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A BERRY–ESSEEN THEOREM FOR FEYNMAN–KAC AND
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Laboratoire Jean Alexandre Dieudonné and Université Henri Poincaré

In this paper we investigate the speed of convergence of the fluctuations
of a general class of Feynman–Kac particle approximation models. We design
an original approach based on new Berry–Esseen type estimates for abstract
martingale sequences combined with original exponential concentration
estimates of interacting processes. These results extend the corresponding
statements in the classical theory and apply to a class of branching and
genealogical path-particle models arising in nonlinear filtering literature as
well as in statistical physics and biology.

1. Introduction. Feynman–Kac distribution flows and their particle interpre-
tations arise in the modeling and the numerical solving of a variety of prob-
lems including directed polymer simulations in biology and industrial chemistry,
nonlinear filtering in advanced signal processing and Bayesian statistics methodol-
ogy, rare event estimation in telecommunication and computer systems analysis as
well as physics in the spectral analysis of Schrödinger operators and in the study
of particle absorptions. Their asymptotic behavior as the size of the systems and/or
the time parameter tend to infinity has been the subject of various research articles.
For more details on both the theoretical and applied aspects of the topic we refer
the reader to the review article [5] and references therein.

To better connect this study with existing and related articles in the literature we
give a brief discussion on the fluctuation analysis of these models. The first “local”
central limit theorems were presented in [1]. These fluctuations were restricted
to local sampling errors of an abstract class of genetic type particle model. This
study was extended in [2] in the spirit of Shiga and Tanaka’s celebrated article [9]
to particle and McKean path-measures. This approach to fluctuations in path
space was centered around Girsanov type change of measures techniques and a
theorem of Dynkin and Mandelbaum on symmetric statistics [7]. This strategy
entirely relies on appropriate regularity conditions on the Markov kernels which
are not satisfied for genealogical tree evolution models as the ones described in [1].
Another drawback of this approach is that the description of resulting limiting
variance is not explicit but expressed in term of the inverse of anL2 integral
operator.
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Donsker type theorems and an explicit computation of the limiting variance in
terms of Feynman–Kac semigroups were further developed in [4] in the context
of particle density profile models. These explicit functional formulations were
the starting point of a new approach to central limit theorems based on judicious
martingale decompositions and Feynman–Kac semigroup techniques [3, 5].

The main objective of the current article is to complete and further extend these
studies with the analysis of the speed of convergence of fluctuations.

The article is organized as follows. In Section 1.1 we describe the Feynman–Kac
and the particle models discussed in this article. In Section 1.2 we present our main
results and specify the set of regularity conditions needed in the sequel. Section 2
is concerned with a precise Berry–Esseen type estimate for abstract martingale
sequences. In Section 3 we show how these martingale fluctuations apply to a
sufficiently regular class of McKean particle interpretations.

We end this section with some rather standard and classical notation that will be
of current use in the article.

By M(E) we denote the set of all bounded and positive measures on a
measurable space(E,E), by P (E) ⊂ M(E) we denote the subset of probability
measures on(E,E) and byBb(E) the Banach space of all boundedE -measurable
functionsf onE equipped with the uniform norm‖f ‖ = supx∈E |f (x)|. We also
let Osc(E) ⊂ Bb(E) be the subset of all bounded measurable functions with
oscillations osc(f ) = sup(x,y) |f (x) − f (y)| ≤ 1.

We finally recall that a bounded and positive integral operatorQ from (E,E)

into another measurable space(E′,E ′) generates two operators, one acting on
functionsf ∈ Bb(E

′) and taking values inBb(E), the other acting on measures
µ ∈ M(E) into M(E′) and defined by

Q(f )(x) =
∫
E′

Q(x,dx′)f (x′), µQ(dx′) =
∫
E

µ(dx)Q(x, dx′).

To clarify the presentation we shall slightly abuse the notation, and we often write
Q(f − Q(f ))2 for the functionx → Q(f − Q(f )(x))2(x).

Finally, we shall use the letterc to denote any nonnegative and universal
constant whose values may vary from line to line but which does not depend on
the time parameter nor on the Feynman–Kac models.

1.1. Description of the models.We consider some collections of measurable
spaces(En,En)n∈N, of Markov transitionsMn+1(xn, dxn+1) from En to En+1, and
boundedEn-measurable and strictly positive functionsGn onEn. We assume that
the latter are chosen so that for anyn ∈ N we have

rn = sup
(xn,yn)∈E2

n

(
Gn(xn)/Gn(yn)

)
< ∞.(1)

We associate to the pair(Gn,Mn) the Boltzmann–Gibbs transformation�n

on P (En) and the mapping�n+1 from P (En) into P (En+1) given for any
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(xn,µn) ∈ (En,P (En)) by

�n(µn)(dxn) = Gn(xn)µn(dxn)/µn(Gn),

�n+1(µn) = �n(µn)Mn+1.

For anyη0 ∈ P (E0) we denote byEη0(·) the expectation operator with respect
to the distribution of a Markov chainXn with initial distributionη0 and elementary
transitionsMn. We consider the distribution flowηn ∈ P (En), n ∈ N, also called
Feynman–Kac flowin the sequel, defined for anyfn ∈ Bb(En) by the Feynman–
Kac formulae

ηn(fn) = γn(fn)/γn(1) with γn(fn) = Eη0

[
fn(Xn)

∏
0≤p<n

Gp(Xp)

]
,(2)

with the convention
∏

∅ = 1. Using the multiplicative structure of the Feynman–
Kac model and the Markov property, one readily checks that the flowηn satisfies
the nonlinear equation

ηn+1 = ηnKn+1,ηn,(3)

where (Kn+1,µn)n∈N,µn∈P (En) is a nonuniquecollection of Markov transitions
satisfying the compatibility condition

∀n ∈ N ∀µn ∈ P (En) µnKn+1,µn = �n+1(µn).(4)

These collections of transitions are often called the McKean interpretations of (3).
Notice that the compatibility relation (4) is satisfied if we take

Kn+1,µn(xn, ·) = εnGn(xn)Mn+1(xn, ·) + (
1− εnGn(xn)

)
�n+1(µn)(5)

for any nonnegative constantεn such thatεnGn(xn) ∈ [0,1]. We finally notice that
the random variablesXn may represent the path of an auxiliary Markov chainX′

p

from the origin up to timen and taking values in some Hausdorff topological
spacesE′

p; that is, we have

Xn = (X′
0, . . . ,X

′
n) ∈ En = (E′

0 × · · · × E′
n).(6)

