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CLASSICAL SOLUTIONS TO REACTION-DIFFUSION SYSTEMS
FOR HEDGING PROBLEMS WITH INTERACTING ITO
AND POINT PROCESSES!

BY DIRK BECHERER ANDMARTIN SCHWEIZER
Imperial College London and ETH Zurich

We use probabilistic methods to study classical solutions for systems of
interacting semilinear parabolic partial differential equations. In a modeling
framework for a financial market with interacting 1td and point processes,
such PDEs are shown to provide a natural description for the solution of
hedging and valuation problems for contingent claims with a recursive payoff
structure.

1. Introduction. Reaction—diffusion systems are systems of semilinear par-
abolic partial differential equations which can interact in a possibly nonlinear way.
They appear as models for phenomena from various areas of applications, ranging
from ecological systems and biological pattern formation to chemical reactions;
see Smoller (1994) for references. This article is concerned with applications to
hedging and valuation problems in mathematical finance. Standard existence and
uniqueness results for reaction—diffusion systems may not apply here because the
coefficient functions of typical parametrizations in finance often are unbounded
or do not satisfy linear growth constraints. A first contribution of this article is
to address that issue by proving results on classical solutions in a fairly general
context. A second contribution is an integrated treatment of contingent claims in
the context of a flexible Markovian framework which incorporates new features
and includes more specific models studied so far. We use the developed PDE tech-
niques to provide results on the valuation and hedging of claims with a recursive
payoff structure.

The article is structured as follows. Section 2 contributes existence and
uniqueness results for classical solutions of reaction—diffusion systems by showing
existence of a unique fixed point of a suitable Feynman—Kac representation,
provided that the underlying diffusion stays within a given domain and the
coefficient functions satisfy local conditions. This first yields results under a
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1112 D. BECHERER AND M. SCHWEIZER

(global) Lipschitz condition on the interaction term, and these are extended to a
local Lipschitz condition by exploiting an additional monotonicity assumption on
the interaction. The latter arises naturally in valuation problems from mathematical
finance. Section 3 introduces for the subsequent applications a stochastic model
with interacting 1t6 and point processes and gives a construction by a change of
measure. The model consists of a system of stochastic differential equations which
describes the Markovian dynamics of an 1t6 proc&sand a further finite-state
process; driven by the point processes. This SDE system is nonstandard in that
the driving process can itself depend on the solution, similarly as in Jacod and
Protter (1982).

In Section 4, this framework is used as a model for an incomplete financial
market, withS describing the prices of tradable assets, for example, stock indices,
while the procesg represents further (not directly tradable) sources of financial
risk, for example, rating and credit events or the state of an insurance contract.
An important feature is that our model allows for a mutual dependence between
S andp, in that the drift and volatility ofS can depend on the finite-state procgss
while the intensities for changes gfcan in turn depend on the current valueSof
In the context of mathematical finance, this can be seen as both a fusion and a
generalization of a Markov chain modulated diffusion model of Black—Scholes
type, as in Di Masi, Kabanov and Runggaldier (1994), and of the Cox process
model for credit risk from Lando (1998) or the conditional Markov chain model,
respectively. Another contribution is that we not only study a pure pricing approach
under an a priori given pricing measure, but use a combination of valuation
and hedging ideas to determine both a valuation and a locally risk-minimizing
hedging strategy. Following Duffie, Schroder and Skiadas (1996), we allow for
claims whose payoffs can depend not just on the state vari&ldesln but also
on the valuation process of the claim itself. This leads to a recursive valuation
problem, and it turns out that reaction—diffusion systems as in Section 2 provide a
natural, convenient and constructive description in terms of PDEs for the solution
to valuing and hedging problems for such claims. Section 5 discusses application
examples and possible extensions, mainly with a view towards hedging of credit
risk. This illustrates the flexibility of our model and results and also relates them
to the existing literature on this topic which gained much interest recently; see
Jeanblanc and Rutkowski (2003) for an overview and more references.

2. Classical solutionsfor reaction—diffusion systems. In this section, we use
stochastic methods to derive existence and uniqueness resutiagsical solu-
tions of interacting systems of semilinear parabolic partial differential equations
(PDESs). Such systems are also knownreaction—diffusion equationand play
in subsequent sections a key role in our solutions to various valuation and hedg-
ing problems from mathematical finance. There we consider a Markovian setting
where an 1t6 procesS models the prices of the tradable assets, and further non-
traded factors of risk are represented by a finite-state proc&imilarly as in the
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Black—Scholes model, the solutions to our valuation and hedging problems can be
conveniently described via PDEs. But the nontradable factors leaditdeaact-

ing systenof PDESs; each single PDE corresponds to a possible stateanid the
interaction between the PDEs reflects the impact from the evolutionaof the
valuation.

We first derive results for PDE systems where the interaction satisfies a global
Lipschitz condition, and extend these to a type of monotonic local Lipschitz
interaction. The latter is relevant for the applications to valuation and hedging
problems. We strive for general assumptions on the coefficient functions which
are satisfied by typical financial models.

2.1. General framework. Fix m € N, a time horizorl" € (0, c0) and a domain
(open connected subsdd)in R?. For each starting point, x, k) € [0, T] x D x
{1,...,m}, consider the following stochastic differential equation (SDER¢h

X'k = xeD,
(2.1)

,
dXPF =Te(s, XEMYds + ) Sy (s, X0V dw!,  selt, T,
j=1

for continuous functiond;:[0, 7] x D — R and %4 ;:[0,T] x D — R4,

.....

'y and eachzy ; as ad x 1 column vector and define the matrix-valued function
%[0, T1 x D — R by 3 := (%4 ;)". Foranyk, [y and Xy j, j=1,...,7r,
are assumed locally Lipschitz-continuoustipuniformly in ¢:

For each compact subs#t of D,

there is a constant= c¢(KX) < oo such that
(2.2)
|G, x) =G, y)| <clx —y|

forallz €[0,T],x,y e K andG € {T'x, Zx.1, ..., Zk.r}-

By Theorem V.38 in Protter (2004), condition (2.2) implies that (2.1) has a
unique (strong) solution for any given tup(€, & ,F, P, W) up to a possibly
finite random explosion time. We impose the additional global and probabilistic
assumption that for aliz, x, k), the solutionX**** does not leaveD beforeT,

that is,

(2.3) P[x!**eDforallse[t, T]] =1

This includes thak’** does not explode to infinity:

P[ sup |X§’x’k| < oo] =1
s€lt,T]
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By Theorem I1.5.2 of Kunita (1984), (2.2) and (2.3) imply ti&t** has a version
such that

(2.4) (t,x,s5) — Xk is P-a.s. continuous.

2.2. Fixed points of the Feynman—Kac representatjganeralized solutions
For existence and uniqueness problems of nonlinear PDEs, it is common to
consider generalized solutions, namely solutions of a corresponding integral
equation. These in general require and possess less regularity, and additional
assumptions are needed to ensure that a solution to the integral equation is also
a classical solution to the PDE. See Chapter 6.1 of Pazy (1983) for an analytic
version of this approach and Freidlin (1985) for a probabilistic version.

For the PDE (2.8) that we consider below, the integral form of the stochastic
approach is the well-known Feynman—Kac representation. Since the PDE is
nonlinear, the solution itself appears within the expectation so that we have to
look for a fixed point. To make this precise, we start with continuous functions
h:D—R" ¢g:[0,T]x DxR™— R™andc:[0, T] x D — R™. Given sufficient
integrability, one can then define an operatoon functionsv by

(Fu)k@, x) .= El:hk(x;x,k)eff (5. XK ds
(2.5) )
+ / gk(s, X;’x,k’ U(S, X;’x’k))efrs Ck(u’Xlt{,x,k)du ds}
t

withk=1,...,m, (z,x) € [0, T] x D. Under suitable conditiong; has a unique
fixed point:

PROPOSITION2.1. Assumé2.2)and(2.3)hold. Leth, g andc be continuous
with 2 and g boundedand withc bounded from above in all coordinatéghenF
defines a mapping from the Banach spage= C,([0, T] x D, R™) of continuous
bounded functions: [0, T] x D — R™ into itself Assume further that, x, v) —
g(t, x, v) is Lipschitz-continuous im, uniformly in¢ and x, that is there exists
L < oo such that

lg(t, x,v1) — g(t, x,v2)| < Llvy — v2|
(2.6)
forall r € [0, T], x € D andvq, v € R™,

ThenF is a contraction onCj with respect to the norm

(2.7) lvllg:= sup e PT Do, x)]
(t,x)€[0,T1x D

for B < oo large enoughln particular, F has then a unique fixed poifte Cp.
PrROOE By the boundedness assumptions and (2.3), (2.4), the opdrator

mapsCy, into itself. The norm (2.7) is equivalent to the usual sup-normCen
and by assumptiorn; has values in—oo, K™ for some constank < [0, o).
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Using this and (2.6), we obtain for, w € C, andg > 0 that
e PT=DI(Foyk (1, x) — (Fw)* (1, %))

1 T
= =n B (6460, X0 vt X005
s Xk
— gt (s, XK (s, X1y el € 0 X du ds}
KT

T
e k t,x,k t.x.k
S WE[\/I‘ |g (S’Xs ,U(S,Xs ))

— gk(s, Xi,’x’k, w(s, Xﬁ,’x’k))|e_’3(T_s)e’3(T_s) ds]

eKT T B(T—s)
- _ )
<e,B(T—t)L”U w||ﬂ/; e ds

LKT
<

lv—wlig

forall (r,x) € [0, T1x D andk =1, ..., m. ThusF is a contraction fop > LeXT.
O

2.3. Classical solutions under local regularityNow define operatorsct,
k=1,...,m, on sufficiently smooth functiong : [0, T] x D — R by

(LX) x):iri(f x)a—f(t x)—l-} Xd: aij(t x) .2 ~(t, x)
’ i=1 NI 2% CT oxt gl

with
ax(t, %) = (& (t.3)); ;_y g 1= Talt. x)Bf (2, ).

