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RECONSTRUCTING A TWO-COLOR SCENERY BY OBSERVING
IT ALONG A SSMPLE RANDOM WALK PATH

BY HEINRICH MATZINGER
Universitat Bielefeld and Georgia Tech

Let {¢(n)}, ez be a two-color random scenery, that is, a random coloring
of Z in two colors, such that thé(i)'s are i.i.d. Bernoulli variables with
parameter%. Let {S(n)},cy be a symmetric random walk starting at 0. Our
main result shows that a.§. S (the composition of andS) determineg up
to translation and reflection. In other words, by observing the scénaiong
the random walk patl§, we can a.s. reconstruét up to translation and
reflection. This result gives a positive answer to the question of H. Kesten of
whether one can a.s. detect a single defect in almost every two-color random
scenery by observing it only along a random walk path.

1. Introduction. A scenery is defined to be a function framto {0, 1}. Let
£ and& be two sceneries. We say thaandé are equivalent iff there exist € Z
andb € {—1, 1} such that for allkk € Z we havet (x) = & (a + bx). In this case we
write £ ~ £. In other words, two sceneries are equivalent iff they can be obtained
from each other by a shift or a reflection. In everything that foll¢$#&) } ;>0 will
be a simple random walk df starting at the origin. We will denote by < {0, 1}
the color record obtained by observing the sceigemjong the path of the random
walk {S(k)}i=o:

x = (£(5(0)),£(S(1)). £(S(2)), ...),

that is, x (k) := &£(S(k)) for all k € N. We examine the following question: given
an unknown scener§, can we “reconstruct if we can only observe ? Thus,
does one path realization of the procégsk)}r>0 uniquely determin&? The
answer in those general terms is “no.” However, under appropriate restrictions,
the answer will become “yes.” This is the main result of this paper. Let us
explain these restrictions: First, & and & are equivalent, we can in general
not distinguish whether the observations come fioror from £. Thus, we can
only reconstructt up to equivalence module:. Second, it is clear that the
reconstruction will in the best case work only almost surely. If the random walk
{S(k)}x>0 decides to walk only to the left (which it could do with probability
zero), then we obtain no information about the right-hand side of the scénery
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and thus are not able to reconstruct the scererfeventually, Lindenstrauss

in [17] exhibits sceneries which one cannot reconstruct. Thus, not all sceneries
can be reconstructed. However, we prove that many “typical” sceneries can be
reconstructed up to equivalence and almost surely. For this we take the séenery
to be the outcome of a random process which is independé¢fitor};>o such that
the&(k)’s are i.i.d. Bernoulli with paramete}’. We use the following notation: we
write & for the (random) scenery:: k — &(k), Z — {0, 1}. Our main result states
that, given only the observation, almost every scenery can be reconstructed

a.s. up to equivalence. Let us state our main theorem:

THEOREM 1. Let{S(k)}x>0 and {£(k)},rez be two processes independent of
each other such thatS(k)}«>0 is a simple random walk starting at the origin
and such that the(k)’'s are ii.d. Bernoulli variables with paramete%. Then
a.s. x determines up to equivalencdn other words there exists a measurable
functions : {0, 1} — {0, 1}Z such thatP (A4 (x) ~ &) = 1. (“Measurablé means
measurable with respect to thealgebras induced by the canonical coordinates
on {0, 1} and on{0, 1}%.)

We will prove the above theorem by explicitly describing how to reconsguct
from x. Hence, our approach is constructive. We explicitly give a construction
which produces a (random) scenéryZ — {0, 1} when applied to the observa-
tions x . The constructed scenefyis shown to be a.s. equivalentgoIn this way
A gets defineds(x) :=&.

Let us now make a few historical comments. This paper was motivated
by Kesten’s question to me of whether one can a.s. distinguish a single defect
in almost any two-color scenery. Let us explain what the scenery distinguishing
problem is. Lett, n:Z —{0, 1} and let{S(k)}ren be a symmetric random walk
onZ. Let the process$y (k) }ren be equal to eithefé (S(k))}ren OF {n(S(k)) }ren.

Is it possible by observing only one path realization{@f(k)}.cn tOo say to
which one of the twd&(S(k))}xen Or {n(S(k))}ken, {x k) }ren is equal to? (We
assume that we know andn.) If yes, we say that it is possible to distinguish
between the scenerigsand n by observing them along a path 6§(k)}ien.
Otherwise, when it is not possible to figure out almost surely by observing
{x (k) }ren alone whethefy (k)}ren IS generated oé or onn, we say that andn

are indistinguishable. The problem of distinguishing two sceneries was raised
independently by Benjamini and by den Hollander and Keane. The motivation
came from problems in ergodic theory, such asTh& ~problem (see [10]) and
from the study of various aspects @(S(k))},ecn, Where{&(k)}rez is random.
(See [3, 11, 14].) Benjamini and Kesten showed in [1] that one can distinguish
almost any two random sceneries even when the random walkZ2.iiThey
assumed the sceneries to be random themselves, so thidkjteand then(n)’s

are i.i.d. Bernoulli.) Kesten in [12] proved that when the random sceneries are
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i.i.d. and have four colors, that i§, andn:Z —{0, 1, 2, 3}, and differ only in

one point, they can be a.s. distinguished. He asked whether this result might still
hold with fewer colors. The main result of this paper directly implies that one can
distinguish single defects in almost any scenery. In [21], we proved for the three-
color case that one can a.s. reconstruct almost every three-color scenery. We also
established that this implies that one can distinguish single defects for almost all
three-color sceneries. In the two-color case, that is, in the case we consider in this
paper, the same thing is true. This means that our result for scenery reconstruction
implies that one can distinguish single defects in almost all sceneries. We state the
following corollary to our main result without giving a proof. (The proof that our
main result implies the following corollary is very similar to the one given in [21]

for the three-color case.)

COROLLARY 2. Let B designate the set of all two-color sceneries

B ={&:Z —{0,1}} = {0, 1}. Let (B, o (B)) denote the measurable spaeghere

o (B) is theo -algebra induced by the canonical coordinateskret P denote the
probability measure oniB, o (B)) obtained by assuming that tl§i)’s are ii.d.
Bernoulli variables with paramete}. Then there exists a(B)-measurable s,
such thatP (S) = 1 and such that for every scenefye S and every scenery
which is equal tof everywhere except in one pqinte have that andn are
distinguishable

The above corollary says that there are many sceneries which one can
distinguish or, in other words, that sceneries which are typical in a certain sense
can be distinguished. However, the above result becomes false if one tries to extend
it to all pairs of sceneries which are not equivalent. Recently, Lindenstrauss [17]
exhibited a nondenumerable set of pairs of nonequivalent scenerigsadrich
he proved to be indistinguishable. Before that, Howard proved in [7-9] that any
two periodical sceneries & which are not equivalent modulo translation and
reflection are distinguishable and that one can a.s. distinguish single defects in
periodical sceneries. Kesten asked in [13] whether this result would still hold
when the random walk would be allowed to jump. He also asked what would
happen in the two-dimensional case. Léwe and Matzinger in [18] have been able
to prove that one can a.s. reconstruct almost every scenery up to equivalence in two
dimensions, provided the scenery has a lot of colors. However, the problem of the
reconstruction of two-color sceneriesZnseen along the random walk path of a
recurrent random walk which is allowed to jump remains open. In our opinion, this
is a central open problem at present. Eventually we should also mention that the
two-color scenery reconstruction problem for a scenery which is i.i.d. is equivalent
to the following problem: lefR (k) }xez and{S(k)}r>0 be two independent simple
random walks or¥ both starting at the origin and living on the same probability
space. (Here we mean tHa (k) }x>0 and{ R (—k) };>0 are two independent simple
random walks both starting at the origin.) Does one path realization of the iterated
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random walk{ R(S(k))}x>0 uniquely determine the path @R (k)}rcz up to shift

and reflection around the origin? If one takes the representation of the séenery
as a nearest-neighbor walk (which we will define later) f&1k)}rcz, then it
becomes immediately clear that the two problems are equivalent. We leave it to
the reader to check the details. So the main result of this paper is equivalent to
the following result for iterated nearest-neighbor walks: one path realization of the
iterated random walkR (S (k))}x>0 a.S. uniquely determines the path{&f(k)}rcz

up to shift and reflection around the origin. This is a discrete analog of the result
of Burdzy [2] concerning the path of iterated Brownian motion.

2. Reconstructing a finite piece of the scenery §&.  To explain a key idea, we
first present a solution to a simplified but somewhat unrealistic case.

2.1. Simplified example.Assume for a moment that the scenéris nonran-
dom, and instead of being a two-color scenery, is a four-color scenery, that is,
£:7 — {0,1,2, 3}. Let us imagine furthermore, that there are two integenrs
such that (x) = 2 andé(y) = 3, but outsider andy the scenery has everywhere
colorOor1,|[i.e., foralk € Z with z £ x, y we have that (z) € {0, 1}]. The simple
random walk{S(k)},>0 can go with each step one unit to the right or one unit to
the left. This implies that the shortest possible time for the random {8$& } >0
to go from the poink to the pointy is |x — y|. When the random walkS (k) }x>0
goes in shortest possible time fronto y it goes in a straight way, which means
that between the time it is at and until it reachey it only moves in one direc-
tion. During that time, the random wall§ (k) };>0 reveals the portion of lying
betweenx andy. If between timer; and#, the random walk goes in a straight
way fromx to y [i.e., if |[f1 — 2] = |x — y| and S(r1) = x, S(2) = y], then the
word x (1), x(t1 + 1), ..., x(r2) is a copy of the scener§ restricted to the in-
terval[min{x, y}, maxXx, y}]. In this case, the worg (t1), x (t1 + 1), ..., x(t2) is
equal tothe worg (x), E(x +u), E(x + 2u), ..., E(y), whereu := (y —x) /|y — x|.
Since the random waliS (k) }x>0 IS recurrent, it a.s. goes at least once, in the short-
est possible way, from the pointto the pointy. Because we are given infinitely
many observations we can a.s. figure out what the distance betwaedy is:
the distance between andy is the shortest time lapse that a “3” will ever ap-
pear in the observationg after a “2.” When, on the other hand, a “3” appears in
the observationg in shortest possible time after a “2,” then between the time we
see that “2” and until we see the next “3,” we observe a cop§(ef, £(x + u),

E(x 4+ 2u),...,&(y) in the observationg. This fact allows us to reconstruct the
finite piecet(x), &(x +u), E(x + 2u), ..., E(y) of the scenery. Choose any cou-
ple of integersr, 2 with o > 1, minimizing |2 — #1| under the condition that
x (t1) = 2 andx (r2) = 3. Almost surely thery (1), x(t1 + 1), ..., x(#2) is equal
t0&(x), §(x +u),§(x+2u), ..., ().

A NUMERICAL EXAMPLE. Let the scener¥ be such thatté(—2) = 0,
E&(-1)=2,600=0,6(1)=1,6(2 =1,£(3) =3,£(4) = 0. Assume furthermore
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that the scenery has a 2 and a 3 nowhere else than in the peiitand 3. Imagine
that x, the observations given to us, would start as follows:

x=1(0,2010113031111020,113,...).

By looking at all ofx we would see that the shortest time a 3 occurs after a 2 in the
observations is 4. In the first observations given above there is, however, already a
3 only four time units after a 2. The binary word appearing in that place, between
the 2 and the 3, is 011. We deduce from this that between the place of the 2 and
the 3 the scenery must look like: 011.

