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SUMMATION TEST FOR GAP PENALTIES AND STRONG LAW
OF THE LOCAL ALIGNMENT SCORE?

BY Hock PENG CHAN
National University of Snhgapore

A summation test is proposed to determine admissible types of gap
penalties for logarithmic growth of the local alignment score. We also define
a converging sequence of log moment generating functions that provide the
constants associated with the large deviation rate and logarithmic strong law
of the local alignment score and the asymptotic number of matches in the
optimal local alignment.

1. Introduction. In protein and DNA sequence matching, two sequences of
lengthm andn are aligned to determine if they have a segment each that is
significantly matched. A local alignment score is assigned according to the quality
of the matches in the alignment subtracted by penalties for gaps present within the
alignment. The gap penalty is of the form+ y (k) [with y (1) = 0], for a gap of
lengthk. The choice ofA, also known as the gap initialization penalty, reflects our
belief in the frequency of segment insertion/deletion in the evolutionary process;
while the choice ofy reflects our belief in the distribution of the length of the
segment that is inserted into or deleted from DNA or protein sequences.

The affine gap penalty function correspondsyttk) = §(k — 1) for some
8 > 0 and is currently the most popular in sequence alignment programs (cf.
BLAST,; [2]). Part of its popularity can be attributed to the recursive Smith—
Waterman algorithm (cf. [17]) that allows the local alignment score to be computed
in O(mn) time (cf. [11]). Much research has been done to understand the
asymptotic behavior of the local alignment score for affine gap penalties. In [3],
it was shown that the gap penalties can be essentially divided into two types;
according to whether the local alignment score grows at a logarithmic rate or
linear rate. Logarithmic rate of growth is statistically desirable and, hence, the
condition provided in the paper for determining logarithmic growth is useful in
practice.

Under the Hidden Markov Model (HMM) theory (cf. [10]), the local alignment
score for affine gap penalties is equivalent to the maximum likelihood score under
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the assumption that the length of segments inserted or deleted is geometrically
distributed. This does not agree with extensive empirical studies (cf. [4, 12])
which show that a heavier tail distribution is more likely and suggests the use
of long-range gap penalties that satisfgk) = o(k). Common gap penalties that
have been considered are the power lamk) = 6 (k — 1)* for some O< « < 1]

and the logarithmicy (k) = §logk] gap penalties. Algorithms using@ (mn) time

for computing the local alignment score are available (cf. [14, 19] for global
alignments and [15] for local alignments). However, there has so far been little
understanding of the asymptotics of the local alignment score for these gap
penalties and questions about the appropriateness of these scores for statistical
analysis remains.

Over the past decade, there have been many advances in the use of alignment
algorithms for the prediction of RNA secondary structure from primary sequences;
see, for example, [5] and [18] for an overview of the underlying issues.
The interaction energy of base pairings are used to determine the scores of
similarity matrices, while unaligned regions are associated with loops, which
require a logarithmic “loop energy” for their formation, and this supports
the use of the logarithmic gap penalty function. The superior performance of
the logarithmic and power law gap penalty functions in deriving biologically
meaningful optimal alignments was confirmed in a detailed study by Dewey [9].
In the alignment of weakly related proteins, it was also observed that long
intervening loops are relatively nonconserved and best left unaligned (cf. [1]).
Long-range penalty functions, which encourages long gaps, are suitable for this
purpose.

In Section 2, we provide a simple summation test fothat can determine
if logarithmic growth of the local alignment score is possible. Section 3
extends these results into a strong law under the additional assumption that
liMm_ o0 ¥ (k)/l0gk = 0c0. In Section 4 the asymptotic number of matches in the
optimal alignment was also shown to obey a strong law.

