

>

foxx A Xy, I3 1
Yt = sup |yt &

t<s<r Ve’ t<s1<s2<r

(5.4)
G”—{sup i —a(z,x>|s|o<r,x>|(r—r>ﬂ}.

t<s<r
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ProOOFE Without loss of generality, we assume-0,r =T andT < 1. In the
following we omit the superscrigt*. We shall prove that

1
55 Al ca[ TPy} 7Bl 1 7363 4 -1
(5.5) r =Clyrl™7|é 1 + lyrl =+ §r+ 1y |-

First, there exist$ such thaty; = y;. We note that, in generat,is not a stopping

time. Denote
T8
- sup{t el0, 7]l = <1— 7)3’;}’

T8
7L 2 inf{t elr,Tl:lnl= <1— 7)7/;}7

where we take the convention that gup- 0 and infp = T for the empty seb.
Then forvs e [7_, 7,1, we havely,| > 2. Therefore,

(5.6) Ar > HyiP(EL — ).

So it suffices to estimater,. — 7_)~1.
To this end, we note that, #f_ > 0, then
TPy
2

=lyi —ve | <lo(T,X5) —o (T, X5)| + K|X; — X5z |

T
j~ vidW;
T—

<lo(Z, Xz) =0 (F-, X)| + Col(F — T-) + Eryf(F — )Y,
Thus, one of the following three inequalities must hold true:

<lo(7,Xz) —o(T_, X3)| + K[/~r |b(t, X;)|dt +

)

TByx
0%, X7) — 0 (-, X3)| = —L,

o . L. By ,
From the first inequality above, we have- 7_ > B(TTE’T). So in all three cases,
we have

. TPyt - —38.3]
(5.7) @—4’)1§C6(—Zl> + TPy L+ 17303 .

Similarly, if 7y < T, then

N N r Tﬂ * -1 T
(5.8) (F,—9Hl<cC a( 4’”T> + TPyt T38|
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Finally, if t_ = 0 andry. = T, then(zy — 7_)~1 = T~1. Moreover, in this case we
have|y;| > (1 — T—;)y}k forall ¢ € [0, T]. In particular, we have

Th T8 . . 7B\ -1
(1—7)|yo|5(1—7)yTs|yz|syTs(1—7) vol.

Note thaty, is continuous, so all;, have the same sign. Then one can easily prove
that|y, — yo| < TP|yol, V¢. Thatis,1¢, = 1.
Combining the above three cases, we know that the following inequality holds
true:
. .1 TN b el 3803
(59 (@F+-1) " =C 5<T) + T lypl "+ TP +T "1, |,
which, combined with (5.6), obviously implies (5.5), and whence the theorém.

We note that ifo is uniformly Holderee continuous iry, thens(e) > eV The
following result is a direct consequence of Lemma 5.6.

COROLLARY 5.7. Assume (A1), (A2') and (A5). Then

87717 < Clyr 2 (= )Pl e

_ _ g3 g
+(r—t B, tx,x—1 + r r :|
r =0y, =% T r_q

For notational convenience, in the sequel we deritte, A} 2 E{&14} for a
random variablé and an evens.

LEMMA 5.8. Assume(Al), (A2'), (A5)and T < Tp. Recall (4.12)and denote

P2 —ﬁ‘;"‘h > 1, where « is as in (A2'). Then for any ¢ > 0, there exists a

constant C, depending only on K, Ty, o and ¢, such that:
(i) ECY{|IN:P; |AX | > et} < CtP;
(i) Jo EOX{IN|P: 1AX | = et} dt < C.
PROOF.  Again we omit the superscrift‘. Denote

éZa—l‘ él-i-l()a
120 T 24

B w
and

A 1 N
L2 QNP AKX, > enyY/P; 1=/ I dr.
0
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g

(5.10) |AX;| > ct}

Recalling (4.7), we have

r t A
1/ <CE{ [ VX dWy +V A, — 0 (s, Xs)ys VX, ds
0

1 -
< CE{PIV,*VX;“IP[SZ’ 7L AX | = cr},
t
where

A = A !
VX;k = sup |V X;l; & = |: sup |ySVXS|:| /O YsVXsdWs.

