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RECONSTRUCTING A TWO-COLOR SCENERY BY OBSERVING
IT ALONG A SIMPLE RANDOM WALK PATH

BY HEINRICH MATZINGER

Universität Bielefeld and Georgia Tech

Let {ξ(n)}n∈Z be a two-color random scenery, that is, a random coloring
of Z in two colors, such that theξ(i)’s are i.i.d. Bernoulli variables with
parameter12. Let {S(n)}n∈N be a symmetric random walk starting at 0. Our
main result shows that a.s.,ξ ◦S (the composition ofξ andS) determinesξ up
to translation and reflection. In other words, by observing the sceneryξ along
the random walk pathS, we can a.s. reconstructξ up to translation and
reflection. This result gives a positive answer to the question of H. Kesten of
whether one can a.s. detect a single defect in almost every two-color random
scenery by observing it only along a random walk path.

1. Introduction. A scenery is defined to be a function fromZ to {0,1}. Let
ξ andξ̃ be two sceneries. We say thatξ andξ̃ are equivalent iff there exista ∈ Z
andb ∈ {−1,1} such that for allx ∈ Z we haveξ(x) = ξ̃ (a + bx). In this case we
write ξ ≈ ξ̃ . In other words, two sceneries are equivalent iff they can be obtained
from each other by a shift or a reflection. In everything that follows{S(k)}k≥0 will
be a simple random walk onZ starting at the origin. We will denote byχ ∈ {0,1}N

the color record obtained by observing the sceneryξ along the path of the random
walk {S(k)}k≥0:

χ := (
ξ(S(0)), ξ(S(1)), ξ(S(2)), . . .

)
,

that is,χ(k) := ξ(S(k)) for all k ∈ N. We examine the following question: given
an unknown sceneryξ , can we “reconstruct”ξ if we can only observeχ? Thus,
does one path realization of the process{χ(k)}k≥0 uniquely determineξ? The
answer in those general terms is “no.” However, under appropriate restrictions,
the answer will become “yes.” This is the main result of this paper. Let us
explain these restrictions: First, ifξ and ξ̃ are equivalent, we can in general
not distinguish whether the observations come fromξ or from ξ̃ . Thus, we can
only reconstructξ up to equivalence modulo≈. Second, it is clear that the
reconstruction will in the best case work only almost surely. If the random walk
{S(k)}k≥0 decides to walk only to the left (which it could do with probability
zero), then we obtain no information about the right-hand side of the sceneryξ
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and thus are not able to reconstruct the sceneryξ . Eventually, Lindenstrauss
in [17] exhibits sceneries which one cannot reconstruct. Thus, not all sceneries
can be reconstructed. However, we prove that many “typical” sceneries can be
reconstructed up to equivalence and almost surely. For this we take the sceneryξ

to be the outcome of a random process which is independent of{S(k)}k≥0 such that
theξ(k)’s are i.i.d. Bernoulli with parameter12. We use the following notation: we
write ξ for the (random) scenery:ξ :k �→ ξ(k),Z → {0,1}. Our main result states
that, given only the observationχ , almost every sceneryξ can be reconstructed
a.s. up to equivalence. Let us state our main theorem:

THEOREM 1. Let {S(k)}k≥0 and {ξ(k)}k∈Z be two processes independent of
each other such that{S(k)}k≥0 is a simple random walk starting at the origin
and such that theξ(k)’s are i.i.d. Bernoulli variables with parameter12. Then
a.s. χ determinesξ up to equivalence. In other words, there exists a measurable
functionA : {0,1}N → {0,1}Z such thatP (A(χ) ≈ ξ) = 1. (“Measurable” means
measurable with respect to theσ -algebras induced by the canonical coordinates
on {0,1}N and on{0,1}Z.)