For eachN ≥ 1 we denote bymN the mapping from the product spaceEN

into P (E) which associates to each configurationx = (xi)1≤i≤N ∈ EN the empir-
ical measuremN(x) = 1

N

∑
i=1 δxi . The interacting particle system associated to

a given McKean interpretation is defined as a Markov chainξ
(N)
n = (ξ

(N,i)
n )1≤i≤N

taking values in the product spacesEN
n with initial distributionη⊗N

0 and elemen-
tary transitions

Prob
(
ξ (N)
n ∈ dxn|ξ (N)

n−1

) =
N∏

i=1

K
n,mN(ξ

(N)
n−1)

(
ξ

(N,i)
n−1 , dxi

n

)
,(7)
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wheredxn = ×1≤i≤Ndxi
n stands for an infinitesimal neighborhood of the point

xn = (xi
n)1≤i≤N ∈ EN

n .
Under appropriate regularity conditions on the McKean transitions kernelsKn,µn

it is known that in some sense the particle measures

ηN
n = mN

(
ξ (N)
n

)
converge asN tends to infinity to the desired distributionsηn.

To illustrate this model we note that the particle interpretation of the Feynman–
Kac flow associated to McKean transitions (5) forms a two-step selection/mutation
genetic algorithm. The particular situation whereεn = 0 corresponds to a simple
genetic model with an overlapping mutation/selection transition. In the same
vein the corresponding particle interpretation model of the Feynman–Kac path
measures associated to the chain (6) forms is a genetic type algorithm taking values
in path space. Note that in this situation the path-particles have the form

ξ (N,i)
n = (

ξ
(N,i)
0,n , ξ

(N,i)
1,n , . . . , ξ (N,i)

n,n

) ∈ En = (E′
0 × · · · × E′

n).

In addition, if the potential functions only depend on terminal values in the sense
that Gn(x

′
0, . . . , x

′
n) = G′

n(x
′
n) for some potential functionG′

n on E′
n, then the

resulting path-particle model can be interpreted as a genealogical tree evolution
model.

As traditionally, to clarify the presentation we slightly abuse the nota-
tion, by suppressing the size indexN , and we write(m(x), ξn, ξ

i
n) instead of

(mN(x), ξ
(N)
n , ξ

(N,i)
n ).

1.2. Statement of some results.For any sequence ofF N
n -adapted random

variablesZN
n defined on some filtered probability spaces(�N, (F N

n )n≥0,P
N),

we denote by	ZN
n the difference process	ZN

n = ZN
n − ZN

n−1, with the
convention	ZN

0 = ZN
0 for n = 0. If 	MN

n is a givenF N
n -martingale difference,

then we denote byMN
n the F N

n -martingale defined byMN
n = ∑n

p=0 	MN
p .

We recall that its increasing process〈MN〉n is given by

〈MN 〉n =
n∑

p=0

E
N [(	MN

p )2|F N
p−1],

with the conventionF N−1 = {∅,�N } for p = 0. It is also convenient to in-
troduce the increasing processCN

n = N〈MN 〉n of the normalized martingale
LN

n = √
NMN

n .
The example we have in mind is the situation where(F N

n )n≥0 is the natural
filtration associated to the particle model (7) and theF N -martingale difference
	MN

n = 	MN
n (fn), with fn ∈ Bb(En), is given by the particlenth sampling error

	MN
n (fn) = ηN

n (fn) − ηN
n−1Kn,ηN

n−1
(fn)(8)
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with the conventionηN−1K0,ηN−1
= η0 for n = 0. In this situation the increasing

processes〈MN(f )〉n andCN
n (f ) = 〈LN(f )〉n of the corresponding martingales

MN
n (f ) andLN

n (f ) = √
NMN

n (f ) are connected by the formula

CN
n (f ) = N〈MN(f )〉n =

n∑
p=0

ηN
p−1Kp,ηN

p−1

(
fp − Kp,ηN

p−1
(fp)

)2
.(9)

Our first main result concerns a Berry–Esseen theorem for an abstract class of
martingale sequences under the following set of conditions:

(H1) For anyn ≥ 0 there exist some constantsa1(n) < ∞ and 0< c1(n) ≤ 1 such
that for anyn ≥ 0 andλ3 ≤ c1(n)N1/2 we have,PN almost surely,∣∣E[

eiλN1/2	MN
n +(λ2/2)	CN

n
∣∣F N

n−1
] − 1

∣∣ ≤ a1(n)λ3/N1/2.

(H2) For anyn ≥ 0 there exists some finite constanta2(n) < ∞ such that for any
N ≥ 1, λ > 0 andn ≥ 0,∣∣E[

eiλN1/2MN
n

]∣∣ ≤ E
[
e−(λ2/2)	CN

n
]
eλ3a2(n)/N1/2

.

(H3) There exists a nonnegative and strictly increasing deterministic process
C = (Cn)n≥0 as well as some finite constants 0< a3(n) < ∞ such that for
anyε > 0 we have

E
[
eεN1/2|	CN

n −	Cn|] ≤ (
1+ εa3(n)

)
eε2a2

3(n).

THEOREM 1.1. Let MN = (MN
n )n≥0 be a sequence ofF N -martingales

satisfying conditions(H1)–(H3) for some nonnegative and strictly increasing
processCn. We letFN

n , respectively, Fn, be the distribution function of the random
variableN1/2MN

n , respectively, the one of a centered Gaussian random variable
with varianceCn. Then for anyn ≥ 0 we have

lim sup
N→∞

N1/2‖FN
n − Fn‖ < ∞.

Theorem 1.1 does not apply directly to the particle martingale sequence
introduced in (8). The first two conditions (H1) and (H2) are rather standard.
They can be checked for any kind of any McKean interpretation model using
simple and rather standard asymptotic expansions of characteristic functions. The
third condition is an exponential continuity condition of the increasing processes
introduced in (9). Next we provide a sufficient regularity condition which can
be easily checked in various McKean interpretation models. If we set for any
µn ∈ P (En)

µ−1
n (0) = {h ∈ Osc(En) :µn(h) = 0},

then this condition reads
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(H) There exists a collection of uniformly bounded positive measures�n,f

and �′
n+1,f on the setsη−1

n (0) and η−1
n+1(0) and indexed byn ∈ N and

f ∈ Osc(En+1) and such that∥∥Kn+1,µn(f ) − Kn+1,ηn(f )
∥∥

≤
∫

|µn(h)|�n,f (dh) +
∫

|�n+1(µn)(h)|�′
n,f (dh).