O<s<t O<s<t

Now applying Corollary 5.7, one has
(5.11) I’ <cl, + 131,
where
17, 2 E{lyf TP IVXEP@P + EDP y |77/ 4 7P |y 7P 417 3PB g,
|AX;| > ct};
12, 2P E(y P IV X I +EP): G |AX, | = et

We estlmatelf, first. By Lemma 2.3, it holds thakE{|VX[|?} < C,;,Vq > 1.
Recalling (5. 1) we have

Ilt < Ctp/ZE{t—Zpﬁ/a|yt>f<|—2p(1+l/oz) +t—2pﬁ|yt*|—4p
(5.12) ’ A y
+ 17Oy 2P | AX | > et}

Now we recall (4.14). Note that X, = L, *M, and bothZ, andL;* are bounded,
then by (5.1), one can easily show that, forai 2,

E{ly/ 1% |AX, | > et} < Ct9E{ |y |AX, |7}
< Ct9E{I(Ly);17IM:|7) < C1= /2,
Thus, by (5.12) and applying Lemma 5.5, we have
17, < CtPP2[1=(P/@I@B+etD) 4y =p(BHD) | =38) < ¢~ (P/20CB+D)

thanks to the fact that < 3. Sincex > 3, we have 3 + 1 < 2« and therefore,

T T
(5.13) 10 <CtP; / I dt < C/ t~ @Y% gy <
: 0 0
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It remains to estimaté ;. To this end, we recall that

G = { sup |ys — yol < Iyolt’g}-
O<s<t
If o =0, then inG,, we havey;, =0 for all s € [0, #] and, thusAX; =0. That s,
if y0=0, thenP{G,;, AX; > ct} =0, which implies that> ; = 0. Now we assume
yo # 0. Without loss of generality, we assumg> 0. We note again that in the
sequel the constants andc may vary from line to line, but they are independent
of y—lo One can check directly that
{Gr, |AX;| = ct} C{Gy, M| = ct}
ct
> — 1.
=7

ct t
c {Volel > E}U {G,, [tz = volaw,

Denote

-1
A LsJ/s—J/O A |: [:| '/t t
A= _— =| Su A, dW,

: yot# 5 o§s£r 5] o ° ’

Note thatg < 1. In G; and forVs < ¢, we have
ILsys — vol < ILy — Llyo + Lslys — vol < Clyos + vot?1 < Cyor?,
which implies thafA’| < C in G,. Thus,
> ct}

o,

Therefore,

t t
/(; [Lsys — yoldWs| > Ct} C {Gh Votﬂ“/(; )‘gdWa

C {yotPe > ct}.

(G, |AX | = et} C {yolWi| = et} U {yotP & = ct}.
Now by the definition of/2 ;, we have
(5.14) Iy, <15, +1;,.
where

A _ _ ~
13, =t PEQyITPIVXSIP P + €01 yol Wil = ct);

a ~ 3
17, 2 PE(y TP IVXEP I + B vorPE = ).
Note that
3 Wi\?
B, =g + g (20
< Ct2PE{IVX}IP[t? + EF1IW, |7}
(5.15) 5 3p11/3 00 .3p  £3p11/3 3p,1/3
< Ct 2P E{IVX; 3P BER + VYRR W, 3Py

< Ct_2ptp/2lp/2 — Cf_p,
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where the last inequality is thanks to Lemma 2.3 and (5.1). Similarly, applying
Lemma 5.5, one can prove

(5.16) Iy, < CrpB=b,
Sincea > % one hags > 0. Then by (5.14), (5.15) and (5.16), we have
Iy, <CtP,

which, combined with (5.13), proves (i).
To prove (i), first by (5.16), we have

T T
(5.17) / Iy, dt < c/ #ldt = C < .
0 0

Moreover, by the definition ofz; and applying Lemma 2.3 and (5.1), again we
have

T T -
fo I3,dt < /0 (vot) LE(IVXF|P[tP + EF1; yol Wi | > et)MP dt

2
_[ [ r 1V X* PP 4 P >cn\¥r g
=1/ + 1, |(vot) {IVXTI17t” + & 1; yol Wi | > ct} t
Y0

2
o 1 -
5/ P E(IVXFPI + EPDYP dn
0 Yot

r 1
+ —E{|VX*|P P + &/ (
Vo Yot

W, |\2P /P
Yol tl) } dt
ct

V
§C/ * o) Y241+ C (yot) Y1221 gy
0

— Oyl 2=

1/2t= T
Yo't /|

<
|t — Cyot™ 2 C < oo,

which, combined with (5.17) and (5.13), proves (ii).]
5.3. A localizing result. In this section we prove a localizing version of

Theorem 3.1, which will play a very important role in the proof of Theorem 5.1.
To this end, we first introduce a notion callegfieighbor.”

