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SUMMATION TEST FOR GAP PENALTIES AND STRONG LAW
OF THE LOCAL ALIGNMENT SCORE1

BY HOCK PENG CHAN

National University of Singapore

A summation test is proposed to determine admissible types of gap
penalties for logarithmic growth of the local alignment score. We also define
a converging sequence of log moment generating functions that provide the
constants associated with the large deviation rate and logarithmic strong law
of the local alignment score and the asymptotic number of matches in the
optimal local alignment.

1. Introduction. In protein and DNA sequence matching, two sequences of
length m and n are aligned to determine if they have a segment each that is
significantly matched. A local alignment score is assigned according to the quality
of the matches in the alignment subtracted by penalties for gaps present within the
alignment. The gap penalty is of the form� + γ (k) [with γ (1) = 0], for a gap of
lengthk. The choice of�, also known as the gap initialization penalty, reflects our
belief in the frequency of segment insertion/deletion in the evolutionary process;
while the choice ofγ reflects our belief in the distribution of the length of the
segment that is inserted into or deleted from DNA or protein sequences.

The affine gap penalty function corresponds toγ (k) = δ(k − 1) for some
δ > 0 and is currently the most popular in sequence alignment programs (cf.
BLAST; [2]). Part of its popularity can be attributed to the recursive Smith–
Waterman algorithm (cf. [17]) that allows the local alignment score to be computed
in O(mn) time (cf. [11]). Much research has been done to understand the
asymptotic behavior of the local alignment score for affine gap penalties. In [3],
it was shown that the gap penalties can be essentially divided into two types;
according to whether the local alignment score grows at a logarithmic rate or
linear rate. Logarithmic rate of growth is statistically desirable and, hence, the
condition provided in the paper for determining logarithmic growth is useful in
practice.

Under the Hidden Markov Model (HMM) theory (cf. [10]), the local alignment
score for affine gap penalties is equivalent to the maximum likelihood score under
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the assumption that the length of segments inserted or deleted is geometrically
distributed. This does not agree with extensive empirical studies (cf. [4, 12])
which show that a heavier tail distribution is more likely and suggests the use
of long-range gap penalties that satisfyγ (k) = o(k). Common gap penalties that
have been considered are the power law [γ (k) = δ(k − 1)α for some 0< α < 1]
and the logarithmic [γ (k) = δ logk] gap penalties. Algorithms usingO(mn) time
for computing the local alignment score are available (cf. [14, 19] for global
alignments and [15] for local alignments). However, there has so far been little
understanding of the asymptotics of the local alignment score for these gap
penalties and questions about the appropriateness of these scores for statistical
analysis remains.

Over the past decade, there have been many advances in the use of alignment
algorithms for the prediction of RNA secondary structure from primary sequences;
see, for example, [5] and [18] for an overview of the underlying issues.
The interaction energy of base pairings are used to determine the scores of
similarity matrices, while unaligned regions are associated with loops, which
require a logarithmic “loop energy” for their formation, and this supports
the use of the logarithmic gap penalty function. The superior performance of
the logarithmic and power law gap penalty functions in deriving biologically
meaningful optimal alignments was confirmed in a detailed study by Dewey [9].
In the alignment of weakly related proteins, it was also observed that long
intervening loops are relatively nonconserved and best left unaligned (cf. [1]).
Long-range penalty functions, which encourages long gaps, are suitable for this
purpose.

In Section 2, we provide a simple summation test forγ that can determine
if logarithmic growth of the local alignment score is possible. Section 3
extends these results into a strong law under the additional assumption that
limk→∞ γ (k)/ logk = ∞. In Section 4 the asymptotic number of matches in the
optimal alignment was also shown to obey a strong law.

2. A summation test for gap penalties. Let A be a finite alphabet which
can be used to represent either the twenty amino-acids in protein sequences
or the four nucleotide bases in DNA sequences. LetK :A × A → R be a
similarity score matrix satisfyingK(a, b) = K(b, a) for all a, b ∈ A and let
g : {0,1, . . . } → [0,∞) with g(0) = 0 be a nondecreasing, concave [i.e.,g(k +
1) − g(k) ≤ g(k) − g(k − 1)] function. Let Z be the class of all nonempty
candidate alignmentsz = {(i(t), j (t)) : 1 ≤ t ≤ u}, wherei(1) < · · · < i(u) and
j (1) < · · · < j(u) are positive integers. We shall use the notationz(u) to signify
a candidate alignment withu pairs or matches. Throughout the text,| · | shall
denote the number of elements in a finite set and, in particular,|z(u)| = u. Given
sequencesxm = x1 · · ·xm andyn = y1 · · ·yn, wherexi, yj ∈ A for all i andj , we
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define