We will prove the above theorem by explicitly describing how to reconstructξ

from χ . Hence, our approach is constructive. We explicitly give a construction
which produces a (random) sceneryξ̄ :Z → {0,1} when applied to the observa-
tionsχ . The constructed sceneryξ̄ is shown to be a.s. equivalent toξ . In this way
A gets defined:A(χ) := ξ̄ .

Let us now make a few historical comments. This paper was motivated
by Kesten’s question to me of whether one can a.s. distinguish a single defect
in almost any two-color scenery. Let us explain what the scenery distinguishing
problem is. Letξ, η :Z →{0,1} and let{S(k)}k∈N be a symmetric random walk
on Z. Let the process{χ(k)}k∈N be equal to either{ξ(S(k))}k∈N or {η(S(k))}k∈N.
Is it possible by observing only one path realization of{χ(k)}k∈N to say to
which one of the two{ξ(S(k))}k∈N or {η(S(k))}k∈N, {χ(k)}k∈N is equal to? (We
assume that we knowξ andη.) If yes, we say that it is possible to distinguish
between the sceneriesξ and η by observing them along a path of{S(k)}k∈N.
Otherwise, when it is not possible to figure out almost surely by observing
{χ(k)}k∈N alone whether{χ(k)}k∈N is generated onξ or onη, we say thatξ andη

are indistinguishable. The problem of distinguishing two sceneries was raised
independently by Benjamini and by den Hollander and Keane. The motivation
came from problems in ergodic theory, such as theT,T −1problem (see [10]) and
from the study of various aspects of{ξ(S(k))}n∈N, where{ξ(k)}k∈Z is random.
(See [3, 11, 14].) Benjamini and Kesten showed in [1] that one can distinguish
almost any two random sceneries even when the random walk is inZ2. (They
assumed the sceneries to be random themselves, so that theξ(k)’s and theη(n)’s
are i.i.d. Bernoulli.) Kesten in [12] proved that when the random sceneries are
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i.i.d. and have four colors, that is,ξ and η :Z →{0,1,2,3}, and differ only in
one point, they can be a.s. distinguished. He asked whether this result might still
hold with fewer colors. The main result of this paper directly implies that one can
distinguish single defects in almost any scenery. In [21], we proved for the three-
color case that one can a.s. reconstruct almost every three-color scenery. We also
established that this implies that one can distinguish single defects for almost all
three-color sceneries. In the two-color case, that is, in the case we consider in this
paper, the same thing is true. This means that our result for scenery reconstruction
implies that one can distinguish single defects in almost all sceneries. We state the
following corollary to our main result without giving a proof. (The proof that our
main result implies the following corollary is very similar to the one given in [21]
for the three-color case.)

COROLLARY 2. Let B designate the set of all two-color sceneries.
B = {ξ :Z →{0,1}} = {0,1}Z. Let (B, σ (B)) denote the measurable space, where
σ(B) is theσ -algebra induced by the canonical coordinates onB. LetP denote the
probability measure on(B, σ (B)) obtained by assuming that theξ(i)’s are i.i.d.
Bernoulli variables with parameter12. Then there exists aσ(B)-measurable setS,
such thatP (S) = 1 and such that for every sceneryξ ∈ S and every sceneryη
which is equal toξ everywhere except in one point, we have thatξ and η are
distinguishable.