When condition (H) is met we denote by� the supremum of the total mass
quantities�′

n,f (1) and�n,f (1).
Note that (H) is related to some Lipschitz type regularity of the increasing

process and it is clearly met for the McKean transitions given in (5), since we
have in this case

Kn+1,µn(f ) − Kn+1,ηn(f ) = (1− εnGn)[�n+1(µn) − �n+1(ηn)](f ).

Thus, in this situation, we have that (H) is met with�n,f = 0 and�′
n,f = δh with

h = [f − ηn+1(f )] so that�n,f (1) = 0 and�′
n,f (1) = 1. When the parameter

εn = εn(µn) in (5) depends on the index measureµn, we also find that (H) is met
as soon as we have

|εn(µn) − εn(ηn)| ≤
∫

|µn(h)|�n(dh)

for some uniformly bounded positive measures�n onη−1
n (0).

REMARK 1.2. The above considerations show that condition (H3) is in fact
easily verified in most of the classical applications of McKean models, and in
particular in the case of nonlinear filtering, for which we refer to [5], for sake of
conciseness.

To check the exponential estimates stated in condition (H3) we shall use a re-
fined version of Burkholder’s inequality recently presented by the first author with
Miclo and Viens in [6]. Roughly speaking, these sharpLp-estimates combined
with some judicious error decompositions lead to the desired exponential concen-
trations estimates for the normalized sampling error martingaleLN

n (f ) defined
by (9) with the limiting increasing process

Cn(f ) =
n∑

p=0

ηp−1Kp,ηp−1

(
fp − Kp,ηp−1(fp)

)2
.(10)

Observe that, even if this strategy led to the desired Berry–Esseen estimates
onMN

n (f ), we would still need to transfer these rates of fluctuations to the random
field sequence defined by

√
N(ηN

n − ηn). One of the most elegant approaches is
probably to follow the semigroup techniques and the martingale decompositions



INTERACTING PARTICLE MODELS 947

developed in [5]. To describe these decompositions with some precision we let
Qp,n be the linear Feynman–Kac semigroup associated to the flowγn. To be more
specific, we define the semigroupQp,n by the relation

γn = γpQp,n,

and we associate toQp,n a “normalized” semigroup�Qp,n, defined forfn∈ Bb(En)

by

�Qp,n(fn) = Qp,n(fn)

ηpQp,n(1)
= γp(1)

γn(1)
Qp,n(fn).(11)

If we let (WN
p,n(fn))p≤n, fn ∈ Bb(En), be the random field sequence defined by

WN
p,n(fn) = √

N(ηN
p − ηp)(fp,n) with fp,n = �Qp,n(fn − ηnfn),(12)

then we have the Doob type decomposition

WN
p,n(fn) = BN

p,n(fn) + LN
p,n(fn),

with the predictable and martingale sequences given by

	BN
p,n(fn) = √

N [1− ηN
p−1(Gp−1)/ηp−1(Gp−1)]

× [�p(ηN
p−1)(fp,n) − �p(ηp−1)(fp,n)],

	LN
p,n(fn) = √

N
[
ηN

p (fp,n) − ηN
p−1Kp,ηN

p−1
fp,n

]
.

The above decomposition is now more or less standard. For the convenience of the
reader its proof is housed in the Appendix.

Intuitively speaking, we see from the quadratic structure of the predictable
term that it should not influence the fluctuation rate. We will make precise
this observation with a Stein type approximation lemma and we will prove the
following theorem:

THEOREM 1.3. Letfn ∈ Bb(En) and letWN
p,n be the quantitydefined by(12).

For any McKean interpretation model satisfying condition(H), we have

lim sup
N→∞

√
N sup

u∈R

∣∣∣∣P(
WN

n,n(fn) ≤ uσn(f )
) −

∫ u

−∞
e−v2/2 dv

(2π)1/2

∣∣∣∣ < ∞,

for anyfn ∈ Bb(En) andn ≥ 0 with

σ 2
n (f ) =

n∑
p=0

ηp−1Kp,ηp−1

(
fp,n − Kp,ηp−1(fp,n)

)2
.
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2. An estimate for martingale sequences. The central limit theorem for
sequences of random variables is usually obtained by convergence of characteristic
functions. Unsurprisingly, the natural question of determining the speed of
convergence in the CLT can also be handled through characteristic functions
considerations. The formalization of this idea is due to Berry and Esseen, and
can be summarized in the following theorem:

THEOREM 2.1 (Berry–Esseen).Let (F1,F2) be a pair of distribution func-
tions with characteristic functions(f1, f2). Also assume thatF2 has a derivative
with ‖∂F2

∂x
‖ < ∞. Then for anya > 0 we have

‖F1 − F2‖ ≤ 2

π

∫ a

0

|f1(x) − f2(x)|
x

dx + 24

aπ

∥∥∥∥∂F2

∂x

∥∥∥∥.
In this section, we will try to apply this theorem to a sequence of martingales

satisfying the general set of hypotheses (H1)–(H3) in order to get a sharp
asymptotic result for its convergence towards a Gaussian martingale. In order to
prepare for the proof of Theorem 1.1 we start with the following key technical
lemma.

LEMMA 2.2. Suppose we are given a sequence of martingalesMN =
(MN

n )n≥0 with respect to some filtrationsF N
n , satisfying the conditions(H1)–(H3).

Then, for anyn ≥ 0, there exist a finite constanta(n) < ∞, a positive constantb(n)

and someN(n) ≥ 1 such that for anyN ≥ N(n) and0 < λ ≤ b(n)N1/2,

∣∣E[
eiλN1/2MN

n
] − e−(λ2/2)Cn

∣∣ ≤ a(n)e−(λ2/4)	Cn
λ2(1+ λ)

N1/2 .

Since the proof of Theorem 1.1 is a simple consequence of the above lemma we
have chosen to give it first.