Sz(u)(xm,yn) =
u∑

t=1

K
(
xi(t), yj (t)

)
(2.1)

−
u−1∑
t=1

[
g
(
i(t + 1) − i(t) − 1

) + g
(
j (t + 1) − j (t) − 1

)]
if i(u) ≤ m andj (u) ≤ n. For completeness, defineSz(u)(xm,yn) = −∞ if either
i(u) > m or j (u) > n. Let the local alignment score

H(xm,yn) = sup
z∈Z

Sz(xm,yn).(2.2)

Under the null hypothesis of no relation betweenxm and yn, we assume
that x1, x2, . . . and y1, y2, . . . are independent and identically distributed with
probability measureµ satisfying µ(a) > 0 for all a ∈ A. Define µ(xm) =∏m

i=1 µ(xi) and assume that

E[K(x1, y1)] < 0, Kmax := max
a,b∈A

K(a, b) > 0.(2.3)

The local alignment score for gapless alignments, denoted byH∞, can be
expressed in the form (2.1)–(2.2) by settingg(k) = ∞ for all k ≥ 1. Its asymptotic
behavior was studied in [7, 8]. Letθ∗ be the unique positive solution to the
equationE exp[θK(x1, y1)] = 1. It was shown that under (2.3),H∞(xn,yn) has
an asymptotic Gumbel distribution and

H∞(xn,yn)/ logn → 2/θ∗ a.s. asn → ∞.(2.4)

Analogous to (2.1)–(2.2), we define

Rz(u)(xm,yn) = Sz(u)(xm,yn) − g
(
i(1) − 1

)
(2.5)

− g
(
j (1) − 1

) − g
(
m − i(u)

) − g
(
n − j (u)

)
,

G(xm,yn) = sup
z∈Z

Rz(xm,yn).(2.6)

G is known as the global alignment score and differs from the local alignment
score H in that unaligned letters both before and after the alignmentz are
penalized. If g is chosen such thatβ := limn→∞ E[G(xn,yn)/n] > 0, then
H(xn,yn)/n → β in probability and the gap penalty is said to lie in the linear
domain. Conversely, forβ < 0, there existsτ2 > τ1 > 0 such that limn→∞ P {τ2 >

H(xn,yn)/ logn > τ1} = 1 and the gap penalty is said to lie in the logarithmic
domain (cf. [3], Lemmas 2 and 3).

In some sequence alignment software, for example, XPARAL (cf. [13]), the
user is required to specify gap penalties of the formg(k) = � + γ (k) for k ≥ 1,
whereγ (k) = δ logk, γ (k) = δ(k − 1)1/2 or γ (k) = δ(k − 1) for someδ > 0.
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By Arratia and Waterman [3], it follows that ifγ (k) = δ(k − 1), theng lies in
the logarithmic region if the gap penalty is chosen large enough. However, it
is unclear for the casesγ (k) = δ logk and γ (k) = δ(k − 1)1/2 that logarithmic
growth of H is possible. Note that for these choices ofγ , the constantβ is
always nonnegative. This can be seen by considering an alignment with exactly
one match. In Theorem 1, we provide a summation test that will allow us to
determine the types ofγ for which logarithmic growth occurs when� is large. It
formalizes a statement in [16], where a rough heuristic is used to suggest that gap
penalties satisfying

∑∞
k=1 exp[−θ∗g(k)] < ∞ should be chosen for logarithmic

growth ofH .

THEOREM 1. Let g(k) = � + γ (k) for k ≥ 1 with γ (1) = 0.

(a) If
∑∞

k=1 exp[−θ̂γ (k)] < ∞ for some θ̂ < θ∗, then g lies in the logarithmic
domain for all large �.

(b) If
∑∞

k=1 exp[−θ̂γ (k)] = ∞ for some θ̂ > θ∗, then g lies in the linear domain
for all �.

(c) Let γ (k) = δ logk for some δ > 0. If δ > θ−1∗ , then g lies in the logarithmic
domain for all large �. Conversely, if δ < θ−1∗ , then g lies in the linear domain for
all �.