The above corollary says that there are many sceneries which one can
distinguish or, in other words, that sceneries which are typical in a certain sense
can be distinguished. However, the above result becomes false if one tries to extend
it to all pairs of sceneries which are not equivalent. Recently, Lindenstrauss [17]
exhibited a nondenumerable set of pairs of nonequivalent sceneries onZ which
he proved to be indistinguishable. Before that, Howard proved in [7–9] that any
two periodical sceneries ofZ which are not equivalent modulo translation and
reflection are distinguishable and that one can a.s. distinguish single defects in
periodical sceneries. Kesten asked in [13] whether this result would still hold
when the random walk would be allowed to jump. He also asked what would
happen in the two-dimensional case. Löwe and Matzinger in [18] have been able
to prove that one can a.s. reconstruct almost every scenery up to equivalence in two
dimensions, provided the scenery has a lot of colors. However, the problem of the
reconstruction of two-color sceneries inZ seen along the random walk path of a
recurrent random walk which is allowed to jump remains open. In our opinion, this
is a central open problem at present. Eventually we should also mention that the
two-color scenery reconstruction problem for a scenery which is i.i.d. is equivalent
to the following problem: let{R(k)}k∈Z and{S(k)}k≥0 be two independent simple
random walks onZ both starting at the origin and living on the same probability
space. (Here we mean that{R(k)}k≥0 and{R(−k)}k≥0 are two independent simple
random walks both starting at the origin.) Does one path realization of the iterated
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random walk{R(S(k))}k≥0 uniquely determine the path of{R(k)}k∈Z up to shift
and reflection around the origin? If one takes the representation of the sceneryξ

as a nearest-neighbor walk (which we will define later) for{R(k)}k∈Z, then it
becomes immediately clear that the two problems are equivalent. We leave it to
the reader to check the details. So the main result of this paper is equivalent to
the following result for iterated nearest-neighbor walks: one path realization of the
iterated random walk{R(S(k))}k≥0 a.s. uniquely determines the path of{R(k)}k∈Z
up to shift and reflection around the origin. This is a discrete analog of the result
of Burdzy [2] concerning the path of iterated Brownian motion.

2. Reconstructing a finite piece of the scenery ξ . To explain a key idea, we
first present a solution to a simplified but somewhat unrealistic case.

2.1. Simplified example.Assume for a moment that the sceneryξ is nonran-
dom, and instead of being a two-color scenery, is a four-color scenery, that is,
ξ :Z → {0,1,2,3}. Let us imagine furthermore, that there are two integersx, y

such thatξ(x) = 2 andξ(y) = 3, but outsidex andy the scenery has everywhere
color 0 or 1, [i.e., for allz ∈ Z with z �= x, y we have thatξ(z) ∈ {0,1}]. The simple
random walk{S(k)}k≥0 can go with each step one unit to the right or one unit to
the left. This implies that the shortest possible time for the random walk{S(k)}k≥0
to go from the pointx to the pointy is |x − y|. When the random walk{S(k)}k≥0
goes in shortest possible time fromx to y it goes in a straight way, which means
that between the time it is atx and until it reachesy it only moves in one direc-
tion. During that time, the random walk{S(k)}k≥0 reveals the portion ofξ lying
betweenx andy. If between timet1 and t2 the random walk goes in a straight
way from x to y [i.e., if |t1 − t2| = |x − y| andS(t1) = x,S(t2) = y], then the
word χ(t1),χ(t1 + 1), . . . , χ(t2) is a copy of the sceneryξ restricted to the in-
terval [min{x, y},max{x, y}]. In this case, the wordχ(t1),χ(t1 + 1), . . . , χ(t2) is
equal to the wordξ(x), ξ(x +u), ξ(x + 2u), . . . , ξ(y), whereu := (y −x)/|y −x|.
Since the random walk{S(k)}k≥0 is recurrent, it a.s. goes at least once, in the short-
est possible way, from the pointx to the pointy. Because we are given infinitely
many observations we can a.s. figure out what the distance betweenx andy is:
the distance betweenx andy is the shortest time lapse that a “3” will ever ap-
pear in the observationsχ after a “2.” When, on the other hand, a “3” appears in
the observationsχ in shortest possible time after a “2,” then between the time we
see that “2” and until we see the next “3,” we observe a copy ofξ(x), ξ(x + u),

ξ(x + 2u), . . . , ξ(y) in the observationsχ . This fact allows us to reconstruct the
finite pieceξ(x), ξ(x + u), ξ(x + 2u), . . . , ξ(y) of the scenery. Choose any cou-
ple of integerst1, t2 with t2 > t1, minimizing |t2 − t1| under the condition that
χ(t1) = 2 andχ(t2) = 3. Almost surely thenχ(t1),χ(t1 + 1), . . . , χ(t2) is equal
to ξ(x), ξ(x + u), ξ(x + 2u), . . . , ξ(y).