In reality the scenery we want to reconstruct has two colors only. So, instead
of the 2 and the 3 in the example above we will use a special pattern in the
observations which will tell us when the random walk is back at the same spot. One
possibility (although not yet the one we will eventually use) would be to use binary
words of the form: 001100 and 110011. It is easy to verify that the only possibility
for the word 001100, respectively, 110011, to appear in the observations is when
the same word 001100, respectively, 110011, occurs in the scenery and the random
walk reads it. So, imagine (to give another pedagogical example of a simplified
case) the scenery would be such that in a platieere occurs the word 001100,
and in the place there occurs the word 110011, but these two words occur in no
other place in the scenery. These words can then be used as markers: In order to
reconstruct the piece of the scenérincluded between andy we could proceed
as follows: take in the observations the place where the word 110011 occurs in
shortest time after the word 001100. In that place in the observations we see a
copy of the piece of the scenefyincluded between andy. The reason why the
very last simplified example is not realistic is the following: we take the scenery
to be the outcome of a random process itself wheresthgs are i.i.d. variables
themselves. Thus any word will occur infinitely often in the scerferfowever,
if, for example, the markers in the scenery occur far away from each other, then
we can still use the above described reconstruction strategy: The random walk will
then be very likely to first cross from to y in a straight way before meeting
another marker and creating some confusion. In the next section we explain how
to construct the markers which we are eventually going to use.

2.2. Representation of the scenéras a nearest-neighbor walk.The scenery
reconstruction problem contains two main ingredients: A random W&lK) } ;i
and a “random environment,” that is, the scengeryhe key idea in this paper is
to view the random environment itself as a nearest-neighbor walk. In this section
we explain how to do this, by defining “the representation of the scehaya
nearest-neighbor walk.” We need the following definitions: Debe an integer
interval, that is, the intersection between a real interval and the integer numbers
7. We call a functionT : D — Z a nearest-neighbor walk, iff for each to € D
with |t1 — | = 1, we have thatT (1) — T(z2)| = 1. In what follows, we will
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write S for the path of the procedsS(k)}r>o, that is, forS:k — S(k),N — Z.

Let ¢:Z — {0, 1} be one of the two 4-periodic sceneries with period 0011 and
¢(0) = ¢(1). Such a scenery has a very particular property: for every point in

the scenery, one neighboring point has color 0, while the other one has color 1.
This implies that for any color record there exists one and only one nearest-
neighbor walkT generatingp on the scenery once we know wherd" starts.

We can use this fact to represent a color record as a nearest-neighbor walk: the
nearest-neighbor walk representing a sequence of colors is simply defined to be
the only nearest-neighbor walk generating the color sequengeamid starting at

a given point, in general the origin. (For this to work the starting point must have
the right color.)

A NUMERICAL EXAMPLE. Let ¢ = (010110001010101Q0.) be a color
record we want to represent as a nearest-neighbor walke 18t {0, 1} be the
4-periodic scenery:

<p(k)|... 0O 0 1 1 0011001 1...
k|...—4—3—2—101234567...'

Define the nearest-neighbor walk representn be the only nearest-neighbor
walk T :N — Z starting at the origin and generating the sequeioea ¢, that is,
such thatp o T = ¢. In this example we get

Tm)) 0 -1 0 -1 -2 -3 -4 -3 -2 -3 -2 ...
] 0 12 3 4 5 6 7 8 9 10...°

The scenery: we want to represent as a nearest-neighbor walk is, however,
a doubly infinite sequence. We will thus take the sequen@, £(1), £(2),
£(3), ... first and define with it the portion of the path of the nearest-neighbor walk
in positive time. Then we tak&0), £(—1), £(—2), £(—3), ..., and this defines the
part of the nearest-neighbor walk in negative time.

AN EXAMPLE. Let&:Z — {0, 1} be a scenery with the following values close
to the origin:

gk} ... 10 1 00011100 1..
k] ... -4 -3 -2 -1 0123 456 7..

Designate byR the nearest-neighbor walk representindhen the part of to the
right of the origin defines the path & which lies in positive time. In this example,
(00111001..) is responsible for this part at. We get

Rp) 01 232 10-1
r] 0123456 7..
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In the same way, the part gfwhich lies left of the origin is responsible for the
restriction of R to the negative integers. In our example,.1010 defines that
part of R. We get

RO ... 2 1 2 10
t | ... -4 -3 2 -1 0

We are ready to defin® formally:

DEFINITION 3. Letg:Z — {0, 1} designate the following 4-periodic (ran-
dom) scenery:

1. When&(0) =0, we set(¢(0), (1), ¢(2), ¢(3)) =(0,0,1,1).
2. Wheng(0) = 1, we setlp(0), p(1), 9(2), (3)) = (1, 1,0, 0).

The nearest-neighbor walk:Z — 7Z representing the scenefyis defined to be
the only (random) nearest-neighbor wallsuch thatR (0) = 0 andyp o R = &, that
is, p(R(k)) = (k) for all k € Z.

It is easy to verify that when thé(k)’s are i.i.d. Bernoulli variables with
P(£0)=0) = P(£(0) = 1) = 3, then{R(k)}xez as well as{R(—k)}kez are two
independent symmetric random walks starting at the origin.

In Figure 1, we illustrate the above numerical example by showing a portion of
the graph ofR. For this we take

(6(0),6(1),6(2),£(3),6(4),...)
=(001110010110001100100001001100100101100100111001

In Figure 1, the labet designates the poitR (k), k).
Next we need a few definitions.

DEFINITION 4. LetT:D — Z be a nearest-neighbor walk. Lret > € D and
X1, X2 € Z, x1 # x2. We call(z1, t2) a crossing by" of (x1, x2) iff (T (t1), T(2)) =
(x1, x2) and for all integer strictly betweery; andr, T (¢) is strictly between
x1 andxy. If 1» > t1 we say that the crossin@,, ) is “positive,” otherwise we
say that it is “negative.” Ifry — t2| = |x1 — x2|, we say that the crossing, ) is
straight.

Let (z3, 14) be a crossing by of (x3, x4). Then, we say thatts, 74) is thefirst
crossingby T of (x3, x4) during (1, 1) iff t3, t4 € [Min{t1, 2}, maxr1, t2}] and
(3, t4) is the crossing by of (x3, x4) which lies in[min{z1, t2}, maxt1, 12}] (i.e.,
13, t4 € [Min{t1, 12}, max{ty, 2}]) and isclosest ta.

Let (z1, £2) and(s1, s2) be two crossings by nearest-neighbor walkf (x1, x2).
Then either the intervals:

Imin{zy, t2}, maxXry, 2} and 1min{sq, so}, max{sq, so}[
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00110011001 100110 ¢

0123456789 ... R(k)

Fic. 1.

are disjoint, orz1, t2) = (s1, s2) holds. Thus, we can numerate the crossing% by
of (x1, x2) in increasing order of appearance. Thus the above definition of “first
crossing byT" of (x3, x4) during another crossing” makes sense.

In the numerical example of Figure 1, we see that between time 0 and time 3 the
nearest-neighbor walk crosses from the point O to the point 3 in a straight way.
In other words(0, 3) is a straight crossing bi of (0, 3). FurthermoreR during
the time interval(0, 13) crosses the interval0, 9). Thus, (0, 13) is a crossing
by R of (0,9). Becausd0, 3) € (0, 13) we have that the crossin@, 3) happens
during the crossing0, 13). Clearly, (0, 3) is the first crossing by of (0, 3) during
the crossingO, 13). (In the above example it is also the only one.) The crossing
(0, 13), unlike (0, 3), is not a straight ong32, 51) is a crossing byR of (0, 9).

This is the second crossing ®yof (0, 9) after time 0. During the crossing2, 51)
there are two crossings % of the (3, 6). These arg37, 40) and (45, 48).

2.3. Localization test. In this section, we construct a test to determine at what
times the random walk is back at the same location. Combined with the idea
of “going in shortest time fronx to y,” we have the main ingredients for the
reconstruction of a finite piece of the scenéryif we have such a test, we can
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recognize when the random walk is back at a locaticand at which times it is
back at locations andy. We then take a time interval where the random walk
visits y in shortest possible time after visiting

This “localization test” is based on the representatfoof the scenery as a
nearest-neighbor walk. Recall thAtis not observable. The composition of two
nearest-neighbor walks is again a nearest-neighbor walk. Thus, the composition
Ro S:k+— R(S(k)),N — Z is a nearest-neighbor walk. However, every nearest-
neighbor walk? : N — Z is uniquely determined by o T'. In the following we
set

T:=RoS.
We get
poT =(@poR)oS=£0S5=y,

that is, T generates the color recogdon the scenery. Furthermore7 (0) = 0.
Thus T is uniquely determined by the observationsHenceT is observable.
Thus, althougtR andsS are both not known, their compositidtio S is observable.
We are using the nearest-neighbor walls S to determine whel§ is back at the
same place.

To illustrate themain ideaof the localization test (and maybe of this paper)
we view the random wallS on the graphk — (R(k), k) geometrically in two
dimensions. This defines a movement in two dimensions:

1+ (R(S()), S(1)).

By projecting this movement along thyeaxis on thex-axis we get the known one-
dimensional nearest-neighbor walk Imagine that the path aR is given; then
t — (R(S(2)), S(¢)) can be viewed as a one-dimensional random walk moving
in R? on the graph oR.

Figure 2 illustrates this situation. The graph®fis drawn as a dotted line, as

FiG. 2.
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it is not observable. The hand-drawn lines with arrows represent the movement of
the random wallks on the graph of5. This is the movement— (R(S(z), S(1))),
which is also not observable. However, the projection of this movement onto
the horizontal line gives the observable nearest-neighbor WRadkS, which is
observable.

Let AS(k) := S(k + 1) — S(k). In the example of Figure 2 we have that

(AS(0), AS(1), AS(2),...)
=(+1,+1,+1,+1,+1, +1, +1,
—1,4+1,+1,+1, +1, +1, -1, +1, +1, +1,...)

andR takes on the same values as in Figure 1.

Imagine that the dotted line representing the grapR &f made out of invisible
glass. The random walk moves invisibly on that glass line, but its projection onto
the x-axis is visible. Seeing only this projection, we want to determine wfien
has returned to the same pladehas returned exactly when the two-dimensional
movementt — (R(S(¢)), S(t)) has returned to the same plac&s) = S(¢) iff
(R(S(s)), S(s)) = (R(S(r)), S(t)). Viewing R as fixed, this means th&tis back
at the same place exactly when the random watkn the graph ofR has come
back to the same place. As shown below, we can statistically determine this with
high precision by counting the number of straight crossing® efS and their
location. Let us illustrate the idea with Figure 3.

In Figure 3, we show two finite portions of the movement of the random Wwalk
on the graph oRR. The first one is designated by the lettewhile the second one
is designated by the lettér In this example: corresponds to the random wak
making the following first steps:

(AS(0), AS(1), AS(2),...)
=(+1,+1, +1, +1, +1, +1, +1,
-1, 41, 4+1, +1, +1, +1, -1, +1, +1, +1, ...).

Partb starts at time,, such thatS(z,) = 32. Then the random walk makes the
following steps:

(AS(1p), AS(tpy +1), AS(tp + 2), .....)
=(+1+1L+1, +1,+1, +1 +1, +1, +1, +1,
-1,+1,+1,+1,+1, 41,41, -1, +1,+1, +1, 41, -1, 41, +1...).

The random walkS from time ¢, until time 7, + 25 performs a crossing of the
interval (32, 51). This means that at timg the random walkS is at the point 32
and at timer, + 25 it is at the point 51, but strictly in between the timeuntil
time 1, + 25 the random wall§ does not visit the points 32 or 51. In Figure 3 if
we project the movemerit (of the random walkS on the graph ofR) onto the
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Hypothesis H 1

!

001100110011 00110 ¢

0123456789 R(k)

FiG. 3.

horizontal line, we get the movement of the nearest-neighbor walks during
the time interval from time,, until time ¢, 4+ 25. This is a crossing as well: during
that time R o S crosses from the point O to the point 9; that is, it crosses the
interval (0, 9). During that timeS on the graph oR crosses a portion of the graph
of R which corresponds itself to a crossing RyAs a matter of fact, between time
32 and time 51 the nearest-neighbor walicrosses the intervaD, 9). Following
our convention we say th&B2, 51) is a crossing by the nearest-neighbor wRlk
of the interval(0, 9). In parta we see the following(0, 17) is a crossing by of
(0, 13). On the other hand, 13) is a crossing byr of (0, 9). Eventually,(0, 17)
is a crossing byR o S of (0, 9).