Let Zκ = {z ∈ Z : (1,1) ∈ z, |z| = κ}. Define

Gκ(xm,yn) = max
ζ∈Zκ

Rζ (xm,yn).(2.7)

For θ > 0, define

hκ(θ) = ∑
m,n≥κ

E exp[θGκ(xm,yn)], ψκ(θ) = loghκ(θ).(2.8)

To prove Theorem 1, we need to consider onlyκ = 1, but the strong law results
of Theorems 2 and 3 use the convergence ofψκ(θ)/κ as κ → ∞. We preface
the proof of Theorem 1 with Lemma 1, which uses an importance sampling
scheme to achieve a change of measure. Forκ = 1 andg(k) = � + δ(k − 1),
a modified version of this scheme was implemented in [6] for efficient simulation
of P {H(xm,yn) ≥ c}.

LEMMA 1. Let θκ be a positive root of ψκ(θ) = 0 (if it exists). Then

P {H(xm,yn) ≥ c} ≤ mnexp[θκ(κ − 1)Kmax]exp(−θκc).(2.9)

PROOF. Let us simulate(xm,yn) in the following manner:
1. Initialization step. Simulate(i∗, j∗) uniformly from {1, . . . ,m} × {1, . . . , n}

and letxi, yj ∼ µ for all i < i∗ andj < j∗. Initialize partial sumS = 0.
2. Repetition steps.
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(a) Simulation. Simulate(vr ,ws) from the measureν on the domain
⋃∞

r=κ Ar×⋃∞
s=κ As with

ν(vr ,ws) = exp[θκGκ(vr ,ws)]µ(vr )µ(ws).(2.10)

Note that bothr ands are random here, taking values in{κ, κ + 1, . . . }. Moreover,
ν is a probability measure becauseψκ(θκ) = 0.

(b) Check that segment generated is not too long. Ifi∗ + r − 1 > m or
j∗ + s − 1> n, go to step 3. Otherwise, proceed to (c).

(c) Updating. Let xi∗ · · ·xi∗+r−1 = vr , yj∗ · · ·yj∗+s−1 = ws and let
(new)(i∗, j∗) = (old)(i∗, j∗) + (r, s). Let (new)S = (old)S + Gκ(vr ,ws). If S ≥
c − (κ − 1)Kmax, go to step 3. Otherwise, repeat step 2.

3. Conclusion step. Simulatexi, yj ∼ µ for all i ≥ i∗ andj ≥ j∗.

Let Q denote the probability measure of(xm,yn) simulated in this manner and
let P(xm,yn) = µ(xm)µ(yn). Equation (2.9) clearly holds whenc ≤ (κ − 1)Kmax
so we may assume without loss of generality thatc > (κ − 1)Kmax. Let A =
{(xm,yn) :H(xm,yn) ≥ c}. For all (xm,yn) ∈ A, there existsz ∈ Z such that
Sz(xm,yn) ≥ c. Sincec > (κ − 1)Kmax, it follows that z has at leastκ matches
and can be expressed in the formz = {(i(t), j (t)) : 1≤ t ≤ λκ + q} for someλ ≥ 1
and 0≤ q < κ . Let ζ = {(i(t), j (t)) : 1 ≤ t ≤ λκ}, which is z without the lastq
matches. Sinceq ≤ (κ − 1) andSz(xm,yn) ≥ c, it follows that

Sζ (xm,yn) ≥ c − (κ − 1)Kmax.(2.11)

We break-upxi(1)xi(1)+1 · · ·xi(λκ) into λ segmentsv(1), . . . ,v(λ) with v(1) =
xi(1) · · ·xi(κ+1)−1, v(2) = xi(κ+1) · · ·xi(2κ+1)−1, . . . ,v(λ−1) = xi((λ−2)κ+1) · · ·
xi((λ−1)κ+1)−1 and for the last segment,v(λ) = xi((λ−1)κ+1) · · ·xi(λκ). Simi-
larly, yj (1)yj (1)+1 · · ·yj (λκ) is broken up intoλ segmentsw(1), . . . ,w(λ) where
w(1) = yj (1) · · ·yj (κ+1)−1, w(2) = yj (κ+1) · · ·yj (2κ+1)−1, . . . and for the last seg-
ment w(λ) = yj ((λ−1)κ+1) · · ·yj (λκ). (xm,yn) can be generated from the sim-
ulation scheme above if(i(1), j (1)) is simulated in step 1 [as(i∗, j∗)] and
(v(η),w(η)) are generated on theηth iteration of step 2(a). SinceSζ (xm,yn) ≤∑λ

η=1 Gκ(v(η),w(η)), it follows by (2.10) and (2.11) that

dQ

dP
(xm,yn) ≥ (nm)−1

λ∏
η=1

[
ν
(
v(η),w(η))/µ(

v(η))µ(
w(η))]