A NUMERICAL EXAMPLE. Let the sceneryξ be such thatξ(−2) = 0,
ξ(−1) = 2, ξ(0) = 0, ξ(1) = 1, ξ(2) = 1, ξ(3) = 3, ξ(4) = 0. Assume furthermore
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that the sceneryξ has a 2 and a 3 nowhere else than in the points−1 and 3. Imagine
thatχ , the observations given to us, would start as follows:

χ = (0,2,0,1,0,1,1,3,0,3,1,1,1,1,0,2,0,1,1,3, . . .).

By looking at all ofχ we would see that the shortest time a 3 occurs after a 2 in the
observations is 4. In the first observations given above there is, however, already a
3 only four time units after a 2. The binary word appearing in that place, between
the 2 and the 3, is 011. We deduce from this that between the place of the 2 and
the 3 the scenery must look like: 011.

In reality the scenery we want to reconstruct has two colors only. So, instead
of the 2 and the 3 in the example above we will use a special pattern in the
observations which will tell us when the random walk is back at the same spot. One
possibility (although not yet the one we will eventually use) would be to use binary
words of the form: 001100 and 110011. It is easy to verify that the only possibility
for the word 001100, respectively, 110011, to appear in the observations is when
the same word 001100, respectively, 110011, occurs in the scenery and the random
walk reads it. So, imagine (to give another pedagogical example of a simplified
case) the scenery would be such that in a placex there occurs the word 001100,
and in the placey there occurs the word 110011, but these two words occur in no
other place in the scenery. These words can then be used as markers: In order to
reconstruct the piece of the sceneryξ included betweenx andy we could proceed
as follows: take in the observations the place where the word 110011 occurs in
shortest time after the word 001100. In that place in the observations we see a
copy of the piece of the sceneryξ included betweenx andy. The reason why the
very last simplified example is not realistic is the following: we take the scenery
to be the outcome of a random process itself where theξ(k)’s are i.i.d. variables
themselves. Thus any word will occur infinitely often in the sceneryξ . However,
if, for example, the markers in the scenery occur far away from each other, then
we can still use the above described reconstruction strategy: The random walk will
then be very likely to first cross fromx to y in a straight way before meeting
another marker and creating some confusion. In the next section we explain how
to construct the markers which we are eventually going to use.

2.2. Representation of the sceneryξ as a nearest-neighbor walk.The scenery
reconstruction problem contains two main ingredients: A random walk{S(k)}k∈N
and a “random environment,” that is, the sceneryξ . The key idea in this paper is
to view the random environment itself as a nearest-neighbor walk. In this section
we explain how to do this, by defining “the representation of the sceneryξ as a
nearest-neighbor walk.” We need the following definitions: LetD be an integer
interval, that is, the intersection between a real interval and the integer numbers
Z. We call a functionT :D → Z a nearest-neighbor walk, iff for eacht1, t2 ∈ D

with |t1 − t2| = 1, we have that|T (t1) − T (t2)| = 1. In what follows, we will
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write S for the path of the process{S(k)}k≥0, that is, forS :k �→ S(k),N → Z.
Let ϕ :Z → {0,1} be one of the two 4-periodic sceneries with period 0011 and
ϕ(0) = ϕ(1). Such a sceneryϕ has a very particular property: for every point in
the sceneryφ, one neighboring point has color 0, while the other one has color 1.
This implies that for any color recordφ there exists one and only one nearest-
neighbor walkT generatingφ on the sceneryϕ once we know whereT starts.
We can use this fact to represent a color record as a nearest-neighbor walk: the
nearest-neighbor walk representing a sequence of colors is simply defined to be
the only nearest-neighbor walk generating the color sequence onϕ and starting at
a given point, in general the origin. (For this to work the starting point must have
the right color.)