The example of Figure 3 illustrates one of the three main combinatorial facts
used in this paper: the compositi@h= R o S performs a crossing iff during that
time S performs a crossing of a crossing Bf Let us formulate this as a lemma:
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LEMMA 5. LetO < < m. (11, r2) isacrossing by T of the intervéky, x») iff
there exisky, ko € Z such that(tq, r2) is a crossing bys of (k1, k2), and (k1, k) is
a crossing byR of (x1, x2).

Let us study next the example of Figure 3 more: during tifid, 17),
S performs a straight crossing of the intervdO, 13). Furthermore, (10, 13)
represents itself a straight crossing BRyof the interval (6,9). This leads to,
that R o S performs during the time intervall4, 17) a straight crossing of the
interval (6, 9). On the other hand, during time,, t, + 4) S performs a straight
crossing of the intervai32, 37). However,(32, 37) is a crossing byk, but not a
straight one. It follows thafz, 1, + 4) is a crossing byR o S, but not a straight
one.

The rule is: on a crossing bi which is not straight it is impossible to get a
crossing byR o S which is straight. This is the second main combinatorial fact:

LEMMA 6. LetO <t < t2. Then(sy, t2) is a straight crossing by’ of the
interval (x1, x2) iff there existsky, k2 € Z such that(zq, 1) is a straight crossing
by S of (k1, k2) and (k1, k2) is a straight crossing by of (x1, x2).

Looking further at Figure 3, we see that in portibrof the path ofS on the
graph of R we have: during the crossin@2, 51) the first crossing byr of (3, 6)
is (37,40) and the last one 645, 48). The first crossing by of (37, 40) during
(tp, tp + 51) is (& + 5,1, + 8). The first crossing duringz,, 7, + 25 by Ro S
of (3, 6) is also(t, + 5, t, + 8). Thus, the first crossing durin@,, t, +25) by Ro S
of (3, 6) happens when during,, t, + 25) S crosses for the first time the first
crossing byr of (3, 6).

We see that a first crossing [R/o S corresponds to a first crossing Byof a
first crossing byR. This yields our third combinatorial fact:

LEMMA 7. LetO<rn < <iz<itgand0 < x1 < x2 < x3 < x4. Further-
more let (71, t4) be a crossing by o S of (x1, x4). Then(z,, t3) is the first crossing
during (¢1, ta) of (x2, x3) by R o S iff it is the first crossing bys during (71, t4)
of (k2, k3), where(ks, k3) is the first crossing by of (x2, x3) during (k1, k4).

To illustrate this, consider Figures 3 and 4.

In Figure 4, the portiothy of the path of the random walkis traced on the graph
of R as a thick dotted line. It is a crossing §yof the crossing0, 13) by R. The
projection onto the horizontal line of this movement is a crossing, too. In Figure 4,
the crossing, that is, (1, t, + 18), is a crossing bys of (0, 13). Furthermore,
(tp, 1, + 18) is also a crossing bR o S of (0, 9).

Figure 4 is identical to Figure 3 except for the pathn Figure 3, the crossings
a andb by S take place “in different locations,” while in Figure 4 they take place
“on the same locations.” Given Figures 3 and 4, one can see if the crossamgi®
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by S take place “in the same location” or not. However, from the input data of the
reconstruction problem, only the projection down onto the horizontal of the path
of S on the graph ofR is observable: In both cases, we observe two crossings
a andb by R o S of the same interval0, 9). Based on the observation of those
crossings only, we need to infer if “the crossings occur on the same location” as in
Figure 4, or “on different locations” as in Figure 3.

More generally: Assume we observe two crossings, r2,) and (f1p, f2p)
by R o S of an interval (0, 3n); this interval instead of any other interval is
chosen for notational convenience. Because of Lemma 5, therecgxigs, such
that (k14, k2,) is a crossing byR of (0, 3n) while (#1,, t2,) is a crossing byS
of (k14, k24). Similarly, there exiskiy, ko, such that(kyy,, kop) is a crossing byR
of (0, 3n) while (t15, t2p) is a crossing bys of (k1p, k2p).

In Figure 3, (t14,120) = (0,17), (k1q,k2s) = (0,13), top, = t1 + 25,
(k1p, k2p) = (32,51).
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We develop a statistical test to determine if the two crossiigsz,) and
(11, t2p) by S occur “on the same place” or not. Its input data are two observed
crossings(t1q, t2,) and (t1, t2p) by R o S of the same interval. We define the
hypotheses of our test:

HYPOTHESIS Hy. During the crossingsti,, t2,) and (t15, t25) the random
walk § is on the same crossing aR. More precisely, (S(f1,), S(t24)) =

(S(tw), S(t2p)).
HYPOTHESISH1. (S(t14), S(t24)) # (S(t1p), S(t2)).

If Hp holds, thenS(r,) = S(t2), that is, the random walk is back at the same
place.

To determine if during two crossings o S the random walkS was at the
same place we are going to count the number of common straight crossings on
three unit intervals. Let us explain how this is done.

We first partition the interval0, 9) in disjoint intervals of length 3. This gives us
the three intervalg0, 3), (3, 6) and(6, 9). Then we determine how many of these
intervals are crossed in a straight way By S when they get crossed for the first
time duringa and and when they get crossed for the first time dubirig Figure 3,
we see that the first crossing duringf (0, 3) by R o S is straight. However, the
first crossing during of (0, 3) by R o S is not. Thus, for the interval, 3) we do
not have a common first straight crossing. Next comes the inté8yé). There,
the first crossing byR o S of (3, 6) duringa is not straight. [That first crossing is
equal to(5, 10).] On the other hand, the first crossing Ry S of (3, 6) duringb is
straight. [It is the first crossing;, + 5, t, + 8).] Again with the intervak3, 6) we
do not observe a common first straight crossing betweandb. Eventually the
first crossing byR o S of (6, 9) duringa is straight, while the first crossing R0 S
of (6, 9) duringb is not. So, in total we have zero common straight first crossings
betweeru andb. When we observe few common first straight crossings between
two crossings: andb by S, we decide that the crossingsandb took place on
different places. In the example of Figure 3, the person who only obs@&rves
would thus decide that the crossingandb by S took place on different places. In
the case of Figure 4, the first crossingsiy S of (0, 3) duringa and duringp are
both straight. So for0, 3), we have a common first straight crossing. In Figure 4
again, the first crossings b o S of (3, 6) duringa and duringb are both not
straight. The first crossing bR o S of (6, 9) duringa is straight while duringy
it is not. Again for(6, 9) we do not have a common straight crossing. Thus in the
case of Figure 4, the total number of “straight common first crossings” equals 1.

General case: Let (114, t2,) and (t1p, t2p) be two crossings byR o S of the
interval (0, 3n). For 0< m < n, let w,(m) be equal to 1 if the first crossing
by R o S of the interval(3m, 3m + 3) during(t14, t2,) is straight, and be equal to O
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otherwise. Letw, denote the binary word, (0), w, (1), we(2), ..., w,(n —1).In
the same manner, define the binary wexgdfor the crossindri,, r25). The number
of common straight crossings betweeandb is defined to be the scalar product

n—1
Wy X Wp 1= Z wq(m) - wp(m).

m=0

We usew, x wp, as test statistic. What is its distribution undéy and undetd1?

ExAMPLE. To have a first common straight crossing in fig-case we need
three crossings to be straight while in ti#§-case we need four. In order to
understand why this is true, look at Figure 4 first: we have there:fer0 a first
common straight crossing. This means that wRerS crosses during and during
b for the first time(0, 3), we observe in both cases a straight crossing. That we have
a common first straight crossing follows from the fact that the first crossing by
of (0, 3) during (0, 13) is straight and the first crossings durimgnd duringb of
(0, 3) are both straight as well. In Figure 3, we have thaf0) = 1 andw; (0) = 0.
Forw, (0) - wy(0) to be equal to 1 in Figure 1, there is only one thing missing: The
first crossing32, 37) by R of the interval(0, 3) should be straight.

General case Letm € N be such thain < n. Let (kg, koq) = (S(t14), S(t24))
and(kyp, kop) = (S(t1p), S(t2p)). Let (k1am, k2um) designate the first crossing &y
of (3m,3m + 3) during (k14, k2,). Let (kipm, kopy) designate the first crossing
by R of (3m,3m + 3) during (k1p, k2). In the case of HypothesiHy we have
(k1a, k2q) = (kap, k2p) and(klamv k2am) = (k1bm , k2pm). \We get:

Under Hp: w, (m) - wp(m) = 1 iff the following three crossingsare straight:

=

. The crossingkigm, k2am) by R of the interval(3m, 3m + 3).
. The first crossing by during (r14, t2,) of the interval(k1u,, k2am)-
3. The first crossing by during (115, t2) of the interval(k1,,, k2am)-

N

Under Hy: w,(m) - wp(m) = 1 iff the following four crossingsare straight:

. The cr ossingk1,, k24, ) by R of the interval(3m, 3m + 3).
. The crossingkipm, kop,) by R Of the interval(3m, 3m + 3).
. The first crossing by during (r14, t2,) of the interval(k1u,, k2am)-
4. The first crossing by during (115, t25) of the interval(k1p,,, k2pm).

WN P

R and § are independent simple random walks. For the simple random walk a
crossing of an interval of length 3 is straight with probabilﬁy as is shown
below in Fact e.5. UndeH)y, there are three such crossings involved, while under
H, there are four. This is whyP (w,(m) - wp(m) = 1) = (%)3 in the caseHg

and P(w,(m) - wp(m) =1) = (%)4 in the caseH;. By the Markov property, the
variablesw, (m) - wy(m) for differentm’s are independent. This gives:
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The distribution of the test statistic, x w;, is equal to:
Under Hp: Binomial with parametex and(%):”.

Under H1: Binomial with parametex and(%)“.
Lete:=3((D3+ (D).

Localization testvith parameten:

(&) Whenw, x wp > ¢ - n, we accepip.

(b) Whenw, x wy < c¢ -n, we accepi;.

The above statement about the distribution of the test statistic holds only if
we select the pair of crossing$ri,, 12,), (t15, t25)) INn @n appropriate manner.
For example, if we would choosg&y,, r2,) to be the first crossing by o S
of (0, 3n) such thatw, (m) = 1 for all m < n and (1, t2,) to be the first crossing
by R of (0, 3r) such thatw,(m) = 1 for all m < n, then obviously the above
statement about the distributions would not hold. In Lemma 8, the statement is
made rigorous. For this we need to numerate the crossing® oy of (0, 3n),
in an appropriate manner. By Lemma 5 we know that any crossing bys of
(0, 3n) can be viewed as a crossing Byf a crossing byr of (0, 3n). A crossing
by R o S of (0, 3n) can thus be described in a unigue manner agttherossing
by S of the zth crossing byR of (0, 3n). We index the crossings b of (0, 3n)
by the seZ* :=7Z — {0}. We call thezth crossing byR of (0, 3n):

If z > 0, thezth crossing byR(k), k > 0 of (0, 3n).

If z <0, the|z|th crossing byR (k), k < 0 of (0, 3n), where we count in reverse
order starting at zero.

Thus, we index the crossings o S of (0,3n) by the setN* x Z*. For
(i,z) € N* x Z*, the (i, z)th crossing byR o S of (0, 3rn) is the crossing which
corresponds to thah crossing bys of the zth crossings byR of (0, 3n). Picking
(t14, 124) and (t1p, t2p) by choosing nonrandomly two elements in the index set
N* x Z* makes the statement about the distribution of the test statistic rigorous.
This is the content of the next lemma.

LEMMA 8. Letz,, zp € Z* and leti,, i, € N* be nonrandom numberket
(t14, t24) @nd (t1p, t2p) be the two crossings by o S of (0, 3r) for which (¢4, £2,)
is thei,th crossing byS of thez,th crossing byR of (0, 3n) and (15, r2) is the
ipth crossing bys of thez,th crossing byR of (0, 3n). Then

Hp-case[i.e, case wherez, = zp and (S(tw), S(t24)) = (S(t1), S(t2p)]:
w, X wp has binomial distribution with parametarand(%):”.