2. A summation test for gap penalties. Let A be a finite alphabet which
can be used to represent either the twenty amino-acids in protein sequences
or the four nucleotide bases in DNA sequences. KetA x A — R be a
similarity score matrix satisfyingK (a,b) = K(b,a) for all a,b € A and let
2:{0,1,...} — [0, 00) with g(0) = 0 be a nondecreasing, concave [igk +
1) — g(k) < g(k) — gk — 1)] function. Let Z be the class of all nonempty
candidate alignments = {(i(¢), j(¢)):1 <t < u}, wherei(l) < --- < i(u) and
Jj(1) <--- < j(u) are positive integers. We shall use the notati@n) to signify
a candidate alignment with pairs or matches. Throughout the tekt,| shall
denote the number of elements in a finite set and, in partidzlan| = u. Given
sequences,, = x1---x, andy, = y1---y,, Wherex;, y; € A for all i and j, we
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define

u
Sz(u) Xm s Yn) = Z K (xi(), yj o)
2.1) =

u—1
=Y [+ —i) =) +g(jt+1D —j@)—1)]
=1

if i(u) <m andj(u) <n. For completeness, defirfg,) (X, y,) = —oo if either
i(u) > mor j(u) > n. Let the local alignment score

(2.2) H (X, Yn) = SUPSz(X, Yn)-

2eZ

Under the null hypothesis of no relation betwegp andy,, we assume
that x1, x2,... and y1, y2, ... are independent and identically distributed with
probability measureu satisfying u(a) > 0 for all a € 4. Define u(X,,) =
[T 1 n(x;) and assume that

(23) E[K(XJ_, yl)] < 07 Kmax3= nga!)/i K(av b) > O

a,be
The local alignment score for gapless alignments, denoteddky can be
expressed in the form (2.1)—(2.2) by settin@) = oo for all k¥ > 1. Its asymptotic
behavior was studied in [7, 8]. L&, be the unique positive solution to the

equationE expf K (x1, y1)] = 1. It was shown that under (2.3}~ (X,, y,) has
an asymptotic Gumbel distribution and

(2.4) Hoo (X, Yn)/logn — 2/6, a.s. ast — oo.
Analogous to (2.1)—(2.2), we define
Rzu) Xm> Yn) = Szau) Xm, Yn) — g(i (1) — 1)
—8(j(D)=1) —g(m —i(w) —g(n —jw),
(2.6) G (X Yn) = Seuszz(xm, Yn)-

(2.5)

G is known as the global alignment score and differs from the local alignment
score H in that unaligned letters both before and after the alignneiatre
penalized. Ifg is chosen such thag := lim,_ - E[G(X,,Y,)/n] > 0, then
H(X,,Y,)/n — B in probability and the gap penalty is said to lie in the linear
domain. Conversely, fg8 < 0, there exists, > 1 > 0 such that lim_, o P{t2 >
H(X,,¥n,)/logn > 11} = 1 and the gap penalty is said to lie in the logarithmic
domain (cf. [3], Lemmas 2 and 3).

In some sequence alignment software, for example, XPARAL (cf. [13]), the
user is required to specify gap penalties of the farth) = A + y (k) for k > 1,
wherey (k) = §logk, y (k) = §(k — 1)Y/2 or y (k) = 8(k — 1) for somes > 0.
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By Arratia and Waterman [3], it follows that if (k) = §(k — 1), theng lies in

the logarithmic region if the gap penalty is chosen large enough. However, it
is unclear for the caseg(k) = slogk andy (k) = §(k — 1)1/2 that logarithmic
growth of H is possible. Note that for these choices )of the constanig is
always nonnegative. This can be seen by considering an alignment with exactly
one match. In Theorem 1, we provide a summation test that will allow us to
determine the types of for which logarithmic growth occurs when is large. It
formalizes a statement in [16], where a rough heuristic is used to suggest that gap
penalties satisfyind 72 ; expg—6.g(k)] < oo should be chosen for logarithmic
growth of H.

THEOREM1. Letg(k)=A+ y (k) for k > Lwithy (1) =0.

(a) If 22, exp—0y (k)] < oo for some & < 6, then g liesin the logarithmic
domain for all large A.

(b) 1f 22, exp—0y (k)] = oo for somed > 6, then g liesin thelinear domain
for all A.

(c) Let y (k) = 8logk for some s > 0.1f 8§ > 1, then g liesin the logarithmic
domain for all large A. Conversely, if § < 671, then g liesin the linear domain for
al A.

LetZ,={z€ Z:(1,1) € z,|z| = «}. Define
2.7 G X, Yn) = MaxR: X, Yn).
(2.7) X, Yn) ma ¢ s Yn)

Foré > 0, define
(2.8) he©) = > EexXpOGi(Xm, Yn)l, Vi (0) =logh,(6).