A NUMERICAL EXAMPLE. Let φ = (01011000101010100. . .) be a color
record we want to represent as a nearest-neighbor walk. Letϕ :Z → {0,1} be the
4-periodic scenery:

ϕ(k) . . . 0 0 1 1 0 0 1 1 0 0 1 1 . . .

k . . . −4 −3 −2 −1 0 1 2 3 4 5 6 7 . . .
.

Define the nearest-neighbor walk representingφ to be the only nearest-neighbor
walk T :N → Z starting at the origin and generating the sequenceφ on ϕ, that is,
such thatϕ ◦ T = φ. In this example we get

T (t) 0 −1 0 −1 −2 −3 −4 −3 −2 −3 −2 . . .

t 0 1 2 3 4 5 6 7 8 9 10 . . .
.

The sceneryξ we want to represent as a nearest-neighbor walk is, however,
a doubly infinite sequence. We will thus take the sequenceξ(0), ξ(1), ξ(2),

ξ(3), . . . first and define with it the portion of the path of the nearest-neighbor walk
in positive time. Then we takeξ(0), ξ(−1), ξ(−2), ξ(−3), . . . , and this defines the
part of the nearest-neighbor walk in negative time.

AN EXAMPLE. Letξ :Z → {0,1} be a scenery with the following values close
to the origin:

ξ(k) . . . 1 0 1 0 0 0 1 1 1 0 0 1 . . .

k . . . −4 −3 −2 −1 0 1 2 3 4 5 6 7 . . .
.

Designate byR the nearest-neighbor walk representingξ . Then the part ofξ to the
right of the origin defines the path ofR which lies in positive time. In this example,
(00111001. . . ) is responsible for this part ofR. We get

R(t) 0 1 2 3 2 1 0 −1 . . .

t 0 1 2 3 4 5 6 7 . . .
.
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In the same way, the part ofξ which lies left of the origin is responsible for the
restriction ofR to the negative integers. In our example,( . . .1010) defines that
part ofR. We get

R(t) . . . 2 1 2 1 0
t . . . −4 −3 −2 −1 0

.

We are ready to defineR formally:

DEFINITION 3. Let ϕ :Z → {0,1} designate the following 4-periodic (ran-
dom) scenery:

1. Whenξ(0) = 0, we set(ϕ(0), ϕ(1), ϕ(2), ϕ(3)) = (0,0,1,1).
2. Whenξ(0) = 1, we set(ϕ(0), ϕ(1), ϕ(2), ϕ(3)) = (1,1,0,0).

The nearest-neighbor walkR :Z → Z representing the sceneryξ is defined to be
the only (random) nearest-neighbor walkR such thatR(0) = 0 andϕ ◦R = ξ , that
is, ϕ(R(k)) = ξ(k) for all k ∈ Z.

It is easy to verify that when theξ(k)’s are i.i.d. Bernoulli variables with
P (ξ(0) = 0) = P (ξ(0) = 1) = 1

2, then{R(k)}k∈Z as well as{R(−k)}k∈Z are two
independent symmetric random walks starting at the origin.

In Figure 1, we illustrate the above numerical example by showing a portion of
the graph ofR. For this we take(

ξ(0), ξ(1), ξ(2), ξ(3), ξ(4), . . .
)

= (001110010110001100100001001100100101100100111001. . .).

In Figure 1, the labelk designates the point(R(k), k).
Next we need a few definitions.