Consider the following system of semilinear PDEs wih= 1,...,m and
boundary conditions at terminal tinfe

d
gvk(t,x) + L5k (e, x) + Kk, x)vk (e, x) + gk (e, x, v(t, x)) =0

(2.8) for (r,x) €[0,T) x D,
(T, x)=h*(x)  forxeD.

Thesen PDEs are interacting via theterm which may depend on all components

of v(t,x) = (V*(t, x))s=1....m. Our goal is to show that the fixed poiftfrom
Proposition 2.1 is the unique bounded classical solution to (2.8). To this end we
apply a Feynman—Kac type result from Heath and Schweizer (2001) that relies
on classical results by Friedman (1975) and requires only local assumptions on
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the coefficient functions. Note that the subsequent results do not require further
boundary conditions for the PDE (2.8); this is due to condition (2.3). We impose
the following additional conditions on the coefficients of the SDE (2.1) and the
PDE (2.8):

There exists a sequen¢®, ),y of bounded domains with closure
(2.9) D, < D such that J;° D, = D, eachD, has aCz—boundary, and
foreachn andk =1, ..., m,

the functions';, anda; = Xk E,tj are uniformly Lipschitz-continuous
on[0, 7] x D,

(2.11) detai(r,x) #0forall(z,x) € [0,T] x D,

(2.10)

(2.12) (t,x) — c(t, x) is uniformly Holder-continuous of0, 7'] x D,,,

213 (t, x,v) — g(t, x, v) is uniformly Hélder-continuous
(2:13) on[0, T] x D, x R™.

REMARK 2.2. We aim for a classical solution, not a generalized solution (as
already provided by Proposition 2.1) or a solution in some other weak sense; see,
for example, Pardoux (1999) for viscosity solutions of similar PDE systems. To
the best of our knowledge, the subsequent resultslassical solutiondiave not
been available so far under the assumptions given here.

Apart from the global condition (2.3), we only impose mild local conditions
on the coefficient functions; we assume them neither bounded nor satisfying a
global (linear) growth condition over the possibly unbounded donaifhis is
crucial because such restrictive assumptions could exclude parametrizations which
are typical in financial models; the only global condition (2.3) is probabilistic and
must be verified on a case by case basis, for instance by means of Feller’s test for
explosion. An example is given in Heath and Schweizer (2001).

Let us denote byC(ll;)2 = C(l};)z([o, T) x D,R™) the spaces of continuous
(bounded) functions : [0, T] x D — R™ which are of clas1? with respect
to (¢, x) € [0, T) x D. Note that thec1-2-condition is imposed only of0, T) x D
while continuity is required on all di0, 7] x D.

ProOPOSITION 2.3. Assume that(2.9)—(2.13)hold in addition to all the
assumptions for PropositioR.1. Then the systerf2.8) of interacting semilinear
PDEs has a unique classical solution (iT;}’Z, which is given by the fixed poirit
from Proposition2.1.

ProOOF Recalling thatF is a contraction orC;, by Proposition 2.1, we first
show thatF' maps bounded functions that are locally Hoélder-continuous {n, x)
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on[0,T) x D into Cg’z, and that for each sudh, the functionv := Fw satisfies
the following system ofn PDES with terminal conditions:

2vk(t, x) + L5, x) 4+ K, 0ok @, x) + gk(t, x, w(t,x)) =0,
(2.14)
(t,x)€[0,T) x D,
(T, x)=h*(x), xeD.

It is evident from the definitions of and F thatv satisfies the terminal condition
and is bounded, with a bound erthat depends only on the bounds fqrg andc.
To prove the above two assertions, it suffices to show for amy0 thatv is
in CL2([0, T — ¢) x D,R™) and satisfies (2.14) of, T — ¢) x D instead of
[0, T) x D. So fix arbitrarys € (0, T) andk € {1, ...,m},and letT’ .= T —¢. For
any(z,x) € [0, T'] x D, conditioning on¥z gives

K@, x) = (Fw)* (@, x)

Ty t.x.k toxdky 5k xRy a
—i—/ g (s, Xy™r w(s, XPr ))eff ", Xy ™) ”ds‘?T/iH
1

1,x,k

N E[Uk(T/, X;f’k) eftT/ ks, X5 ds

T/ k t.x.k tx.k fs k( X[’X’k)d
—I—/ ¥ (s, X0k (s, X1ky) ol X ”ds:|
t

by using the Markov property ak**-* for the last equality; compare the proof

of Theorem 1 in Heath and Schweizer (2001). Using that Theorem 1 and the
above representation far (¢, x) on [0, T'] x D, we obtain that(v*);—1 ., is

in C12([0, T) x D, R™) and satisfies the PDE

9
— ok, x) + L5 @, x) + K@, 0)vF (e, x) + g6 (e x, wit, x)) =0,

(2.15)
(t,x) €[0,T") x D,

if we can verify the assumptions [A1]-[A3] from Heath and Schweizer (2001).
[A1] and [A2] are precisely (2.2) and (2.3). We check the list TJAGf condi-
tions in Heath and Schweizer (2001) whose combination implies [A3]. Condi-
tions [A3], [A3a’] and [A3C] in Heath and Schweizer (2001) are exactly (2.9),
(2.10) and (2.12). By Lemma 3 in Heath and Schweizer (2001), the continuity
of ¥ in combination with (2.11) implies their condition [A3K{« is uniform el-
liptic on [0, T] x D,), andv € C, implies [A3€] (v is finite and continuous). To
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verify [A3d'] [i.e., (2.16) below], note thab is by assumption uniformly Holder-
continuous on the compact subs@@s7’] x D,. Hence (2.13) implies that the
composition

(2.16) (¢, x) > g(t,x,w(t, x)) is uniformly Holder-continuous of0, T'] x D,

which is [A3d]. Sinces > 0 was arbitrary, we conclude from (2.15) that=
(VF)i=1...m = Fwis in C}? and satisfies the PDE (2.14) 60 T) x D.

It follows that the fixed point € C;, from Proposition 2.1 is approximateddh
(i.e., in the sup-norm) by a sequen@g,),cn, = (Fuu—1)nen from CZ}’Z if we
choosevg = w locally Hélder-continuous iriz, x). To prove that) is an element
of Cg’z C Cj and satisfies (2.8), it suffices by the preceding argument to show that

(2.17) v is locally Holder-continuous i, x) on [0, T) x D.

To establish (2.17), we employ an a priori Holder estimate for the sequence
(vn)ren Which is local in(z, x) but uniform inzn. Let Q denote a bounded domain
with O € [0,T) x D, and letQ’ be some subdomain af having a strictly
positive distance t&dQ N (0, T), wheredQ denotes the boundary @. Then
there is aQ’-local Hélder estimate which holds uniformly for all functions of the
sequencév,). More precisely, there exist by Theorems 6 and 7 in Chapter 4.2 of
Krylov (1987) some constanse (0, 1) andN < oo such that the estimate
[k, x) — vk, X))

(2.18)

< N(Ivf o) + [18°(, vn-1) | Lasgg) (1 = ¥ +1e = 1Y)

holds for all (z,x), ¢/, x) e @', n e Nandk =1, ..., m. ThIS uses that (2.14)
holds forv = v, = Fv,—1 andw = v,_1; note also thaCb (Q) is contained

in the Sobolev spacéijl(Q) of Krylov (1987) because we can choogk

to have smooth boundary and use approximationsCBy-functions. By the
boundedness of) andg, the L> and L9t1-norms of the function$’,§(t,x) and

gk(t, x, vu_1(z, x)), respectively, with respect to Lebesgue measure are bounded
uniformly in n € N. In fact, we have (as already noted) a uniform bound on all
||UII;||L00(Q) in terms ofh, g andc, and

[ (s va1O) [ Lavaggy < Nl paracgy 188wy <00 fork=1,....m

Hence the first bracket on the right-hand side of (2.18) is bounded uniformly in
For any suchQ’, this yields aQ’-local Holder estimate for the sequen@g), cn
that is uniform inn. It follows that the (uniform) limito € C,, is locally Holder-
continuous. This establishes (2.17).