DEFINITION 5.9. Fix K as an upper bound db,|. For any (7, xg) € [0,
T) x R and anye > 0, thees-neighbor of(z, xo) is the set

De(to, x0) 2 {(t.x) 110 <t < T, |x — 5| < e[eK 0 _ 1]}

The following lemma gives a basic propertyssheighbors.
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LEMMA 5.10. If (t1, x1) € D.(t0, x0), then D, (1, x1) C D.(tg, x0).
PROOF Assume (#1,x1) € Dg(tg,x9) and (t2,x2) € D(t1,x1). Denote
ni £ pti%i for i =0, 1. Then
|x1 — 77?1’ < 8[eK(t1_t°) —1]; |x2 — né! < e[eK(tz_tl) —1].

Note that, forr > 14,
t t
0 =n + / b n®dsi nt=x+ [ bsdds.
1 1

Denote

A A b(t,nh) —b(t,n?)
An =0t =02 = ZAn L
t

Then|o;| < K, and

t
Any=x1— 17,01 +/ agAngds.
1

Thus,
Any = (Xl - 77?1) EXp( /t: o ds).
Therefore,
| Amggy| < |x1— 10| exp</t:2 o ds) < g[eK =10 _ 1] K21
Then

x2 — 1| < |x2— np| + | An|
< g[eK(lzftl) _ 1] 4+ g[eK(lzfto) _ eK(tzfll)] — S[eK(tzflo) _ l]

’

which proves thatr, x2) € D, (to, xg). O
The following lemma is the key part for the proof of Theorem 5.1.

LEMMA 5.11. Assume that all the conditions in Theorem 5.1 hold true.
Assume further that T < Ty and that, for some (7, xg) € [0, T) x R and some
constants eq, €2 > 0, |u, (¢, x)| < Ko for V (¢, x) € Dg,(to, x0) N ([T — &1, T] X R).
Then

luy (o, x0)| < C[Ko + ¥ (x0)],

where C dependson K, a, 1, €2 and Ty, but not on the upper bound of g'.
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PrROOFE Without loss of generality, we assumg= 0 and omit the super-

script %o, DenoteD,, 2 D,,(0, xp). Forz € [0, T], denote

A
Ar= sup  fux(t, x)l|.
{x:(z,x)eDSz}

Applying Theorem 3.1, we have sy, A; < co. Moreover, by assumption,
we have

(5.18) A; < Kp Vte|T —e1,T].

We claim that

T
(5.19) A, < C[Ko+ sup  Y¥(x) +/ Ag ds:| Vtel[0, T —e1].
} t

{x: (t,x)eDg2

For (t, x) € D,, we have
x| < bx = ml + I = xol + |xo| < e2leX" — 1]+ C1 + |x0| < |x0| + C.
Thus,
Y (x) = ClY (x0) + ¥ (O)] = Cr(x0),
which, combined with (5.19) and (5.18), implies that

T
A; §C|:KO+W(XO)+,/t ASdS:|

T—¢e1

§C|:Ko+1//()m)+/t Asds] Vte[0, T —eéq].

Then the lemma follows the Gronwall inequality.

It remains to prove (5.19). By Lemma 5.10, it suffices to prove #tat0. In
this case, (5.19) becomes

T
(5.20) 1420, x0)] < C[Ko +yeo+ [ 4 dr]
Note that
T
u (0, x) = Ex{g(XT) —|—/0 f(r, X, Yr)dr}.
Thus,

T
12 (0, x0) = E{g’(XT)VXT +/0 VX, + fyvmdz}.
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For anyt € (0, T], letp(¢, x) be a smooth function of satisfying that
1 if |x — | = egle® —1],

&2

f,x)= .
(p( X) {O’ If |x_77t|55[€Kt_1],

C
lp(t, x)| < 1; lox(t, )] < .