≥ (nm)−1 exp[θκSζ (xm,yn)](2.12)

≥ (nm)−1 exp{θκ [c − (κ − 1)Kmax]}.
This holds for all(xm,yn) ∈ A and, hence, (2.9) follows from the identityP(A) =
E[(dP/dQ)1A]. �
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PROOF OF THEOREM 1. SinceZ1 contains only the alignment{(1,1)}, it
follows thatG1(xm,yn) = K(x1, y1) − g(m − 1) − g(n − 1) and, hence, by (2.8),

h1(θ) =
[

1+ e−θ�
∞∑

k=1

e−θγ (k)

]2

E exp[θK(x1, y1)].(2.13)

Let
∑∞

k=1 exp[−θ̂γ (k)] < ∞ for some 0< θ̂ < θ∗. SinceE exp[θ̂K(x1, y1)] < 1,
we can find� large enough such thath1(θ̂) < 1. By (2.3) and (2.13),ψ1(θ) =
logh1(θ) → ∞ asθ → ∞ and, hence,ψ1(θ1) = 0 for someθ1 > θ̂ . By Lemma 1
with κ = 1,

lim
n→∞P {H(xn,yn) ≥ 3 logn/θ1} = 0.(2.14)

Since H ≥ H∞, the gapless local alignment score, it follows from (2.4) that
limn→∞ P {H(xn,yn) ≥ logn/θ∗} = 1 and, hence, (a) follows from (2.14). The
first part of (c) also follows from (a) by choosinĝθ ∈ (δ−1, θ∗).

We shall next show the second part of (c). Letg(k) = � + δ logk for some
δ < θ−1∗ . Let v(η) = xr(η−1)+1 · · ·xrη andw(η) = yr(η−1)+1 · · ·yrη for 1 ≤ η ≤ λ,
where λ and r are positive integers to be specified later. ThenG(xrλ,yrλ) ≥∑λ

η=1 H∞(v(η),w(η)) − 2(λ + 1)g(2r) and, hence, it follows from (2.4) that for
anyε > 0, there existsr large enough such that

E[G(xrλ,yrλ)] ≥ λE[H∞(xr ,yr )] − 2(λ + 1)g(2r)
(2.15)

≥ 2λ(1− ε)(logr)/θ∗ − 2(λ + 1)[� + δ log(2r + 1)].
Sinceδ < θ−1∗ , it follows from (2.15) that there existsε small enough andλ, r

large enough such thatE[G(xrλ,yrλ)] > 0 and, hence,g lies in the linear domain.
To show (b), pickδ ∈ (θ̂−1, θ−1∗ ). Since

∑∞
k=1 exp[−θ̂ (δ logk)] < ∞ and∑∞

k=1 exp[−θ̂γ (k)] = ∞, it follows thatγ (k) ≤ δ logk for infinitely manyk. Then
for anyε > 0, (2.15) holds for infinitely manyr and (b) follows by choosingλ, r

large enough andε small enough. �

3. Large deviations and the strong law of large numbers. In this section
we extend the large deviations and strong law results of Arratia and Waterman
[3] and Zhang [20] to gap penalties satisfying limk→∞ g(k)/k = 0, by-passing
the Azuma–Hoeffding inequality that was central to their proofs for the case
limk→∞ g(k)/k > 0.

THEOREM 2. Let g(k) = � + γ (k) for k ≥ 1, where γ (1) = 0 and
limk→∞ γ (k)/ logk = ∞. Then ψ(θ) = limκ→∞ ψκ(θ)/κ is well defined, convex
and finite for all θ > 0. Moreover, for all large �,

ψ(θ) = 0 has a unique positive root θ̃ .(3.1)

Under (3.1),the following also holds.
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(a) If min{m,n}/c → ∞ and log(mn) = o(c) as c → ∞, then

lim
c→∞−c−1 logP {H(xm,yn) ≥ c} = θ̃ .(3.2)

(b) H(xn,yn)/ logn → 2/θ̃ a.s. as n → ∞.

PROOF. Let κ, η be positive integers and considerxm,yn with m,n ≥ κ + η.
Let

�(xm,yn) = {(
v(1)
p ,v(2)

q ,w(1)
r ,w(2)

s

)
: xm = v(1)

p v(2)
q ,yn = w(1)

r w(2)
s

(3.3)
with p, r ≥ κ andq, s ≥ η

}
.

