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SUBGEOMETRIC ERGODICITY OF STRONG
MARKOV PROCESSES

BY G. FORT AND G. O. ROBERTS

CNRS/LMC-IMAG and Lancaster University

We derive sufficient conditions for subgeometricf -ergodicity of strongly
Markovian processes. We first propose a criterion based on modulated mo-
ment of some delayed return-time to a petite set. We then formulate a criterion
for polynomialf -ergodicity in terms of a drift condition on the generator. Ap-
plications to specific processes are considered, including Langevin tempered
diffusions onR

n and storage models.

1. Introduction. This paper is devoted to the study of subgeometricf -ergo-
dicity of a strong Markov semigroup(P t )t≥0. That is, for a subgeometrically
increasing rate functionr := (r(t))t≥0, and a Borel functionf ≥ 1, we propose
sufficient conditions implying the limit

lim
t→+∞ r(t)‖P t(x, ·)− π(·)‖f = 0,

for π -almost all (a.a.)x, whereπ is the unique invariant probability measure.
Our main condition is couched in terms of modulated moments of return-times
to a “test-set.” In this form, this condition extends earlier criteria, implying dif-
ferent notions of stability (such as Harris-recurrence, positive Harris-recurrence,
ergodicity andf -ergodicity) for continuous-time Markov processes. This condi-
tion is also analogous to the criterion for subgeometricf -ergodicity of discrete
time Markov chains. We also derive a condition for polynomial ergodicity which
is easy to check in many applications. This condition is expressed in terms of
inequality on the semigroupgenerator, and is analogous to the so-calleddrift in-
equality in the discrete-time case.

We apply our results to the study of strongly Markovian processes, giving
three nontrivial examples, two of which are of considerable applied probabilistic
interest. We first consider a simple jump process as a toy example, demonstrating
that f -ergodicity at a logarithmic (resp. polynomial or subexponential) rate is
narrowly related to the existence of a logarithmic (resp. polynomial or sub-
exponential) moment of the mean-time spent in each state, with respect to the
jump distribution. We then consider Langevin tempered diffusions onR

n which are
relevant to Markov Chain Monte Carlo (MCMC) techniques since they construct
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a diffusion process with given stationary distributionπ (which only needs to
be available up to an unknown normalization constant). When the stationary
distribution is polynomial in the tails, the (simple) Langevin diffusion can not
be ergodic at a geometric rate and we show that it is polynomially ergodic. We
also consider Langevin tempered diffusion in which the diffusion matrix is a
scalar matrix with coefficientπ−2d , d > 0, and prove that even when the target
distribution is polynomial in the tails, a convenient choice of the temperature
d involves geometric ergodicity of the process. Finally, we study a compound
Poisson-process driven Ornstein–Uhlenbeck process which is used in storage
models and more recently in financial econometrics. It is known that when the
distribution of the jumpF has sufficiently light tails, the process is geometrically
ergodic. We investigate the case whereF is heavy tailed and establish the sub-
geometric ergodicity of the process under appropriate conditions in this case.

The paper is organized as follows. We first recall basic definitions on Markov
process, as well as reviewing existing results on ergodicity of strongly Markovian
process. The new criteria for subgeometric ergodicity are given in Section 2, and
the proofs are postponed to Section 4. Section 3 is devoted to the three examples
mentioned above.

1.1. Basic definitions on Markov process. LetX be a locally compact and sep-
arable metric space endowed with the Borelσ -field B(X). X = (�,A, (Ft )t≥0,

(Xt)t≥0,Px) is a X-valued Borel right process so that it is a temporally homo-
geneous Markov process, strongly Markovian with right-continuous sample paths
(see, e.g., [31]).Px (resp.Ex) denotes the canonical probability (resp. expectation)
associated to the Markov process with initial distributionδx , the Dirac distribution
at pointx. Let (P t )t≥0 be the associated Markov semigroup.

We recall basic definitions and properties on Markov process that will be used
throughout this paper. The processX is φ-irreducible for someσ -finite measureφ
onB(X) if

φ(A) > 0 �⇒ Ex

[∫ ∞
0

1A(Xs) ds

]
> 0 ∀x ∈ X.

If the process isφ-irreducible, there exists a maximal irreducibility measureψ that
dominates any irreducibility measure [24]. In fact, ifπ is an invariant measure,
that is,πP t = P t for all t ≥ 0, thenπ is a maximal irreducibility measure. Any
measurable set which is of positiveψ-measure is said to beaccessible. A set
C ∈ B(X) is νb-petite for the process (or simply petite) if there exists a probability
measureb (resp. nontrivialσ -finite measureνb) on the Borelσ -field of R+ [resp.
onB(X)] such that∫ ∞

0
P t(x, ·)b(dt) ≥ νb(·) for all x ∈ C.
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A φ-irreducible process always possesses an accessible closed petite set ([20],
Proposition 3.2). A process isHarris-recurrent if there exists aσ -finite measureφ
such that

φ(A) > 0 �⇒ Px

(∫ ∞
0

1A(Xs) ds =+∞
)
= 1, x ∈ X;

or, equivalently, if there exists aσ -finite measureµ such thatµ(A) > 0 �⇒
Px(τA < ∞) = 1 for all x ∈ X whereτA is the hitting time onA. Harris-recurrence
trivially implies φ-irreducibility. A Harris-recurrent right process possesses an
invariant measure [10]. In fact, when the invariant measure is finite,X is called
positive Harris-recurrent. A φ-irreducible process isaperiodic if there exist an
accessibleνδm -petite setC and t0 such thatP t(x,C) > 0 for all x ∈ C, t ≥ t0.
Meyn and Tweedie ([22], Proposition 6.1) show that a positive Harris-recurrent
process is aperiodic if some skeleton chainP m, m > 0, is irreducible, that
is, if there exists aσ -finite measureφ on B(X) such thatφ(A) > 0 �⇒
Ex[∑n≥0 1A(Xnm)] > 0 for all x ∈ X.

For Borel functionsf ≥ 1, g, define the norm|g|f := supx |g(x)|/f (x) and the
Banach spaceLf := {g, |g|f < ∞}. For a signed measureµ, the total variation
norm is given by‖µ‖TV := supA µ(A) − infA µ(A); and thef -norm (for some
Borel functionf ≥ 1), ‖µ‖f := sup{g,|g|f =1} |µ(g)|, so that the total variation
norm is the1-norm, where1 denotes the constant function1(t) = 1. The process
is ergodic if

∀x ∈ X, lim
t→∞‖P t(x, ·)− π(·)‖TV = 0,

andf -ergodic ifπ(f ) < ∞ and

∀x ∈ X, lim
t→∞‖P t(x, ·)− π(·)‖f = 0.(1)

Finally, X is geometrically (resp.subgeometrically) f -ergodic if the limit (1)
holds at a rater(t) := κt , for some κ > 1 [resp. r := (r(t))t≥0 for some
subgeometrically increasing rate]. A subgeometric rate is defined as follows
(see, e.g., [34]). Let
0 be the set of the measurable, bounded on bounded
intervals and nondecreasing functionsr :R+ → [1,∞), such that logr(t)/t ↓ 0
ast →+∞. Let
 be the set of the rates̄r := (r̄(t))t≥0 such that for somer ∈ 
0,
0< lim inf t r̄(t)/r(t) ≤ lim supt r̄(t)/r(t) < ∞. 
 is by definition, the set of the
subgeometric rates. For example,
 contains rates such as̄r(t) ∼ logβ(t + 1),
β ≥ 0, r̄(t) ∼ (1 ∨ tα) logβ(t + 1), α > 0, β ∈ R, and subexponential rates
r̄(t) ∼ exp(αtβ), α > 0, 0< β < 1.

Throughout this paper, we will often make comparison with (discrete time)
Markov chains; the unfamiliar reader can refer to [21].
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1.2. (f, r)-modulated moments and stability. Define the hitting-time on a
measurable setC, delayed byδ > 0,

τC(δ) := inf{t ≥ δ,Xt ∈ C},(2)

the momentτC(0) is denoted byτC . It is proved in the literature that modulated
moments ofτC(δ) for some closed petite set are related to Harris-recurrence,
positive Harris-recurrence,f -ergodicity and geometricf -ergodicity. For a Borel
function f ≥ 1, an increasing nonnegative rate functionr = (r(t))t≥0, δ > 0,
define the(f, r)-modulated moment

GC(x,f, r; δ) := Ex

[∫ τC(δ)

0
r(s)f (Xs) ds

]
.