PROOF OFTHEOREM 1.1. By Theorem 2.1 and Lemma 2.2 we have, for any
N ≥ N(n),

N1/2‖FN
n − Fn‖

≤ 2a(n)

π

∫ b(n)N1/2

0
e−(λ2/4)	Cnλ(1+ λ)dλ + 24

b(n)(2eπ3Cn)
1/2

≤ 2a(n)

π

∫ ∞
0

e−(λ2/4)	Cnλ(1+ λ)dλ + 24

b(n)C
1/2
n

,

for someN(n) ≥ 1 and some finite positive constant 0< b(n) < ∞. Invoking the
fact that	Cn > 0, this ends the proof of the theorem.�

We now come to the proof of Lemma 2.2.
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PROOF OFLEMMA 2.2. LetIN
n be the function defined for anyλ ≥ 0 by

IN
n (λ) = E

[
eiλN1/2MN

n +(λ2/2)Cn
] − 1,

and notice that

E
[
eiλN1/2MN

n
] − e−(λ2/2)Cn = e−(λ2/2)CnIN

n (λ).(13)

Furthermore, we have the easily verified recursive equations

IN
n (λ) − IN

n−1(λ)

= E
[
eiλN1/2MN

n−1+(λ2/2)Cn−1
(
E

[
eiλN1/2	MN

n +(λ2/2)	Cn|FN
n−1

] − 1
)]

,

and hence

IN
n (λ) − IN

n−1(λ) = A(λ) + B(λ),

with

A(λ) = E
[
eiλN1/2MN

n−1+(λ2/2)Cn−1
(
e(λ2/2)(	Cn−	CN

n ) − 1
)]

and

B(λ) = E
[
eiλN1/2MN

n−1+(λ2/2)Cn−1
(
e(λ2/2)(	Cn−	CN

n ))
× (

E
[
eiλN1/2	MN

n +(λ2/2)	CN
n |F N

n−1
] − 1

)]
.

Using this we obtain

|IN
n (λ) − IN

n−1(λ)| ≤ e(λ2/2)Cn−1
(
A1(λ) + B1(λ)

)
,

where

A1(λ) = E
[
e(λ2/2)|	Cn−	CN

n | − 1
]

and

B1(λ) = E
[∣∣E[

eiλN1/2	MN
n +(λ2/2)	CN

n |F N
n−1

] − 1
∣∣e(λ2/2)(	Cn−	CN

n )].
Now, under conditions (H1) and (H3) applied forε = λ2

2N1/2 , we find that

|IN
n (λ) − IN

n−1(λ)|

≤ e(λ2/2)Cn−1

[
a1(n)λ3

N1/2

(
1+ λ2a3(n)

2N1/2

)
e(λ4/4N)a2

3(n)

+
(

1+ λ2a3(n)

2N1/2

)
e(λ4/4N)a2

3(n) − 1
]

= e(λ2/2)Cn−1

[
a1(n)λ3

N1/2

(
1+ λ2a3(n)

2N1/2

)
e(λ4/4N)a2

3(n)

+ (
e(λ4/4N)a2

3(n) − 1
) + λ2a3(n)

2N1/2
e(λ4/4N)a2

3(n)

]
,
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for any 0< λ3 ≤ c1(n)N1/2. Since for these pairs of parameters(λ,N) we have
λ2 ≤ N1/2 (and thereforeλ4 ≤ N ), we find that

N1/2|IN
n (λ) − IN

n−1(λ)| ≤ d(n)e(λ2/2)Cn−1λ2(1+ λ),

for some finite constantd(n), whose value only depends onai(n), i = 1,3, and
such that

d(n) ≤ cea2
3(n)/4(1∨ a1(n) ∨ a3(n)

)2
.

If we set

c�(n) =
n∧

p=0

c1(p) (≤ 1) and d�(n) =
n∨

p=0

d(p),

then for any 0≤ p ≤ n and any 0< λ3 ≤ c�(n)N1/2, we have that

N1/2|IN
p (λ) − IN

p−1(λ)| ≤ d�(n)e(λ2/2)Cn−1λ2(1+ λ).

It is now easily verified from these estimates that

N1/2|IN
n (λ)| ≤ (n + 1)d�(n)e(λ2/2)Cn−1λ2(1+ λ),

from which we conclude that, for any 0< λ3 ≤ c�(n)N1/2,

∣∣E[
eiλN1/2MN

n
] − e−(λ2/2)Cn

∣∣ ≤ (n + 1)d�(n)e−(λ2/2)	Cn
λ2(1+ λ)

N1/2
.(14)

On the other hand, we have, for any pair(λ,N),∣∣E[
eiλN1/2MN

n
] − e−(λ2/2)Cn

∣∣ ≤ ∣∣E[
eiλN1/2MN

n
]∣∣ + e−(λ2/2)Cn,(15)

and under condition (H2),∣∣E[
eiλN1/2MN

n
]∣∣ ≤ E

[
e−(λ2/2)	CN

n
]
eλ3a2(n)N−1/2

.

Using again (H3) we also find that∣∣E[
eiλN1/2MN

n
]∣∣

≤ e−(λ2/2)	Cn

(
1+ λ2a3(n)

2N1/2

)
e(λ4a2

3(n))/(4N)e(λ3a2(n))/N1/2

=
(

1+ λ2a3(n)

2N1/2

)
exp

[
−λ2

2

(
	Cn − λ

N1/2

(
2a2(n) + a2

3(n)
λ

2N1/2

))]
.

Recall that	Cn > 0, and observe that for any pair(λ,N) such that

λ ≤ c�(n)N1/2 with c�(n) = [
2a−2

3 (n) ∧ (
2−1	Cn

(
1+ 2a2(n)

)−1)]
,
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we have
λ

N1/2

(
2a2(n) + a2

3(n)
λ

2N1/2

)
≤ λ

N1/2

(
2a2(n) + 1

)
≤ 	Cn

2
.