To prove Theorem 1, we need to consider anb¢ 1, but the strong law results
of Theorems 2 and 3 use the convergence/pfo)/x ask — oo. We preface
the proof of Theorem 1 with Lemma 1, which uses an importance sampling
scheme to achieve a change of measure.sFerl andg(k) = A + 8(k — 1),
a modified version of this scheme was implemented in [6] for efficient simulation
of P{H Xy, Yn) > c}.

LEMMA 1. Let 6, bea positiveroot of 4, (8) = 0 (if it exists). Then
(2.9) P{H (X, Yn) = c} < mnexp, (k — 1) Kmax] €XP(—6;c).
PROOF Let us simulatéx,,, y,) in the following manner:
1. Initialization step. Simulat€,, j,) uniformly from{1,...,m} x {1,...,n}

and letx;, y; ~ n forall i < i, andj < j,. Initialize partial sums = 0.
2. Repetition steps.
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(a) Simulation. Simulatév,, w;) from the measure on the domain J72, A" x
o2 A with

(2.10) V(Vy, Wy) = X0k G (Vr, We) ]t (V) it (Wy).

Note that both- ands are random here, taking values{inx + 1, ...}. Moreover,
v is a probability measure becaugg(6,) =0

(b) Check that segment generated is not too longi,lf-r — 1 > m or
jx +s — 1> n, goto step 3. Otherwise, proceed to (c).

(c) Updating. Let x;, - Xj,4r—1 = Vr, Yj, - Yjts—1 = Wy, and let
(newXiy, j«) = (0ld)(ix, ji) + (r,s). Let (new)S = (old)S + G, (v,, wy). If § >
¢ — (k — 1) Kmax g0 to step 3. Otherwise, repeat step 2.

3. Conclusion step. Simulatg, y; ~ u foralli > i, andj > j.

Let Q denote the probability measure ©f,, y,) simulated in this manner and
let P (X, ¥n) = i (Xm) it (Yr). Equation (2.9) clearly holds when< (x — 1) Kmax
so we may assume without loss of generality that (¢« — 1) Kmax. Let A =
{Xms Yn) - H( X, Yn) > c}. For all (X,,,,Y,) € A, there existsz € Z such that
S; (X, Yn) = c. Sincec > (k — 1) Kmax it follows thatz has at leask matches
and can be expressed in the forme {(i (¢), j(¢)):1 <t < Ak 4+ g} for somexr > 1
and 0<q < «. Let¢ ={@i@®), j(¥)):1 <t < Ak}, which is z without the lasly
matches. Since < (x — 1) andS; (X, ¥») > ¢, it follows that

(2.11) Se Xm,Yn) = ¢ — (K — 1) Kmax-
We break-upux;1yxi1y+1- - Xigw) into A segmentsvD, ... v®» with v(D =
X Xige4D)-1 VP = Xiger) - Xi@e4n-10 - VEY = xiaout)

Xi(h—Dk+1)—-1 and for the last segmenu(“ = Xi((A—Dx+1) " Xi(k)- Simi-
larly, y;1)yj@+1---Yjow) iS broken up intor segmentsv®, ... w® where
=Y Yjik+D)-1, w®@ = Vite+1) Vit —1s - - - and for the last seg-
ment W = yia—1e+1) - Yiow)- m,Yn) Can be generated from the sim-
ulation scheme above ifi(1), j(1)) is simulated in step 1 [asi., j:)] and
(v w) are generated on theth iteration of step 2(a). Sinc, (X, Yx) <
11 G (v, W), it follows by (2.10) and (2.11) that

Z—g(xm,yn (nm)~ 11_[ V('l) wm /,u(v(”)) (W(n))]

(2.12) > (nm)~ 1exp[9,< S X, Y]
> (nm) "L exp{f[c — (k — 1) Kmaxl}-

This holds for all(x,,, y,) € A and, hence, (2.9) follows from the identiB(A) =
E[(dP/dQ)14]. U
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PROOF OF THEOREM 1. SinceZ; contains only the alignmert(1, 1)}, it
follows thatG1(X,,, V) = K (x1, y1) — g(m — 1) — g(n — 1) and, hence, by (2.8),

2
o
(2.13) hi(6) = [1 +e AN e—QV(’O] E exploK (x1, y1)].
k=1
Let 322, exp—By (k)] < oo for some O< 8 < 6,. SinceE explfK (x1, y1)] < 1,
we can findA large enough such that (6) < 1. By (2.3) and (2.13)y1(0) =

loghi(8) — oo asé — oo and, henceyr1(61) = 0 for somed; > 6. By Lemma 1
with k =1,

(2.14) nli_)mooP{H(xn,yn) > 3logn/61} =0.