R1. X is Harris-recurrent if and only if there exists a petite setC such that, for all
x ∈ X, Px(τC < ∞) = 1 ([20], Theorem 1.1).

R2. If X is Harris-recurrent with invariant measureπ , then forf ≥ 1, π(f ) < ∞
if and only if supx∈C GC(x,f,1; δ) < ∞ for some closed petite setC ([20],
Theorem 1.2).

R3. A positive Harris-recurrent process is ergodic if and only if some skeleton
chainP m is irreducible ([22], Theorem 6.1).

R4. A positive Harris-recurrent process isf -ergodic if (a) some skeleton chain
P m is irreducible, (b) supx∈C GC(x,h,1; δ) < ∞, whereh ≥ sups≤m P sf

and C is a closed petite set, and (c) for allx, GC(x,h,1; δ) < ∞ ([20],
Proposition 4.1 and [22], Theorem 7.2).

R5. A positive Harris-recurrent process is geometricallyf -ergodic if (a) some
skeleton chainP m is irreducible, (b) there exists a closed petite setC and
η > 0 andGC(x,h,exp(ηt); δ) is finite for all x, whereh ≥ 1 is a Borel
function such thatc1f ≤ ∫ ∞

0 exp(−t)P thdt ≤ c2f for some finite positive
constantsci , (c) supC GC(·, h,exp(ηt); δ) < ∞ ([5], Theorem 7.4).

In Section 2 we give a criterion of the form R1–R5 that implies subgeometric
f -ergodicity.

To date, little is known about general characterizations forf -ergodicity at
a subgeometric rate for Markov processes. However, we note some important
special cases which have been studied in the literature. The work by Ganidis,
Roynette and Simonot [9] is restricted (a) to convergence in total variation norm
and (b) to diffusion processes onRd with diffusion matrix equals to identity.
Their proof is based on spectral properties of the transition semigroup seen as an
operator, and differs from the probabilistic approach adopted in the present paper.
We will see in Section 3.2 how to improve their conclusions. Veretennikov [36]
and Malyshkin [19] deal with diffusion processes and can be read as a special
application of the present paper. The most related work to the present one is the
paper by Dai and Meyn [2] that considersf -ergodicity at a polynomial rate of
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a Markovian state process, in order to study the stability of multi-class queuing
networks. These results are particularly related to our work and we will describe
their results in Section 2.

1.3. Drift condition and generator. For a Borel function 0≤ V < ∞, denote
by AV the Borel function—when exists—such thatt → AV (Xt) is integrable
Px-almost surely (a.s.), and there exists an increasing sequence of stopping-time
{Tn}n such that for any stopping timeτ ,

Ex

[
V

(
Xτ∧Tn

) − V (X0) −
∫ τ∧Tn

0
AV (Xs) ds

]
= 0 for all x ∈ X, n ≥ 0.

WhenAV exists,V is said to be in the domain ofA. If there existsh such that
t → h(Xt) is integrablePx-a.s. andt → V (Xt)− V (X0) − ∫ t

0 h(Xs) ds is a right-
continuousPx -local martingale (with respect to the filtrationFt ), thenV is in the
domain ofA andAV = h [3]. If V is in the domain of the weak infinitesimal
generatorÃ, thenV is in the domain ofA andAV = ÃV [6]. If the functions
V andAV are right-continuous, these two sufficient conditions are equivalent and
ÃV = AV .

WhenAV satisfies a drift conditionAV ≤ −f + b1C for some closed setC,
and a nonnegative functionf such thatt → f (Xt) is integrablePx-a.s., we
haveGC(x,f,1; δ) ≤ V (x) + δb; this will be the basic tool to upper bound the
(f, r)-modulated moments.

Conditions onAV are analogous to conditions on the variationP mV − V

for a discrete time Markov chain with transition kernelP m. It is well known
that the conditionP mV − V ≤ −f outside a “test set” for the skeletonP m

is related (a) to thef -ergodicity of the Markov chain(Xkm)k [21]; (b) to the
geometricV -ergodicity iff = λV for some 0< λ < 1 [21]; (c) to the polynomial
V -ergodicity if f ∝ V 1−α for some 0< α ≤ 1 [8, 14]; (d) and more generally
subgeometricf -ergodicity isf ∝ φ(V ) for some concave functionφ [4]. Similar
results hold for a continuous Markov process. Meyn and Tweedie [23] prove that
the conditionAV ≤−f outside a closed petite set is related (a) to thef -ergodicity
of the Markov processX; and (b) to the geometricV -ergodicity if f ∝ V (see
also [5, 26, 29]). In Section 2 we establish that the casef ∝ V 1−α is related to
polynomialf -ergodicity.

2. Statements of the results. In Theorem 1, we establish that modulated
moment on some delayed hitting-time on a closed petite setC provides a criterion
for subgeometricf -ergodicity. We assume that there existδ > 0, a Borel function
f∗ ≥ 1 and a rate functionr∗ ∈ 
 such that

sup
C

GC(·, f∗,1; δ) < ∞, sup
C

GC(·,1, r∗; δ) < ∞.(3)

We will establish thatr∗ is the maximal rate of convergence (that can be deduced
from these assumptions) and it is associated to convergence in total variation norm,
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that is, in1-norm, which is the minimal one. On the other hand, we will show that
f∗ is the largest norm in which convergence occurs and the associated convergence
rate is the minimal one1.

Using an interpolation technique, we also derive a convergence rate 1≤ rf ≤ r∗
in 
 associated to somef -norm, 1≤ f ≤ f∗ (see [4] for a similar approach in
the discrete time case). The simplest interpolation technique is given by Hölder’s
inequality which yields [from (3)] supC GC(·, f p∗ , r

1−p∗ ; δ) < ∞. By analogy to
the discrete-time case, one would expect convergence inf

p∗ -norm at the rater1−p∗ ,
and we will prove the continuous time version of this result.

More generally, if there exists a pair of nondecreasing positive functions
(�1,�2) satisfying

�1(x)�2(y) ≤ x + y, x, y ≥ 1,(4)

then supC GC(·,�2(f∗),�1(r∗); δ) < ∞. We will establish that if�1(r∗) ∈ 
,
this condition yields convergence in�2(f∗)-norm at the rate�1(r∗). Young
functions are closely related to these pairs of functions(�1,�2), say. Specifically,
if (H1,H2) is a pair of Young functions, then(H−1

1 ,H−1
2 ) satisfies (4) (see,

e.g., [16], Chapter 1). LetI be the set of pairs of inverse Young functions,
augmented with the pairs(Id,1) and (1, Id). As commented above,I contains
the pairs((x/p)p, (y/(1− p))1−p), 0< p < 1, and, more generally, the pairs of
functions increasing at infinity as(xp lnb x, y1−p ln−b y) for some 0< p < 1 and
b ∈ R, p = 0 andb ≥ 0, p = 1 andb ≤ 0.

THEOREM 1. Let f∗ ≥ 1 be a Borel function and r∗ ∈ 
. Assume that:

(i) X is Harris-recurrent with invariant measure π , and some skeleton chain,
say P m, is ψ-irreducible.

(ii) There exist a closed petite set C and some δ > 0, such that (3) holds.
(iii) There exists a finite constant c such that supt≤m P tf∗ ≤ cf∗.

Then π is an invariant probability measure, π(f∗) < ∞ and for any pair � :=
(�1,�2) ∈ I,

lim
t→+∞{�1(r∗(t)) ∨ 1}‖P t(x, ·)− π(·)‖�2(f∗)∨1 = 0 for all x ∈ S�,

where S� , which is of π -measure one, is defined by

S� :=
{
x ∈ X,Ex

[∫ τC(δ)

0
�1(r∗(s))�2(f∗(Xs)) ds

]
< ∞

}
.

The proof of Theorem 1 is postponed to Section 4.1. We first verify that
�1(r∗(t)) ∨ 1 ∈ 
. Under (i) and (ii),C is accessible and the following lemma
holds ([22], Proposition 6.1).
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LEMMA 2. Suppose that X is positive Harris-recurrent with invariant
distribution π and some skeleton chain P m is irreducible. For any accessible petite
set C, there exist t0 > 0 and an irreducibility measure ν for the process such that
ν(C) > 0 and infx∈C inft≥t0 P t(x, ·) ≥ ν(·).