Uniqueness follows by the usual Feynman—Kac argument. In fact, we apply
Ito’s formula to the process® (s, X:-%k) exp(f* cf(u, X,:%*)du), s € [t, T), and
use the PDE to show that any solutior C,}’Z to (2.8) is given by the Feynman—
Kac representation and therefore a fixed poinfFoSince the fixed point is unique,
thisyieldsv =v. O
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2.4. Classical solutions under monotonic interactiorizor our applications in
the context of hedging and pricing in finance, we need a solution to the PDE
system (2.8) with a functiog € C1([0, 7] x D x R™ R™) which is usually
unbounded offi0, T] x D x R™, but locally bounded im in the sense that
g(t, x,v) is bounded of0, T] x D x KX

(2.19)
for any compact subset’ of R™,

and satisfies a monotonicity assumption of the following type:
There existk1, K2 € [0, o0) such that foralk =1, ..., m we have
g5t x,v) < +K1+ Kalv|
(2.20) forallr € [0, T],x € D,v e {weR"wk>w’, Vj £k},
g (t.x,v) = =K1 — Ka|v|
forallz € [0, 7], x € D,v € {w e R™"wk <w/, Vj #k}.

Thus we have an upper (or lower) bound on coordirkatd ¢g(z, x, v), at most
linear injv|, if the argumenb has its largest (or smallest) coordinate for index
We further suppose that
(t,x,v) — g(t, x,v) is locally Lipschitz-continuous im,
(2.21)
uniformly in (z, x).

Typical examples from mathematical finance which satisfy (2.20) and (2.21) are

ght,x,v) =85 x,v) + DA e, (0 —vF + Y x ),
j=1
=
(2.22) !
k=1,...,m,

as in Section 4, or [as in Becherer (2004)]

m
gk(t,x, V) = 8k(t,x, V) + Z Kkj(t,x)%(ea(vj_vk"rfkj(t’x’u)) _ 1)’
j=1
(2.23) 7k
k=1,...,m,
with functions A% e CL([0,T] x D,[0,00)) and %, f& e CL([0,T] x D x
R™ R)fork, j =1,...,m,which are locally Lipschitz-continuous in uniformly
in (¢, x), and witha > 0. In Section 4, we shall work with (2.22) and replace
boundedness @ and £ by a linear growth condition im; this is still covered
by (2.20).
Under the above assumptions gnwe cannot apply Proposition 2.3 directly
sinceg is not bounded, is not (globally) Lipschitz-continuousvirand does not
satisfy (2.13) in general. But we can still obtain the following result:
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THEOREM 2.4. Supposé: and ¢ are continuous functions with bounded
and with ¢ bounded from above in all coordinateAssume that(2.2), (2.3)
and (2.9)—(2.12)hold. Supposeg is in C! and satisfies the local boundedness
condition (2.19), the monotonicity condition2.20) and the local Lipschitz
condition (2.21). Then the systert2.8) of PDEs has a unique classical solution
Ve c,}v"’([o, T) x D,R™), andv satisfies the Feynman—Kac representation

o, x) = E[h"(X’T’x”‘)eJ}T ok (s, XE5*) ds
(2.24) '
s X,k
t

fork=1 ..., mand(t,x)€[0,T] x D.

PROOF It suffices to prove the assertion for the case wheienonpositive
in all coordinates because the general case can be reduced to this by passing to the
transformed functiori, x, k) — exp(— K (T — t))v(t, x, k) for a suitable constant
K €[0, 00).

Sinceh is bounded, there is a constakit € [0, co) such that|i¥(x)| < K3
for all x and k. For this constant an&1, from (2.20) with K> taken with
respect to the max-norm dR™, we first define a truncation-boundary function
k1[0, T1— [0, 0co) by

K3+ Ki(T — 1), whenkK, =0,

t—k(t):= K
k@) K3eK2(T=1 4 K—l(eKZ(T_t) -1), whenKkj > 0,
2

and theng : [0, T] x D x R™ — R™ by truncating the third argument:

.....

Theng is bounded by (2.19), and Lipschitz-continuous[6nT'] x D,, x R™ for
everyn sinceg is in CL. By (2.21) the functior® is also Lipschitz irv, uniformly
for (¢,x) € [0, T] x D, and so Proposition 2.3 yields a unique bounded soldtion
for the PDE (2.8) withg instead ofg. Moreover, is the fixed point ofF defined
with g instead ofg in (2.5). We show below that

(2.25) |0, x)| <k(@)  for(s,x)€[0,T]x Dandk=1,...,m.

Admitting this result for the moment, we ggtr, x, v(r, x)) = g(¢, x, 0(¢, x)) for
all (¢, x) € [0, T] x D by the definition ofg. Hence,v also solves the PDE (2.8)
with g instead ofg and satisfies (2.24). To see thatis the unique bounded
solution to (2.8), letw denote another bounded solution. By takikig larger if
necessary, we can assume thelt(z, x)| < K3 < «(¢) for all k, t, x. Then bothd
andw solve (2.8) not only withg but also withg, and this impliess = w by the
unigueness in Proposition 2.3 applied for
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To finish the proof, it remains to establish (2.25). Fix arbitréryx, k) €
[0,T] x D x {1, ..., m} and define the stopping time
T :=inf(s € [r, T]|0F (s, XI5K) <k (s)} A T.
Then
o5 (s, XI5 R () > k(s)  forall (w,s) e t, 7]

while 9% (z, X'**) <k (1); in fact, we have equality for < T and inequality for
t =T sinced*(T, -) = h*(-) < K3. Hence, the definition of and property (2.20)
of g imply

(2.26) gk (s, X\5K(w), O(s, X1¥ K (w))) < K1+ Kok (s)  for (w,s) € [t, 7]

and therefore by using< 0 and integrating

T k(. X,k
ﬁk(t,x)zE[E[hk(X;x’k)ef, (s, X ds
T ~k t.x.k ~ tx.k fx k( Xt’x’k)d
+/ g (S, Xs’x, ’U(S, Xs’x’ ))e e, Xy uds‘j:—ri|i|
t
= [t xp el e
‘ s X,k
[ 8 o X b0, Xl e ds]

< E|:K(T) + /;T (K14 K2k (s)) dsi|

= E[k (1) + (k (1) — k(1))]
=k(1),

where the second equality uses the strong Markov proper/ 6f¢; see Heath

and Schweizer (2001). This gives the upper bound in (2.25), and the lower bound
is proved in the same way by usimg= inf{s € [z, T]|0% (s, X/5K) > —k(s)} A T.

This completes the proof.[]

3. A model with interacting 1t06 and point processes. In this section, we
introduce a flexible Markovian model for an incomplete financial market, give a
rigorous construction for it and provide some further properties. This is used in the
next section to derive explicit and constructive results for various hedging and
valuation approaches in terms of reaction—diffusion systems. The entire model
is given by a system of stochastic differential equations (SDEs) of two types.
The price process of the tradable risky assets is modeled by an Itd process.
In addition, there are nontradable factors of uncertainty and risk which are
represented by a finite-state processlriven by a point process. A distinctive
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feature of our model is that it permits mutual dependences bet§/aedr. More
precisely, botts andn enter the coefficients of the SDE for the dynamics oind
at the same time, the intensities controlling the jumpsg depend on the current
value of S.

3.1. Model setup and assumptionsAll modeling in the sequel takes place
on some filtered probability spa¢&, ¥, F, P) with a filtration F = (#;);¢[0,1]
satisfying the usual conditions and a trivialfield #o. All semimartingales are
taken to have right-continuous paths with left limits.

We start withm € N and a domainD in R? satisfying (2.9), for example,
D =R%or D = (0,0)%. Let (S, n) be a solution of the following system of SDEs
with values inD x {1, ..., m}:

(3.1) SoeD, dS; =T, S, ni—)dt + 2Z(t, S¢,ni—)dWs,

m .
32) moell....m), dn= Y (j—Igm-)dN,
k,j=1

wherel': [0, T1x D x{1,...,m}— R?and=:[0,T] x D x {1,...,m} — R4*x"

.....

.....

point process such that
(3.3)  (N¥)has(P,F)-intensityak(r,S,)  fork,j=1,....,m

with boundedC? functions A% :[0, T] x D — [0, o0). Note that the process
counting the jumps ofy from statek to j is not N¥, but [ Iyy(n-)dNM.

If D C (0,00)¢, one can rewrite (3.1) as a generalized Black—Scholes model;
denotingdS/S = (dS'/S")i—1...a, v (t,x, k) = diag(1l/x");—1. 4T (¢, x, k) and
o(t,x, k) =diag(1/x");=1

.....

(3.4) de[=y(t,S,,n,_)dt—i-o(t,St,nt_)dW,.
The model (3.1)—(3.3) is a nonstandard SDE system because of its dependence
structure. The coefficients in the SDE (3.1) fbrcontainn, and the intensities
in (3.3) of the point procesy driving n depend in turn ors. We shall comment
below on construction and properties.