Since H > H, the gapless local alignment score, it follows from (2.4) that
lim,— oo P{H(Xy,Yn) > logn/0,} =1 and, hence, (a) follows from (2.14). The
first part of (c) also follows from (a) by choosirge (571, 6,).

We shall next show the second part of (c). lggk) = A + Slogk for some
8 <07t Letv = x,(p_1)41- - Xy @NAWD = Y,y 1)1+ yry fOr 1< <2,
where A and r are positive integers to be specified later. TR&X,, Yr).) >

2:1 Hoo (VD W) — 2(1 + 1)g(2r) and, hence, it follows from (2.4) that for
anye > 0, there existg large enough such that

E[G(Xrr, Yr)] = AE[Hoo (X, Yr)] — 20 + 1)g(2r)
> 21(1— £)(I0gr)/6s — 20+ + DA + 8log(2r + 1)].

(2.15)

Sinces < 6.1, it follows from (2.15) that there exists small enough and., r
large enough such th#&[G (x,,, ¥-,)] > 0 and, henceg lies in the linear domain.

To show (b), picks e (0~1,6,1). Since Y2, exd—0(8logk)] < oo and
Y req exp—0y (k)] = oo, it follows thaty (k) < §logk for infinitely manyk. Then
for anye > 0, (2.15) holds for infinitely many and (b) follows by choosing, r
large enough and small enough. [

3. Large deviations and the strong law of large numbers. In this section
we extend the large deviations and strong law results of Arratia and Waterman
[3] and Zhang [20] to gap penalties satisfying jimy, g(k)/k = 0, by-passing
the Azuma-Hoeffding inequality that was central to their proofs for the case
lim_ o0 g(k)/k > 0.

THEOREM 2. Let gk) = A + y(k) for k > 1, where y(1) = 0 and
liMg_ o0 ¥ (k)/l0gk = co. Then ¥ (0) = lim,_ o ¥ (8) /x iswell defined, convex
and finite for all & > 0. Moreover, for all large A,

(3.2) ¥ () = 0 has a unique positive root 6.
Under (3.1),the following also holds.
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(@) If min{m,n}/c — oo and log(mn) = o(c) asc — oo, then

(3.2) im_ —c7Yog P{H (X, Yn) = c} = 6.
(b) H(Xn,Yn)/logn — 2/6 a.s.asn — oo.

PROOFE Letk, n be positive integers and considef, y, with m,n >« + 7.
Let

53 MG y) = [V V2, WD, w®) 1, =vy 2y, = wOw®
' with p,r > k andgq, s > n}.

In other wordsyv' = x1-+-x,, V& = xp01- - x, WP = y1---y, andw? =

yr+1- - Yn. FOr notational simplicity, we shall henceforth omit superscripts (1),
(2) when describing members of (X, Y,). Since Gy Xm, Yn) = Sz(Xm, Yn)

for somez = {(i(1), j(t)):1 <t <k + n} € Z,,, it follows by selectingp =
i(k+1)—1andg = jk +1) —1thatG X, Yn) = G (Vp, W) + G (Vg, Wy)

for some (Vp, Vg, Wy, Ws) € TT(X, Yn)- AS (X)) = (V) (Vg) and p(y,) =
w(w,)u(wy), the inequality

eXF[QG,H_n K> Yr) 11t k) it (Y )
(3.4) < > expOG (Vp, W) i (V) i (Wy)

(Vp, Vg, Wr,Wy) €T (X1, Yn)
x eXpOG,(Vg, Ws) 11 (Vg ) 11 (Wy)
holds because there exists a term on the right-hand side of (3.4) that is equal to the
left-hand side. Noting that
(35) U H(Xm,)/n)={(Vp,Vq,Wr,Ws)1p,rZKandq,SZﬂ}
(Xm,Yn) i m,n>k+n

and that the left-hand side of (3.5) is a disjoint union, we can conclude from (3.4)
that, for allé > 0,

Vie+n(0) = log { Z explO Gy (X, yn)]ﬂ(xm)ﬂ(yn)}

Xim,Yn) :m,n>K+n

<log ! > [ > X0 G ety (V. Wr)]