Then we have

12 (0, xg) = E{g/(XT)VXTfp(T» X7)

T
+ /0 LVX, + fy VYo, Xo)de

(5.21)
+¢' (X)) VXr(1— (T, X1))

T
+ [LAVX A+ A VYIL- 0, X)) dr}‘

SinceV can be considered as the differential operator with respect by the
chain rule, one can easily get that

§X)VXre(T, X1) =[Vg(X1)le(T, X1)
=V(g(X1)e(T,X1)) — e(X1)x (T, X7)VXT.
Note that wherp(T, X7) # 0, one hasAXr| > %(eXT — 1), which implies that

(0, xg) € % and, thusA7 > 0. Then following the arguments in Section 4.3, one
can easily prove that

E{g'(X1)VX7o(T, X7)} = E{g(X1) (T, X7)N? — 0x (T, X1)VX71}.
Similarly, we have
EX[fxVX: + fyVYiet, X))} = E{f (1. X:, Y)le(t, XON? — ., X))V X1}
So one can rewrite (5.21) as
ux(0,x0) = I1 + I2 + I3,
where

I 2 E{(g(X)[e(T, X7)N7 — @ (T, X7)VX7])

A T
L2 E{/O £t X, Y)lo(t, XON, — ox(t, Xf)vxt]dr}

o E{g’(XT)VXT(l — (T, X1))

T
+ fo LAVX, A+ foux VX I(L— ot X0)) dz}.
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We shall estimatd, — I3 separately. First, it is obvious that

T T
(5.22) |I3] < C[AT +f 1+ At)dt] < C[Ko—i-/ A; dt].
0 0
Denotep = 2%~ > 1as in Lemma 5.8. Lef be the conjugate op. Applying

Lemma 5.8, we have
£
Ellg(Xp)o(T, Xp)Nr} < E{|g(xT)NT|; aX7] = 21eKT - 1]}

< E{|g(X7)Nr|; |AXT| > T}
(5.23) N
< lg(XDI4LE{INT|"; |AXT| = cT}7?

< CY ()T~ < Cyr(x0),
where the last inequality is thanks to the fact thiat ¢1. Moreover,
E{|lg(X1)ex (T, XT)VXrl|} < %E“g(XT)VXTH < Cy¥(x0),
which, combined with (5.23), implies that
(5.24) [11] = CYr(x0).
It remains to estimat&. By the arguments in Section 4.3, we have
E{p.(t, X))VX:} = E{p(t, X;) Nt} Vte(0,T].

Thus,
T
I = E{/O [f(t, X0, ut, X)) — f(t, e, u(t,n))]
(5.25)
X [0t XON: 910 X0V X,
By (2.10),
(5.26) u(t, x)| =Y/ < Cy(x),

which implies that

| f (@t ne,u@ n)| < CLL+ |ne| + lut, n)|] < Cy (ne);
| £ (2, Xp,u(t, X)) < CY (X)),
Then by (2.1) and applying Lemma 5.8, again we have

T
/;) E{H:f(t’ Xh M(t’ Xl)) - f(t’ Nt I/t(t, ﬂt))](/)(t» Xt)NtHdt
(5.27)

T
< cwxo)/o E{NIP: |AX,] > etV di < Cyr(xo).
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Moreover, noting thaip, (z, X;) = 0 when|AX,| > ex[eX’ — 1], we have

T
/(; E{“:f(t’Xl‘au(thl‘)) - f(t’ Ut,u(f, nl))]wx(t’XI)VXt}}dt

’

T 1
< C/O EH[f(t, X u(t, X)) — f(t,n,u, m))];VXz

|AX,| < saleXT — 1]} dt

T dt
< c/ E(AXiIA+ A)VX | [AX,] < eale®! - 115
0

T
< C[1+/ A,dt],
0

which, combined with (5.27) and (5.25), implies that

(5.28) E C[t//(xo) + /OT A, dt].

Now combining (5.22), (5.24) and (5.28), we prove (5.20), and hence the lemma.
U

5.4. Proof of Theorem5.1L  We first prove a simple case.

LEMMA 5.12. Assume that all the conditions in Theorem 5.1 hold true, and
that |o (79, x0)| > % Then the result of Theorem 5.1 holds true at (rg, xg).