In other words,v(1)
p = x1 · · ·xp, v(2)

q = xp+1 · · ·xm, w(1)
r = y1 · · ·yr and w(2)

s =
yr+1 · · ·yn. For notational simplicity, we shall henceforth omit superscripts (1),
(2) when describing members of�(xm,yn). SinceGκ+η(xm,yn) = Sz(xm,yn)

for somez = {(i(t), j (t)) : 1 ≤ t ≤ κ + η} ∈ Zκ+η, it follows by selectingp =
i(κ + 1)− 1 andq = j (κ + 1)− 1 thatGκ+η(xm,yn) = Gκ(vp,wr )+Gη(vq,ws)

for some(vp,vq,wr ,ws) ∈ �(xm,yn). As µ(xm) = µ(vp)µ(vq) and µ(yn) =
µ(wr )µ(ws), the inequality

exp[θGκ+η(xm,yn)]µ(xm)µ(yn)

≤ ∑
(vp,vq ,wr ,ws )∈�(xm,yn)

exp[θGκ(vp,wr )]µ(vp)µ(wr )(3.4)

× exp[θGη(vq,ws)]µ(vq)µ(ws)

holds because there exists a term on the right-hand side of (3.4) that is equal to the
left-hand side. Noting that⋃

(xm,yn) : m,n≥κ+η

�(xm,yn) = {(vp,vq,wr ,ws) :p, r ≥ κ andq, s ≥ η}(3.5)

and that the left-hand side of (3.5) is a disjoint union, we can conclude from (3.4)
that, for allθ > 0,

ψκ+η(θ) = log

{ ∑
(xm,yn) : m,n≥κ+η

exp[θGκ+η(xm,yn)]µ(xm)µ(yn)

}

≤ log

{ ∑
(xm,yn) : m,n≥κ+η

[ ∑
(vp,vq ,wr ,ws )∈�(xm,yn)

exp[θGκ+η(vp,wr )]

× µ(vp)µ(wr )

× exp[θGη(vq,ws)]µ(vq)µ(ws)

]}
(3.6)
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= log

{ ∑
(vp,vq ,wr ,ws ) : p,r≥κ andq,s≥η

exp[θGκ(vp,wr )]µ(vp)µ(wr )

× exp[θGη(vq,ws)]µ(vq)µ(ws)

}

= log

{ ∑
(vp,wr ) : p≥κ andr≥η

exp[θGκ(vp,wr )]µ(vp)µ(wr )

× ∑
(vq ,ws ) : q≥κ ands≥η

exp[θGη(vq,ws)]µ(vq)µ(ws)

}

= ψκ(θ) + ψη(θ).

Moreover, ashκ(θ) ≥ E exp[θGκ(xκ ,yκ)] = {E exp[θK(x1, y1)]}κ andψκ(θ) =
loghκ(θ), it follows that

ψκ(θ)/κ ≥ logE exp[θK(x1, y1)] > −∞ for all θ > 0 andκ ≥ 1.(3.7)

The subadditive property (3.6) then ensures thatψ(θ) = limκ→∞ ψκ(θ)/κ is well
defined and finite. Sinceψκ(θ) is convex for allκ (see Section A.1), it follows that
ψ is convex and continuous.

Pick an arbitrary positivêθ < θ∗, whereθ∗ is the unique positive root of the
equationE exp[θK(x, y)] = 1. By (2.13),ψ1(θ̂) < 0 for all large� and, hence,
ψ(θ̂) ≤ ψ1(θ̂) < 0. By (2.3) and (3.7), limθ→∞ ψ(θ) = ∞ and, hence, a positive
solution θ̃ (> θ̂) of the equationψ(θ) = 0 exists. To show that̃θ is unique, it
suffices from the convexity ofψ to show that limθ→0 ψ(θ) = 0. Since

Gκ(xr ,ys) ≤ κKmax− g(r − κ) − g(s − κ),(3.8)

it follows that

hκ(θ) ≤ ∑
r,s≥κ

exp{θ [κKmax− g(r − κ) − g(s − κ)]}

= exp(θκKmax)

{ ∑
k≥0

exp[−θg(k)]
}2

and, indeed,ψ(θ) = limκ→∞[loghκ(θ)]/κ ≤ θKmax → 0 asθ → 0. Moreover,
by (3.7),ψ(θ) = limκ→∞ ψκ(θ)/κ ≥ logE exp[θK(x1, y1)] → 0 asθ → 0.