K Yn) tm,n>k+n L (Vp, Vg, Wi, We) €T (X, Yn)

X L (Vp) (W)

(3.6) X EXHGGU(V(],Ws)],u(vq):u(ws):|}
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= Iog{ Z eXpOG, (Vp, W)l (V) (Wy)
(Vp, Vg, Wy,

Wy): p,r>k andgq,s>n

x expoG,(Vy, Ws)],u(Vq)M(Ws)}

= Iog{ Z queGl{(VpsWr)]M(Vp)M(Wr)
(VpaWr)

I p>k andr>p

X Z exqeGn(anWs)]ﬂ(vq)ﬂ(ws)}

(Vg,Ws) - g>k ands>n
= ¥ (0) + ¥y (0).

Moreover, agi, (6) > Eexd0G, (X, Yi)] = {E exp6 K (x1, y1)1} andy, () =
logh, (9), it follows that

(3.7) Y (0)/k > l0g E expOK (x1, y1)] > —00 forall & > 0 andx > 1.

The subadditive property (3.6) then ensures th@t) = lim,_, o ¥ (6)/x is well
defined and finite. Sincg, (9) is convex for allk (see Section A.1), it follows that
Y is convex and continuous.

Pick an arbitrary positivé < 6,, wheref, is the unique positive root of the
equationE expl0 K (x, y)] = 1. By (2.13),y1(0) < O for all largeA and, hence,
v (@) < ¥10) < 0. By (2.3) and (3.7), lim_,« ¥ (8) = oo and, hence, a positive
solutiond (> ) of the equationy (9) = 0 exists. To show thad is unique, it
suffices from the convexity of to show that ling_.o ¥ (6) = 0. Since

(38) G (Xr,Ys) <kKmax— g(r —«) — g(s —«),

it follows that

he(®) < Y explflx Kmax— g(r — k) — g(s — x)1}

r.Ss=>K

2
= exp(emea»{ > exp[—egac)]}
k>0
and, indeedyr (0) = lim, . o[l0gh, (6)]/k < 0 Kmax — 0 asé® — 0. Moreover,
by (3.7),v(0) =lim,_ s ¥ (0)/x > l0g E exp O K (x1, y1)] — 0 ast — 0.
(a) It follows from (3.1) that there existy — 6 such thaty, (6,) = 0 for all
largex. By Lemma 1 and as~1log(mn) — 0, it follows that

(3.9) limiinf —c " Yog P{H X, Yn) = ¢} > 6.
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To get the opposite inequality, define

(310) §c(0) = suplog{E expo G (X, yr)l}-

r=K

C|eaf|y, GK+r] (Xr-i—s’ yr+s) > G (Xr, ys) + Gn(xr—HI. s Xpdss Yr+1 yr—l—s) anda
hence,

E exqeGK-I—n(Xr-f—Sa yr+s)] = E eXFwGK (Xr» yr)]E eXFI@Gn(Xs, ys)]

By taking supremum over and s, the superadditive propertg, ,(©) >
£.(0) + £,(6) holds. Sincey, () > &.(0) for all «, it follows that ¢ (0) >
lim,— 00 & (0) /. It shall be shown in Section A.2 thatgfk)/logk — oo, then

(3.11) Y(6) = lim &@©)/c  forallo>0

and, hence, there exigis — 6 such that
(3.12) £@) =0

for all large «. Let x satisfy (3.12). It follows from (3.8) thak exp0G, (X,
y,)] — 0 asr — oo, and, hence, for a#h > 0, the supremum in (3.10) is attained
at somer > k. By (3.12), it follows that

(3.13) Eexpb,Ge (X, y,)]=1  forsomer (=ry).