This yields ∣∣E[
eiλN1/2MN

n
]∣∣ ≤

(
1∨ a3(n)

2

)(
1+ λ2

N1/2

)
e−λ2	Cn/4,(16)

and hence, by (15), and for anyλ ≤ c�(n)N1/2, we find∣∣E[
eiλN1/2MN

n
] − e−(λ2/2)Cn

∣∣ ≤ e−(λ2/4)	Cn
(
2∨ a3(n)

)(
1+ λ2

N1/2

)
.(17)

To take the final step we observe that for any

N ≥ c�(n)/c�(n)3 and c1/3
� (n)N1/6 ≤ λ ≤ c�(n)N1/2,

we have 1= c�(n)/c�(n) ≤ c−1
� (n)λ3/N1/2, and by (17),∣∣E[

eiλN1/2MN
n

] − e−(λ2/2)Cn
∣∣ ≤ c−1

� (n)
(
2∨ a3(n)

)λ2(1+ λ)

N1/2 e−λ2	Cn/4.(18)

In conjunction with (14) we conclude that for anyN ≥ N(n) = c�(n)/c�(n)3 and
anyλ ≤ c�(n)N1/2,∣∣E[

eiλN1/2MN
n

] − e−(λ2/4)Cn
∣∣ ≤ a(n)

λ2

N1/2
(1+ λ)e−(λ2/4)	Cn,

with a(n) = [(n + 1)d�(n)] ∨ [c−1
� (n)(2 ∨ a3(n))]. This ends the proof of the

lemma. �

3. Application to interacting processes. In this section, we prove that
Theorem 1.1 can be applied to our particle approximations. We shall go through a
series of preliminary results leading to the proof of Theorem 1.3.

The first step is of course to provide some exponential estimates for the particle
density profiles. In the next pivotal lemma we describe an original exponential
concentration result in terms of the following pair of parameters:

β(Pp,n) = sup
(xp,yp)∈E2

p

‖Pp,n(xp, ·) − Pp,n(yp, ·)‖tv,

(19)
rp,n = sup

(xp,yp)∈E2
p

Qp,n(1)(xp)/Qp,n(1)(yp),

where‖µ − ν‖tv = supA∈E |µ(A) − ν(A)| represents the total variation distance
between probabilities andPp,n denotes the Markov transition fromEp into En

defined by

Pp,n(xp, dxn) = Qp,n(xp, dxn)/Qp,n(xp,En).
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LEMMA 3.1. For any McKean model we have for everyn ≥ 0,fn ∈ Osc1(En)

andε > 0,

E
[
eεN1/2|ηN

n (fn)−ηn(fn)|] ≤ (
1+ ε2−1/2b(n)

)
e(εb(n))2/2

for some finite constantb(n) such thatb(n) ≤ 2
∑n

q=0 rq,nβ(Pq,n).

REMARK 3.2. The quantities(rp,n, β(Pp,n)) play an important role in the
asymptotic and long time behavior of Feynman–Kac particle approximation
models. The above lemma combined with the semigroups approach developed
in [5] readily yields uniform exponential concentration properties. To be more
specific, let us suppose thatr = ∨

n rn < ∞. Also assume that there exist some
integer parameterm ≥ 1 and someρ ∈ (0,1] such that for any(x, y) ∈ E2

n,
A ∈ En+m andn ≥ 0,

Mn,n+m(x,A) ≥ ρMn,n+m(y,A),

where Mn,n+m = (Mn+1 . . .Mn+m) stands for the composition of the Markov
kernelsMp from p = (n + 1) to p = (n + m). In this situation, following the
arguments given in [5] one proves that

rn,n+m ≤ rm/ρ and β(Pn,n+m) ≤ (1− rm−1ρ2)[(n−p)/m].
Furthermore, the constantsb(n) in Lemma 3.1 can be chosen such that

∨
n b(n) ≤

2mr2m−1/ρ3.

The proof of Lemma 3.1 being rather technical, it is housed in the Appendix (see
Lemma A.3). One consequence of Lemma 3.1 is the following central estimate.

LEMMA 3.3. Suppose the McKean interpretation model satisfies condi-
tion (H) for some finite constant� < ∞. In this situation, the martingaleMN

n (f )

defined by(8) satisfies conditions(H1)–(H3)for some universal constants(
a1(n), a2(n)

) = (a1, a2)

with the nonnegative increasing processCn(f ) defined at(10), as soon as
n → Cn(f ) is strictly increasing. In addition, the constanta3(n) in (H3) can be
chosen such that, for anyn ≥ 0,

0< a3(n) ≤ 4
√

2(1+ �) sup
q=n,n−1

q∑
p=0

rp,qβ(Pp,q).

Furthermore, when the regularity conditions stated in Remark3.2 are met for
some triplet(m, r, ρ), the constanta3(n) can be chosen such that0 <

∨
n a3(n) ≤

8
√

2mr2m−1(1+ �)/ρ3.

The second step will be to get rid of the predictable term defined by (12), with
the help of the following lemma:



INTERACTING PARTICLE MODELS 953

LEMMA 3.4. Let FZ be the distribution function associated to a real-valued
random variableZ, and letW be a centered Gaussian random variable with unit
variance. For any pair of random variables(X,Y ) we have

‖FX+Y − FW‖ ≤ ‖FX − FW‖ + 4E(|XY |) + 4E(|Y |).(20)

Lemma 3.4 can be proved using the Stein approach to fluctuations and it can
be found, for instance, as Lemma 1.3, Chapter 11 in [8]. Since the proof of
Theorem 1.3 is now a simple consequence of Lemmas 3.3 and 3.4, we postpone
the proof of Lemma 3.3 and start with the

PROOF OF THEOREM 1.3. Throughout this proof,̂b(n) will stand for
a positive constant that can change from line to line. We first notice that

WN
n,n = √

N(ηN
n − ηn),

and by (12) we haveWN
p,n(fn) = BN

p,n(fn) + LN
p,n(fn). Let us show now that the

main term in the fluctuations of the c.d.f. ofWN
p,n(fn) is due toLN

p,n(fn). Indeed,
it is easily checked that

E
1/2(|BN

n,n(fn)|2) ∨ E
(|BN

n,n(fn)|) ≤ b̂(n)(Cn(f ))1/2
√

N
.(21)

By definition of the martingale term, it is also easily seen that

E
1/2(|LN

n,n(fn)|2) ≤ b̂(n)
(
Cn(f )

)1/2
.(22)

Set now

X = LN
n,n(fn)/

(
Cn(f )

)1/2 and Y = BN
n,n(fn)/

(
Cn(f )

)1/2
.