DEFINITION 4. LetT :D → Z be a nearest-neighbor walk. Lett1, t2 ∈ D and
x1, x2 ∈ Z, x1 �= x2. We call(t1, t2) a crossing byT of (x1, x2) iff (T (t1), T (t2)) =
(x1, x2) and for all integert strictly betweent1 and t2, T (t) is strictly between
x1 andx2. If t2 > t1 we say that the crossing(t1, t2) is “positive,” otherwise we
say that it is “negative.” If|t1 − t2| = |x1 − x2|, we say that the crossing(t1, t2) is
straight.

Let (t3, t4) be a crossing byT of (x3, x4). Then, we say that(t3, t4) is thefirst
crossingby T of (x3, x4) during (t1, t2) iff t3, t4 ∈ [min{t1, t2},max{t1, t2}] and
(t3, t4) is the crossing byT of (x3, x4) which lies in[min{t1, t2},max{t1, t2}] (i.e.,
t3, t4 ∈ [min{t1, t2},max{t1, t2}]) and isclosest tot1.

Let (t1, t2) and(s1, s2) be two crossings by nearest-neighbor walkT of (x1, x2).
Then either the intervals:

]min{t1, t2},max{t1, t2}[ and ]min{s1, s2},max{s1, s2}[
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FIG. 1.

are disjoint, or(t1, t2) = (s1, s2) holds. Thus, we can numerate the crossings byT

of (x1, x2) in increasing order of appearance. Thus the above definition of “first
crossing byT of (x3, x4) during another crossing” makes sense.

In the numerical example of Figure 1, we see that between time 0 and time 3 the
nearest-neighbor walkR crosses from the point 0 to the point 3 in a straight way.
In other words,(0,3) is a straight crossing byR of (0,3). Furthermore,R during
the time interval(0,13) crosses the interval(0,9). Thus, (0,13) is a crossing
by R of (0,9). Because(0,3) ∈ (0,13) we have that the crossing(0,3) happens
during the crossing(0,13). Clearly,(0,3) is the first crossing byR of (0,3) during
the crossing(0,13). (In the above example it is also the only one.) The crossing
(0,13), unlike (0,3), is not a straight one.(32,51) is a crossing byR of (0,9).
This is the second crossing byR of (0,9) after time 0. During the crossing(32,51)
there are two crossings byR of the(3,6). These are(37,40) and(45,48).

2.3. Localization test. In this section, we construct a test to determine at what
times the random walk is back at the same location. Combined with the idea
of “going in shortest time fromx to y,” we have the main ingredients for the
reconstruction of a finite piece of the sceneryξ . If we have such a test, we can
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recognize when the random walk is back at a locationx and at which times it is
back at locationsx andy. We then take a time interval where the random walk
visits y in shortest possible time after visitingx.

This “localization test” is based on the representationR of the sceneryξ as a
nearest-neighbor walk. Recall thatR is not observable. The composition of two
nearest-neighbor walks is again a nearest-neighbor walk. Thus, the composition
R ◦ S :k �→ R(S(k)),N → Z is a nearest-neighbor walk. However, every nearest-
neighbor walkT :N → Z is uniquely determined byϕ ◦ T . In the following we
set

T := R ◦ S.

We get

ϕ ◦ T = (ϕ ◦ R) ◦ S = ξ ◦ S = χ,

that is,T generates the color recordχ on the sceneryϕ. Furthermore,T (0) = 0.
Thus T is uniquely determined by the observationsχ . HenceT is observable.
Thus, althoughR andS are both not known, their compositionR ◦S is observable.
We are using the nearest-neighbor walkR ◦ S to determine whenS is back at the
same place.

To illustrate themain ideaof the localization test (and maybe of this paper)
we view the random walkS on the graphk �→ (R(k), k) geometrically in two
dimensions. This defines a movement in two dimensions:

t �→ (
R(S(t)), S(t)

)
.

By projecting this movement along they-axis on thex-axis we get the known one-
dimensional nearest-neighbor walkT . Imagine that the path ofR is given; then
t �→ (R(S(t)), S(t)) can be viewed as a one-dimensional random walk moving
in R2 on the graph ofR.