To apply the PDE results from Section 2, we need further regularity assumptions
on the coefficients of the SDE (3.1). Becaugex) — G(r,x,k) is C! on
[0, T] x D for G € {T", ¥} and anyk, the mappingsc — G(t, x, k) are locally
Lipschitz-continuous i, uniformly in ¢t andk. This implies as in Section 2 that
there is a unique strong solutiof-** to the SDE

X" =xeD,
(3.5)
dX'5k =T (s, XI5 k) ds + S(s, XIVK k) dWy, s elt, T,
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forany(z,x,k) € [0, T]1 x D x {1, ..., m} up to a possibly finite random explosion
time. Asin Section 2.1 [foF (¢, x) := T (¢, x, k) andX (¢, x) := X (¢, x, k) there],
we assume again that *-* does not leaved during[0, T']; that is, we suppose

(3.6) P[x!**keDforallse(r,T]]=1  foranyr,x, k.

REMARK 3.1. Intuitively, the SDEs (3.5) are related to (3.1) in the sense
that S could be constructed successively from one jump time tf the next by
“pasting together” appropriate solutions to (3.5), using techniques similar to those
known from the construction of finite-state Markov processes or Cox processes.
But such a construction @fS, ) becomes tedious in details, and the construction
via a change of measure described in Section 3.3 appears more convenient.

3.2. Markov property and uniqueness in distributiorA standard way to
show the Markov property is to prove uniqueness of a corresponding (time-
inhomogeneous) martingale problem. We give here a direct argument which
is similar in spirit. For a horizonT’ € [0, T] and a functionh € C(D x
{1,...,m}, R), we consider the PDE system

d
O=v(t,x,k)+T(t,x,k)grad v(r, x, k) + % Z aij(t,x, v, x, k)
ij=1
3.7) mo
+ > A @, ) (v, x, j) —v(t,x, k), (t,x)€[0,T") x D,
j=1
j#k

(3.8) v(T', x, k) =h(x, k), x €D.

For brevity, we use subscripts for the partial derivativesy 0By Theorem 2.4
there is a unique bounded classical solutbosncj’z([o, TYxDx{1,...,m},R)

to (3.7) and (3.8) for any give’ and/x. The essential martingale argument for
Proposition 3.3 is

LEMMA 3.2. For v given as abovethe processi(z, Sy, ), t € [0,T'], is a
martingale

The proof is mainly an application of 1t6’s formula and given in the Appendix.
In the same way, another application of 1td’s formula yields ttfaty) solves
the following martingale problem: For any continuous functifgx, k) on D x
{1, ..., m} with compact support that is of cla€¥ in x, the process

t
FStan0) — £(So.10) — /O Asf(Ss.ns)ds,  te[0,T],



1124 D. BECHERER AND M. SCHWEIZER

is a martingale, with the operatoss; being given by

d
A f(x, k) =T(s,x,k)grad, f(x, k) + 3 Y a’(s,x,k) friyi (x, k)

i,j=1
(3.9 m
=+ Z)\kj(S,X)(f(-x’ j) - f(ka))
=1
0

PrROPOSITION3.3. (S, 1), t € [0,T], is a (time-inhomogeneolsMarkov
process with respect t& andF. Its distribution is uniquely determined by the
SDE systen3.1)—(3.3).

PROOF Foranyh € Cp(D x {1,...,m},R) andT’ € [0, T] there is a unique
bounded classical solution to the PDE (3.7) with terminal condition (3.8). By
Lemma 3.2,

E[h(ST’5 77T’)|~7:t] = E[U(T/s ST/v 77T’)|~7:z] = U([, Sl‘5 77t) for O S t S T/-

This establishes the Markov property ©F, 7). In particular,r = 0 gives
E[h(ST/, n7)] = v(So, no) and so the one-dimensional marginal distributions of
the process are unique. To show uniqueness of the finite-dimensional distributions
by induction, leth®, ..., »**1 be arbitrary continuous bounded functions. For any
timesy <--- <t,4+1 < T, conditioning on¥;, gives

n+1
(3.10) |:li[h (S, 77t,:| |:(l_[h (St 771,) St,l,mn)}

where v denotes the solution to the PDE (3.7) and (3.8) with= "1 and
T’ := t,41. Since the right-hand side of (3.10) is determined byrtBmensional
distributions, the claim follows. (J

3.3. Construction by a change of measuréit first sight, the mutual depen-
dences in (3.1)—(3.3) might seem to make such models difficult to construct since
we face a nonstandard SDE system where the solutfon) also affects one
part N of the driving process. But the problem can be reduced to the special
case whereV = (N¥) is a standard multivariate point process; thehecomes
an autonomous process adds well defined by (3.1). From here, the desired
(t, S)-dependent intensities fa¥ can then be constructed by a suitable change of
measure.
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More precisely, we start with a filtered probability spate, ¥',F’, P’)

.....

.....

(P, TF")-intensity 1 for anyk and. In other words,

N% k,j=1,...,m, are independent standard

(3.11) Poisson processes undet.

We assume thaty is trivial, 7 = ' and[”’ satisfies the usual conditions. Then
(3.2) defines an autonomous processsiven this process, there is a solutiSn

to (3.1) under suitable assumptions on the coefficients; simple examples are given
in the following

ExaMPLE 3.4. Provided (3.11) holds, there exists a soluti§ny) to (3.1),
(3.2), and the solution&"** to (3.5) satisfy condition (3.6) in the following cases
[cf. Becherer (2004)]:

(i) D=(0,00)?, andy, o in (3.4) are continuous functions, depending only
on (t, k) but not onx. In this caseX”** and S can even be written explicitly as
stochastic exponentials.

(i) D=TR4, andrl", T are Lipschitz-continuous in, uniformly inz, for anyk.

For the general case, we define a probability measue P’ by

(3.12) dP::8< > f(/\k/(z,st)—l)(de"—dz)) dP’,
T

k,j=1,....m

where the density is chosen to givethe (P, F')-intensities (3.3); see Chapter VI.2
in Brémaud (1981). By Girsanov's theorer¥ is a local (P, F’)-martingale
whose covariance proces$/) is the same undeP’ and P since it can be
computed pathwise, and therefdieis also a(P, F’)-Brownian motion. Finally,

if (Q,F,TF, P) is the standard’-completion of (22, #',F’, P), one can check
thatF satisfies the usual conditions underWith respect tq P, IF) we then have
that W is a Brownian motion)N is a multivariate point process with the desired
intensities (3.3) ands, n) solves (3.1) and (3.2).

This change-of-measure construction extends an argument from Kusuoka
(1999) on how to construct two point processes with mutually dependent
intensities. Alternatively, one could infer existence (but not uniqueness) of a
solution to the SDE system (3.1)—(3.3) from results by Jacod and Protter (1982);
they constructed a solution for an SDE where the characteristics of the driving
process depend on the solution process by transforming the problem to an SDE of
ordinary type on a suitably enlarged probability space.
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4. Hedging and valuation of integrated risks. This section presents an
approach for valuing and hedging a general class of contingent claims with
recursive payoff structure in the model introduced in the last section, and shows
how option values and hedging strategies for this framework can be obtained
from solutions of suitable PDE systems of the type studied in Section 2. One
important feature of the claims we consider is that they can be specified implicitly,
in the sense that their own value may influence the payoffs they deliver. A typical
example is the pricing of a defaultable zero coupon bond with fractional recovery
when the recovered amount depends on the pre-default value of the bond. Such
claims lead to a fixed-point problem since their value depends on their payoff
structure, which in turn depends on their value. We show how this fits naturally
into the framework developed so far and leads, in comparison to the general setting
of Duffie, Schroder and Skiadas (1996), to more explicit results in terms of PDEs
in our setting. In addition to a pure pricing approach, we also offer a combination
of valuing and hedging ideas.

4.1. Formulation of the problem. Our model of the financial market is given
by the processsS, n) from (3.1)—(3.3) with the assumptions from Section 3.1.
We think of § as the prices off risky assets (discounted, i.e., expressed in some
tradable numeraire) and gfas representing some nontradable risk factors in the
market. Recall thal", = and A% areC?! in (¢,x) and allA¥ are bounded. In
addition, we suppose that the market price of risk function

(4.1) @:=3x="(z=")~Ir exists and is bounded 48, 7] x D x {1, ..., m}.

This implies thatZ = &(— [ ®(z, S;, n;—)dW,) is in the Hardy martingale space
JeP(P) for any p € [1,00) and sodP = ZrdP defines an equivalent local
martingale measure (ELMM) faof, the so-called minimal ELMM. By Girsanov’s
theorem, the dynamics sfunderP are given by

SoeD,  dS =3(t, S, n_)dW,

for a ﬁ-Brownizin motionW = W + [ ®(z, S;, n,_) dt, while the dynamics of
n and N under P are the same as undérand given by (3.2) and (3.3). Hence
(S, n) is also Markov undeP, and

(4.2) M~ = NN — fx"f(r, S)dt,  k,j=1,...,m,

are martingales i#? for any p € [1, co), under bothP and P in fact, since
[M%]= N*% and the intensitiea®’ are bounded, a simple time change argument
via Theorem 11.16 in Brémaud (1981) shows th&t*/ ] has even all exponential
moments.

REMARK 4.1. Exceptin trivial cases, there are typically many other ELMMs
beside P so that our financial market is incomplete. Note also tRaand P
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coincide forI" = 0, that is, when the original probability measure is already a
local martingale measure fér. This automatically happens if one starts modeling
under a pricing measure, as practitioners often do.