The estimates (21) and (22) yield

E(|XY |) ≤ 1

Cn(f )
E

1/2[|LN
n,n(fn)|2]E1/2[|BN

n,n(fn)|2] ≤ b̂(n)

N1/2
,

andE(|Y |) ≤ b̂(n)/N1/2. Hence, applying Lemma 3.4, the proof of Theorem 1.3
can be reduced to show that

sup
u∈R

∣∣∣∣P(
LN

n (fn,n) ≤ u
(
Cn(f )

)1/2) − 1

(2π)1/2

∫ u

−∞
e−v2/2dv

∣∣∣∣ ≤ b̂(n)

N1/2
.

This last estimate is now a direct consequence of Lemma 3.3 and Theorem 1.1.
�

We now come to:
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PROOF OFLEMMA 3.3. Let us first check that the regularity condition (H3)
is satisfied. Since we have

	Cn(f ) = ηn−1
[
Kn,ηn−1

((
fn − Kn,ηn−1fn

)2)]
= �n(ηn−1)(f

2
n ) − ηn−1

((
Kn,ηn−1fn

)2)
,

we easily prove that

|	CN
n (f ) − 	Cn(f )| ≤ 2

(|�n(η
N
n−1)(hn)| + |ηN

n−1(h
′
n−1)|

+ ∥∥Kn,ηN
n−1

(fn) − Kn,ηn−1(fn)
∥∥)

,

with the pair of functions(hn,h
′
n−1) ∈ (Osc(En) × Osc(En−1)) defined by

hn = (
f 2

n − ηn(f
2
n )

)
/2,

h′
n−1 = ((

Kn,ηn−1fn

)2 − ηn−1
((

Kn,ηn−1fn

)2))
/2.

On the other hand, under condition (H), we have that∥∥Kn,ηN
n−1

(fn) − Kn,ηn−1(fn)
∥∥

≤
∫

|ηN
n−1(h)|�n−1,fn(dh) +

∫
|�n(η

N
n−1)(h)|�′

n−1,fn
(dh),

from which we find that

|	CN
n (f ) − 	Cn(f )|
≤ 2

(∫
|ηN

n−1(h)|�̃n−1(dh) + E

(∫
|ηN

n (h)|�̃′
n−1(dh)|F N

n−1

))
,

with

�̃n−1 = �n−1,fn + δh′
n−1

and �̃′
n−1 = �′

n−1,fn
+ δhn .

Applying Jensen’s inequality, we get that for anyε > 0,

E
[
eεN1/2|	CN

n (f )−	Cn(f )|]
≤ E

[
e2εN1/2{∫ |ηN

n−1(h)|�̃n−1(dh)+∫ |ηN
n (h)|�̃′

n−1(dh)}].
Now, applying the Cauchy–Schwarz inequality, we obtain

E
[
eεN1/2|	CN

n (f )−	Cn(f )|]

≤ E
1/2[e4εN1/2 ∫ |ηN

n−1(h)|�̃n−1(dh)]
E

1/2[e4εN1/2 ∫ |ηN
n (h)|�̃′

n−1(dh)].
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If we set�̃ = � + 1, then using again Jensen’s inequality, we find

E
[
eεN1/2|	CN

n (f )−	Cn(f )|]2 ≤
∫

E
[
e4εN1/2�̃|ηN

n−1(h)|] �̃n−1(dh)

�̃n−1(1)

×
∫

E
[
e4εN1/2�̃|ηN

n (h)|] �̃′
n−1(dh)

�̃′
n−1(1)

,

from which we get

E
[
eεN1/2|	CN

n (f )−	Cn(f )|] ≤ sup
h∈Osc(Ep),p=n,n−1

E
(
e4εN1/2�̃|ηN

p (h)|).
Using Lemma A.3, we conclude that

E
[
eεN1/2|	CN

n (f )−	Cn(f )|] ≤ (
1+ εa3(n)

)
eε2a2

3(n)

for some finite constanta3(n) such that

a3(n) ≤ 4
√

2�̃ sup
q=n,n−1

q∑
p=0

rp,qβ(Pp,q).

To prove that (H2) is met, we first recall that∣∣E[
eiλN1/2MN

n (f )]∣∣ ≤ E
[∣∣E[

eiλN1/2	MN
n (f )|FN

n−1
]∣∣].(23)

Then we use a standard symmetrization technique: given the particle modelξp up
to time p ≤ n − 1, we let η̄N

n be an auxiliary independent copy ofηN
n . In other

words,η̄N
n is the empirical measure associated to an independent copyξ̄n of the

configuration of the systemξn at timen. With some obvious abuse of notation, we
readily check that∣∣E[

eiλN1/2	MN
n (f )|FN

n−1
]∣∣2 = E

[
eiλN1/2[	MN

n (f )−	 �MN
n (f )]|FN

n−1
]
,

where	 �MN
n (f ) = [η̄N

n (fn) − �n(η
N
n−1)(fn)]. We deduce from this that

∣∣E[
eiλN1/2	MN

n (f )|FN
n−1

]∣∣2 =
N∏

j=1

E
[
ei(λ/N1/2)[fn(ξ

j
n )−fn(ξ̄

j
n )]|F N

n−1
]
.

Since the random variables[fn(ξ
j
n ) − fn(ξ̄

j
n )] and−[fn(ξ

j
n ) − fn(ξ̄

j
n )] have the

same law, their characteristic functions are real, and we have

E
[
ei(λ/N1/2)[fn(ξ

j
n )−fn(ξ̄

j
n )]|F N

n−1
] = E

[
cos

(
λ

N1/2
[fn(ξ

j
n ) − fn(ξ̄

j
n )]

)∣∣∣F N
n−1

]
.

Using now the elementary inequalities

cosu ≤ 1− u2/2+ |u|3/3!, 1+ u ≤ eu, |u − v|3 ≤ 4(|u|3 + |v|3),
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we get that

E
[
ei(λ/N1/2)[fn(ξ

j
n )−fn(ξ̄

j
n )]|F N

n−1
]

≤ 1− λ2

N
Kn,ηN

n−1

(
fn − Kn,ηN

n−1
(fn)

)2
(ξ j

n ) + cλ3

N3/2

≤ e−(λ2/N)Kn,ηN
n−1

(
fn − Kn,ηN

n−1
(fn)

)2
(ξ j

n ) + cλ3

N3/2 .