ProOOF Without loss of generality, we assumg= 0 and omit the super-

script 0.x0 a5 before. Thery > |0 (0, x0)| > 1 forve>o0. Choosings =0 in

Lemma 5.6, we get "
(5.29) A7 < Call+ & 1B+ 171,

Then one can easily get

Cn
t

By Theorem 3.1, we knowu, (0, xg) exists. By the same arguments as in
Section 4.3 or as in the proof of Lemma 5.11, one can show that

(5.30) E{IN2P|} < V> 0.

T
un(0.x0) = E{gCeNg + [ £ X, vonPar.
which, together with (2.1) and (5.26), implies that

¥ (xo0) T 4 (xo) } Cn¥ (x0)
JT +/0 i dt| < Nl

14, (0, x0)| < cn[
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That proves the lemma.[]

PROOF OFTHEOREM5.1. Fix (fg, xo) € I'". Without loss of generality, we
assumerg = 0 again. First if|o (0, xg)| > % then by Lemma 5.12, the results
hold true.

Now we assumeéo (0, xg)| < % Since (0, xg) € I'", there existy; € (0, T']
such that|o (11, n,,)| > 1 Since o, b are Lipschitz continuous inc and o

— n

is Holderee continuous in¢, there exist constants;, e2 > 0, depending only

on K, n anda such that for anyz, x) Dsl,gz(tl, N1y) 2 {(t,x):t €[t1 — &1, 11],
lx — n;| < &2}, it holds that|o (t, x) — o (t1, n,)| < 5. Thus,|o (1, x)| > 4 for
any (t,x) € Dq, ¢, (t1, n;,). We note that this also implies that> 1. Now we
chooser; 2 n— =%, 68 2 . Obviously, there existdz > 0, depending only
on K,n anda such thatDs;(0, xo) N ([f2 — 82, 2] X R) C Dgy ¢,(t1, n1y). NOW
for v (¢, x) € Ds;(0, xg) N ([t2 — 82, t2] x R), by Lemma 5.12, we have

Cay(¥) _ Cu¥p () _ Cup ()
T -t~ Jti—12 V82
where the last inequality is thanks to the fact thiatx) € Ds;(0, xg). Then

applying Lemma 5.11, we get, (0, xo)| < Cy[Cn¥r (x0) + ¥ (x0)] = Cp ¥ (x0).
U

|ux (2, %)] <

= Cp¥(x) < Cypy(xo),

5.5. Proof of Theorem 5.2 We first prove the theorem under (A3nstead
of (A3").

LEMMA 5.13. Assume (Al), (A2), (A3), (A4) and (A5). Then all the results
in Theorem 5.2 hold true.

PROOF.  First if f e Cg’l,g € C}, then by Theorem 3.1, we know
ueC%([0,T] x R) c COX(I") and Z, = (u,0)(t, X,). Sinceo (¢, X;) = 0 for
t > t, so (iii) holds true. (ii) is due to Theorem 5.1. Finally, for, x) € ', we
have|o (¢, x)| > % for somen. Then the representation formula in (i) follows the
proof of Lemma 5.12.

For the general case, one can easily prove the theorem by following the
approximating arguments in the proof of Theorem 4.4 (or Theorem 32).

We now assume only (A3. In this case (1.2) can be rewritten as
ur + 302Uy +buy + fi(t, x,u) =0;

u(T,x)=gx),

(5.31)
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whereb 2 b + f20. Recall that(X, Y, Z) is the solution to FBSDE (1.1). Define

tr-t ~
ii=v+ [ binar 02 {(nx): sup [o (s, 7] >0};
0 t<s<T
A N x 1
# Zinf{r: (. X,) ¢ FO); 2la o sup oG it = =l
t<s<T n

AW, 2 dW, — fo(1, X,) dt.

ThenW is a Brownian motion under another probability and one can rewrite (1.1)
as

t t ~
X,:x+/ b(r, Xr)dr+/ o(r,X;)dW,;
(5.32) 0 0

T T B
Y, = g(X7) +/ £ X, Y, dr —/ 7. dW,.
t t

LEMMA 5.14. Assume (Al) and (A3”). Then:

() T0=197=1. )
(i) There exist a constant C > 1, depending only on K, such that I'" C rer
and ™ c ¢ foranyn > 1.