The financial contracts we consider are specified by funchiods x {1, . .., m}
—R,8:[0,T1xDx{1,....m}xR—>Randf¥:[0,T]xDxR—R,k, j=
1,...,m, with the following interpretations. [Note a slight change of notation
in comparison to (2.22). Technically, we shall find that the functiois given
by a PDE system as in Section 2, where the interactidmas the form (2.22)
with 8% and f% depending on the argumentonly via thekth coordinatev;
this is sufficient for later applications and allows to simplify notation in the
sequel. Formally, the relation to (2.22) is given &8y, x, v) = 8(z, x, k, v¥) and
R, x,v) = f¥ @, x,vF) whend*, f% denote the functions from Section 2.]
h describes a final payoff at tim& of amounti(x, k) if Sp =x andny =k;

8 specifies a rate for payments made continuously in time (e.g., dividendg)and
describes a lump sum payment that falls due whenever the statehainges from

k to j. A typical example is given by a life insurance contract whereould
describe the state of health of the insured person. The total payoff up td'time
from atriple(h, 8, f¥) is

T
H = h(Sr,n7) +fo 8(t, Sis s v(t, Siu i) dit
(4.3)

T m

. i

+/ Z fk](f, Sz,v(t,St,nt—))l{k}(m—)dN:j-
0 rj=1
k#j

Technically, we always suppose thats and % are continuousk is bounded:;
there is some constart < oo such that|s(¢, x, k, v)| and | f*¥ (¢, x, v)| are
bounded byK (1 + |v|) for all ¢, x, k, j; and eacts(-, -, k, -) and all f% areC?
in (¢, x,v) and moreover locally Lipschitz-continuous in uniformly in (z, x).
By (3.2), one can rewrite the integral with respectXoin (4.3) as a sum
D ore(0,T] ki fri(.. )1y (n: =) I{jy(n,); this shows that the payoff involves only
the random processe$ and . Similar remarks apply at several points in the
sequel, compare (4.4), (4.6) and (4.7), (4.13) and (4.14), where we use the integral
notation for technical convenience.

A closer look at (4.3) shows thdf has an unusual feature. It is not (yet) well
defined as a random variable because the extra argurtest, n,_) in § and f%/
has not yet been specified. The idea is that many intermediate payments depend not
only on the current state of the underlyiSgnd the factor,, but also on the value
of the contract itself. In life insurance, for instance, the payoff at death might be
set equal to the current reserves; another example occurs with fractional recovery
of a defaultable bond. However, the functiorthat should give the current value
of the contract still needs to be determined by some argument.
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A first possible idea for finding is a pure pricing approach. We fix some
probability measure and axiomatically define the value process of a (future)
payment stream as the conditional expectations of all future payments under
that measure. This is a common procedure in, for example, credit risk valuation
problems. Since the modeling takes place under the valuation measure, we may
take P as that measure and thus assume tha an ELMM andI” = 0. By the
Markov nature of the model, the valuation should be determined via a valuation
functionv, and in view of the recursive payoff structure we should like to write the
value at time of future payoffs as

T
U(t, Sl" nt) = E[h(STa nT) +\/t‘ S(M’ Su, Nu—, U(u, Sus nu—)) du

T m . .
(44) +/t Z fkj(u’ Suvv(u’ SLH nuf))l{k}(nuf)lefJ ?l}a
k,j=1
ke
t [0, T].

But since the right-hand side itself contains the functionexistence and
unigueness of a solution to (4.4) is a fixed-point problem; this can be viewed
as a variant of the recursive valuation approach by Duffie, Schroder and
Skiadas (1996).

An alternative to a pure pricing approach is a combinatiorvalfiing and
hedgingideas. Loosely speaking, the general goal there is to find at the same time
a stochastic procegsand a functiorv such that the trading strategyprovides a
“good” hedge against the payaff in (4.3) and the value process of the strategy
is related to the valuation functiom. To make this more precise, we use here
as criterion for the quality of a hedge the concept of local risk-minimization.
This goes back to Schweizer (1991); the idea is to find a not necessarily self-
financing strategy whose final value coincides with the sum of all payments to be
hedged, and whose cumulative costs over time have in a suitable sense minimal
guadratic fluctuations on average underin mathematical terms, this problem
can be reformulated as finding a decomposition of the form

T
(4.5) H:Ho—i-f 0udSy+ L1
0

with a constantig and aP-martingaleL that is P-orthogonal tas, whereP is the
minimal ELMM introduced above. The trading strategy which holds (at anyt)me

9," units of risky asset=1, ...,d and the amourﬁ,O = Ho+ L; +f5 0,dS, —6;S;

in the numeraire used for discounting is then locally risk-minimizing fbr
under P, and one can deduce from (4.5) that the resulting valuation process
V =Hp+ [6dS + L is the conditional expectation of the paydif under P.

Up to integrability issues, this follows from the results in Follmer and Schweizer
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(1991) sinces is continuous; see Theorem 3.5 in Schweizer (2001). WhenP,

the above strategy is even (globally) risk-minimizing in the sense of Follmer and
Sondermann (1986). But as with (4.4), the decomposition (4.5) cannot be obtained
in a standard way becau$g involves the value functiom which in turn depends

via V on the decomposition.

REMARK 4.2. Risk-minimization is one among several hedging approaches
for incomplete markets and (despite some drawbacks) typically leads to compa-
rably constructive solutions. Since one motivation for this section comes from
credit risk problems where hardly any (constructive) results for hedging complex
payoffs under incompleteness seem available so far, studying risk-minimization
is a natural first step to make. For results from another (nonlinear) hedg-
ing approach in a similar model but for simpler (nonrecursive) payoffs, see
Becherer (2004).

Although the reasoning behind the two approaches is quite different and the
pure pricing approach postulates the special case P, both valuations have
the same mathematical structure. Both are expectations of future payments under
the measure®, and we shall see that the valuation functiofor both is indeed
determined by the recursion formula

. T
v(t, Sz,nz)=E[h(ST,nT)+/ S(uy Sus nu—, v, Sy nu—)) du
t

T m . .
(46) +,/; Z fk] (l/l, Sus U(I/l, Sua ﬂu—))l{k}(nu—) dN,,]:] ﬂ:|7
k,j=1
k#j
1€[0,T],

whereE denotes expectation under the minimal ELMM To prepare for this, we

first establish uniqueness of the corresponding valuation process in Lemma 4.3,
whose proof is relegated to the Appendix. Existence will be a by-product of
the main results in the next section which describe the corresponding valuation
functionv and the decomposition (4.5).

LEMMA 4.3. For any payoff triple(h, é, f*) and probability measurg e
{P, P}, there exists at most one bounded semimartinffakich that

T
Vi :EQ|:h(STJ7T)+/ S, Sus Mu—, Vu-) du
t
4.7) - | |
+ /t S 4G, S Vi) Iy () AN

k.j=1
k#j

j”{|, tel0,T].
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4.2. Solution via interacting PDE systemdror a given payoff tripléh, 8, /),
consider the following system of PDEs for a functiofr, x, k) on [0, T] x D x
{1,...,m}: For eachk,

d
O=v(t,x,k)+ % Z a"j(t, X, kvt x, k) + 8(t,x, k,v(t, x, k))
i,j=1

@8) 4+ X W@ (. x, j)— vt x. k) + (e x v, x,K))),
j=1
ek
(t,x)el0,T) x D,
and

(4.9) (T, x, k) =h(x,k), x €D,

.....

c=0,I =0 andg is given by (2.22). We want to conclude from Theorem 2.4
that (4.8) and (4.9) has a unique solutiorab’z([o, T)x D x{1,...,m},R) for
any claimH of the form (4.3), and there is one point where we must take care.
Assumption (3.6) from Section 3 guarantees nonexplosion ubderthe solution
of (3.5) or (2.1) with driftI", whereas the present application of Theorem 2.4
requires this for the solution with drift 0. However, this is also true and can be
verified via Girsanov’s theorem by a change to an equivalent measure under which
there is no drift.

THEOREM4.4. Underthe assumptions from Sectid,letv Cl}’z([O, T) x
D x {1,...,m},R) be the solution 0of(4.8), (4.9)corresponding to the triple
(h, 8, f%). Then the payoff! in (4.3)admits a decompositiof.5) with

Hp = v(0, So, no),
(4.10) 6, = (0)i=1..a=grad v(,S;,n,_) forte[0,T) and
t m
Li= [ % (S0 ) = vl Sk

k,j=1
k]

+ fkj (I/l, Suv v(u’ Suv nLt—)))I{k}(nM—)dML]fjs
for 1 € [0, T]. The procesd. is a martingale in#” under bothP and P, and

(f6dS)risin LP/E(P) for everyp € [1, o0). Moreover L is a BMOA-martingaIe
under bothP and P, and [ 6 d S with 6 from (4.10)is in BMO underP.
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PrRoOOFE (i) Applying It6’s formula tov(z, S;, n;) yields
dv(t, S;,n,) =grad v(z, S;, n;—)dS;

d
+ (Uz + % Z aljvxixf)(t’ Sto M) dt

i j=1

m .
+ 3 (0, S ) = v, S ) g () AN, 1 €[0,T).
k,j=1
K
Substitutingz’Ntkj = dM,kj +1%i (¢, S;)dt, one can then use the PDE (4.8) to obtain

dv(tv S[’ nl) :etdSl +dLl _S(Iv S[’ Nt—, v(t’ Sl‘» nl‘*))dt

(4.11) =3 Y, S, v, ey =) g (=) AN,
k,j=1
k£
forre[0,T).