Based on this lemma and on condition (ii), the second step consists in proving
that the skeletonP m is irreducible, aperiodic and possesses a petite setA such that

sup
x∈A

G
(m)
A

(
x,�2(f∗),�1(r∗)

)
< ∞

(5)
with G

(m)
A (x, f, r) = Ex

[Tm,A∑
k=0

r(k)f (Xkm)

]
,

whereTm,A ≥ 1 is the return-time toA for the skeleton chainP m

Tm,A := inf{k ≥ 1,Xkm ∈ A}.(6)

By application of [35], Theorem 2.1, this proves that forπ -a.a. x,
limk→+∞ �1(r∗(k))‖P km(x, ·) − π(·)‖�2(f∗) = 0. Using Theorem 1(iii), the limit
still holds replacingr∗(k) (resp.P km) by r∗(t) (resp.P t ). We finally establish that
the limit holds for all the pointsx ∈ S� andπ(S�) = 1.

REMARK 3. Theorem 1 remains valid by substituting condition (i) for the
following condition: there exist aψ-irreducible, aperiodic and positive recurrent
transition kernelP m.

Theorem 1 remains valid by substituting (ii) and (iii) for the following
condition: there exist a closed petite setC and someδ > 0 such that supC GC(·, h,

1; δ) < ∞ and supC GC(·,1, r∗; δ) < ∞ whereh ≥ supt≤m P tf∗.
Condition (iii) implies that the semigroup(P t )t≥0 and the resolvent kernel

R = ∫ ∞
0 exp(−t)P tdt are bounded onLf∗ .

REMARK 4. By (4), it is readily seen that{x;GC(x,f∗,1; δ) + GC(x,1,

r∗; δ) < ∞}⊂ S� . It may be read from the proof that

lim
t→+∞{�1(r∗(t)) ∨ 1}‖µP t(·) − π(·)‖�2(f∗)∨1 = 0,(7)

for all probability measureµ such thatGC(x,�2(f∗) ∨ 1,�1(r∗) ∨ 1; δ) is
µ-integrable. Applying again (4), (7) holds for all distributionµ such that
{GC(x,f∗,1; δ)+GC(x,1, r∗; δ)} is µ-integrable.

REMARK 5. For any pair(�1,�2) ∈ I, if �1 strongly increases at infinity
[e.g.,�1(x) ∝ xp for somep < 1 close to one], then�2 slowly increases [�2(x) ∝
x1−p for some 1− p close to zero] ([16], Theorem 2.1, Chapter 1). Hence, the
stronger the norm, the weaker the rate (and conversely). This compromise between
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the rate function and the norm of convergence is well known for the discrete
parameter Markov chain ([35]; see also [4, 8, 14]). As expected, this property
remains valid for the continuous-time Markov process.

Corollary 6 provides a condition based onA, well adapted to prove polynomial
ergodicity.

COROLLARY 6. Let 1≤ V < ∞ be a Borel function and 0 < α ≤ 1. Assume
that:

(i) Some skeleton chain P m is irreducible.
(ii) There exists a closed petite set C such that supC V < ∞ and for all

α ≤ η ≤ 1, t → V η−α(Xt) is integrable Px -a.s. and

AV η ≤−cηV
η−α + b1C, 0≤ b < ∞,0< cη < ∞.(8)

Then there exists a unique invariant distribution π , π(V 1−α) < ∞ and for all
0< p < 1 and b ∈ R or p = 1 and b ≥ 0 or p = 0 and b ≤ 0,

lim
t→+∞(1+ t)(1−p)(1−α)/α(logt)b‖P t(x, ·)− π(·)‖V (1−α)p(lnV )−b∨1 = 0,

x ∈ X.

The proof is given in Section 4.2. From (ii), we obtainGC(x,V 1−α,1; δ) +
GC(x,1, (1+ t)1/α−1; δ) ≤ cV (x); and then we apply Theorem 1.

By choosingb = 0 andp = (1−κα)/(1−α) for some 1≤ κ ≤ 1/α, Corollary 6
yields

∀x ∈ X, lim
t→∞(t + 1)κ−1‖P t(x, ·)− π(·)‖V 1−κα = 0.(9)

If (9) holds for someV function, we shall say that the Markov chain is
polynomially ergodic with rate(1+ t)(1−α)/α .

REMARK 7. Corollary 6 can be compared to the paper by Jarner and Roberts
[14] for the discrete parameter case. They start with proving that if there exist a
Borel function 1≤ V < ∞, 0< α ≤ 1, a setC such that, for allα ≤ η ≤ 1,

P mV η − V η ≤−cηV
η−α + b1C, 0≤ b < ∞,0< cη < ∞,(10)

there existsc < ∞ such thatG(m)
C (·,V 1−α,1) + G

(m)
C (·,1, (1 + t)1/α−1) ≤ cV ,

where G
(m)
C is given by (5). The drift condition (10) is analogous to (8) and

the controls of the momentsG(m)
C and GC are similar. If, in addition,P m is

irreducible, aperiodic andC is petite for the skeleton,P m is positive with invariant
distributionπ such thatπ(V 1−α) < ∞ and for all 1≤ κ ≤ 1/α, the skeleton is
V 1−κα-ergodic with rate(n+ 1)κ−1. These rates coincide with those in (9).
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REMARK 8. From the proof of Corollary 6, it may be read than only a fi-
nite number of nested drift conditions is required; nevertheless, in practice, it is
not more restricting to verify a continuum of drift conditions than to verify a
finite number of drift conditions. More precisely, assumption (ii) can be substi-
tuted for the following conditions: (iii) there exist a closed petite set and func-
tions 1≤ Vq−1 ≤ cfq , such that for all integers 1≤ q ≤ p, AVq ≤ −fq + b1C ,
t → fq(Xt) is integrablePx-a.s., and supC Vp < ∞; (iv) there existsβ > 0 such

thatEx[τβ
C ] ≤ f1(x). If such, following the same lines as in the proof of Proposi-

tion 26, it may be proved thatGC(·,1, (t + 1)p−1+β; δ) +GC(·, fp,1; δ) ≤ cVp

for someδ > 0. Together with condition (i), this yieldsf 1−η∗ -ergodicity at a
rate (t + 1)(p−1+β)η for all 0 ≤ η ≤ 1, wheref∗ is any function satisfying
supt≤m P tf∗ ≤ fp.

Dai and Meyn [2] are, to our best knowledge, the first to exhibit this
kind of nested drift condition and, hence, the first to address ergodicity at
a polynomial rate; they proved this yieldsf1-ergodicity at a rate(t + 1)p−1

(Theorem 6.3, [2]). We are able to obtain the same result: to that goal, we observe

that conditions (iii) and (iv) are verified with functionsfk ≤ f
k/p
p , β = 1 (as a

consequence of Proposition 5.3 and equation (6.1) in [2]) andf∗ ∝ fp.

We proved that nested drift conditions on the generatorA provide a control of
momentsGC with a polynomially increasing rate function. The converse seems
to be an open question. We, nevertheless, make mention of Propositions 5.4
and 6.1 in [2], that provide a (partial) converse condition: from the condition
supC GC(·, f,1; δ) < ∞, they deduce a drift condition onA (we point out that this
single condition implies a continuum of conditions by using the same convexity
argument as in [14], Lemma 3.5). Unfortunately, this drift condition, in turn,
implies only a control of the momentGC(x,Rf,1; δ), whereRf (x) is a function,
which is, in general, difficult to compare withf .

3. Examples. In this section〈·, ·〉 and | · | denote, respectively, the scalar
product and the Euclidean norm inRn. If u is a twice continuously differentiable
real-valued function onRn, ∇u (resp.∇2u) denotes its gradient (resp. its Hessian
matrix); and∂u/∂xi its partial derivative with respect to theith variable. For a
matrixu, Tr(u) stands for the matrix trace andu′ the matrix transpose. Forr ∈ 
,
define the sequencer0 by r0(t) = ∫ t

0 r(s) ds. Finally, we largely make use of the
inequality r(s + t) ≤ r(s)r(t), s, t ≥ 0, which holds for any rater ∈ 
 ([34],
Lemma 1).