Let v, = Gi(X(—1p+1- Xy Yo—Dn+1---Yrp) and let O be the measure
under whichvy, vo, ... are independent witlQ{v, = k} _exp(e k) P{v, = k}.
By (3.13), QO is a probability measure. Lel, = mf{ﬁ.anlv,, > c¢}. Then
(dQ/dP)(v1.....vr,) = expBc ¥, 3 v;) < explfc(c + kKma] whenever
T, < oco. Hence,

(3.14) P{T, <A} > exp—0, (¢ + k Kma)1O{T. < A}

for any positive integek. PickA = |min{m, n}/r|, where|-| denotes the greatest
integer function. Since mi{m, n}/c — oo, it follows thati /c — co. By the law of
large numbers and @ypv; > 0, we can conclude tha@{7,. < i} — 1. By (3.14)
and asH (X, Yn) > 2221 vy SO that{ H (X, Yn) > ¢} D {T. < 1}, it folllows that

(3.15) limsup—c~tlog P{H (X, Yn) > ¢} < b,

Cc—> 00

(a) then follows from (3.9) and (3.15) by letting— oc.
(b) Let ¢ > 0 and seleck large enough such that,(0) = 0 has a positive
solutioné, . Select a subsequengg= [k%¢] + 1. Then by Lemma 1,

Z P{H (Xu, Yn) = (24 €)(I0gni) /6, } < explb(k — 1) Kmad ) 1y * < 00
k=1
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By the Borel-Cantelli lemma, it follows that limspp., H (X, , Yn,)/10gn; <
(2+¢)/6, a.s. Since logy1/logny — 1 andH (x,, y,) is nondecreasing in, it
follows by choosing arbitrarily small that

(3.16) limsupH (X, Yn)/logn < 2/6, a.s.
n—oo

Let « satisfy (3.12) and define a score matrik on B := A" (= A'F)
[see (3.13)] by settingK (x,,y,) = G (X, Y,). Let X = x( 1,41+ Xy
and y™ =y 1,41 vy for all 1< < i := [n/r]. Let Ho(X,Yri) =
Hoo (XD ... x@® y@ .. yM)y) be the gapless local alignment score which treéits
y™ as letters ofB and useX as the score matrix. By (3.13), it follows that (2.4)
holds with H, in place ofH,, andg, in place ofo,. Hence,

(3.17) liminf H (x,.y)/logn > lim Hoo (X2, Yr)/logr=2/6,  a.s.
(b) follows from (3.16) and (3.17) by letting— occ. O

4. Asymptotic number of matches in the optimal local alignment. For
given sequences,, ¥,, let z be a candidate alignment satisfying

(4'1) SZ(Xn’ yn) = H(Xnv yn)

The alignment is not unique in general, but to be specific, we shall assume that
there exists an ordering of the candidate alignment® iand only the smallest
alignmentz with respect to this ordering that satisfies (4.1) shall be designated
as the optimal local alignment and denoted 4y Properties of the optimal
local alignment are less stable than the local alignment score because a slight
perturbation of the sequences, for example, changing one of the letters);,

can result in a very different optimal local alignment.

In this section our objective is to study.|, the number of matches in the
optimal alignmentz,. We shall show in Theorem 3 that under the assumptions of
Theorem 2|z,| ~ 2logn /8y (6) asn — oo whenever the derivative’ (9) exists.
SinceH (X,, Yn) ~ 2logn /6 by Theorem 2(b), this gives rise to the interpretation
of ¥/(9) as the asymptotic score per match of the optimal alignment. The convexity
of ¥ ensures that/’(9) exists with the exception of countably magyA more
detailed discussion of the existenceyof(®d), involving measure theoretic issues,
is dealt with in Section A.3.

THEOREM 3. Let lim;_. o g(k)/logk = co and assume (3.1) holds. If ¥/ (6)
iswell defined, then |z,|/logn — 2/0v’(0) a.s.

PROOF Let K; be a score matrix satisfyingf, (a, b) = K (a, b) + A for all
a,b € 4. A superscriptx in any notation defined previously will now be used to
signify that the score matriX, is used. If no superscript is used, it is understood
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that & = 0. Since G (X, Yn) = G X, Yn) + Ak for all (X, Ya), it follows
from (2.8) thatw,ﬁk)(e) =y (0) + Ac6 and, hence,

(4.2) yP©) = lim y 2 O)/k =9 6)+ 20,

By (4.2), y (™) + 10W = P (@W) = 0= ¢ (@). Sinced® — § asr — 0,
it follows that yv/(0) = [y (@™) — ¥ (6)]/[0P — 6] + o(r) = —(1 + o(1)AF/
[0 — @] and, hence,

(4.3) 6 —0% =(1+0)A8/y ).