The next part of the proof shows in particular thigd S is well defined or{0, T]
so that (4.11) extends frofd, T') to all of [0, T'] as both sides are a.s. continuous
at timeT7. Admitting this for the moment, we can integrate (4.11) from @'tand
use (4.9) to conclude by comparison with (4.3) that the ingredients in (4.10) indeed
yield the decomposition (4.5).

(i) To prove the desired integrability properties, we substitmé" = dM,k’ +
Aki(e, Sp)dt in (4.11) and rearrange terms to obtain

m
(4.12) 6:dS; =dv(t, S,n) + Jedt + Y KJ amy
k,j=1
K

with bounded integrands

]l = S(t’ Slv Nt—, v(tv Sf’ T]l—))

m
+ ) W@ )R (e S o, Seyme)) Ty (o),
k,j=1
k#j

K = —((t, Sy, j) — v(t, St ) Iy (1) T y-

For every p € [1,00), M¥ is an #¢”-martingale underP and P. The same
property holds for. and for the last term in (4.12) sinae f"f(-, - v(,- ) and
K% are all bounded. A® and J are bounded, the right-hand side of (4.12) is
the sum of a bounded process andf-martingale undet. Hence[6dS is
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well defined on0, T and also in#” (P) since it is already a locaP-martingale.
Becausel P/d P has all moments unde? due to (4.1), the asserted integrability
of (f6dS)r under P follows via the Burkholder—Davis—Gundy and Hélder
inequalities.

(iii) Denote by U :=Y";; [ K dM* the last term from (4.12) so that the
local ﬁ—martingalef& dS differs fromU only by a bounded process. Bathand
L are finite sums of stochastic integrals with respeadt’fé of bounded integrands,
and so it is enough to prove that ead¢h @nd P-martingale)M*’ is in BMO. But
this is clear sincé/%/ has bounded jumps arf@/*/) = [ Ak (¢, S,) dt is bounded
forbothP andP. O

As already mentioned, Theorem 4.4 immediately gives:

COROLLARY 4.5. Under the assumptions of Theordm, the strategy6°, 6)
holding risky assets according éo= (62, ..., 6%) from (4.10)and investing

t
9&=maxmm+Lr5£@d&—@&, tel0, 7],

into the numeraire used for discounting is locally risk-minimizing#rlf ' =0,
this strategy is even risk-minimizing under

PROOF The first assertion follows from Theorem 3.5 in Schweizer (2001).
The second is then clear because local risk-minimization coincides with risk-
minimization if S is a local P-martingale, that is, fof =0. O

To obtain a nice representation for the valuation functipmve introduce the
process

Y,:=E[H|%], t€[0,T]

The structure (4.3) of the claim implies th& has all exponential moments
under P; this follows from the fact that, §, f*/ are all bounded an&/* has
bounded jumps and bounded intensity [see Becherer (2001), Lemma 3.4.1, for
details]. HenceH is in L”(P) and Y is an #”-martingale underP for any

p €1, 00).

COROLLARY 4.6. Under the assumptions of Theorefi4, we have the
representation

t
vm&mo=n—ﬁ8@5mmﬂwm&mknm

t m . .

(4.13) —/ Y ( Sus vy Suy u=)) Iy (=) AN
0 k=1
K#j
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R T
ZE[h(ST,nT)-i-/ 8(tts S T (it Sy 110—))
t

+/ Z fkj u Su> v(u, Sy, Nu— ))I{k (Mu— )dej‘ft:|7
! k_/ =1
#J
te[0,T].

In particular, the process/; := v(t, S, 1) is the unigque solution to the recursive
equation(4.7)for Q = P, and the functiorv solveg4.6).

PROOF By Theorem 4.4p(0, So,no) + [6dS + L is a ﬁ-martingale with
final value H by (4.5), and so this martingale coincides with Hence the first
equality in (4.13) follows from (4.11) by integrating, and the second follows from
the definitions oY andH. [

The representation afin (4.13) is given by the conditional expectation under
of future payments. This allows to viel as the pricing measure associated to our
approach and thereby confirms (4.6). In the special case when the payoff functions
8 and f% do not depend on the-argument, (4.13) can also be used to compute
by Monte Carlo methods and thus provides an alternative to the numerical solution
of the PDE system (4.8) and (4.9).

REMARK 4.7. To motivate how the PDE (4.8) arises, let us recall from
Folimer and Schweizer (1991) that (4.5) is basically the Galtchouk—Kunita—
Watanabe decomposition @f under P. For the martingaler = E[H|F], the
structure ofH in (4.3) yields

t
Y;=/O 8(u, S, mu—, v(u, Sy, Nu—)) du

+f ka] u Susv(u, Su,s Nu— ))I{k (Mu— )dNI:J

oy
(4.14) !

R T
+E[h<ST,nT>+/t 81ty Sus My 0t Sus ) d

+/ > M, Suy v, Susnu=)) Iy (nu—) AN | F ]
=y

Since(S, n) is a Markov process undé, the last term is a function at, S;, n;)

only, and we call itv(z, S;, n;). Assuming that is sufficiently smooth, we can
apply Itd's formula, and sinck is a P-martingale, all drift terms on the right-hand
side must add to 0. Writing out the zero drift condition then produces the PDE
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system (4.8). However, this is only a heuristic argument because we have given
no reason why should be sufficiently smooth, nor why the last term in (4.14)
should be equal to(z, S;, n;). The latter is a genuine problem singeappears

at many places in (4.14), and this explains why a proof requires a fixed-point
argument.

5. Examples, applications, extensions. This section outlines some possible
applications of our general model. We briefly sketch some links to insurance risk
problems and dwell in more detail on issues related to credit risk. There we first
explain how the contributions made here fit into an overall perspective, and then
show how one can extend the results to incorporate further important aspects in
the context of credit risk: hedging by using default-related assets, and stock prices
that crash at default.

5.1. A hybrid reduced form model for credit riskin the context of credit
risk modeling, it is natural to have a finite-state processepresenting the
rating (or default) state of entities under consideration; we think of €
{AAA, ..., C, D (default)’. As usual in reduced form models, the time of default
is defined by a jump of a point process which drived'he intensities for rating
changes may depend on the stochastic evolution of the Itd prdteHsthe
SDE coefficients forS do not depend om, then S is a diffusion processy is
a Cox process ang is a conditional Markov chain. Then the model falls into
the Cox process framework of Lando (1998) which in fact inspired our model.
Alternatively, it can be viewed as a (Markovian) reduced form model with state
variable process; see Bielecki and Rutkowski (2002) for more explanations and
many more references.

REMARK 5.1. One can ask whether tradable asset prices should be affected
by the rating from agencies, or rather by some nonobservable solvency state of
the firms. We do not address this question here, but use the rating process only as
an example for an observable finite-state process which reflects credit risk. One
reason to consider the official rating may be the existence of financial products
whose payoffs are linked to a rating by agencies.

In comparison to existing credit risk literature, this article makes several
contributions. Because of the mutual dependence between dssatd rating
processn, the processesV and 5, conditional on the evolution ofS, are
in general not a Poisson process respectively a Markov chain with intensity
matrix (A% (z, S:)kj- In this regard, the modeling goes beyond the Cox process
setting of Lando (1998). Moreover, the model is hybrid in the sense that it
incorporates pricesS of liquidly traded assets to which the default risk is
related, with default intensities being a function (of S;). Such ideas go back
to Madan and Unal (1998). If the default intensities of certain firms depend, for
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instance, on the stock indices of related industries, these indices could be used for
hedging and must be taken into account for pricing. Furthermore, we let the payoffs
of contingent claims depend on tradable assets and on the default pnocess
we can to some extent also deal with products like convertibles which are related
to the stock price of a firm itself; see Section 5.1.2. Yet another contribution is that
we consider not only a pure pricing approach under an a priori pricing measure as
is usually done in the credit risk literature. We also offer an alternative combined
hedging and valuation approach with the aim of minimizing hedging costs. Note
that the model should then be specified under the probability measure under which
hedging costs are to be minimized. Finally, the solutions to the pricing and hedging
problems are described in terms of PDEs under precise conditions; we do not just
assume “sufficient regularity” as is often done in the literature.

To exemplify some features of our model, we first consider a single defaultable
entity with

n, € {no default @), default @)}

and default being an absorbing state. If we choose as discounting humeraire the
zero coupon bond with maturity, prices arel’ -forward prices and the payoff of

a defaultable zero coupon bond/isSt, nr) := Ijn)(n7). Fractional recovery in

the case of default by some fractidghe [0, 1) from treasury or from pre-default
(market) value is modeled by choosif§f° (¢, x, v) := R or f™(¢,x,v) := Rv in

the payoff specifications (4.3).