3.1. Toy example: jump process. Consider the jump process onZ+ such that
given thatXt = i, the waiting-time to the next jump has an exponential distribution
with expectationλ−1

i and is independent of the past history. We assume that
for all i ≥ 0, λi > 0, and supi≥0 λi < ∞. The probability that the jump leads
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to statej is given by the matrix entryQ(i, j). We consider the case when
Q(0, i) = pi and Q(i,0) = 1 for all i ≥ 1, for some positive sequence(pi)i≥1
such that

∑
i≥1 pi = 1. We assume, in addition, that

lim inf
i

λi = 0 and
∑
i≥0

piλ
−1
i < ∞.(11)

Since supi≥0 λi < ∞, there exists aZ+-valued right-continuous strong Markov
process satisfying the heuristic description above and such that, for all(i, j) ∈ Z

2+,
the limit exists

lim
t→0

P t(i, j)− δi(j)

t
=: A(i, j) < ∞,(12)

whereδi is the Dirac-mass at pointi, and for alli ≥ 1,

A(0,0) =−λ0, A(0, i) = λ0pi, A(i,0) =−A(i, i) = λi,(13)

andA(i, j) = 0 otherwise (see, e.g., [7], page 330).

LEMMA 9. The process is Harris-recurrent, reversible with invariant distrib-
ution π given by π(0) = {1+ ∑

j≥1 pjλ
−1
j }−1 and π(i) = piλ

−1
i π(0), i ≥ 1. Any

skeleton chain P m is irreducible.

PROOF. We haveEi[τ0] = (1 − 10(i))λ
−1
i and for all i ≥ 0, j �= i, δ > 0,

P δ(i, j) ≤ pj . Then,Ei[τ0(δ)] = δ + ∑
j≥1 P δ(i, j)Ej [τ0] ≤ δ + 2

∑
j≥1 pjλ

−1
j .

Hence, for alli ∈ Z+, Pi (τ0(δ) < ∞) = 1 and as{0} is a closed petite set, the
process is Harris-recurrent.π is the unique invariant probability measure (as
unique solution toπA = 0), and sinceX obeys the detailed balance, that is,
π(i)A(i, j) = π(j)A(j, i) for all i, j , the process is reversible. Finally, for all
m > 0, andi, j > 0,

P m(i, j) ≥ pjλ0λiλj

∫ m

0
ds exp(−λis)

×
∫ m−s

0
dt exp(−λ0t)

∫ m−(t+s)

0
duexp(−λju) > 0,

where the inequality says thatP m(i, j) is greater than the probability of a single
visit to 0 before a jump toj . Similarly, it is easy to prove thatP m(0, j) > 0 and
P m(j,0) > 0 for anyj ∈ Z+. This proves the irreducibility of any skeleton.�

We deduce from R3 that the process is ergodic. Nevertheless, this convergence
fails to occur at a geometric rate as shown in Lemma 10, the proof of which relies
on the notion of conductance.

LEMMA 10. X fails to be geometrically ergodic.
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PROOF. As X is reversible, any Markov kernelP m is reversible. It is proved
in [17] that for a reversible Markov kernelP m, the conductanceκm given
by κm := infA cm(A), where cm(A) := {π(A)π(Ac)}−1 ∫

A P m(x,Ac)π(dx), is
positive if and only ifP m is geometrically ergodic. We verify that for any skeleton
P m, the conductance is zero which will involve that the skeleton fails to be
geometrically ergodic. Consider the set of statesi such thatπ(i) ≤ 1/2. Then
cm(i) ≤ 2(1− P m(i, i)) ≤ 2(1− exp(−λim)) upon noting thatP m(i, i) is lower
bounded by the probability that the waiting-time in statei is greater thanm. Since
lim inf i→+∞ λi = 0, for all ε > 0, there exists a statei such thatcm(i) ≤ ε, which
involvesκm = 0. �

We now identify functionsV that are in the domain ofA.

LEMMA 11. Let 0≤ V < ∞ be a Borel function such that
∑

i≥1 piV (i) < ∞.
Then V is in the domain of A and AV = AV .

PROOF. For a functionf ≥ 0 such that
∑

j pjf (j) < ∞, the monotone
convergence theorem yields

∑
j≥1

lim
t↓0

P t(i, j)− δi(j)

t
f (j) = lim

J↑+∞

J∑
j=0

lim
t↓0

P t(i, j)− δi(j)

t
f (j) = Af (i);

in addition, supZ+ f −1|Af | < ∞. This proves thatV is in the domain of the weak
infinitesimal generatorA, and thus in the domain ofA. �

The expression of the generator suggests that functionV on the formλ
−ρ
i is

a candidate to solve the drift inequality (8). This yieldsf -ergodicity at a log-
polynomial rate.

PROPOSITION12. Assume that there exists β ≥ 1 such that
∑

i≥1 piλ
−β
i < ∞.

Then for all i ∈ Z+, 0< κ < β − 1 and b ∈ R or κ = 0 and b ≤ 0, or κ = β − 1
and b ≥ 0,

lim
t→∞(1+ t)β−1−κ [ln(1+ t)]b‖P t(i, ·)− π(·)‖1+λ−κ

x [ln(1+λ−1
x )]−b = 0.

PROOF. We apply Corollary 6: we chooseV ≥ 1 such that for alli ≥ 1,
V (i) = c−1V (0)λ

−β
i for somec > V (0). Then (8) is verified withα = β−1 and

the closed petite setC = {0}. �

Whenβ = 1 [i.e., with nothing more than the condition (11)], this establishes
the convergence in total variation norm at the rate1, which corroborates the
ergodicity of the process proved above. Nevertheless, if for someβ > 0, the sum∑

i≥1 pi(1 ∨ λ−1
i )[log(1 ∨ λ−1

i )]β exists, Corollary 6 does not yield a stronger
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convergence result than the ergodic one. We prove, by application of Theorem 1,
that covers more general rates than the polynomial ones, that convergence in
total variation norm occurs at the rater∗(t) ∼ [log(t)]β , and convergence in norm
f∗(x) = [log(1∨ λ−1

x ) + 1]β occurs at rate1. We also derive sufficient conditions
for subexponential ergodicity.

LEMMA 13. Let f∗ :Z+ → [1,∞) and r∗ ∈ 
 such that∑
j≥1

pj (1∨ λ−1
j )f∗(j) < ∞ and

(14) ∑
j≥1

pjλ
−1
j

∫ +∞
0

r∗(s)λj exp(−λj s) ds < ∞.

Then there exists a finite constant c such that for all m > 0, supt≤m P tf∗ ≤ cf∗.
For all δ > 0, there exists a finite constant c such that

G0(x, f∗,1; δ) ≤ c(1∨ λ−1
x )f∗(x),

G0(x,1, r∗; δ) ≤ c

∫ +∞
0

r∗(s)exp(−λxs) ds.

PROOF. Since P t(x, j) ≤ pj for all x �= j , it is trivial to prove that
supt>0 supi∈Z+ f −1∗ P tf∗ < ∞. Forf ≥ 1 andr ∈ 
,

G0(x, f, r; δ) ≤
∫ δ

0
r(s)P sf (x) ds + r(δ)

∑
j≥1

P δ(x, j)f (j)Ej [r0(τ0)].

Ej [r0(τ0)] = λj

∫
r0(t)exp(−λj s) ds = ∫

r(t)exp(−λj s) ds. �

PROPOSITION 14. (i) Assume that
∑

i≥1 pi(1 ∨ λ−1
i )[log(1 ∨ λ−1

i )]β < ∞,
for some β ≥ 0. For all 0 ≤ κ ≤ β, i ∈ Z+, limt→+∞[log(t + 1)]β−κ‖P t(i, ·) −
π(·)‖[1+log(1∨λ−1

i )]κ = 0.

(ii) Assume that
∑

i≥1 pi(1 ∨ λ−1
i )λ

−1/2
i exp(z2λ−1

i ) < ∞, for some z > 0.
For all 0 ≤ p ≤ 1, i ∈ Z+, limt→+∞ exp(2z(1 − p)t1/2)‖P t(i, ·) −
π(·)‖[1+λ

−1/2
i exp(z2λ−1

i )]p = 0.