Hp-case]i.e, case wherez, # zp and (S(t1,), S(t24)) # (S(t1p), S(t2))]:
w, X wp has binomial distribution with parametarand(%)“.

Note that the index itN* x Z* of a crossing byR o S of (0, 3n) is not observable,
(although the crossings by o S of (0, 3n) are themselves observable). However,
by large deviation for the binomial distribution, Lemma 8 guarantees that the
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probability of an error by our localization test is exponentially smadl,iwhen the
crossings compared correspond to two nonrandom indexX¥és inZ*. We cannot

pick crossings by their index it* x Z* for our reconstruction algorithm, since
these are not observable. Hence, the crossings we select in an observable manner
have slightly different distributions from the distributions mentioned in Lemma 8.
But picking the crossings in a sensible, observable manner modifies the probability
of an error only slightly, so that it remains small. Next, we need to mention a few
facts which are useful for the proof of Lemma 8.

FACT a. LetM(k);cn be a Markov chain with state spacé. Let ag, a1,
az, ... be a sequence of (nonrandom) elementsiofLet ;1) denote the first
passage time ¥ (k);cn atag+1) aftern;. Recursivelyno := min{k > O|M (k) =
ao}. Then,n; 11 :=min{k > n;|M (k) = a;11}. Let Z; be the path ol betweeny;
andn; + 1:

Zi:=(M®m), M +1), M(n; +2), ..., M(1i11)).

Then, theZ;’s are independent of each other.

FACT b. LetX andZ be two random variables living on the same space and
independent of each other. Ldt be an event that depends only an that is,
A € 0(X). Then conditional o4, X and Z are still independent of each other.
Furthermore, conditional oA, Z has the same marginal distribution. Thus:

L(X,Z|A) =L(X|A) @ L(Z).

FAcT c. Let Xg, X1,..., X, be a collection of random variables that are
independent of each other. Lap, A1, ..., A, be a collection of events such that
foreach O<i <n, A; e 0(X;). Let A :=('_y A;. Then conditionally or4, the
X;'s are still indepadent of each other:

n
L(Xo0, X1, ..., Xu14) = [ ] L(X;]A)).
i=0

FacT d. Let Xg, X1,..., X,, be a collection of random variables that are
independent of each other. LK, Y1, ..., Y, be a collection of random variables
satisfying: conditionally o (X,,,|0 <m < n), theY,,’s are independent of each
other and their distribution depends only on their respeciyés:

°C(Ym|XOa X1,..., Xn) = cc(leXm)'
Let Z,, .= (X,,, Y;n). Then, theZ,,’s are independent of each other.

FACT e. Letkg designate the first recurrence time $fat 0, that is,xg :=
min{r > 0|S(r) = 0}. For [ > 0, let k; designate the first passage time $f
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at /, that is, «x; := min{z|S(t) = I}. Let Ecoss; designate the everik; < «g}.

Let (j1;, j2;) be an increasing collection of intervals indexediby N such that
the following holds:j1; < j2i < jii+1). Assume furthermore thako = 0. Let
(s1;, s2;) denote the first crossing b/ of (j1;, j2;). For natural numbers < ¢, let

S(s, 1) :=(S(s),Ss+1),...,S(@). Let S*(s, t) designate the recenterdds, 7).

Hence,

S*(s,1):=(0,S(s +1) — S(s), ..., S) — S(s)).

Recall thatA(s) := S(s + 1) — S(s). Define A(s, t) :== (A(s), A(s + 1), ...,
A(t — 1)). With these definitions the following things hold:

e.l. TheS(sy;, s2;)’s for variousi’s are independent of each other. Similarly,
the A(sy;, s2;)’s are independent of each other.

PrROOF Take the sequencey, j21, j22, ... for the sequencey, a1, as, ... of
Fact a. The stopping times of Fact a are then equaj; te= so;. The crossing
(s1i, s2i) happens between timg;_1) and timen;. By Fact a, the pieces of path
of § during the time interval$n;_1), n;] are independent of each other. Since
the crossingss1;, s;) for differenti’s happen during different independent time
intervals, they are also independentl

e.2. The distribution ob*(s1;, s2;) depends only on the length := jo; — j1;.
The distribution ofS(s1;, s2;) is equal to the distribution of the path of the random
walk starting at the poinjy; until it reachesjp;, conditioned that it first meetg;
before meetingjy;. In other words, it is conditioned on that the random wélk
makes a crossing ofj1;, j2;). The random walk starting afy; is defined as
{S;(t) := S(¢) + j1i }ren. With this notation, the distribution d&f(s1;, s2;) equals

£L(Si (0, kg;)| Ecrossd;)
or equivalently,
L(S(t,v)|S(t) = ji; and after time, S visits jy;
before it returns for the first time tf;),

wherer designates any nonrandom time, andesignates the first visit after
to j2i.

e.3. The distribution ofA(sy;, s2;) depends only on the length. It is equal
to the distribution of(A(0), A(1), ..., A(kg)) conditional on the event that the
random walk first meetg; before meeting 0. Thus,

oC(A(Sli, SZi)) = £(A(0), AD),..., A(Kd,‘)|l”:crossdi)~
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e.4. The joint distribution of the path ¢fduring the crossing&y;, s2;) is not
changed if we condition on the event that the crossi@gs s»;) have to occur
during a crossing. More precisely, we are considering the joint distribution of the
(s11, 52;)’s for 0 < i < n. We conditionunder the event that we have a crossing
by S of (0, j»,) starting at zero. After conditioning we get the same distribution as
before:

£L(S(s10. 520), S(511, 521), - - - » (510, 521))
= °C(S(s10’ 520)’ S(Sl]n SZ]_), RN S(slna 52n)|Ecrossj2,,)-
PrOOR Let Egmss(i) be the event thaf does not visit 0 duringis1;, s2;).

E2,di) := {S(t) # 0, YVt € (s, 5%1}. In a similar manner defin&} (i) :=
{S() #0, YVt e (s24-1), s1:1}. We get

n n
ECFOSszn = (ﬂ Egross(i)> N (ﬂ Egross(i))
i=0 i=0
The different pieces of paths from the collection:

{S(s1i,52)10<i <n}U{S(s14-1),51:)|0 <i <n}
are independent of one another. Thus, we are exactly in the situation of Fact c.
Applying Fact c to{S(s1;, s2;)|0 < i < n}, we find that
(1) eC(S(SlO, 520), S(511, 521), - - -, S(s14, SZn)|Ecrossj2,,)
equals

® oC(S(Sli, 52i)|Egross(i))'

i=0
However, since(sy;, s2;) is a crossing byS of (ji;, j2i) where 0< jy;, jo, it
follows that a.s.S during (s1;, sz;) does not visit 0. Thus the evedZ Ji) is
the almost sure event. Hence:

L(S(51i, 520) | Egrosdi) = LS (s, 52:)).

This proves that the distribution 1 equé@s_, L (S(s1, s2:)). The last expression,
by e.1, is, however, the joint distribution of the “uncondition&{%1;, s2;)’s. O

e.5. The probability that a crossing Byof an interval of length 3 is straight
equals]. Thus, ifd; = 3, we have

lw

P(s2i —s1,=3)=73.

PrROOF We need to calculate the probabili®(x3 = 3| Ecross 3- Ecross 3iS the
event that before coming back to zero, the random Wdikst visits 3. It can do it
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in exactly 35,7, ... steps. For each given number of steps there is precisely one
path. The reason is that when the random walk is in the int¢@va&l), in order to

not reach the border, there is always only one possible step. Any path of length
2k + 1 has probability 3)%+1. The path of length 3 is the straight path. We find:

Pks=3)  (1/2)° 3

P(k3= 3|ECI’OSS 3= P (Ecross 3 = ZI?Q:l(l/Z)Zk—l-l = Z N

Note that Fact e holds for any simple random walk.

FAacT f. Let x1 < x2 < y1 < yp2. Let (114, t24;) designate theth crossing
by S of (x1, x2). Let (t1,;, 2y;) designate théth crossing bysS of (y1, y2). Then,
(S(t1xi, t2vi))i=0 is independent ofS(r1yi, 12yi))i>0-

PROOF. Let:; designate theth visit by S to the pointx,. This defines a
renewal process and a regenerative process. Since the randoi egadkot jump,
during each renewal period, it can either spend the whole tinjednx,[ or in
]x2, oo[ . During the same renewal periagicannot visit botHoo, x2[ and]xz, oof .
This implies that a crossing hy of (x1, x2) and a crossing by of (y1, y2) can
never occur during the same renewal period. The renewal periods are independent
of each other; that is, the pieces of path;, .; 1) are independent for varioyss.
Since the crossings by of (x1, x2) and the crossings by of (y1, y2) occur
during different independent renewal times, it follows th&tr1,;, f2;))i>0 iS
independent ofS(t1yi, t2yi))i=0. O

FACT g. Letxi < x» be integer numbers. Laty,;, 2,;) designate théth
crossing byS of (x1, x2). Then the pieces of path(ry,;, r2¢;) are independent
of each other for variouss.

PROOF Assume without loss of generality thakOx1 < x». Let the sequence
ao, ai, az, ... be equal to the alternating sequengexo, x1, x2, x1, . ... Define as
in Fact a the stopping timeg . In other wordsyo designates the first visit by to
ap andn ;1) designates the first visit by after timen; to the pointa(;;1). The
pieces of path in between stopping times are by Fact a independent of each other.
In other words, theS(»n;, n(;+1))’s for different j’s are independent. However, in
each time intervaln;, n¢j+1)] there can be at most one crossig;, f2,;). It
follows that theS(s1,;, t2;) are independent of each othef]

NOTATION. Let 0<m < n. Let (ki,, k2;,), respectively(ky,, k2;,), des-
ignate thez,th, respectivelyz,th, crossing byR of (0, 3n). Let (k1am, k2am),
respectively,(k1pm. kovm), designate the first crossing ¥ during (k1.,, k2;,),
respectively(ky,, , k2;,), of (3m, 3m + 3). Let w}f (m), respectively;w,f (m), des-
ignate the variable which is equal to 1 14, k2aim), respectively(kipm, , kopm),
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is a straight crossing. Lét1,,,, t2.m), respectively(tip,, topn ), designate the first
crossing byS during (114, t24), respectively,(t1p, top), Of (kigm, k2am), respec-
tively, (kipm, kobm). [Here (t1q4, t24), resp.(t1p, t25), are defined as in Lemma 8.]
Let wg<m), respectivelyw;f(m), designate the Bernoulli variable which is equal
to 1 iff (t1am, toam), respectively,(t1pm, t26m ), IS @ straight crossing. With this
notation and by Lemmas 5, 6 and 7, we gef(m) - wR(m) = w,(m) and
w;f(m) . wlf(m) = wp(m). Hence, the test statistic, x w, is equal to

n—1
Z w(f(m)wf(m)wlf(m)wf(m).
m=0

Note that the products? (m)wX (m)w; m)wR(m) are Bernoulli random vari-
ables. Thus to prove Lemma 8, we only need to prove that these products
w3 (m)wR(m)yw; m)wfm) form =0,...,n — 1 are i.i.d. random variables such
that:

CaseHy:

) P(wSmywX myw mywfm) =1) = (3)°.

CaseHq:

®) P(wmywf mywimwfm) =1) = 3)*.
PROOF OF LEMMA 8. We need to distinguish two cases:

CaseHp: In this case, = z, andwf (m) = wX(m) forall 0 <m <n. Thus,
w; (m)w N (m)wy (mywy (m) = w§ (m)ywx (mywp (m).
It follows:
P (wq (m)wp(m) = 1) = P((w; (m)wj (m)) = 1, wf(m) = 1).
The right-hand side of the last equality can be written as
(4) P (w3 (mywy (m) = LwRm) = 1) P(wRm) = 1).
We have that
P(w; (mywj (m) = LUwk (m) = 1)
© = E[P (w3 (m)wj (m) = 1|R(k), k € Z)|wR(m) = 1].