For basket products or counter-party credit risk, one has to deal with multiple
default risks and modeling the dependences becomes a crucial task; see Chapter 10
in Schonbucher (2003). In our setting, a natural choicefisrthe joint rating state
of the ¢ firms under consideration, that is,

()iz1..c=n € {AAA AA, ...,C, D, reN.

.....

The intensity for a change from the current joint rating stateto another state
j isthen

At ) k=y,_x=s,  TOrje{AAA ...,C,D"

and can be specified as a function of timeurrent asset price$ and the current
overall ratingn,_ itself. This modeling gives a flexible Markovian framework
which includes several more specific parametrizations suggested so far. It permits
simultaneous defaults of different firms, default correlation because of joint
dependence of individual defaults on the common (factor) pro§ess well as
sudden jumps in the default intensities of individual firms when other related firms
default. For an implementation, one has to decide on a reduced version with as
many or few parameters as can be reasonably fitted from available data.

For a more concrete example, considatefault risks and for the simplified
state spacén, 9}¢ with no further ratings. We exclude simultaneous defaults and
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make default an absorbing state for each risk by setiifigz, x) := 0 when
Y Iiygjiy > 1 orwhen(k’, j') = (0, n) for somei. Then we are left to choose
Aki(z, x) for thosek # j with (k, j') = (n, ) for exactly one = i* andk’ = j'
elsewhere. As pointed out in Davis and Lo (2001) and Jarrow and Yu (2001),
defaults of some firms may trigger jumps in the default intensities of other firms,
and a simple way to capture this phenomenon is to take

A (¢, x) =k a@im I ®) Wwith X > 0 anda > 1

for thosek # j with (k, j') = (n,0) for exactly onei = i* andk’ = j' for

all otheri. The basic default intensity of any firm is thénand increases by a
factora > 1 whenever another firm has defaulted. Modeling default dependences
between¢ firms is thus reduced to two parameters. To obtain higher default
intensities when stock indices are low, practitioners have suggested to model the
default intensity as a function of related tradable assets; see Arvanitis and Gregory
(2001) or Davis and Lischka (2002). Pushing the example a bit further, one could
incorporate such effects in our model by takihg= A(z, S;) as a function of a
single ¢ = 1) tradable indeX. A next step could be a factor model with different
groups of firms, and so on.

Instead of considering now one particular application and writing down
the resulting PDE system for that problem, we explain in the following two
subsections how to extend our framework to address additional aspects of pricing
that seem relevant in the context of credit risk.

5.1.1. Perfect hedging in a completed marketUp to now, we have assumed
that S represents the price processes of all tradable assets which are available for
dynamic hedging. But for some applications, it is natural to suppose that there are
additional defaultable securities which are liquidly traded, and one feels it should
be possible to replicate a given defaultable contingent claim if there are enough
tradable securities which are sensitive to the default event. We now show how to
make this intuition precise.

To explain the idea in the simplest setting, we consider a single firm which can
only be in default or not in default. So we take the model from Section 3.1 for
the processs, n) with S; € D = (0, 00) andn, € {no default {), default 0)}. The
default state is absorbing so thdt'(z, x) := 0. If ng = n so that the firm is not in
default at timer = 0, the default time is

t:=inf{t € [0, T]|n, =0} = inf{r € [0, T]|AN # 0}.

We suppose that the drift of vanishes, that isy (¢, x, k) := 0 for all ¢, x, k,

and we think ofP as an a priori pricing measure. But in contrast to Section 4.1,
we assume here that there is in additionSta further tradable security which

is sensitive to the default event. For concreteness, we choose as discounting
numeraire the (nondefaultable) zero coupon bond with matdrignd suppose
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that the defaultable zero coupon bond with matufitgnd recovery from treasury
is tradable. By Theorem 4.4 and Corollary 4.6, the dynamics of its market price
process; := E[lj~1) + Rlj-<1}|F:] with R € [0, 1) are given by

dY; = dv(t, Sp,ne) = Vx(t, S, =) dS; + (0(, S, 0) — 0(t, Sy, n)) dM;®
and are described by the solutioh(z, x) = (¢, x, k) to the PDE system
0=o¥(r, x) + 2x%02(t, x, D) DX (1, %) + Tjkem A" (£, ) (D° (2, x) — 0™(¢, X))

with (r,x) € [0,T) x (0,00), k = n,? and boundary conditions*(T, x) =
Iy (k) + RIpy(k). In the present settingy®(z, x) = R, and the payoff of a
defaultable claim of the form (4.3) is

T
H= h(STv 77T)+/(; S(t’ Stv nt—, U(t7 Sl‘? nt—))dt+1{f§T}fna(Ta S‘[a U(T, S‘L" n))

Again by Theorem 4.4 and Corollary 4.6, the dynamicsYpf.= E[H|%],
te€[0,T], are

dY; = ve(t, S, ni—)dS + (v(t, Sp, 0) — v(t, Sp,n) + (¢, Sp, v(t, S;,n)))dM®,
wherevk (7, x) = v(z, x, k) denotes the solution to the PDE system
0= v,k(t, x)+ %xzoz(t, X, k)vfx(t, x)
+8(t, %, k) + Iy (LA™ (2, x) (02 (2, x) — 0" (2, x) + (2, x, " (2, X))
with (z,x) € [0,T) x (0,00), k =n,0 and boundary conditions* (T, x) =
h(x, k). From the dynamics of andY, we conclude that

dY; = (Ux(f, Sty n-)

t,8:,0) —v(t,S;, "t S, v, Siun)) _
_ v(t, $,0) _U( 1Y) +_f (, S, v(, S n))vx(l,Sz,Ut—))dSz
v(t’ Sl‘va)_v(t7 Sl‘vn)

U(I,S[,D)—U(t,Sl,'ﬂ)—}—fna(t,S,,v(l‘,S[,l’l)) X7
+( L E )dY,.
U([, Sl9a) - U(t,St,n)

Hence, the clainH = Yy can be replicated by self-financing dynamic trading in

the risky securitiess and Y, and the hedging strategy is described in terms of
the solutionsy andv to some PDEs. By absence of arbitrage, the value process
of H is then given by the wealth proce¥sof the replicating strategy. This can

be viewed as a concrete example (describing the hedging strategy by a PDE) for
the more abstract and general representation theorems by Bélanger, Shreve and
Wong (2004) and Blanchet-Scalliet and Jeanblanc (2004). For other results on the
hedging ofreplicable defaultable claims, see the recent article by Jeanblanc and
Rutkowski (2003).
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5.1.2. Stock prices with downward jumps at defaul§o far, we have modeled
by S the price processes of tradable assets and Sinse&ontinuous, we interpret
them as stock indices of industries related to the considered defaultable entities. If
we consider the tradable stock of a firm itself, things change because we expect
this price to jump downwards when the firm defaults on some of its payment
obligations. Since products like convertible bonds involve both the stock price and
the default state of a firm, this case is very relevant for applications. This section
shows how to extend our framework to deal with such situations and obtain similar
PDE results as before. We explain the ideas in the simplest setting with a single
firm which can be either in default or not, and we restrict ourselves to a pure pricing
approach without considering hedging issues here.

We start with the model of Section 3.1 8, ) with n; € {n, 0} andS; € D =
(0, 00). The basic idea is to vieW as thepre-default valuef the stock. The firm
is not in default at time = 0 and default is an absorbing state so tigt=n and
A% (¢, x) := 0. Default happens at the stopping time

(5.1) t:=inf{t € [0, T]|n, =0} = inf{r € [0, T]|AN # 0},

and the events of default or no default up to tinee given by{r > 7} = {n; =0}
and{t < t} = {n; = n}. For a fractional recovery constam ¢ [0, 1], thefirm's
stock prices is

(5.2) Si:=SIy<ry+ RSilysry =S — (L— R)Sly>ry,  t€[0,T].

Hence the stock price drops to a fractignof its pre-default value when default
happens. By (5.2) we havéS = S_(dS — (1 — R)Ijn(n)dN™) and by the
SDE (3.4) forS we conclude

dEl‘ = E— ((V(t, Slv T]t—) - (1 - ﬂ)l{n}(nt—))‘nb(ﬂ Sl)) dt
+oa(t,S,n—)dW; — (L — R) Iy (n,—) AM™)
with the martingaleM™ as in (4.2); this uses tha} = S;— = S, on {n,_ =n}.
Since we wantP to be a pricing measure, should be a locaP-martingale, and
if we start from a volatility functions and a default intensity functioh™, this
requires to take as drift
y(t, x, k) = (L— R) [y ()L™ (¢, x).