PROOF. In both cases, apply Theorem 1; for case (i), setr∗(t) = {log(exp(β −
1) + t}β andf∗(i) = 1+ log(1∨ λ−1

i )β ; and for case (ii), setr∗(t) = exp(2zt1/2),

f∗(i) = 1 + λ
−1/2
i exp(z2λ−1

i ) and observe that
∫

exp(2zs1/2)λexp(−λs) ds ≤
1+ 2

√
πzλ−1/2 exp(z2λ−1). �
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3.2. Langevin tempered diffusions on R
n. Let us consider a stochastic integral

equation

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,(15)

where Wt is an n-dimensional Brownian motion, the drift coefficient
b = (b1, . . . , bn)

′ is on the form, 1≤ i ≤ n,

bi(x) = 1

2

n∑
j=1

ai,j (x)
∂

∂xj

logπ(x)+ 1

2

n∑
j=1

∂

∂xj

ai,j (x),

wherea = σσ ′ is then × n symmetric positive definite matrix. Such a diffusion
is the so-called Langevin diffusion and is defined in such a way thatπ is,
up to a multiplicative constant, the density of the unique invariant probability
distribution (with respect to the Lebesgue measure onR

n). This property motivates
recent interests in Langevin diffusion for their use as MCMC methods, where
the scope of these techniques is to draw samples from a Markov chain with
given stationary densityπ . The efficiency of these algorithms is linked to the rate
at whichf -momentsEx[f (Xt)] converge to the constantπ(f ). This motivates
the study of thef -ergodicity. In practice, discretizations of the continuous-time
process are used to solve the MCMC simulation problem and recent works
proved that it is possible to find methods of discretizing which inherit the
convergence rates of the continuous-time diffusion (see [27, 28, 30, 32, 33] for
methods of discretizing and their use in MCMC techniques). Roberts and Tweedie
proved that, on the real line, when the target densityπ is heavy tailed, the
Langevin diffusion witha := 1 cannot be geometrically ergodic. We complement
this assertion whenπ is polynomial in the tails, and prove that the Langevin
diffusion in the one-dimensional case, as well as in the multidimensional one,
is f -ergodic at a polynomial rate. For such polynomial target density on the
real line, it was observed in [13] that the polynomial rate of convergence of the
Metropolis–Hastings algorithm could be improved by choosing a heavy-tailed
proposal distribution. This idea, when adapted to the diffusion on the real line,
suggests the choice of a speed measure, that is, of the coefficientσ such that
σ is small when the process is close to the modes ofπ and big when far
from the modes [32]. In the multidimensional case, this suggestsa(x) on the
form π−2d(x)In, where In is the identity matrix onR

n, d > 0. In that case
(d > 0), we call these processes Langevin tempered diffusion (see [27] for the
justification of these heated diffusions). It was observed in the literature that
by choosingd large enough, a diffusion on the real line with target density
polynomial in the tails is geometrically ergodic. We investigate the behavior of this
Langevin tempered diffusion in the multidimensional case, contrarily to most of
the mentioned contributions that cover the one-dimensional case. In Theorem 16,
it is proved that, up to some critical temperatured∗, the diffusion is polynomially
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ergodic and that the largerd, the better the rate. Whend ≥ d∗, the diffusion is
geometrically ergodic. We henceforth consider a diffusion matrixa(x) = σ 2(x)In,
whereσ(x) := π−d(x) for somed ≥ 0. Assume the following:

A1. π is, up to a multiplicative constant, a positive and twice continuously
differentiable density onRn (with respect to the Lebesgue measure).

Define the drift vector

b(x) := 1

2
σ 2(x)

(∇ log{π(x)σ 2(x)}) = 1− 2d

2
π−2d(x)∇ logπ(x).(16)

Under A1, the coefficientsb andσ are locally Lipschitz-continuous, which implies
that for any compact setK , supx∈K{|b(x)| + |σ(x)|}(1 + |x|)−1 < ∞. These
local conditions allow the construction of a continuous process satisfying the
stochastic integral equation (15) up to the explosion timeζ := limn→∞ ζn, where
ζn := inf{t ≥ 0, |Xt | ≥ n}. We thus formulate the following assumption:

A2. The process is regular, that is,ζ =+∞ a.s.

Under A1, a sufficient condition for regularity is the existence of a twice
continuously differentiable nonnegative functionV and a constantc ≥ 0 such that
LV ≤ cV onR

n and limn→∞ inf|x|≥n V (x) =+∞ ([12], Theorem 3.4.1), whereL
is the elliptic operator

LV (x) = 〈b(x),∇V (x)〉 + Tr(∇2V (x)a(x))

2

= π−2d(x)

2

(
(1− 2d)〈∇ logπ(x),∇V (x)〉 +

n∑
i=1

∂2V (x)

∂x2
i

)
.

In the one-dimensional case, Has’minskii ([12], Remark 2, page 105) establishes
that the process is regular ifd is chosen such that∫

R

π2d−1(x) dx =+∞,(17)

since the functionV (x) := sign(x)
∫ x
0 Q(y)dy, where lnQ(x) = −2

∫ x
0 b(t) ×

σ−2(t) dt = (2d − 1)(lnπ(x) − lnπ(0)) is finite and satisfiesLV = 0 on R. To
cover the multidimensional case, we adapt this condition and claim that the process
is regular ifd is chosen such that∫ ∞

r
t1−n exp

(
−(1− 2d)

∫ t

r
s−1 sup

{x,|x|=s}
〈∇ logπ(x), x〉ds

)
dt =+∞.(18)

Indeed, the functionV (x) := U(|x|) where, for allu ≥ 0,

U(u) :=
∫ u

r
exp

(
−

∫ t

r
sup

{x,|x|=s}

{〈
2b(x)

σ 2(x)
,

x

|x|
〉
+ n− 1

|x|
}

ds

)
dt,
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is finite and satisfiesLV = 0 on R
n. In the one-dimensional case, condition (17)

is necessary for the existence of an invariant probability measure ([12], Remark 2,
page 105); thus, for the objective of this paper,d has to be chosen in the setD1
of the positive real numbers such that (17) hold. Observe thatD1 is nonempty
and contains{0,1/2}. In the multidimensional case, a necessary condition for
(positive) recurrence is thatd checks a condition on the form (18) where the
supremum is replaced by the infimum ([11], Theorem II, page 194). This involves
the definition of an intervalDn limiting the range of the possible temperatured.

Under A1 and A2, there exists a solution(�,F , (Ft ), (Wt), (Xt),P), where
(�,F , (Ft ), (Wt),P) is n-dimensional Brownian motion,(Xt)t is anFt -adapted
homogeneous and continuous Markov process with Feller transition probability,
satisfying (15)P-a.s. and such that both the integral exist, that is, for allt > 0,

P

(∫ t

0
b(Xs) ds +

∫ t

0
σ 2(Xs) ds < ∞

)
= 1.(19)

A transition semigroup(P t )t≥0 has the Feller property if for any continuous
bounded real-valued functionf , x → P tf (x) is continuous.(Xt) is thus a
strongly Markovian process as a (right)-continuous process with Feller transition
probability [6].

Let 0≤ V < ∞ be a twice continuously differentiable function such that there
exist a nonnegative Borel functionφ, bounded on compact sets, a constantb < ∞
and a compact setC such thatLV ≤−φ1Cc + b1C . From (19) and the continuity
of t → ∇V (Xt), the processt → ∫ t

0 σ(Xs){∇V (Xs)}′ dWs is a local martingale.
Application of Itô’s rule yieldsLV = AV .

A3. For all 1≤ i, j ≤ n, ∂2σ 2(x)/∂xi ∂xj and ∂2 logπ(x)/∂xi ∂xj are locally
uniformly Hölder continuous.

PROPOSITION 15. Under A1–A3, the process is reversible and π is, up to
a multiplicative constant, the density of an invariant probability measure. Any
skeleton chain is irreducible, and compact sets are closed petite sets.