The crossingsti,, t2,) and (t1p, t2p) are crossings by of the random interval
(k1z,,k2;,). SO Fact g does not directly apply. However, by conditioning on
o(R(k), k € Z) the interval(k1,,, k2;,) is no longer random and we can apply
Fact g: Conditioned oa (R(k), k € Z), S(t14, t2,) @andS(t1p, to,) are independent
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of each other. Conditional an(R (k), k € Z), w;f(m) only depends o8 (t1,, 124),
while w,f(m) only depends o8 (¢15, t25). Hence when we condition aR, w5<m)
andw,f(m) become independent. We get

P(wSmywj (m) = 1|R(k), k € Z)
= P(wS(m) =1|R(k),k € Z) - P(wj(m) = 1|R(k), k € 7).

When wf(m) =1, then the crossin®k1,m, k2um) has length 3, that i9k14, —
koam| = 3. Thus, by Facts e.4 and e.5 we find tRaivs (m) = LwR(m) =1) = %
and P (wj (m) = 1wk (m) =1) = 3. So, whenw® (m) = 1 holds, we find that

a

P(wS myw (m) = 1R (K), k € Z) = (3).

This implies that the right-hand side of (5) is equaltf3)?[wf (m) = 11 = (3)%.
Plugging this into (4) finishes establishing (2). Next we need to demonstrate the
independence of the produatg (m)w; (m)wx (m) for 0 <m < n in the caseHo.
Conditional ono (R (k), k € Z) all of the following holds.

According to Fact gS(r14, t2,) is independent of (¢15, t25). But thew;f(m)’s
for variousm’s depend only or§(¢1,, 2,) and thewlf(m)’s for variousm'’s depend
only on S(t1p, t25). Thus, (w3 (m))o<m<n IS independent of(w; (m))o<m<n-
Furthermore, by Fact e.1, thej(m)’s, respectively, theu;f(m)’s, for variousm’s
are independent of each other. This leads to that the prod».gﬁ{m)w,f(m) are
independent of each other. [All the last arguments were meant to hold conditionally
ono(Rk), k€ Z).]

By Fact e.l, theR(kium, k2am)'s are independent among each other for
variousm’s. This puts as in the case of Fact d: Take for tRi€&14m, k2am) 10
be X,, andY,, to be wg(m)wg(m). Conditional on(R (k1am, k2am))o<m<n the
wg(m)w;f(m)’s are independent of each other and the conditional distribution of
waS(m)w;f(m) depends only orR (k1um, k2am). Fact d tells that in this case the
random pairs{w;f(m)w,f(m), R (k1am, k2am)) for 0 <m < n must be independent.
It follows that the products;;ﬁ(m)w,f(m)wf(m) are also independent of each
other.

CaseH;: In this case the crossingi.,, k2;,) is different from the cross-
ing (k1. , ko;,). Fact g implies thaR (k1 , k2;,) is independent oR (k1 , k2;,).
This implies thai(R (k1am, k2am))o<m<n iS independent ofR (k1pm , k2bm))o<m<n -
Conditioned ono (R(k), k € Z), the crossingsti,, t2,) and (t1p, t2p) by S are
crossing of nonrandom intervals. Hence, conditional «oiR(k), k € Z) and
by Factf,S (714, t2,) andS(¢1p, t2,) are independent of one another. Facte.2 implies
that conditional orv (R(k), k € Z), the distribution of(S(¢14m >, t2am))o<m<n, r€-
SpeCtiver-(S(tlbm’ t2bm))0§m<na depends Only OQR (k1am » k2am))0§m<na respec-
tively, (R (k1pm, k2om))o<m<n- Thus, Factd applies, and we get th&(r1, , 124m),
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R(kluma k2am)))0§m<n IS independent Of(s(tlbm7 t2bm)a R(klbma k2bm)))0§m<n-
Note that ws(m)wX(m), respectively, wm)wl(m), is o ((S(tram, t2am)
R(kiam, k2am))), respectively, o ((S(t1am, t2am), R (k1am, koam))), measurable.
Thus, (w3 (m)wX (m))o<m<n is independent ofw; (m)wx (m))o<m<n-

Conditionally on (R (k1pm, k2bm))0o<m<n, the crossings byS(t14m, toam) for
0 <m < n are crossings of nonrandom intervals. Hence, Fact f applies so that
conditionally on (R (k1pm, kobm))o<m<n the pieces of paths(t1,m, t2um) are
independent of each other for variouss. By Facts e.2 and e.4, conditionally
on (R(kipm, kavm))o<m<n, the distribution of S(t14m, t2.m) depends only on
(R(k1gm, k2am)). However, by Fact e.1, the pieces of pati®& ki, k2am)) are
independent of each other for variomss. Thus, we can apply Fact d, and get
that the pairs(R (k1am, k2am)s S (t1am, t2am)) for 0 < m < n are independent of
each other. SincevS (m)wX(m) is o (R(kram, k2am)> S (t1am, tzam))-measurable,
it follows that the productsv? (m)wX(m) for 0 < m < n are independent of
each other. In a similar way, one can show that the produx;ft(sn)wf(m)
for 0 < m < n are independent of each other. It follows that the products
w3 (m)ywk (myw; m)wk (m) for variousm’s are i.i.d. By independence afandb,
we have that

P (w3 m)ywX myw; m)wf (m) = 1)
= P(wSmwRm) = 1) P(wim)wf (m) = 1).

The right-hand side of the last equality is equaPtav? (m)w?X (m) = 1), because
P (w3 (m)wX(m) =1) = P(wy(m)wf (m) = 1). Furthermore,

P(wSm)w®m) =1) = P(wd(m) = LwX(m) = 1) P(wk (m) =1).

By Fact e.5,P(wf(m) = 1) = 3. WhenwZ(m) = 1, then |kuam — koam| = 3.
|t1am — t2am| designates the first crossing BYof (k14m, k2am). Thus by Fact e.5,
P (w3 (m) = 1wk (m) = 1) = 2. We are done with proving (3).0

2.4. Details of the reconstruction algorithm We gave already the main ideas
on how to reconstruct a finite piece of scenery. In this section we describe the
technical details. Letk}™, k3T) be the first crossing after time O by of the
interval (0, 3n). In other wordskj ™, k5™ > 0 and for alls, t > 0 such thats, 7) is
a crossing by of the interval(0, 3n) we havekj™ <s andk3™ <1.

Let (k] ™, k37) be the last crossing before time 0 Byof the interval(0, 3n). In
other Wordskf‘, k;~ <0 and for alls, r < 0 such thats, ¢) is a crossing byr of
the interval(0, 3n) we havek]™ > s andk,™ >1t.

In the numerical example of Figure 1, we have thigt™, k37) = (0, 13). In
other words(0, 13) is the first crossing after zero ¥ of (0, 9). The part of the
grgphz3n—> R(z) with z < 0 is not represented in Figure 1, so we cannot see there
(k3™ k57).
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The reconstruction algorithm which reconstructs a finite piece of the scénery
reconstructs the worg(k5 ™), £(k5~ +1), (k5™ +2), ..., g(kgﬂ or its transpose.
It achieves this by recognizing a time interval s) during which the nearest-
neighbor walkS goes in a straight way: from the poikf~ to the pointk5™*
or from the point k§+ to the pointk5~. (r,s) is thus a straight crossing
by S of (k3~,k3") or of (k3",k53). During such a straight crossing, s)
the observations reveal the piece of the scerfewhich is included between
ky~ and k§+: x(r), xr + 1), x(r +2),..., x(s) is equal to the word: (k57),
Eky” + 1,6k +2), ..., §(k§+) or its transpose. The reconstruction algorithm
“for a finite piece of scenery” depends on a parametérhat is why we will call
it thereconstruction algorithm at level. Thus, we have a collection of algorithms
indexed byn. Using these algorithms for increasing will allow us to reconstruct
increasing finite pieces of the scenéryand eventually to reconstruct the whole
sceneng up to equivalence (as a limit, after infinite time). We can already mention
here that the reconstruction algorithm at lewetloes not achieve this goal in
100% of the cases; rather, it has a small failure probability. However, this failure
probability is finitely summable over. This insures that only a finite number of
the finite size reconstructions will contain errors. This finite number of errors has
no influence on the final total reconstruction, since that one is taken to be a limit.
Next we need a few definitions and notationszlgtzo € Z be such thalz; — z|
is a multiple of 3; that is, there existse Z such that, — z; = 3z. Let (s1, s2) be
a crossing byR o S of (z1, z2). Let, for 0<m < |z|, w(m) be equal to 1 iff the
first crossing byR o S of (z1 + 3m(z/|z]), z1 + (3m + 3)(z/|z])) during (s1, s2) is
straight and equal to zero otherwise. We wiitg, ) for the binary word:

wOwDw(?) - w(z|—1)

and call it the binary word associated with the crossings,) by Ro S.

Among the two crossings by, (k'“r k +) and (K], k57), let (kf,,k5,)
designate the one of the two which gets crossed firs§.biyn a similar way, let
(kj.. k3.) designate the other one. In this waykf" gets visited bys beforek} ™~
we have thatk/, , k4 ) equalsk] ™, k5 1). Otherwise k], k3,) equalsk; ~, k57).

Let (¢1;, t3;) designate théth crossing byR o S of the interval(0, 3n). Let w}
designate the binary words associated with the crogsfngs;). Thus:

n.__
wl — w([:’l-’i 1’21i .

For z # 0 with z € Z, let (k7,, k3.) designate theth crossing byR of (O, 3n).
[By this we mean that it > 0, then (7, k5.) is the zth crossing after O byr
of (0,3n). If z <0, (ky,,k5,) de5|gnates thez|-last crossing before 0 by

of (0,3n).] Note that with this notation, we have thék},, k) = k{7, k3")
and (k7). k3_3)) = (k;~, k3 7). BecauseS starts at the origin, it cannot reach
any zth crossing(ky,, k5.), with |z| > 1, before it has not crosse{r?l'“r k +) or
(k1. k37). By Lemma 5,(1f,, 13,) is also the first crossing b§ of a crossing
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by R of (0, 3n). It follows that ({4, #3,) is obligatorily a crossing by of either
(kyT k5™ or (K, k5 7). Thus,(#4, t3)) is a crossing bys of (k. k3.).

The above discussion suggests a method for constructing stopping times which
with high probability will stg the random walk at the poirk;,. Apply for
this the localization test to the two crossing$;,t5;) and (t7;, t3,). If the test
decides thatty, t3,) and (¢7;,t;;) are crossings by of the same interval (i.e.,
HypothesisHp), decide thatS(z5;) = k3,. Let (i) designate théth stopping
time obtained by trying to stop the random wallat k5. More preciselyz” (i) is
equal to the'th, tgj for which
n
J
The scalar product for binary words of the same lengthis defined in the
following way: letw = w(Q)w(Dw(2) - - - w(k) andv = v(O)v(Dv(2)---v(k) be
two binary wordsw x v := Zf:o w() - v(l). We define the relatior:: w < v iff
for all 7 with 0 <1 < k we have thatw(l) < v(l). We define the transpose of the
word w and writew™* for the wordw* := wk)wk — Dwk — 2) -- - w().

Let (¢1,,15,) denote the first crossing by of the interval (kf,, k5,). We
have that(t],, 15,) = (114, t31). Let (¢],, t5.) denote the first crossing by of the
interval (k7,, k5.). As mentioned(t],, 15,) is also the first crossing bi o S of
the interval (O, 3n), and thus is observable. Let] designate the binary word
associated with the crossirigd,, 15,) by R o S. Using our notation,

w x w] >c-n.

n.__
Wy 7= W, )-

Note that(z]., t5.) is also a crossing by o S of the interval(0, 3n). Letw. denote
the binary word associated with the crossing, t;.) by Ro S. (t1... t;.) andw; are
not directly observable. We can only estimate them. We denoi&’mur estimate
for w” and by (i{., 75.) our estimate for}., 5.). We will explain later how we
obtain these estimates.

As already mentioned, the goal of the reconstruction algorithm at teigeto
reconstruct the finite piece of the scenéry

E(k5.), E(kG. +u), E(ky. +2u), ..., E(ky,).