Multiplying over j , we obtain∣∣E[
eiλN1/2	MN

n (f )|F N
n−1

]∣∣2 ≤ e−λ2	CN
n (f )+cλ3/N1/2

,

and by (23) we conclude that condition (H2) is met witha2(n) = c/2.
We now come to the proof of (H1). By definition of the particle model associated

to a given collection of transitionsKn,η we have

E
[
eiλN1/2	MN

n (f )+(λ2/2)	CN
n (f )|F N

n−1
]

=
N∏

j=1

[
Kn,ηN

n−1

(
ei(λ/N1/2)f̃

j
n +(λ2/(2N))	CN

n (f )
)]

(ξ
j
n−1),

with the random functionf̃ j
n = (fn − Kn,ηN

n−1
(fn))(ξ

j
n−1). Using the elementary

inequality ∣∣∣∣ez −
(

1+ z + z2

2

)∣∣∣∣ ≤ e|z| |z|3
3! ,

it is easily seen that, for anyλ ≤ N1/2, we have

ei(λ/N1/2)f̃
j
n +(λ2/(2N))	CN

n (f )

= 1+ i
λ

N1/2 f̃ j
n + λ2

2N
[	CN

n (f ) − (f̃ j
n )2] + rN

n,1(f ),

with |rN
n,1(f )| ≤ cλ3N−3/2. This clearly implies that, for anyλ ≤ N1/2,

[
Kn,ηN

n−1

(
ei(λ/N1/2)f̃

j
n +(λ2/(2N))	CN

n (f ))](ξ j
n−1)

= 1+ λ2

2N

[
	CN

n (f ) − Kn,ηN
n−1

(f̃ j
n )2(ξ

j
n−1)

] + rN
n,2(f ),

with |rN
n,2(f )| ≤ cλ3N−3/2. It is now convenient to notice that for anyλ ≤ N1/2,∣∣∣∣ λ2

2N

[
	CN

n (f ) − Kn,ηN
n−1

(f̃ j
n )2(ξ

j
n−1)

] + rN
n,2(f )

∣∣∣∣ ≤ cλ

N1/2
.
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On the other hand, for any|z| ≤ 1/2 and with the principal value of the logarithm
we recall that

log(1+ z) = z −
∫ z

0

u

1+ u
du = z − z2

∫ 1

0

t

1+ tz
dt.

Since for any|z| ≤ 1/2 and t ∈ [0,1] we have|1 + tz| ≥ 1/2, we find that for
any |z| ≤ 1/2 we have| log(1+ z) − z| ≤ |z2|. The previous computations show
that there exists some universal constantc0 ∈ (0,1) such that for anyλ ≤ c0N

1/2

we have

logKn,ηN
n−1

(
ei(λ/N1/2)f̃

j
n +(λ2/(2N))	CN

n (f )
)
(ξ

j
n−1)

= λ2

2N

[
	CN

n (f ) − Kn,ηN
n−1

(f̃ j
n )2(ξ

j
n−1)

] + rN
n,3(f ),

with |rN
n,3(f )| ≤ cλ3/N3/2. Summing overj , we see that for anyλ ≤ c0N

1/2,∣∣∣∣∣
N∑

j=1

logKn,ηN
n−1

(
ei(λ/N1/2)f̃

j
n +(λ2/(2N))	CN

n (f )
)
(ξ

j
n−1)

∣∣∣∣∣ ≤ cλ3/N1/2.

Finally, using the elementary inequality|ez − 1| ≤ |z|e|z|, we conclude that, for
anyλ ≤ c0N

1/2,

∣∣E[
eiλN1/2	MN

n (f )+(λ2/2)	CN
n (f )|F N

n−1
] − 1

∣∣ ≤ c
λ3

N1/2
ecλ3/N1/2

.

This readily implies that there exists some universal positive constantc1 such that,
for anyλ3 ≤ c1N

1/2, we have

∣∣E[
eiλN1/2	MN

n (f )+(λ2/2)	CN
n (f )|F N

n−1
] − 1

∣∣ ≤ c
λ3

N1/2 ,

which proves that condition (H1) is met witha1(n) = c andc1(n) = 1. �

APPENDIX

A.1. Doob type decompositions.

PROPOSITION A.1 ([5]). Let (�Qp,n)p≤n be the semigroup defined at(11).
For fn ∈ Bb(En) and p ≤ n we setfp,n = �Qp,n(fn − ηnfn). Then we have the
following decomposition:

ηN
p (fp,n) = AN

p,n(fn) + MN
p,n(fn),
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with the predictable and martingale sequencesAN
p,n(fn) andMN

p,n(fn) given by

AN
p,n(fn) =

p∑
q=1

[1− ηN
q−1(

�Qq−1,q1)]�q(ηN
q−1)(fq,n),(A.1)

MN
p,n(fn) =

p∑
q=0

[ηN
q (fq,n) − �q(η

N
q−1)fq,n],(A.2)

with the usual convention�0(η
N−1) = η0.

PROOF. Note that for anyϕn ∈ Bb(En) we have the decomposition

ηN
p (�Qp,nϕn) − ηN

0 (�Q0,nϕn) =
p∑

q=1

δ̄q ,

with δ̄q = ηN
q (�Qq,nϕn) − ηN

q−1(
�Qq−1,nϕn). Choose nowϕn = fn − ηnfn. For

q ≤ p, we have, by definition offq,n,

δ̄q = ηN
q (fq,n) − ηN

q−1(
�Qq−1,nϕn) = U1 + U2,

with

U1 = ηN
q (fq,n) − [�q(ηN

q−1)](fq,n),

U2 = [�q(η
N
q−1)](fq,n) − ηN

q−1(
�Qq−1,nϕn).

In order to show (12), it is thus enough to verify that

ηN
q−1(

�Qq−1,nϕn) = ηN
q−1(

�Qq−1,q1)[�q(η
N
q−1)](fq,n).(A.3)

However, we have

�Qq−1,nϕn = γq−1(1)

γn(1)
Qq−1,nϕn = γq−1(1)

γn(1)
Qq(Qq,nϕn)

= γq−1(1)

γq(1)
Qq(�Qq,nϕn) = γq−1(1)

γq(1)
Qq(fq,n),

and hence

ηN
q−1(

�Qq−1,nϕn) = γq−1(1)

γq(1)
ηN

q−1
(
Qq(fq,n)

)
(A.4)

= γq−1(1)ηN
q−1(Gq−1)

γq(1)
[�q(η

N
q−1)](fq,n).