PROOF. There exists a continuous functionp : (t, x, y) → p(t, x, y) such
that P t(x, dy) = p(t, x, y) dy ([15], Theorem 1.1). Since the process is regular
(or conservative, in the terminology of Kent [15]) andπ is Lebesgue integrable
([15], Theorems 4.1. and 6.2) imply that the process is time-reversible and

lim
t→∞

∫
A

p(t, x, y) dy =
(∫

π(x)dx

)−1 ∫
A

π(x)dx.(20)

Hence, π(dx) is invariant. Irreducibility of skeletons results from (20), and
petiteness of compact sets from the continuity ofp(t, ·, ·). �

Finally, we restrict our attention to densitiesπ that are polynomially decreasing
in the tails.
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A4. π satisfies A1 and A3 and there exists some 0< β < 1/n,

0 < lim inf|x|→+∞
|∇ logπ(x)|

πβ(x)
≤ lim sup

|x|→+∞
|∇ logπ(x)|

πβ(x)
< ∞,

2β − 1 < lim inf|x|→+∞
Tr(∇2 logπ(x))

|∇ logπ(x)|2 ≤ lim sup
|x|→+∞

Tr(∇2 logπ(x))

|∇ logπ(x)|2 < ∞.

Setγ = lim inf |x|→+∞ Tr(∇2 logπ(x))|∇ logπ(x)|−2.

This class is nonempty and contains the densities that are polynomially decreasing
in the tailsπ(x) = c|x|−1/β for large |x|, where 0< β < 1/n; in that case,γ =
β(2− n) > 2β − 1. For this family, the regularity criterion (17) or (18) says that
the temperatured has to be chosen inDn = [0, (1+β(2−n))/2]. For any density
in the class A4, 0< lim inf |x| |x|βπ(x) ≤ lim sup|x| |x|βπ(x) < ∞. Hence,D1 =
[0, (1 + β)/2] and forn ≥ 3, 1/2 /∈ Dn. If sups≥r sup{x,|x|=s}〈∇ logπ(x), x〉 =:
−�−1 < 0 exists, then[0,1/2+ �(1− n/2)] ⊆ Dn.

It is readily seen that settingV = 1+ sign(ρ)π−ρ outside a compact set, and
V = 1 otherwise,

LV =−|ρ|
2

V
π−ρ

1+ π−ρ
π2(β−d)

(21)

×
( |∇ logπ |

πβ

)2(
1− ρ − 2d + Tr(∇2 logπ)

|∇ logπ |2
)
,

for large |x|. As established in [32], Theorem 3.1, the diffusion cannot be
geometrically ergodic when 0≤ d < β: by choosingf := πd−β and applying Itô’s
formula,df (Xt) ≈ c1π

β−d(Xt) dt + c2 dWt for some constantsci ; and the drift
coefficient tends to zero for a large value of the process. The process(f (Xt))t fails
to be geometrically ergodic, and, henceforth,(Xt)t itself.

From (21), for large|x|,
LV ≤−cV 1−α whereα := 2ρ−1(β − d) andc > 0

⇐⇒ 1+ γ − ρ − 2d > 0.

In any cases, one has to chooseρ such thatc > 0. If α ≤ 0 andρ > 0, then the
process is geometricallyV -ergodic ([23], Theorem 6.1). If 0< α ≤ 1 andρ > 0,
the diffusion is polynomially ergodic as discussed in Section 2. Ifα ≤ 1 andρ

can be set negative, the process is uniformly ergodic, that is, there existκ > 1
and a constantc such that for allx, limt→∞ κt‖P t(x, ·) − π(·)‖TV ≤ c and the
convergence does not depend on the starting point. This yields Theorem 16: the
first assertion results from [28] and Corollary 6 of the present paper. The second
and third assertions result from [23], Theorem 6.1.
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THEOREM 16. Consider the Langevin tempered diffusion on R
n, where the

target density π is from the class A4 and σ := π−d for some d satisfying (17) if
n = 1 or (18) if n ≥ 2.

(i) If 0≤ d < β, the process fails to be geometrically ergodic. For all 0≤ κ <

1+ γ − 2β,

lim
t→+∞(t + 1)τ‖P t(x, ·)− π(·)‖1+π−κ = 0, τ <

1+ γ − 2β − κ

2(β − d)
.(22)

(ii) If β ≤ d < (1 + γ )/2, then for all 0 < κ < 1 + γ − 2d, the diffusion is
geometrically V -ergodic with V := 1+ π−κ .

(iii) If β < d, the diffusion is uniformly ergodic.

Theorem 16 extends earlier results to the multidimensional case and provides
polynomial rates of convergence of the “cold” Langevin tempered diffusions for a
wide family of norms. In the one-dimensional case, whend = 0 ([9], Result R3,
page 245) only claim that the convergence in total variation norm is polynomial,
with no explicit value of the rate of convergence. We establish that, for a given
π−κ -norm, the minimal rate of convergence is achieved withd = 0 and, in
that case, coincides with the rate of convergence of the symmetric random walk
Hastings–Metropolis algorithm with light proposal distribution [13]. By choosing
a diffusion matrix which is heavy where the target distribution is light, and
conversely, improves the rate of convergence as evidenced by (22). The critic
temperature isd = β. For d ≥ β, the diffusion is no more polynomially ergodic
and geometric rates can be reached. This critic temperature coincides with the
critic one given in [32], Theorem 3.1, for the real-valued diffusion.

REMARK (General diffusions on R
n). The techniques above can be adapted

for the analyzing of diffusions satisfying (15). Under conditions implying (a) the
existence of a solution, (b) the condition (i) of Corollary 6 and (c) the petiteness
property of the compact sets (see, e.g., [12, 19, 36]), we are able to prove that when
there existM,β,γ > 0 andl < 2 such that

sup
{x,|x|≥M}

|x|−(2+l)〈x, a(x)x〉 =: β, sup
{x,|x|≥M}

|x|−l Tr(a(x)) =: γ,

sup
{x,|x|≥M}

|x|−l〈b(x), x〉 =: −r for somer > (γ − βl)/2,

then the diffusion is polynomially ergodic and for allx, for all 0 ≤ κ < l +
β−1(2r − γ ),

lim
t→∞(1+ t)τ‖P t(x, ·)− π(·)‖1+|x|κ = 0, τ <

2(r + β) − γ

β(2− l)
− 1− κ

2− l
.
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3.3. Compound Poisson-process driven Ornstein–Uhlenbeck processes. Let
X be an Ornstein–Uhlenbeck process driven by a finite rate subordinator:

dXt =−µXt dt + dZt ,

where Zt := ∑Nt

i=1 Wi , {Wi}i≥1 is an independent and identically distributed
collection of random variables from probability measureF and {Nt }t≥0 is a
Poisson-process of finite rateλ, independent of the collection{Wi}i≥1. Such
processes are used as storage models (see, e.g., [18]) and have recently been used
in financial econometrics as models for stochastic volatility (see [1]).

The exponential decay ofX, except at jump points, leads to geometric
ergodicity ofX when the tails ofF(·) are sufficiently light. Here we shall explore
the case whereF(·) is extremely heavy-tailed. First we make this concept precise:
we say a probability measure isheavy-tailed if, under that probability measure, for
all κ > 0, E[eκX] = ∞. Now let G denote the law of the log jump sizes, that is,
G(A) = F(eA). We have the following negative result showing that for sufficiently
heavy-tailed jumps, geometric ergodicity and even ergodicity can fail. As usual, we
let π denote the invariant probability measure (should it exist).

LEMMA 17. (i) Suppose
∫

xG(dx) =∞, then X fails to be positive recurrent.
(ii) Suppose G is heavy-tailed, then X fails to be geometrically ergodic.

PROOF. SupposeX0 = 2 and consider the petite setC = [0,1]. Then

P(τC > t) ≥ P[ jump of size≥ eµt occurs before time log2/µ]
(23)

= (1− 2−λ/µ)

∫ ∞
µt

G(x)dx.

For positive recurrence, we require thatE(τC) to be finite, that is, thatP[τC > t]
be integrable. However, the integrated right-hand side of (23) is just∫ ∞

0
dt

∫ ∞
µt

G(x)dx =
∫ ∞

0
µ−1xG(x)dx =∞

by hypothesis, so thatE(τC) = ∞ too, so that positive recurrence must fail,
proving (i). For (ii), we recall that for geometric ergodicity, we require that for
someκ > 0, E[eκτC ] < ∞. (Although not necessary, we shall again assume that
X0 = 2 andC = [0,1].) Thus, from (23) we require that∫ ∞

0
eκt dt

∫ ∞
µt

G(x)dx = µκ−1
∫ ∞

0
(eκx − 1)G(µx)dx < ∞.(24)

However, this is precluded by the heavy-tailed nature ofG, thus proving (ii). �

Examples of jump distributions for which geometric ergodicity fails (case 2
above), though we will see thatX is positive Harris-recurrent, include the



SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES 1583

following:

F(dx) = dx

x(logx)k
at least fork > 1;

F(dx) = e−(logx)β dx

x
for someβ ≤ 1.