[Here u denotes the sigm := (k5, — k5.)/|(k5, — k5.).] The reconstruction
algorithm at level: achieves this by constructing a straight crosging) by S
of (ky,, k3,). When going fromk’ . to k3, in a straight way, the random walk
first crosses the intervét; , k7.) in a straight way and then the inten@l, k7).
Crossing(ks., k1), respectively(k] , k5 ), in a straight way, we get the maximum
number of “straight crossings possible By S.” Thus, when(s, r) with s < r is a
straight crossing by of (k3,., k5,) we have that there exists < s; < r1 < rp with

s2 =s,r2=r such thai(sy, s1) is a straight crossing by of (k5. k7.) and(ry, r2)

is a straight crossing by of the interval(k] ,, k5,). In this case,

(6) Wsy.sp) = Wer
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and
(7) W(ry,rp) = Wy

The above discussion suggests a method for how to search for straight crossings
(s,r) by S of the interval(k3_, k5 ): try to find (s, r) minimizingr — s with s < r
under the following constraint: there exists< sy <ri <rp With sp =s,ro=r
such that:

1. (s1, s2) is a crossing byR o S of (0, 3r) such that (6) is satisfied.
2. (r1,r2) is acrossing byr o S of (0, 3n) such that (7) is satisfied.

2.5. The reconstruction algorithm at level Let# :=n1%8%ands := nll. We
are now ready to define tlreconstruction algorithm at leved in a precise way:

ALGORITHM 9. (i) Find (s,7) minimizing r — s with s < r under the
following constraint:

1. There exist$ < ¢ such that”(i) <s <r < (i) + n?%0.

2. There existsy < s1 < r1 <rp with so =, ro = r such that:
(@) (s1.s2) is a crossing byR o S of (0, 3n) such thatw, 5,y > w? holds.
(b) (r1,72) is a crossing byR o S of (0, 3n) such thatw,, ,,, > w holds.

(i) The output of the reconstruction algorithm at levels the binary word
which we can read in the observationsluring time(s, r), that is,

X)), xG+D, x(s+2),..., x(r),

where(s, r) designates the first ordered pair minimizing s under the conditions
2(a) and 2(b).

REMARK 10. (i) w! is not directly observable. Thus, for our reconstruction
algorithm we use the estimaie instead ofw".

(i) The reader might be wondering why the algorithm uses conditions
2(a) and 2(b) instead of the localization test. As a matter of fact, one could imagine
to replace condition 2 by the following two conditions:

(a) (s1,s2) is a crossing byR o S of (0, 3n) such that, when compared to
the crossianl”c, fz”c), the localization test decides that the two crossings occurred
in the same placeHp-case).

(b) (r1,72) is a crossing byR o S of (0, 3n) such that, when compared to
the crossingt{,, 13,), the localization test decides that the two crossings occurred
in the same placeHp-case).

Replacing conditions 2(a) and 2(b) by the above conditions 1 and 2 does
not work. The reason is the following: typically the poirg and k5. are at
distance order{?) from each other. [To simplify calculations, we will just prove
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that the order is smaller than orde?] and work with that.] To get at least one
straight crossing by of an interval of length order) we need order(’f) trials.
Thus our algorithm needs to be able to identify correctly ordlé)(érossings
by S of (k5.,k5,) [in our proof order(zg)]. The localization algorithm (with
parameter) has a positive probability of making an error of orde’(”) where

k > 0 is a constant not depending anWith order(Zg) trials we can be sure that
the localization test (with parametey will make many errors, and thus cannot be
used instead of conditions 2(a) and 2(b).

(i) If we perform the localization test with parametérinstead ofn, the
probability of an error is of orde¢(*). This is so small that, with high probability,
we can apply it ordeef”) times without making a single mistake. This is more than
enough trials to get, with high probability, one straight crossing loy an interval
of length order¢®). This is why for condition 1 in the reconstruction algorithm
at leveln, we construct the stopping timeé (i) using the localization algorithm
with parameteri.

(iv) The conditions 2(a) and 2(b) can be seen as a modified version of the
localization algorithm with parametar We will show that with high probability
within distance:?2 of the pointks, we have: only the crossing?,, k3,) is such
that a crossingry, r2) by S of it can satisfy the inequality -,y < w,. A similar
condition also holds fok’., k5.). This implies that as long as we are within
distancen?2° of the pointk , conditions 2(a) and 2(b) can never make a mistake
at identifying crossings by of (7, k5,) and of(k7,, k5.). WhenS(z"(i)) = kzﬁa,
then by definition, a crossing, r) satisfying condition 1 of the selection rule
of the reconstruction algorithm at leve] is such thatS(s) and S(r) are within
distancen??° of the pointki, . For more details about why the reconstruction
algorithm at leveh works, see Section 4.

2.6. Construction of(fl”c, fz”c) and ofw”. Recall that a crossing, ¢) is called
positive if s < ¢ and negative otherwise. Recall also that from the two crossings
(k1. k5,) and (kf(_l),kg(_l)) by R of (0, 3n), the one which gets first crossed
by S is called (k7,, k3,) while the other one is called]., k5.). After having
crossed from the point], to the pointk; , S first needs to cross back from the
point k5, to the pointk], before being able to cros&’ ., k5.). More precisely,
after a positive crossing by of (k7,, k5 ) there first needs to be a negative crossing
by S of (k],, k5,) before there can be a crossing byf (k7,, k5.). On the other
hand, right after a negative crossing Byof (k7,,k5,) the random walks is
always located between the poikfg andky.. When the random walk is located
betweenk], andky,, the nexttime it crosses an interval_, k5.) this must be the
interval (kf,, k5,) or (k. k). This gives a way to characterizg , ;) [recall
that (¢1., t;.) is the first crossing by of (ki k5.)]: (t1..15.) is the first crossing
by S of an interval(ky,, k3,) such that the following two conditions are satisfied:
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(i) (t1..t5.) is nota crossing by of (k7. k5,).
(i) the last crossing by of an interval(k7,, k5,) before(z],, 15,.) is a negative
crossing bysS of (k7,,k5,).

Note that Lemma 5 implies that the crossings$gf an interval(ky,, k5.) can
be characterized as followss, ) is a crossing bys of an interval(k?,, k5.) iff
(s, 1) is a crossing byR o S of (0, 3n). Applying the last characterization to the
above conditions leads tey,., 3,) is equal to the first crossingy;, 5,)) by R o S
of (0, 3n) with i > 1 such that the following two conditions hold:

(i) (1, 13) is nota crossing by of (k7,, k3 )).
(i) (171> 13;_1)) is @ negative crossing by of (k. k3,).

Which crossings are crossings ®yo S of (0, 3n) is observable. That means
that the crossing&?;, t5,) are known to us. On the other hand, which crossings
are crossings by of (kf,, k5,) is not directly observable. Howevery,, 15,) is
observable and is a crossing Byf (k],, k5,). So we can estimate ;;, ;) is a
crossing bys of (k7 ,, k5,) or not. For this we ask our localization test to compare
the crossings:{,, t31) and(t{;, t3;,). The localization test can then estimate if the
crossinggtyy, t31) and(tf;, t5;) of S occur on the same place or not. Our estimate
for (¢1.,t5.) will be defined to be the firstty;, 5;) for which the above character-
izing conditions are estimated to be true:

We define(i;., 73.) to be equal to the firstr};, 13;) with i > 1 for which the
following three conditions hold:

() The localization test, when comparirid’;, t5,) with (¢, 13;), rejects the
Ho-hypothesis.

W) g > 154 1)- | |

(i) The Iocallzatlon_test, when comparing?,, 15,) with (r{’(i_l),zg(i_l)),
accepts thédp-hypothesis.

We definew” to be the binary word associated with the crossiifig 77.).

3. Assembling the pieces. The reconstruction algorithm at leveltries to
reconstruct the finite piece of the scenéry

"= E(k],), E (KT, +u), EKY, +2u), ... E(KY),

whereu := (k], — k1.)/|(k], — ki,)|. In this section, we explain how to construct
a sceneryt :Z — {0, 1}, equivalent toz, from the collection of finite pieces
g1 &2 ... The reconstruction algorithm at levelgives us the binary worg”,
but does not tell us where it is located in the scerderyhis implies that we need
to “assemble” the pieces! in order to gek.
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Let us introduce a few definitions: let= v(0)v(D)v(2) - - - v(i) and
w=wO)ww(?)---w(j) be two binary words. We say thatis contained inv
iff there existjq, jo€{0,1,2,...,j} such thab is equal to

(8) v=w(jDw(i+uww(ji+2u) - w(j2)

whereu := (jo — j1)/|j2 — ji|. We writev < w whenv is contained inv. We say
that v is uniquely contained inw and writev <1 w, iff there exists exactly one
ordered pail(j1, j2) in {0, 1,2, ..., j}? such that (8) is satisfied.

Note that the sequence of piecgs £2, ... is an increasing sequence, in the
sense that” < &' for all n € N. (The reason for this being true is that
by definition, k2~ > k'*P~ andki* < kP for all n € N. Thus the interval
with the two endpoint&s_, k5, is contained in the interval with endpoirit§., k5,
whenn < m.) Imagine that not onlg” < £7t1, but evert” <, £"*+1foralln e N.
Then there would be a unique way to assemble the pigtes?, £3,.... The
situation in this case is similar to that of a puzzle: for a puzzle, once we have
decided on the position of one piece, there is a unique way to assemble the whole
puzzle. Furthermore, when we assemble a puzzle we always get the same image
up to an isometric mapping. This is exactly the situation we encounter with the
pieces of scenery wheyt <1 £7+1 foralln e N,

Let us illustrate this with a practical example. lg&etZ — {0, 1} be the scenery
from which we show below a finite portion close to the origin:

gl ... 1 0 1 00O0O1 1100 1...
k| .. -4 -3 -2 -101234567..°

Assume that we would be given the three pieces (of the part of the scénery
which is represented above): 11000, 1000111 and 0100011100. In this case the
first piece lies in the scenefy between the points 3 andl. The second piece

is the piece of which lies between-1 and 4. The last piece lies between the
points —3 and 6. We see that the first piece is uniquely contained in the second
which itself is uniquely contained in the third piece. To assemble the three pieces
we first place the first piece anywhereZn Then we place the second piece so
that it covers the first piece, and so that on the first piece it coincides with the first
piece. Eventually we place the third piece so that it coincides with and covers the
second one. If we place the first piece starting at the origin we get

E(k)| 11000
k| -4 -3 -2 -1012 3456 7°

Then we place the second piece so that it covers and coincides with the first piece.
For this we have to turn the second piece around. We obtain

Eb) 1110001
k] -4 -3 -2 -1012345867°
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Eventually we place the third word and get

Eb)| 0 0 11100010
k| -4 3 2 -1 01234656 7

If we would go on with more and more pieces,asends to infinity we would
obtain a scener§ which is equivalent t§.
Let £} denote the event that

Ef = {£" <81y,

We will show that

o0

> P(EG) < o0,

n=1
where Ej¢ denotes the complement dfj. From the last inequality above it
follows that a.s. for all but a finite number afs we have that” <1 £"*1. The
assemblage procedure we define below still works! i1 £"*1 holds for all but
a finite number ofi’s.

Let us mention an additional problem: each reconstruction algorithm atdevel
has a small probability of making an error. Thus the output of the reconstruction
algorithm at levek is not a.s. equal t§" but is only an estimate df”. For the
output of the reconstruction algorithm at levelwe will thus write " instead
of £". We denote bye" the event that the algorithm at levelworks. That is,

E":=(§"=§").

By E"¢ we denote the complementary eventsst. In the next section it is shown
that

o0
(9) > P(E™) < 0.

n=1
From this it follows that almost surely all but a finite number of reconstructions
" are correct, that is, are such thgit= £". Our assembling procedure defined
below is robust against this kind of problem: if only a finite number of pieces
£" are wrong it still works. Let us next define in a precise way assemblage
procedure

_ ALGORITHM 11. (i) Let/" + 1 designate the length of the wotd and let
£"(i) designate theth bit of the binary word”. In this way,

En = EM(0)E"(VE"(2)---EM(IM).

(il) Let no designate the smallest natural (random) number such that for all
n > ng we have that” <1 £€"*1 holds.
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(i) We construct the scenely by induction o starting atug.