(a) It follows from (3.1) that there existsθκ → θ̃ such thatψκ(θκ) = 0 for all
largeκ . By Lemma 1 and asc−1 log(mn) → 0, it follows that

lim inf
c→∞ −c−1 logP {H(xm,yn) ≥ c} ≥ θκ .(3.9)
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To get the opposite inequality, define

ξκ(θ) = sup
r≥κ

log{E exp[θGκ(xr ,yr )]}.(3.10)

Clearly, Gκ+η(xr+s,yr+s) ≥ Gκ(xr ,ys) + Gη(xr+1 · · ·xr+s, yr+1 · · ·yr+s) and,
hence,

E exp[θGκ+η(xr+s,yr+s)] ≥ E exp[θGκ(xr ,yr )]E exp[θGη(xs,ys)].
By taking supremum overr and s, the superadditive propertyξκ+η(θ) ≥
ξκ(θ) + ξη(θ) holds. Sinceψκ(θ) ≥ ξκ(θ) for all κ , it follows that ψ(θ) ≥
limκ→∞ ξκ(θ)/κ . It shall be shown in Section A.2 that ifg(k)/ logk → ∞, then

ψ(θ) = lim
κ→∞ ξκ(θ)/κ for all θ > 0(3.11)

and, hence, there existŝθκ → θ̃ such that

ξκ(θ̂κ) = 0(3.12)

for all large κ . Let κ satisfy (3.12). It follows from (3.8) thatE exp[θGκ(xr ,

yr )] → 0 asr → ∞, and, hence, for allθ > 0, the supremum in (3.10) is attained
at somer ≥ κ . By (3.12), it follows that

E exp[θ̂κGκ(xr ,yr )] = 1 for somer (= rκ).(3.13)

Let vη = Gκ(x(r−1)η+1 · · ·xrη, y(r−1)η+1 · · ·yrη) and let Q be the measure
under whichv1, v2, . . . are independent withQ{vη = k} = exp(θ̂κk)P {vη = k}.
By (3.13), Q is a probability measure. LetTc = inf{� :

∑�
η=1 vη ≥ c}. Then

(dQ/dP )(v1, . . . , vTc) = exp(θ̂κ

∑Tc

η=1 vη) ≤ exp[θ̂κ (c + κKmax)] whenever
Tc < ∞. Hence,

P {Tc ≤ λ} ≥ exp[−θ̂κ (c + κKmax)]Q{Tc ≤ λ}(3.14)

for any positive integerλ. Pickλ = �min{m,n}/r	, where�·	 denotes the greatest
integer function. Since min{m,n}/c → ∞, it follows thatλ/c → ∞. By the law of
large numbers and asEQv1 > 0, we can conclude thatQ{Tc ≤ λ} → 1. By (3.14)
and asH(xm,yn) ≥ ∑λ

η=1 vη so that{H(xm,yn) ≥ c} ⊃ {Tc ≤ λ}, it folllows that

lim sup
c→∞

−c−1 logP {H(xm,yn) ≥ c} ≤ θ̂κ .(3.15)

(a) then follows from (3.9) and (3.15) by lettingκ → ∞.
(b) Let ε > 0 and selectκ large enough such thatψκ(θ) = 0 has a positive

solutionθκ . Select a subsequencenk = �k2/ε	 + 1. Then by Lemma 1,

∞∑
k=1

P
{
H

(
xnk

,ynk

) ≥ (2+ ε)(lognk)/θκ

} ≤ exp[θκ(κ − 1)Kmax]
∞∑

k=1

n−ε
k < ∞.



SUMMATION TEST AND STRONG LAW 1501

By the Borel–Cantelli lemma, it follows that lim supk→∞ H(xnk
,ynk

)/ lognk ≤
(2+ ε)/θκ a.s. Since lognk+1/ lognk → 1 andH(xn,yn) is nondecreasing inn, it
follows by choosingε arbitrarily small that

lim sup
n→∞

H(xn,yn)/ logn ≤ 2/θκ a.s.(3.16)

Let κ satisfy (3.12) and define a score matrix̃K on B := Ar (= Arκ )

[see (3.13)] by settingK̃(xr ,yr ) = Gκ(xr ,yr ). Let x(η) = x(η−1)r+1 · · ·xηr

and y(η) = y(η−1)r+1 · · ·yηr for all 1 ≤ η ≤ λ := �n/r	. Let H̃∞(xrλ,yrλ) =
H̃∞(x(1) · · ·x(λ),y(1) · · ·y(λ)) be the gapless local alignment score which treatsx(η),
y(η) as letters ofB and uses̃K as the score matrix. By (3.13), it follows that (2.4)
holds withH̃∞ in place ofH∞ andθ̂κ in place ofθ∗. Hence,

lim inf
n→∞ H(xn,yn)/ logn ≥ lim

λ→∞ H̃∞(xrλ,yrλ)/ logλ = 2/θ̂κ a.s.(3.17)