LEMMA 18. Suppose that for some r > 1,mr := ∫ ∞
0 [log(1+ u)]rF (du) < ∞.

Then, X is polynomially ergodic with rate (1+ t)(r−1).

PROOF. For differentiable functionsV in the domain ofA,

AV =
∫ ∞

0

(
V (x + u)− V (x)

)
λF(du) −µxV ′(x).

Now setV (x) = (logx)r , then by direct calculation,

AV η =
∫ ∞

0

((
log(x + u)

)rη − (logx)rη
)
λF(du)− µxrη(logx)ηr−1

x
.(25)

Now the finiteness ofmr merely ensures the finiteness of the first term on the
right-hand side of (25). So, noting that(logx)rη is concave beyondx = er−1 for
all 0 < η ≤ 1, we find that, in fact, the first term on the right-hand side of (25) is
bounded as a function ofx, so that for some positive constantc,

AV η ≤
∫ ∞

0

ur(logx)ηr−1

x
λF(du)c − rµ(logx)ηr−1.

It is easy to check that all bounded sets are petite in this example, and, therefore,
the conditions for the application of Corollary 6 withα = r−1. �

4. Proofs of Section 2. When not explicitly defined,c denotes a generic finite
positive constant.θ is the usual shift operator on the canonical probability space
of the strong Markov process.

LEMMA 19. If �−1 is a Young function and r ∈ 
0 (resp. 
), [�(r)∨1] ∈ 
0
(resp. 
).

PROOF. Let r ∈ 
0. �−1 is a continuous, increasing and convex function, so
� is measurable and bounded on bounded sets ([16], Chapter 1). Furthermore,
there exists a right-continuous nondecreasing functionφ such that ln�(r(t)) =
ln r(t) + ln{r(t)−1 ∫ r(t)

0 φ(s) ds}; thus proving that ln�(r(t))/t ↓ 0 as t → ∞.
This yields� ∈ 
0. The second assertion deduces easily from the definition of

 and the upper bound supt≥1 �(at)/�(t) < ∞ for all a > 0 ([16], Chapter 1,
pages 7 and 8).�

While Theorem 1 and Corollary 6 are claimed for a rate functionr ∈ 
,
Lemma 19 shows that they can be established for a rater ∈ 
0, and we will do so.
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4.1. Proof of Theorem 1. Without loss of generality, we assume�1(r∗) ≥ 1
and�2(f∗) ≥ 1.

LEMMA 20. Let r ∈ 
0 and f ≥ 1 be a Borel function. For any closed set C

such that supC GC(·, f, r; δ) < ∞, there exists a constant M < ∞ such that for all
x ∈ X and t ≥ δ, GC(x,f, r; t) ≤ M�t/δ�GC(x,f, r; δ).

PROOF. The proof is on the same lines as the proof of Lemma 4.1 in [20]
that addresses the caser = 1, and the details are omitted. Using the property
r(s + t) ≤ r(s)r(t) ([34], Lemma 1(d)), we obtainM = 1+ supt≥δ[r(t)/r0(t)] ×
supC GC(·, f, r; δ), which is finite since limt r(t)/r0(t) = 0 (this is a consequence
of [34], Lemma 1). �

PROPOSITION 21. Let r ∈ 
0 and f ≥ 1 be a Borel function. Assume that
X is φ-irreducible and supC GC(·, f, r; δ) < ∞ for some closed petite set C

and δ > 0. x → GC(x,f, r; δ) is finite ψ-almost surely for some (and then any)
maximal irreducibility measure ψ , and C is accessible.

PROOF. By [20], Proposition 3.2(ii), for allλ > 0, there exist a positive integer
m and a maximal irreducibility measureψ such thatψ(·) ≤ infx∈C Rm

λ (x, ·), where
Rλ is the resolvent kernel Rλ(x, ·) = ∫

λexp(−λt)P t (x, ·) dt .
By Lemma 20,RλGC(·, f, r; δ)(x) ≤ cGC(x,f, r; δ), wherec is finite for some
convenientλ. Hence,ψGC(·, f, r; δ) < ∞, proving the first statement. This
implies that there exists an accessible setB such that supx∈B Ex[τC(δ)] ≤
supx∈B GC(x,f, r; δ) < ∞. Then forq large enough, infx∈B Px(τC(δ) ≤ q) > 0
and, for anyx, Ex[ηC] ≥ P n(x,B) infx∈B Px(τC(δ) ≤ q) > 0 for somen depend-
ing upon(x,B). Hence,C is accessible. �

PROPOSITION22. Suppose assumptions (i) and (ii) of Theorem 1. Then:

(i) There exist t0 and a measure ν such that inft≥t0 infx∈C P t(x, ·) ≥ ν(·), and
ν(C) > 0.

(ii) For any set B such that ν(B) > 0,Ex[r0(Tm,B)] ≤ RBEx[r0(τC(δ))] for some
finite constant Rt,B .

(iii) For any t ≥ 0 and any accessible set B, Ex[r0(τB(t))] ≤ Rt,BEx[r0(τC(δ))]
for some finite constant Rt,B .

PROOF. (i) Results from R2, Proposition 21 and Lemma 2. (ii) Lett0 andν

be given by (i). Setτ = τC(t0 + m); and define the sequence of iteratesτ1 = τ

and for n ≥ 2, τn = τn−1 + τ ◦ θτn−1
. Finally, let (un)n≥2 be a {0,1}-valued

process given byun = 1 if X (τn−1+t0)/m!m ∈ B and 0 otherwise. t! denotes
the upper integer part oft . Thenun ∈ Hn with Hn = σ(Xt , t ≤ τn), and by the
strong Markov property,Px(un = 1|Hn−1) ≥ ν(C) > 0 for n ≥ 2. Finally, set
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η = inf{n ≥ 2, un = 1}, so thatEx[r0(Tm,B)] ≤ Ex[r0(τ η)]. Using again the strong
Markov property and the inequalityr0(t1 + t2) ≤ r0(t1)+ r(t1)r

0(t2) [34],

Ex[r0(τ η)] ≤ ∑
n≥2

Ex[r0(τn)1η≥n] =
∑
n≥2

{
ax(n) + sup

x∈C

Ex[r0(τ )]bx(n)

}
,(26)

for all n ≥ 2, whereax(n) = Ex[r0(τn−1)1η≥n] andbx(n) = Ex[r(τn−1)1η≥n].
Since, by Lemma 20, supC Ex[r0(τ )] < ∞, there exists 0< ρ < 1 and a finite
constantc such that

bx(n) ≤ ρbx(n − 1) + c
(
1− ν(C)

)n−1
,

ax(n) ≤ (
1− ν(C)

)
ax(n − 1) + bx(n− 1) sup

x∈C

Ex[r0(τ )];

andbx(2) = Ex[r(τ )], ax(2) = Ex[r0(τ )]. The proof is on the same lines as the
proof of [25], Lemma 3.1, and is omitted for brevity. Hence,Ex[r0(Tm,B)] ≤
c(Ex[r0(τ )] +Ex[r(τ )]) for somec < ∞. The proof is concluded, applying again
Lemma 20 and the bound supt≥a r(t)/r0(t) < ∞ for all a > 0 (see the proof of
Lemma 19).