On the other hand, forq ≥ 1 andxq−1 ∈ Eq−1,

[�Qq−1,q(1)](xq−1) = γq−1(1)

γq(1)
[Qq−1,q(1)](xq−1),
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and

[Qq−1,q(1)](xq−1) =
∫
Eq

Gq−1(xq−1)Mq(xq−1, dxq) = Gq−1(xq−1),

which yields

γq−1(1)Gq−1

γq(1)
= �Qq−1,q(1).

Plugging this last equality into (A.4), we get (A.3), and hence (12). The martingale
property ofMN

p,n(fn) is readily checked. �

A.2. Some asymptotic estimates. The next lemma provides a refined version
of Burkholder type inequalities for independent sequences of random variables.

LEMMA A.2 ([6]). Let m(X) = 1
N

∑N
i=1 δXi be theN -empirical measure as-

sociated to a collection of independent random variablesXi , with respective distri-
butionsµi on some measurable space(E,E). For any sequence ofE -measurable
functionshi such thatµi(hi) = 0 andσ 2(h) = 1

N

∑N
i=1 osc2(hi) < ∞, we have for

any integerp ≥ 1
√

NE
(|m(X)(h)|p)1/p ≤ d(p)1/pσ (h),(A.5)

with the sequence of finite constants(d(n))n≥0 defined for anyn ≥ 1 by the
formulae

d(2n) = (2n)n2−n and d(2n − 1) = (2n − 1)n√
n − 1/2

2−(n−1/2).(A.6)

The extension of Lemma A.2 to the interacting particle measuresηN
n and the

Feynman–Kac flowηn is the following

LEMMA A.3. Let (d(p))p≥1 be the sequence introduced in(A.6). For any
McKean interpretation model and for anyn ≥ 0, p ≥ 1, fn ∈ Osc(En) andε > 0,
we have

E
(|[ηN

n − ηn](fn)|p)1/p ≤ d(p)1/pb(n)/
√

N,

E
[
eεN1/2|ηN

n (fn)−ηn(fn)|] ≤ (
1+ ε2−1/2b(n)

)
e(εb(n))2/2,

for some finite constantb(n) such thatb(n) ≤ 2
∑n

q=0 rq,nβ(Pq,n).

PROOF. The proof is based on the following decomposition:

ηN
n − ηn =

n∑
q=0

[
�q,n(η

N
q ) − �q,n

(
�q(η

N
q−1)

)]
.(A.7)
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We introduce the random potential functions

GN
q,n :xq ∈ Eq → GN

q,n(xq) = Gq,n

�q(η
N
q−1)(Gq,n)

∈ (0,∞)

and the random bounded operatorsP N
q,n from Bb(En) into Bb(Eq) defined for any

(fn, xq) ∈ (Bb(En) × Eq) by

P N
q,n(fn)(xq) = Pq,n

(
fn − �q,n

(
�q(η

N
q−1)

)
(fn)

)
(xq)

=
∫ (

Pq,nf (xq) − Pq,nf (yq)
)
GN

q,n(yq)�q(ηN
q−1)(dyq).

We associate to the pair(GN
q,n,P

N
q,n) the random bounded and integral opera-

tor QN
q,n from Bb(En) into Bb(Eq) defined for any(fn, xq) ∈ (Bb(En) × Eq)

by

QN
q,n(fn)(xq) = GN

q,n(xq) × P N
q,n(fn)(xq).

Each “local” term in (A.7) can be expressed in terms ofQN
q,n as follows. For any

q ≤ n andfn ∈ Bb(En) with osc(fn) ≤ 1 we have

�q,n(η
N
q )

([
fn − �q,n

(
�q(η

N
q−1)

)
(fn)

])
= 1

ηN
q (Gq,n)

ηN
q

(
Gq,nPq,n

[
fn − �q,n

(
�q(ηN

q−1)
)
(fn)

])

= ηN
q QN

q,n(fn)

ηN
q QN

q,n(1)
.

By construction we also observe that

�q(η
N
q−1)(G

N
q,n) = 1 and �q(η

N
q−1)

(
QN

q,n(fn)
) = 0.

The above considerations easily yield the decomposition

�q,n(η
N
q ) − �q,n

(
�q(ηN

q−1)
) = 1

ηN
q (GN

q,n)
[ηN

q − �q(η
N
q−1)]QN

q,n.

Using the properties of the Dobrushin contraction coefficient, we also have

‖P N
q,n(fn)‖ ≤ osc(Pq,nf ) ≤ β(Pq,n),

‖QN
q,n(fn)‖ ≤ ‖GN

q,n‖‖P N
q,n(fn)‖ ≤ ‖GN

q,n‖β(Pq,n),

and from these estimates, we readily prove the inequality∣∣[�q,n(η
N
q ) − �q,n

(
�q(η

N
q−1)

)]
(fn)

∣∣
≤ rq,nβ(Pq,n)|[ηN

q − �q(η
N
q−1)]�QN

q,n(fn)|,
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with �QN
q,n(fn) = QN

q,n(fn)/‖QN
q,n(fn)‖. Now, using Lemma A.2, we check that

for anyp ≥ 1 we have
√

NE
(|[ηN

q − �q(η
N
q−1)]�QN

q,n(fn)|p|FN
q−1

)1/p ≤ 2d(p)1/p,

with the sequence of finite constantsd(p) introduced in (A.6). This ends the proof
of the first assertion. TheLn-inequalities stated in Lemma A.2 clearly implies that,
for anyε > 0,

E
(
eε|ηN

n (fn)−ηn(fn)|) = ∑
n≥0

ε2n

(2n)!E
(|ηN

n (fn) − ηn(fn)|2n
)

+ ∑
n≥0

ε2n+1

(2n + 1)!E
(|ηN

n (fn) − ηn(fn)|2n+1)

≤ ∑
n≥0

1

n!
(

ε2b(n)2

2N

)n

+ ∑
n≥0

1

n!
(

ε2b(n)2

2N

)n+1/2

,

from which we conclude that

E
(
eε|ηN

n (fn)−ηn(fn)|) =
(

1+ εb(n)√
2N

) ∑
n≥0

1

n!
(

ε2b(n)2

2N

)n

=
(

1+ εb(n)√
2N

)
e(ε2/2N)b(n)2

.

We end the proof of the lemma by replacingε by ε
√

N . �
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