With this choice, the SDE fa§ can be written without reference fbas

dS; = Si—(6(t, Si—, m—) AWy — (L= R) Ijny (,—) dM}®),

with 5 (¢, x,n) :=o(¢t,x,n) ando (¢, x,0) ;=0 (t,x/R,0) if R >0o0rao(t,x,0)
arbitrary if R = 0. It is clear thatS is then a locak P, F)-martingale. To derive
the pricing PDE withP as pricing measure, we start {@& < [0, 1] by considering
claims of the form

—_ — T —_ —_— JE— —_— —_— JR—
H=h(Sp) o) + fo 5(6, 5, 9, Sy_))di + f (. Se 5z, Se)) [z <1)
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with sufficiently regular payoff functions, § and f (precise conditions are
given below). As beforep denotes a valuation function which gives the value
of outstanding payments from the claim, given that default has not yet happened,
and which still has to be determined. Using definition (5.1} @nd the equality
S,_=S;_ =5, 0n]0, z], one can rewrite the claim as

T
H = h(Sr,n7) +/o 8(t, Sis s 01, Siu i) dt

T
+/O Ty (e2) £ (£, Sy, v(t, S, 1)) AN

With 21 (x, k) = h(x) Ig=n), 8(t, x, k, v) = 8(t, x, V) [jk=n}, f™(t, X, v) = f(t, X, V)
andv(t, x, k) = v(t, x) Iyx=n). This represent#/ in a form like (4.3) which refers
to S andy instead ofS andt. Now suppose that, § and f™ satisfy the regularity
conditions stated after (4.3) and recall from Lemma 4.3 (\th P) that there is
at most one valuation process for a claim with a recursive payoff structuréflike
One can then show that the priE¢H ] at time 0 equals (0, So, n), whereuv is (see
Theorem 2.4) the unique bounded solution to the PDE system

0= v (t, x,n) + (L — R)A(t, x)xvy (¢, x, n)

+ %oz(t, x, ) x2vy (£, x, 1) + 8(¢, x,n,v(r, x,n))
(5.3)
+A™(t, ) (v(t, x,0) — v(t, x,n) + O, x, v(t, x, 1)),

0=v,(t,x,0) + 302(t, X, 0)x%vyx (¢, X, D),

for (z,x) € [0, T) x (0, o0), with boundary conditions(T, x, k) = h(x, k) for

k =n,0. Sincev(t, x,0) = 0 is trivial, we are left with one (simplified) PDE for
v(t, x, n). For fractional recovery of the claim in default, that f&? (¢, x, v) = Rv

with recovery constanR € [0, 1] (for the claim), the last term in (5.3) simplifies
further to—A™ (¢, x)(1— R)v(t, x, n), exhibiting the well-known structure “default
intensity times loss fraction.” The proof of the above valuation result goes as for
Theorem 4.4; one applies Itd’s formulai, S;, n,) to show that

t
Y = v, Sf,m>+fo 8(tt, Sus s (1, Sus 1a)) du

t
+/ Ty (=) f™° (1, S, 0(1, Sy, 1)) dN®
0

is a martingale with final valu®; = H so thatE[H] = Yo = v(0, Sp, no).
In the case wherR is strictly positive, the stock price at default cannot drop
to zero. By (5.2), we then have not onfy = S,_ on [0, ], but alsoS; = S;,_ /R
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on]z, T]. This permits to consider more general claims of the form
- T_ —
H=h(rom) + [ 5.5 5.5 o)) ds
+ I{‘L’ST}f_‘(T’ §T—5 l_)('f, E‘[—v n‘f—))

T
=h(ST,nT)+/O 5(t, Sy s 0(t, Spy i) dt

T
+ fo Ty (1) £ (8, St vt Sta ) AN,

where the functions with argumesitor S are related by (x, k) = Ijny (k)2 (x, n) +

Iy ()h(x/R,0), 8(t,x,k,v) = &), x,n,v) + Ipyk)3(t, x/R,0,v),
™, x,v) = f(t,x, v) andv(t, x, k) = v(t, x, k) [y (k) + v(t, x /R, 0) Iy (k).

If h, 8§ and ™ satisfy the assumptions after (4.3), arguments analogous to those
above yield the pric&[H] = v(0, Sp, n) for v now solving

O=v,(t, x,n) + (L — RA(t, x)xv, (£, X, n)

+ %az(t, X, )x20, (¢, x, 1) + 8(¢, x,n, v(r, x, n))

+ 2", x) (v(t, x,0) —v(t, x,n) + f2(t, x, v(t, x, 0))),
0=v,(t, x,0) + 302(t, x, 0)x%vyx (1, X,0) + 8(t, x,0, v(t, X, D)),

for (z,x) € [0, T) x (0, 00), with boundary conditions(T, x, k) = h(x, k) for
k =n,0. This system is in general more complicated becausex, ?) will no
longer vanish if the clainFf comprises payments after default time

5.2. Insurance risk. A second major area for examples and applications is the
treatment of risks at the interface of finance and insurance. This has attracted much
attention recently, and we briefly mention a few links to the present work. We
concentrate on valuing insurance-related products and leave aside other important
topics such as portfolio optimization for insurers or ruin probabilities in the
presence of financial markets.

The basic idea is to study a model containing both financial and actuarial
components wherg describes as before the tradable assets in the financial market,
while 5 is now related to the evolution of some insurance contract. For a concrete
example, think ofy, as the state of health at timeof a policy holder; this may
include death if we consider a life insurance policy. The functibng and f
specify the contract’s final paymentat expiration, continuous payments (e.g.,
premiums) at raté and lump sum paymentg that occur on passing from one
state to another. One example of a recursive payoff here arises if death benefits
are a fraction of the reserve; see Ramlau-Hansen (1990). In general, the goal
is to determine a value for the contract given tiy s, ) and possibly also to
hedge it.
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While such products per se are not new, recent developments have started to put
emphasis on their valuation by market-based methods that go beyond traditional
actuarial approaches. Examples include risk-minimization or indifference pricing
[see Mgiller (2001, 2003)] or computation of market-based reserves [see Steffensen
(2000)]. In comparison with existing work, we offer here two contributions. We
abandon the assumption of independence between the financial and actuarial risk
factors imposed in Mgller (2001, 2003), and give a rigorous construction for
the model with mutual dependences betweeand . Such dependences can
be important for products in non-life insurance; a catastrophic insurance event
might, for instance, affect stock indices of related industries. Moreover, we provide
precise conditions and existence results for PDEs and fixed points. This contributes
to the study of related actuarial applications in Steffensen (2000) and gives a sound
mathematical basis to previous intuitive ideas. It will be interesting to see how
the methods developed here can be used further, for instance to prove verification
results for other problems in the area of insurance.

APPENDIX

This appendix contains some proofs that were omitted from the main body of
the article.

PROOF OF LEMMA 3.2. This is similar to the first step in the proof of
Theorem 4.4. We apply 1t6’s formula ta(z, S;, n,), substitutedN,kf = dM,k’ +
Aki(e, S))dr and use the PDE (3.7) to conclude that the drift term vanishes
on[0, T7). This yields

dv(t, S, n,) = ((grad, )" ), S;, n,—) dW,

m .
+ 3008 0 (v, Sr ) — v, S k) gy () d MY
j=1
Jj#k
tel0,T).
Sincev and A¥ are bounded and the martingalgg/ are in #7(P) for any
p € [1, 00) by the remark following (4.2), all stochastic integrals with respect to
M¥ are in#P(P), and so this must hold for the one with respec#toas well.
In particular, the above equation extends[@o7’] and the process(z, S;, 1;),
t € [0, T'], is a martingale. (J

PROOF OFLEMMA 4.3. Suppos&/! and V? are bounded semimartingales
which both satisfy (4.7). By using the martingale coAmpensdtb(n, Sy) dt for the
jump processN% [which is the same undeP and P, see (4.2)], the recursive
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representation (4.7) df’ can be rewritten as

(A.1) Vi =EQ[h(STv’7T)+ft g(”aSu»nu—,Vul_)du‘ﬂ}

tel0,T],i=12,

with g, x,k,y) == 8(t,x,k,y) + ¥, ur@,x) @, x,y). Since all
8(-, - k,-) and f% are locally Lipschitz iny, uniformly in (z, x), g is also lo-
cally Lipschitz in y, uniformly in (¢, x,k). If K < oo is an upper bound for
V1], |V?|, the local Lipschitz property gives ah = L(K) < oo such that
lg(t, x, k,y}) — g(t,x,k,y?)| < LIyt — y?| for any |y/| < K, i = 1,2, and all
(t, x, k). Similarly as for Proposition 2.1, it follows from (A.1) that we have for
any g € (0, c0)

e—ﬂ(T—t) | ‘/tl _ V[2|

T
< e—ﬂ”—”EQ[ / 18, Sus thu=s Vi) — 8, Sus tlu—y Vi) du\ﬂﬁ]
t

T
S e_ﬁ(T_t) Sup e_ﬂ(T_”)L|Vu1 — Vuzl / €+’B(T_u) dM
uel0,T] Lo Ji
L —B(T—w) 1l 12
<—| sup e |V, — V7 , te[0,T].
LOO

B

So if the RCLL semimartingaleg! and V2 were not indistinguishable, consider-
ing the supremum of the above inequality over [0, T] would lead to a contra-
dictionforg > L. O

uel0,T]

The second part of the above proof varies an argument from Duffie and Epstein
(21992) (Appendix with Skiadas). Their result cannot be applied directly because
the functiong above is only locally Lipschitz. And the exponential weighting
permits to shorten the proof.

Acknowledgments. The first author thanks Fredi Troltzsch, TU Berlin, and
participants of workshops in Copenhagen and Oberwolfach for discussions. Earlier
versions contained an incomplete proof of Proposition 2.3, and we are grateful to
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