(b) follows from (3.16) and (3.17) by lettingκ → ∞. �

4. Asymptotic number of matches in the optimal local alignment. For
given sequencesxn,yn, let z be a candidate alignment satisfying

Sz(xn,yn) = H(xn,yn).(4.1)

The alignmentz is not unique in general, but to be specific, we shall assume that
there exists an ordering of the candidate alignments inZ and only the smallest
alignmentz with respect to this ordering that satisfies (4.1) shall be designated
as the optimal local alignment and denoted byz∗. Properties of the optimal
local alignment are less stable than the local alignment score because a slight
perturbation of the sequences, for example, changing one of the lettersxi or yj ,
can result in a very different optimal local alignment.

In this section our objective is to study|z∗|, the number of matches in the
optimal alignmentz∗. We shall show in Theorem 3 that under the assumptions of
Theorem 2,|z∗| ∼ 2 logn/θ̃ψ ′(θ̃) asn → ∞ whenever the derivativeψ ′(θ̃) exists.
SinceH(xn,yn) ∼ 2 logn/θ̃ by Theorem 2(b), this gives rise to the interpretation
of ψ ′(θ̃) as the asymptotic score per match of the optimal alignment. The convexity
of ψ ensures thatψ ′(θ) exists with the exception of countably manyθ . A more
detailed discussion of the existence ofψ ′(θ̃), involving measure theoretic issues,
is dealt with in Section A.3.

THEOREM 3. Let limk→∞ g(k)/ logk = ∞ and assume (3.1) holds. If ψ ′(θ̃)

is well defined, then |z∗|/ logn → 2/θ̃ψ ′(θ̃) a.s.

PROOF. Let Kλ be a score matrix satisfyingKλ(a, b) = K(a, b) + λ for all
a, b ∈ A. A superscriptλ in any notation defined previously will now be used to
signify that the score matrixKλ is used. If no superscript is used, it is understood
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that λ = 0. SinceG
(λ)
κ (xm,yn) = Gκ(xm,yn) + λκ for all (xm,yn), it follows

from (2.8) thatψ(λ)
κ (θ) = ψκ(θ) + λκθ and, hence,

ψ(λ)(θ) = lim
κ→∞ψ(λ)

κ (θ)/κ = ψ(θ) + λθ.(4.2)

By (4.2), ψ(θ̃ (λ)) + λθ̃ (λ) = ψ(λ)(θ̃ (λ)) = 0 = ψ(θ̃). Sinceθ̃ (λ) → θ̃ asλ → 0,
it follows that ψ ′(θ̃) = [ψ(θ̃ (λ)) − ψ(θ̃)]/[θ̃ (λ) − θ̃ ] + o(λ) = −(1 + o(1))λθ̃/

[θ̃ (λ) − θ̃ ] and, hence,

θ̃ − θ̃ (λ) = (
1+ o(1)

)
λθ̃/ψ ′(θ̃).(4.3)

Since H(λ)(xn,yn) ≥ S
(λ)
z∗ (xn,yn) = H(xn,yn) + λ|z∗| for all λ, it follows by

applying Theorem 2(b) on bothH(xn,yn) andH(λ)(xn,yn) that

lim sup
n→∞

|z∗|/ logn ≤ [(
2/θ̃ (λ)) − (2/θ̃)

]
/λ a.s. ifλ > 0,

(4.4)
lim inf
n→∞ |z∗|/ logn ≥ [(

2/θ̃ (λ)) − (2/θ̃)
]
/λ a.s. ifλ < 0,

and Theorem 3 follows from (4.3) by lettingλ → 0 in (4.4). �

APPENDIX

A.1. On the convexity of ψκ . Let θ > 0. We can expressψκ(θ) = log[∑k ak×
exp(bkθ)] with ak ≥ 0 andbk distinct. Letα(θ) = ∑

k ak exp(bkθ). Thenψ ′
κ(θ) =

α′(θ)/α(θ) andψ ′′
κ (θ) = [α′′(θ)/α(θ)] − [α′(θ)/α(θ)]2. Let Z be a discrete ran-

dom variable such thatP(Z = bk) = ak exp(bkθ)/α(θ). Thenψ ′′
κ (θ) = EZ2 −

(EZ)2 = Var(Z) ≥ 0.