(iii) B is accessible andC petite so there existt0 ≥ 0 andγ > 0 such that
infx∈C Px(τB ≤ t0 + t) ≥ infx∈C Px(τB ≤ t0) ≥ γ . Setτ = τC(t + t0) andun = 1
if for someτn−1 ≤ s ≤ τn−1 + t + t0, Xs ∈ B; andun = 0 otherwise. Following
the same lines as in the proof of (ii), it may be proved that there existsc < ∞
such thatEx[r0(τB(t))] ≤ cEx[r0(τC(t+ t0))]. The proof is concluded by applying
Lemma 20. �

PROPOSITION 23. Suppose assumptions (i) and (ii) of Theorem 1. For any
(�1,�2) ∈ I, C is a (�2(f∗),�1(r∗))-regular set for the process, that is,
supC GB(·,�2(f∗),�1(r∗); t) < ∞ for any t > 0 and any accessible set B.
GB(x,�2(f∗),�1(r∗); t) < ∞ for all x ∈ S� and π(S�) = 1.

PROOF. (�2(f∗),�1(r∗))-regularity is a consequence of Young’s inequal-
ity (4), the(f∗,1)-regularity ofC ([20], Proposition 4.1) and Proposition 22(iii).
For the second statement, write

GB

(
x,�2(f∗),�1(r∗); t)
≤ GC

(
x,�2(f∗),�1(r∗); t) + Ex

[∫ τB◦θτC(t)

τC(t)
�1(r∗(s))�2(f∗(Xs)) ds

]
.

The result now follows from the strong Markov property, Lemma 20 and the
inequality�1(r∗(s + t)) ≤ �1(r∗(s))�1(r∗(t)), which holds since�1 ◦ r∗ ∈ 
0.
Finally, π(S�) = 1 by Proposition 21. �
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PROPOSITION 24. Suppose assumptions (i) and (ii) of Theorem 1. The
skeleton chain P m is ψ-irreducible and aperiodic and possesses an accessible
petite set A such that for all (�1,�2) ∈ I,

sup
x∈A

Ex

[Tm,A−1∑
k=0

�1(r∗(k))�2(f∗(Xkm))

]
< ∞.(27)

PROOF. For the definitions of accessibility, smallness, petiteness and aperi-
odicity of a discrete-time Markov chains, see [21]. From Proposition 22(i),C is
small for the skeletonP m and the skeleton is aperiodic (Theorem 5.4.4, [21]). In
addition, by R2, the skeleton is positive andπ(f∗) < ∞. LetCn be a petite set (for
the skeletonP m) such thatA = C ∩ Cn is of positiveν-measure

sup
x∈Cn

Ex

[Tm,B−1∑
k=0

f∗(Xkm)

]
< ∞,(28)

for any accessible setB (for the skeleton); the existence of such a set is a
consequence of Theorems 14.2.3 and 14.2.11 in [21] and Proposition 22(ii). The
set A is accessible and petite for the skeleton. (27) now results from Young’s
inequality (4), (28) and Proposition 22(ii).�

PROOF OF THEOREM 1. By Proposition 24 and [35], Theorem 2.1 and
Proposition 3.2, limn→∞ �1(r∗(n))‖P nm(x, ·) − π(·)‖�2(f∗) = 0 for π a.a.x. By
Jensen’s inequality, the upper bound supt≥1 �2(at)/�2(t) < ∞ for all a > 0, and
assumption (iii), we have for allt ≤ m, P t�2(f∗) ≤ c�2(f∗). In addition, since
�1(r∗) ∈ 
, �1(r∗(n+ t)) ≤ c�1(r∗(n)) for all t ≤ m ([34], Lemma 1). Hence,

lim
t→∞�1(r∗(t))‖P t(x, ·)− π(·)‖�2(f∗) = 0, π a.a.x.(29)

We now prove that this convergence occurs for allx ∈ S� which is ofπ -measure
one, by Proposition 23. To that goal, we mimic the proof of [22], Theorem 7.2. By
Egorov’s theorem, there exists a setA, π(A) > 0, such that (29) holds uniformly
for all x ∈ A. For all Borel functions,g ∈ L�2(f∗), set ḡ := g − π(g). Since
�1(r∗) ∈ 
0,

�1(r∗(t))
∣∣Ex

[
ḡ(Xt )1τA≤t

]∣∣ ≤ �1(r∗(t))
∫ t

0
sup
y∈A

|P t−s ḡ|(y)Px(τA ∈ ds)

≤ M
{
Ex[�1(r∗(τA))] + Ex

[
�1(r∗(τA))1τA≥t/2

]}
,

where M = supy∈A sups≥0 r∗(s)|P sḡ|(y). Let x ∈ S� ; from Proposition 23,
Ex[�1(r∗(τA))]< ∞ and limt→∞ Ex[�1(r∗(τA))1τA≥t/2] = 0. Since the limit (29)
holds uniformly for allx ∈ A, M is finite. Hence, limt→∞ �1(r∗(t))|Ex[ḡ(Xt ) ×
1τA≤t ]| = 0 uniformly for allg ∈ L�2(f∗).
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Sinceπ(f∗) < ∞, |Ex[ḡ(Xt )1τA≥t ]| ≤ cEx[�2(f∗(Xt))1τA≥t ]. Following the
same lines as in the proof of [22], Theorem 7.2, using again supu≤m P uf∗ ≤ cf∗,
we obtain

�1(r∗(t))Ex

[
�2(f∗(Xt))1τA≥t

]
≤ c�1(r∗(m)) inf

0≤u≤m
�1

(
r∗(t − u)

)
Ex

[
�2(f∗(Xt−u))1τA≥t−u

]
.

By Proposition 23,GA(x,�2(f∗),�1(r∗);0) < ∞, which implies that the up-
per limit in the right-hand side is zero, proving that limt→∞ �1(r∗(t)) ×
Ex[�2(f∗(Xt))1τA≥t ] = 0. Hence, uniformly forg ∈ L�2(f∗), limt→∞ �1(r∗(t))×
|Ex[ḡ(Xt )1τA≥t ]| = 0. This concludes the proof.�

4.2. Proof of Corollary 6. Setf∗ := V 1−α andr∗(t) := (t + 1)1/α−1.

LEMMA 25. Suppose assumption (ii) of Corollary 6.For any α ≤ η ≤ 1, t ≥ 0,
and any Ft -stopping-time τ ,

cηEx

[∫ τ∧t

0
V η−α(Xs) ds

]
+ Ex[V η(Xτ∧t )] ≤ V η(x)+ bEx

[∫ τ∧t

0
1C(Xs) ds

]
.

PROOF. By definition ofAV ,

cηEx

[∫ τ∧t∧Tn

0
V η−α(Xs) ds

]
+ Ex

[
V η(

Xτ∧t∧Tn

)]

≤ V η(x) + bEx

[∫ τ∧t∧Tn

0
1C(Xs) ds

]
.

The right-hand side is upper bounded byV (x) + bt and by the monotone
convergence theorem, it converges toV (x) + bEx[∫ τ∧t

0 1C(Xs) ds] as n → ∞.
The lemma now results from Fatou’s lemma.�

PROPOSITION26. Suppose assumption (ii) of Corollary 6.For all δ > 0, there
exists c < ∞ such that for all x ∈ X, GC(x,1, r∗; δ) ≤ cV (x).

PROOF. Set q := �1/α�, where �·� denotes the lower integer part. By
Lemma 25, we haveEx[τC] ≤ cV α(x) and by Jensen’s inequality, we obtain

Ex[τα−1−q
C ] ≤ cV 1−qα(x). We prove by induction that for all integer 1≤ l ≤ q,

Ex[τα−1−l
C ] ≤ cV 1−lα(x). The casel = q holds; assume it is verified for some

2≤ l ≤ q. The induction hypothesis and Lemma 25 yield

Ex

[
τα−1−l+1
C

] ≤ cEx

[∫ τC

0
EXs

[
τα−1−l
C

]
ds

]

≤ cEx

[∫ τC

0
V 1−lα(Xs) ds

]
≤ cV 1−lα+α(x),
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which concludes the induction. Forl = 1, this yieldsGC(x,1, r∗;0) ≤ cV (x).
Finally, by standard manipulations and Lemma 25, we haveGC(x,1, r∗; δ) ≤
c(1+ P δV (x)) ≤ cV (x). �

PROOF OF COROLLARY 6. We check the conditions for the application of
Theorem 1. Lemma 25 and Proposition 26 implyGC(x,f∗,1; δ) ≤ cV (x) and
GC(x,1, r∗; δ) ≤ cV (x), from which we deduce the condition (ii) of Theorem 1,
and by R1, condition (i) of Theorem 1. Condition (iii) follows from Lemma 25.
Finally, S� = X. �
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