We first place the word"o at the origin.

Once the word” is placed, we place the woitt1 in the unique manner such
that it covers and coincides witt on &”.

(d7,d3) designates the position of where we placed the wgtd More
precisely,

(@) Letd;°:= 0 and letd;® := ["0. For all k € [0, d,°] define:& (k) :=
E"O(k).

(b) Oncedy,ds are defined and (k) is defined for allk € [d}, d3] let
ditt, agtt with @t < @5 be the unique ordered pair of integers such that
[d}, d3]  [d;+?, a5 and such that one of the following two cases holds:

1. Forallk € [df, d;] we have that

E(k) = "Lk —ayth.
2. Forallk € [d], d5] we have that
é(k) — §n+1(ln+1 _ (k _ d;_l+1))

Forallk e [df ™, a5, letE (k) be equal to
1. When case 1 above holds,

E(k) =&k — ayt™.
2. When case 2 above holds,

g(k) = §n+l(ln+1 —k— diH_l)'

The constructed scenegys equivalent td as soon as for all but a finite number
of n's we have that” <1 £"+1 and&” = £”. This should be obvious and we leave
the proof to the reader. It thus only remains to prove that almost surely for all but
a finite number ofi’s, £” <1 £"*1 andg” = £" hold.

4. Proof that the reconstruction at level n works. In this section we prove
that the reconstruction algorithm at levelvorks with high probability; that is, we
prove (9). For this we decompog#' into several elementary events. Let us start
with some definition.

We say thats, r) satisfies the conditions of Algorithm 9 with! instead of”
iff s <r and it satisfies all of the following conditions:

1. There exists < ¢ such that”(i) <s < r < (i) + n?20.

2. There existsy < s1 <r1 <rp with so =, ro = r such that:
(@) (s1,s2) isacrossing by o S of (0, 3n) such thatwy, s,y > w’ holds.
(b) (r1,r2) is a crossing byR o S of (0, 3n) such thatw, ,, > w’

a*
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Let E] designate the event that if Algorithm 9 is given the redélinstead of the
estimatew, it produces a straight crossing yof (k5,., k3,):

E’ := {There exists at least one p&it, r), satisfying the conditions
of Algorithm 9 with w?” instead ofiv” }
N {Any pair (s, ), minimizingr — s under the conditions of Algorithm 9
with w instead ofi?, is a straight crossing by of (5, k5 )}.

Let £/ . be the event that the construction(af,, #,) works:

(10) Etn_c = {(fcra.’ fan) = (téll’ IZ‘ZZ)}'
Note that whert? . holds, thenw] =y
EQ correct:= {All (s, r) satisfying the constraints of Algorithm 9

with w? instead ofiv]!, are suchthaf(s) = k5., S(r) =k5,},
at least one= { There existss, r) satisfying the constraints of Algorithm 9
with w instead ofi”, such thats, r) is a straight crossing
by S of (k4., k3 )}.

e ot L e e vt

: ; i 0.99
Egtopping': {tgai =1"(i), Vi <expn~7°)}.
Let:
n
Eno othera crossing byR

:= {The only crossingk1, k2) by R of (0, 3n)

with [kq — k4 |, |k2 — ki | <n??%such thatwf > wpis (K, k3)},

a

rr'llo otherc crossing byR
:= {The only crossingki, k2) by R of (0, 3n)
with [ky — k4, |, k2 — k3,| < n?®such thaw , > w! is (k7. k5.)},

E

n
no other crossing by

R n n
= Eno othera crossing byR N Eno otherc crossing byR>

n
E straight

:= {There existg < " ands, r with ¢4 . <s,r <t} . +n?%°

such thai(s, r) is a straight crossing by of (k7_, k5,)}.
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Let E

visit
exp(n®®):

be the event that the random walkvisits the pointks, before time

Elg = {13 < expn®d)).

Recall that: := n11. In Section 4.1 we prove the following inclusions:

(12) Ei’ﬂE,"_cCE",
(12) Egt least ond | Egll correct™ E7,
(13) E;ltopplngm Eno other crossing by C Eall correct
(14) Estraightm Estoppingc Eat least one
(15) Egtopplngm E\’}isit CEic.
From the inclusions (11)—(15) it follows that
Egtraightm Egtoppingm Egtopplngm Err'llo other crossing by N E\r/lisit C En’

which implies
P(Estralghf) + P(Estopplng} + P(Estopplng?
+ P(Ep, no other crossing by?) + P(E\r/llfsn) z P(Enc)-

(Here Eggnermingdesignates the complement of the eVEf o ing) IN Section 4.2

we prove that
P(E
P(E"

P(Estopplna P(E

) and P(E

stralght) stoppmg?

no other crossing by VISIt)

are all finitely summable over. Together with the last inequality, this proves that
P(E"™) is finitely summable ovet.

4.1. Combinatorics.

PROOF THAT Ef N E},. C E" HoLDS. When E} . holds, thenw = w.
In this case, the evenk?] amounts to the same as evefit. It follows that
EYNE;, =E"NE],, whichimplies inclusion (11). UJ

PROOF THAT Ei |cast one Eall comect C E] HOLDS. Let (s,r) be a pair
minimizing r — s under the constraint of Algorithm 9 with? instead ofw!.
Then if E3 correct NOIDS, we have tha(s) = k5., S(r) = k3,. if EZt jeast onclSO
holds, there exists a straight crossitg, ') by S of (k3 ,k5,) satisfying the
constraint of Algorithm 9 withw?” instead ofw] . For a straight crossing we have
r' —s" = k. — k3,|. Sincer — s is minimal under the constraint of Algorithm 9,
we get|r — s| < |k5. — k5,|. This together withS(s) = k5., S(r) = k5, is only
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possible if(s, ) is a straight crossing by of («_, k5,). We just proved that when
EZt east on@NAER) correcth0ld, ll pair(s, r) minimizing r —s under the constraint
of Algorithm 9 are straight crossings Isyof (k5,., k5 ). In this casez7 holds. Thus,

toqetherEgt least oneandEgII correctimply Eil O

PROOF THAT E’sitoppingm Err{o other crossing by - Egll correct HOLDS. Let (s,r)
satisfy all the constraints of Algorithm 9. Then there exigis< s1 <r1 <r»
with s> = s, rp = r, where (r1, r2) is a crossing byR o S of (0, 3n) such that
W(ry,rp) = wi holds. By Lemma 5 we have that there exists a crosging.) by R
of (0, 3n) such that(r1, r2) is a crossing by of (k1, k2). By Lemmas 6 and 7, we

R R
have thatwg ;.0 = weq,r). ThUS WG, o0 > wy.

Additionally by the constraints of Algorithm 9 there exists ¢” such that

(i) <5 <r < 7'(i) + n?0 If additionally E%,,,,i,,holds, thenS(z" (i) = k3.

The random walkS during a time interval 0fn??° time cannot walk further
thann?20, Thus, |S(r1) — k4 |, [S(r2) — ki | < n?20, This is equivalent to saying
that|ks — k3|, [ka — k3, | < n??°. Hence the condition in eVewml}, oo crossing by
applies to the crossingky, k). It follows that if Ef; ;iner crossing by @IS0 holds,

then(ky, k2) equals(k’,, k3,). This implies thatS(r) = k5,. We have proven that

when Eé’topping and E7; other crossing by 00th hold, thenS(r) = k3,. In a similar

way, one can prove that in this case) = k.. (We leave that proof to the reader.)

i " . . n
Thus’EstoppingandEno other crossing by jointly imply Eall correct .

PROOF THAT Egtraightﬂ Egtoppingc Eat least oneHOLDS. gtraightandEgtopping
jointly imply that there exist < ¢" ands, r with (i) <s,r < (i) + n??°such
that (s, r) is a straight crossing by of (k5,5 ,). Thus, (s, r) already satisfies
condition 1 of Algorithm 9. It remains to show th@t, ) also satisfies condition 2.
During the time intervals, r), S crosses from the poirk. to the pointk3, in a
straight way. For this§ first needs to cros&?’ , k7.) in a straight manner and then
(k1. k5,). Thus, there exist® < s; <r1 < rp With s, =5, r2 = r such thatsz, s1)
is a straight crossing by of (k5. k7.) and(r1, r2) is a straight crossing by of
(k1. k5,). We know by Lemma 5 that a crossing of a crossing is a crossing of the
composition. Thus(s1, s2) and (1, r2) are both crossings bR o S of (0, 3n).
Since the crossings1, s2) by S is straight, we have by Lemmas 6 and 7 that
W(sy,50) = w(lié’(-ski-)' By Lemmas 6 and 7 again, we have t 5 gy = w!. Thus,
W(s,.5,) > w. In a similar way one can show that,, ,,) > w’. This proves that
(s, r) satisfies the conditions of Algorithm 9 with! instead ofw”. However,
(s,r) is a straight crossing by of (k5., k5,). Thus, Eqt least oneholds. We just

n n H
PROOF THAT Egiqn5ing" Evisit C Er.c HOLDS.  In Section 2.6, we saw that

(1., t5.) can be characterized as followss., t5.) is equal to the first crossing
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(t1;,1;) by R o S of (0,3n) with i > 1 such that the following two conditions
hold:

(i) (t1;,13) is nota crossing by of (k],,k5)).
(i) (tf(i_l), zg(l._l)) is a negative crossing by of («],,45,).

The estlmate(tcl, Az) is defined to be the first crossing by o S of (0, 3n)

for which our localization test decides that the two conditions in the last
characterization above hold. Thus, if up to tinfs, the localization test gets alll
the crossings by of (k7,, k5,) right, then the reconstruction of?., t5.) works,
thatis, E, - holds. The evenkg,ingtells us that up tas,; with i = expn®%) the
localization test makes no errors in recognizing the crossings ofy (k7 ,, k5,).
However, exm®9% < . for i = exp(n®%%), since each crossing lasts at least
one time unit. Thus, up to time egd-°°) the localization test makes no errors
in recognizing the crossings by of (k7,,k5,). However, if EJ ;. holds, then
the random walkS visits the pointk;. before time expm®®). Also, exgn®®) <
expn®99). In that case, befors visits the point4., no errors occur. This proves

that Eg;ing@Nd Eig;; jointly imply E; .. [

4.2. Probability bounds.

High probability of E;;;. We need a few definitions. Lei; be the event that
the random wall§ visits both points:10 and—n1 before time exp:%5). Let
E} 4 o= k3], k5. <n').
S first needs to visitk; | and|47_| in order to visit both points1®and—n1C, when
k2 |, k.| < nl0 (sinceS starts at the origin). Thus,

E},.NEjCE!

visit*

Thus,
P(E}, )+ P(E5) > P(E

VISIt)

If P(E}S, ) and P(E5¢) are both finitely summable over, then P(E,) is
also. We' prove thaIP(E ) is finitely summable and leave the proof that
P(E5°) is finitely summable to the reader since it is very similar to the other
one. LetX®*, respectively X ®~, be the first passage time of the random walk
R(k)en, respectively,R(—k)ien, at the point 3. Let E%, := {X®+ < n1)

and let E,_ := {X®~ < n1%. Then, E},, UE}_=E} . Thus, P(E}) +
P(E% ) = P(Eka .- By symmetry,P(E"C ) = P(E%"). Thus, P(E%S) >
P(E} e) Let Z; denote the first passage time pR(k)}ren at the pomti

Let X; := Z; — Zi_1. Then, X®* := ¥3"X; and P(E},) = P(XY



RECONSTRUCTING A TWO-COLOR SCENERY 813

n% < P((X3" X;)Y/3 > n®). For positive numbersy, az, . .., a;, we always have
that (X7, @) > Y71 (@)% ThusY: 2 (x)Y3 > (X3 X;)Y3. It follows that
P(EY,) < P(X2,(X)Y3 = n®). By Chebyshev, we get

BE[(X1Y?
P(ET.) < ni’c‘l

In [5] it is shown thatE[(X;)Y/3] is finite. Thus,P(E},) is finitely summable
overn, which finishes this proof.