A.2. Proof of (3.11). By the arguments just before (3.11), it suffices to show
that

ψ(θ) ≤ lim
κ→∞ ξ2κ(θ)/2κ.(A1)

Let f (κ)
r,s (θ) = E exp[θGκ(xr ,ys)] so thathκ(θ) = ∑

r,s≥κ f
(κ)
r,s (θ) and let�κ(θ) =

supr,s≥κ f
(κ)
r,s (θ). Let ε > 1 andθ > 0. By (3.8), it follows that

hκ(θ) = ∑
r,s≤εκ+κ

f (κ)
r,s (θ) + 2

∑
r>εκ+κ ands≤εκ+κ

f (κ)
r,s (θ) + ∑

r,s>εκ+κ

f (κ)
r,s (θ)

≤ (εκ + 1)2�κ(θ) + 2(εκ + 1)exp(θκKmax)
∑
k>εκ

e−θg(k)(A2)

+ exp(θκKmax)

{ ∑
k>εκ

e−θg(k)

}2

.
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Sinceg(k)/ logk → ∞, it follows that for anyλ > 1, g(k) > (λ logk)/θ for all
k > εκ whenκ is large and∑

k>εκ

exp[−θg(k)] <
∑
k>εκ

exp(−λ logk) <

∫ ∞
εκ/2

x−λ dx
(A3)

= (λ − 1)−1(εκ/2)−λ+1.

Let Kmin = mina,b∈A K(a, b). Since�κ(θ) ≥ f
(κ)
κ,κ (θ) ≥ exp(θκKmin), it follows

by choosingλ > θ(Kmax − Kmin)/ logε that the second and third terms on the
right-hand side of (A2) are dominated by the first term asκ → ∞. Moreover, as

Gκ

(
x(1)
r ,y(1)

s

) + Gκ

(
x(2)
s ,y(2)

r

) ≤ G2κ

(
x(1)
r x(2)

s ,y(1)
s y(2)

r

)
,(A4)

it follows thatf (κ)
r,s (θ)f

(κ)
s,r (θ) ≤ f

(2κ)
r+s,r+s(θ) for all r, s ≥ κ and, hence, by taking

supremum overr and s, we can conclude that[�κ(θ)]2 ≤ exp[ξ2κ(θ)]. Hence,
by (A2), (A3) and the arguments above,

ψ(θ) = lim
κ→∞[loghκ(θ)]/κ ≤ 2 logε + lim

κ→∞ ξ2κ(θ)/2κ.(A5)

(A1) follows by lettingε → 1 in (A5).

A.3. On the existence of ψ ′(θ̃). Fix a gap penaltyg such thatg(k)/ logk →
∞ and letK denote the space of all symmetric matrices onA × A such that
Kmax> 0 andψ(θ) = 0 has a unique positive solutioñθ . Induce a measure onK
via the Lebesgue measure on the upper triangular entries ofK . Let L = {K ∈
K :ψ ′(θ̃) does not exists}. We shall now show thatL has measure zero. Consider
the equivalence relationK1 ∼ K2 if there existsλ ∈ R such that

K1(a, b) = K2(a, b) + λ for all a, b ∈ A.(A6)

Let the superscriptK be used to signify the score matrix used. If (A6) holds, then
ψ(K1)(θ) = ψ(K2)(θ) + λθ [see line before (4.2)] and, hence,ψ(K1) has a well-
defined derivative atθ if and only if ψ(K2) has a well-defined derivative atθ . By
the convexity ofψ , there are countably many members in each equivalence class
such thatψ ′(θ̃) is not well defined. IfL is measurable, then a direct application of
Fubini’s theorem would show thatL has measure 0. To show thatL is measurable,
define the distance measure‖K −K∗‖ = maxa,b∈A |K(a, b)−K∗(a, b)|. Then by
the convexity ofψ(K),

L = ⋃
δ>0

⋂
ε>0

{
K ∈ K : θ̃ (K) > ε,

(A7)

ε−1[ψ(K)(θ̃ (K) + ε
) + ψ(K)(θ̃ (K) − ε

)]
> δ

}
,

whereδ, ε varies over 1, 1
2, 1

3, . . . . Since|G(K)
κ (xm,yn)−G

(K∗)
κ (xm,yn)| ≤ κ‖K −

K∗‖ for all κ , it follows that∣∣ψ(K)(θ) − ψ(K∗)(θ)
∣∣ ≤ θ‖K − K∗‖.(A8)
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By (A8), both ψ(K) and θ̃ (K) are continuous with respect toK and, hence,
ψ(K)(θ̃ (K) + ε), ψ(K)(θ̃ (K) − ε) are also continuous with respect toK . The sets
defined in (A7) are open andL is measurable.
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