PROOF (i) If (¢,x) ¢ T'0, theno(s,n’*) =0 for V¢ <s < T. So it holds
that b(s, n’*) = b(s,n'*). Sincen is the solution to (4.2), we have'* =
x + f, b(r,n’*)dr, which implies thatfi’:* = n-*. Therefore,o (s, 7t¥) =
o(s,n’*) =0, and, hencey, x) ¢ I'0. That i |s ' c 10, Similarly, one can prove
that'® c 1'% Sor% =0, Thenr = 7 follows immediately.

(ii) Fix (z, x). DenoteAn; 2 nb* —nh*. Then
Any = / B, Aty + (f20)(r, 75) dr,

whereg, = %ﬂb(r”’) is bounded. Thus, we have

sup |Ang| <C sup |o (s, 75%)].

t<s<T t<s<T
Note that
lo (s, ™) — o (s, 7)) < ClAnl.

Then sup_, 7 lo (s, )| < Csup;7 lo (s, 14|, and therefore[™ c [

On the other hand, sinde= b — f»0, one can similarly show thdt” c I'¢".
O
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PROOF OF THEOREM 5.2. (jii) is a direct consequence of Lemmas
5.13(iii) and 5.14(i). As to (i), for anyr, x) € I'*, by Lemma 5.14(ii)(¢, x) € [ ¢"

Gy (x)
for some constant. Applying Lemma 5.13, we get, (¢, x) < V=t

It remains to prove (i). By Lemma 5.13 and (5.31), we have c%1(I").
To prove the representation theorem, by standard approximating arguments,
it suffices to show that the integral in the right-hand side of the formula converges.
To this end, we fix artto, xo) € I'. That is,|o (to, x0)| > 0. Assuméo (fo, x0)| > %
for somen. Without loss of generality, we assume again that 0 and that

0 (0, x0) > % Recall the proof of Lemma 5.12. By (5.30) and noting that

|Y:| = |u(t, X;)| < Cy¥(X;), one can easily show that

T
(5.33) E{|g<XT>N‘T’|+ [ 1nc X,,Y»N,Omr}scn,w<xo><oo.

HereC,.r may depend o ~1 as well.
We finally show that

T
(5.34) E{ [ 1520 X029 dr} < Co1 ¥ (x0) < 00
0
To this end, we define
. 1
71 2 mf{t o(t, Xy) = Z} AT.

Then fort < 71, it holds thato (¢, X;) > % Thus, by (i) and (iii), we have
1Zi| = |(uxo)(t, X;)| < % Therefore,

T
E{/O | folt, Xt)Z,Nto|dt}

seel["+ [t
<C, E{/ W(Xt)|N0|dt}+CE{/r

T 4 (x0) ”
"Jo Vi(T —1)

T T 1/4 T 1 1/4
+CE{/ |Z,|2dt} E{/ t2|N,°|4dt} E{/ —Zdt}
0 O 1 t

< Ca¥r (x0) + Co¥ (x) E{zy B4,

—|Z;v/1N?| dt
(5.35) L Vi }

1/2

We follow the arguments in Lemma 5.6 to estimafé’. If 7, = T, thenz; * = 1.
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Now we assume; < T, theno (11, X+,) = 5-. Note thato (0, xo) > +. Thus,

1
— <0(0,x0) — 0 (11, X;) < |0(0, x0) — 0 (11, x0)| + |0 (11, X0) — 0 (71, X7,)|

2n
2 | Jovs dWs| o .
whereé = sup,.y <17 Then at least one of the following inequalities

holds true:

T1 1
<C[tf + | Xy — x0|] < C[rf + ‘/0 b(t, X,)dt‘ + Vo Vi dW;

<Cltf + 11 + 1, %),

1 1 13 1
> __ . > - >
T2 Zcn T 5260

In any case, we have
1
rl_l < C[? + 0t 4 p —I—n?’ég].

Since|y,| < C, applying Lemma 5.5, we gef{¢%} < C < oo. Thus,E{rl_l} <
C, < 0. Plugging this into (5.35) we get (5.34) and complete the proof for (i).
O
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