High probability of EZy 0 Let E5 :={Vi < exp(n®9%), 12,; < exp(n®9%9)}.
If up to time ry,; with i = exp(n®?%) the localization test makes no mistake
in identifying exactly all the crossings bg o S of (0, 3r) which occur in the
same place, theky,,, i, holds. Thus, ifrz,; < exp(n®9%9) for i = exp(n®%)
and the localization test makes no mistake of this type up to time¢néxp?),
then Egiopping NOldS. Let Efg; correct b€ the event that for alt,, zp € Z with

0 < |zal, lzp] < n%99 and for all 0< iy, i, < n%999 the localization test makes
no error when comparing the crossin@s,, t2,) and(t1p, t2p) . [Here (t14, t2,) and
(t1p, t2p) are defined as in Lemma 81, 12,,) is thei,th crossing bys of the z,th
crossing byR of (0, 3n) and(z1p, 1) is theipth crossing bys of the z,th crossing
by R of (0,3r).] Up to time expn®9%9), § can cross a crossing by at most
exp(n®999) times. Thus, if(f1., f2) and (r1, t2) occur before time ex@®°999),
then 0< iy, i, < n%9%, Furthermore, to reach theh crossingky, ., k3,), S needs

first to cross all the crossingsy ., k5_,) with 7’ strictly between 0 and. Thus up
to time exgn®9%% S cannot reach any crossing, , k4,) with |z| > exp(n®9%9). If
the crossing$ria, r2,) and(tw, r25) occur before time exp®299), we hence have
that 0< iq, i <n%9%%and 0< |z4l, |zp] < n%9%. Thus, E% and ElLg; comeciPOth
hold; the localization test makes no mistake in identifying whicliGoBr) occur
in the same place up to timg,; . In this case Eg;qp,ingholds. Thus,

n n n
EB N Etest correct— Estopping

It follows that

P(Egc) + P(Etnecst correc} z P(Egtcopping?'
If P(E3) and P (E{gg; correct @re both finitely summable over thenP (Eg;,ing
is also. The proof thaP (E3°) is finitely summable is very similar to the proof for
P(EY, ), sowe leaveitto the reader. LB correci, i, 2, 2, P€ the eventthat the
localization test recognizes correctly if with the crossings, t2,) and (t1p, t2p)
we are in theHp-case or not. By definition,

n _n
m Etest correcty,ip,za,2p Etest correct



814 H. MATZINGER

where the last intersection is taken overiglli,, z,, zp such that O< |z,], |zp| <
n%999 and 0< iy, i < n%99. Thus,

Z P Etnecst correcty,ip,zq, zb) P(Etest corre
where the sum is taken over the same domain as before the union. There
are n39% quadruples(iy, ip, za, z5) Such that O< |z, |z»] < n%%% and 0<
iq,ip < n%999 By the large deviation principle and Lemma 8, the probability
P (Efgst correct, .ip.z.z,) 1S €Xponentially small im. Thus there exisk > 0 not
depending om or on(ia, ip, Za, 25) SUCh thatP (Efg; correct, iy 2,.2,) < EXH(—kn).
This implies that

P (Efgst corredt < n399. exp(—kn).

Thus, P(Efgst correct 1S finitely summable oves.

High probability of E¢ ;e Let 75, denote the 20,000th stopping timg, .
Thus, 73, := 15, 20000:)- L€t £} be the event that there exisitss n~20000. ¢

ands, r with 731, <s,r <3, +n??%such thats, r) is a straight crossing by of

(k2. k3 ). We have thaE4 C E LetEf := E} , .NE} , .. We find that the
last inclusion implies

P(EZC N Eg) + P(E c) z P(Estralght)

We already saw thaP (Ec°) is finitely summable ovet. So it only remains to
be proven thal (E;° N Eg) is finitely summable over. Let X; be the Bernoulli
variable which is equal to 1 iff there existsr with 731, <s,r <}, + n??% such
that (s, r) is a straight crossing by of (k7,, k5,). By the Markov property of the
random walksS, we have that conditional undet(R (k) |k € Z) the variablesX;
are i.i.d. Also,Eg is o (R(k) |k € Z)-measurable. We are next going to evaluate the
conditional probability:P (X1 = 1|R(k), k € Z) when E¢ holds. WhenEg holds,
then |k, — ki.| < 2710, We have 210:= 2,110 By definition at any time} ,
the random walkS is at the pointkg’a. By the local central limit theorem, when
ki, — k.| < 2A10, the probability thats goes fromkZ, to k3. in less thangn?20
steps is bigger thak, - n =110, (Herek, denotes a constant not dependingron
and not depending o as long ask € Eg.) Crossing in a straight way to the
pointk3 right after the random wall is at the pointk3 ., has probability bigger
than(3)2""°, when|ks, — k.| < 2n10. But, whenEg holds, k3, — k4| < 2210, Al
this implies that wherkz holds,

straight

(16) P(X1:l|R(k)’k€Z) > (kzn—llo)(%)Zn 0

Leter ;= (kgn‘llo)(%)z”lo. Let7 :=n—20000. ., Note that

Ej* .={2£X,-=0}.
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Conditional undeb (R(k)|k € Z) the X;’s are i.i.d. Thus,
P(EL|R(k). k € Z) = (1— P(X; = 1R (k). k € Z))".
Using (16), we get foR € E¢,
(17) P(E|R(k), k € Z) < (1 —e1)".
Whenn goes to infinity, ther tends to zero. Thus, for big enough we get
(1= ep)/e1 < 05,

Applying this to (17) leads in the case thike Eg, to

P(E}C|R(k), k € Z) < e™05e1,
Integrating the last inequality ovéis leads to
(18) P(E} N ER) < e 05,

Recall thati := n1%8% andsn := n'L. In 7, the leading term ig”. In 1 the leading
term ise©521"° Sincenl089 5 410 we get thae” 3> e~ M0521"° Thisimplies
that the leading term ifeq is ¢". Thus, the term on the right-hand side of (18) is
finitely summable ovet.

High probability of E}4) oiher crossing bg-  Letn™ :=n104+n?20 Let (1], 13, )

designate the first crossing ISyof (kyy, k3,). Letwy; :=w¢z ). Define
Egy := {The only crossingk’_, k5_) with 0 < |z| < n*

Let (17 _1)1.13(_1)1) designate the first crossing by of (kj _,),k3_4)). Let
wi_q =wer o m . Define
(-1 1(—n1-f2—11

Eg(_l) := {The only crossingk} ,ky) with 0 < [z] < n*

R .
such thatvg, 4» ) > wi g, is (K1 _1)» k5 1))}
If E}l , . holds, thenik4,| < n*°. All the crossings(k1, k2) concerned by the
VENtEN, yiher crossing by &r€ SUCh thatky — k5, |, [kz — k3, | < n??%. Thus, when
E} , . holds, then all the crossings concerned&y, e, crossing bye @re within
n* of the origin. When we write those crossings in the faf., £3,) they must
be such thafz| <n*. Thus, WhenE,’("_a’C holds, the event&g, and Eg, cover all
the crossings involved in the definition of the eveift, ;i crossing br- ONe of

the crossingsky,, k5,) and(kf., k5.) is equal to(k7,, k5,) while the other one is
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equal to(ky_;), k3_4)). Similarly, one of the crossingsy,, 13,) and (17, 13,) is
equal to(r1y,, 1317 While the other one is equal 07 _;);, 15 _4y;). Eventually,
one of the wordsw; and w; is equal tow]; while the other one is equal
to wy _ D' This implies that wherE} , . holds, the eventdg, and Eg, jointly
imply E" Thus,

k_a,c

no other crossing bgr*

E61 N E62 N Ek _a,c - Eno other crossing by -
It follows that

P(Egi) + P(E ) + P(Ek _a, c) z P(E no other crossing bye)

We already saw thaiP(Ekac) is finitely summable ovem. By symmetry
P(Eg]) = P(Eg5). Thus, it only remains to prove thaP(Eg() is finitely
summable ovet. Let
. R
Egi. :={wiy_xy) Z Wi}
We have
O<|z|<n*,z#1
It follows that
P(EgD< > P(E).
O<|z|<n*,z#1
We saw in the proof of Lemma 8 the distribution, mﬁcn n , does not depend
on z. Thus, the expression on the right-hand side of the Iast inequality is equal to
(2n* — 2) P(Eg1,). This yields
(29) P(Eg)) < (2n* —2)P(Eg]>).
R
We have thattg, = {w(kiz» k)
n—1

R
Egio= [ {wiy,ug, m) = wiy(m)}.
m=0

> wy,}. Hence,

As in the proof of Lemma 8, the bits of the Womﬁn ) are i.i.d. as well as the

bits of wf, andw?X is independent oivY,. This glves

(k1p.k%)
n—1
P(Eg) =[] P( w(kn k) (m) = w’{l(m))zP(w(If{gzykgz)(l) > wiy(D)".
m=0
The probabilityg := (wgcfz,kgz)(l) > wi,(1)) is strictly smaller than 1 and does
not depend om. Thus, the bound2n* — 2)¢" on the left-hand side of (19) is
finitely summable oven.



RECONSTRUCTING A TWO-COLOR SCENERY 817

5. Why the reconstruction of & works. Our reconstruction algorithm con-
structs a scenery. The main result of this paper is that &sis equivalent tct.
This is also what we need to prove in this section. The reconstruction algorithm
we propose constructs by assembling (as explained in Section 3) the finite re-
constructed pieces!. The piec&” is provided by the reconstruction algorithm at
leveln. The reconstruction algorithm at levelries to reconstruct the finite piece
of the scenery:

E" = &(kY,), E(ky, +u), E(ky. +2u), ... E(k,),

where u := (kj, — k1.)/|ki, — ki.|. We have proven in the last section that

(1— P(e" = &M)) is finitely summable ovex. It follows that a.s&” = £” for all

but a finite number of’s. In Section 3 we have seen that the constructed scenery

£ is equivalent tof as soon as for all but a finite number o6 we have that

g" <1 £l andg” = €. It thus only remains to prove that a.s. for all but a finite

number ofn’s, £" <1 £"11 holds. Define
Einside:=E(=n),E(=n+1),E(-n+2),...,§(n)

and

D psiger=E(—n9), 6(—n®+ 1), 6(—n'0+ 2), ..., £(n®O).

By definition, |k, |, |k5.| > n from which it follows that& . < &". On the
other hand, ifE} , . holds, then|k} |, [k5.] < n'® and&" < &) siqe Recall that
g" < £"t1 always holds by definition. Summing up: wh@l}j‘:,lc holds, we find
that )

girrlmside'“< gn < gm_l < sgl]gide

Next, note that i, &5, &c, fa € Ujen{0, 1) with ¢, < & < ¢ < ¢a andg, <1 a,
then alsaz, <1 ¢.. Thus, WhenE,Z’ja”lc holds, if &/ giqe <1 gglﬁsllde then alsct” <1
gntl Let

Eﬁnlque - {glnsme <1 gout&de}
We have shown that

1
Eﬁnlquem EZZ .ClE"xa gty

For (1 — P(¢" <1 £"11)) to be finitely summable over, it is thus enough that
P (E\fique andP(E°(”+l)) both are. We have already proven that the probability

of the complemenP(EC("”)) is finitely summable ovet. It remains to show that
P (E[jnique also is finitely summable. Let

unique +1 = {ginside7é ED,0+1),6(042),.... 60+ Zn))}

uniqu
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and

tnique —1 = {&insige# (€D, £ — 1), 61 = 2),.... 61 — 2n))}.
With this notation,

n n n
m (Eunique + N Eunique —l) - Eunique
l;é—n,llISnlo

The last inclusion implies

(20) Z P(Eﬁﬁique +I) + P(Eﬁﬁique —I) z P(Eﬁﬁique)-
I#—n,|l|<n10

Because the scenegyconsists of i.i.d. Bernoulli variables with parame%rwe

find that P (E{nique +1) = P (Elpique —1) = (%)2". Furthermore, there are less than

2n10 elements in the sét # —n, |I| < n19}. This finishes the proof that the bound
on the left-hand side of (20) is finitely summable oxer
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