Since H® (X, Y) > S (%, V) = H (X, Yn) + Alzi| for all A, it follows by
applying Theorem 2(b) on botH (x,,, y,,) and H ™ (x,,, y,) that
limsup|z.|/logn < [(2/6™) — (2/6)]/»  as.ifr >0,
(4.4) o _ _
liminf |z.|/logn = [(2/6™) = (2/)]/»  as.ifr <0,

and Theorem 3 follows from (4.3) by letting— 0 in (4.4). O
APPENDIX

A.l. Ontheconvexity of ¥,,. Let6 > 0.We can expresg, (9) = log[>_; ak x
exp(br0)] with a; > 0 andby distinct. Leta(0) = >, ax exp(brd). Theny, (0) =
o' (0)/a(0) andy,/(6) = [a”(0)/a(0)] — [/ (0)/a(6)]?. Let Z be a discrete ran-
dom variable such thaP(Z = by) = a; exp(bi8) /a(6). Theny(0) = EZ? —
(EZ)?=Var(Z) > 0.

A.2. Proof of (3.11). By the arguments just before (3.11), it suffices to show
that

(A1) Y (0) < lim &2 (6)/2¢.

Let £%)(6) = Eexpl0G (X, ;)] so thath (0) = ¥, -, f5(6) and lett,(8) =
SUR. > £%9(0). Lete > 1 andd > 0. By (3.8), it follows that
he@®= Y [f¥06)+2 > e+ > 120

r,s<ek+k r>ek 4k ands<e€ 4« r,s>ek+k

(A2) < (e + D20, () +2(c* + 1) expOx Kmad Y e 78®

k>gk

2
+ eXp(GKKmax){ > e—9g<k>} :

k>ek
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Sinceg(k)/logk — oo, it follows that for anyi > 1, g(k) > (Alogk)/6 for all
k > & whenk is large and
o0
> exp—0g(k)] < Y exp(—rlogk) < / x*dx
(A3) k>egk k> ek £/2
— ()\‘ _ 1)—1(8K/2)—)L+1.

Let Kmin = MiNn,_ pes K (a, b). Sincel,(0) > f,((,"K)(G) > exXp(@k Kmin), it follows
by choosingh > 8(Kmax — Kmin)/loge that the second and third terms on the
right-hand side of (A2) are dominated by the first termras oco. Moreover, as

(A4) Ge(XV. YY) + G (6. y,?) = Gac (V%2 y Py, ?).

it follows that £,%’(9) £ () < f,(i’;?,ﬂ(e) for all r, s > « and, hence, by taking

supremum over ands, we can conclude thdt, (9)]2 < expl&a.(0)]. Hence,
by (A2), (A3) and the arguments above,

(AS5) ¥ (0) = lim [logh,(0)]/x < 2loge + lim &2.(6)/2.
(A1) follows by lettinge — 1 in (A5).

A.3. On theexistence of w’(67). Fix a gap penalty such thatg(k)/logk —
oo and letX denote the space of all symmetric matrices.6n< + such that
Kmax > 0 andy () = 0 has a unique positive solutieh Induce a measure oK
via the Lebesgue measure on the upper triangular entrigs. dfet £ = {K €
X :¢/(6) does not exists We shall now show that has measure zero. Consider
the equivalence relatioki; ~ K> if there exists\ € R such that

(A6) Ki(a,b) = K2(a,b) +A  foralla,b e A.

Let the superscripk be used to signify the score matrix used. If (A6) holds, then
v KD (9) = (K2 (9) 4 10 [see line before (4.2)] and, hencg X has a well-
defined derivative a if and only if (X2 has a well-defined derivative &t By

the convexity ofyr, there are countably many members in each equivalence class
such thaty’(8) is not well defined. If£ is measurable, then a direct application of
Fubini's theorem would show that has measure 0. To show théatis measurable,
define the distance measur& — K*|| = maX, pe4 | K (a, b) — K*(a, b)|. Then by

the convexity ofy (K),

£:Uﬂ{K€J<:§(K)>8,

(A7) §>0e>0
8—1[¢(K)(§(K) +&) + 1p(K)(g(K) —¢)] > 8},
wheres,  varies over 13, 3, ... Since| G X, Vi) — GE? o, V)| < k|IK —

K*|| for all «, it follows that
(A8) [y ® @) — K@) <ok — K.
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By (A8), both y*) and 6K) are continuous with respect t& and, hence,
Y K@K 4 g), K@K — ¢) are also continuous with respectka The sets
defined in (A7) are open and is measurable.
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