Figure 2 illustrates this situation. The graph ofR is drawn as a dotted line, as

FIG. 2.
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it is not observable. The hand-drawn lines with arrows represent the movement of
the random walkS on the graph ofG. This is the movementt �→ (R(S(t), S(t))),
which is also not observable. However, the projection of this movement onto
the horizontal line gives the observable nearest-neighbor walkR ◦ S, which is
observable.

Let �S(k) := S(k + 1) − S(k). In the example of Figure 2 we have that(
�S(0),�S(1),�S(2), . . .

)
= (+1,+1,+1,+1,+1,+1,+1,

−1,+1,+1,+1,+1,+1,−1,+1,+1,+1, . . . )

andR takes on the same values as in Figure 1.
Imagine that the dotted line representing the graph ofR is made out of invisible

glass. The random walkS moves invisibly on that glass line, but its projection onto
the x-axis is visible. Seeing only this projection, we want to determine whenS

has returned to the same place.S has returned exactly when the two-dimensional
movementt �→ (R(S(t)), S(t)) has returned to the same place:S(s) = S(t) iff
(R(S(s)), S(s)) = (R(S(t)), S(t)). Viewing R as fixed, this means thatS is back
at the same place exactly when the random walkS on the graph ofR has come
back to the same place. As shown below, we can statistically determine this with
high precision by counting the number of straight crossings ofR ◦ S and their
location. Let us illustrate the idea with Figure 3.

In Figure 3, we show two finite portions of the movement of the random walkS

on the graph ofR. The first one is designated by the lettera while the second one
is designated by the letterb. In this examplea corresponds to the random walkS

making the following first steps:(
�S(0),�S(1),�S(2), . . .

)
= (+1,+1,+1,+1,+1,+1,+1,

−1,+1,+1,+1,+1,+1,−1,+1,+1,+1, . . . ).

Partb starts at timetb such thatS(tb) = 32. Then the random walkS makes the
following steps:(

�S(tb),�S(tb + 1),�S(tb + 2), . . .
)

= (+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,

−1,+1,+1,+1,+1,+1,+1,−1,+1,+1,+1,+1,−1,+1,+1 . . . ).

The random walkS from time tb until time tb + 25 performs a crossing of the
interval (32,51). This means that at timetb the random walkS is at the point 32
and at timetb + 25 it is at the point 51, but strictly in between the timetb until
time tb + 25 the random walkS does not visit the points 32 or 51. In Figure 3 if
we project the movementb (of the random walkS on the graph ofR) onto the
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FIG. 3.

horizontal line, we get the movement of the nearest-neighbor walkR ◦ S during
the time interval from timetb until time tb + 25. This is a crossing as well: during
that time R ◦ S crosses from the point 0 to the point 9; that is, it crosses the
interval(0,9). During that timeS on the graph ofR crosses a portion of the graph
of R which corresponds itself to a crossing byR. As a matter of fact, between time
32 and time 51 the nearest-neighbor walkR crosses the interval(0,9). Following
our convention we say that(32,51) is a crossing by the nearest-neighbor walkR

of the interval(0,9). In parta we see the following:(0,17) is a crossing byS of
(0,13). On the other hand,(0,13) is a crossing byR of (0,9). Eventually,(0,17)
is a crossing byR ◦ S of (0,9).

The example of Figure 3 illustrates one of the three main combinatorial facts
used in this paper: the compositionT = R ◦ S performs a crossing iff during that
time S performs a crossing of a crossing ofR. Let us formulate this as a lemma:
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LEMMA 5. Let0 < t1 < t2. (t1, t2) is a crossing by T of the interval(x1, x2) iff
there existk1, k2 ∈ Z such that(t1, t2) is a crossing byS of (k1, k2), and(k1, k2) is
a crossing byR of (x1, x2).

Let us study next the example of Figure 3 more: during time(14,17),
S performs a straight crossing of the interval(10,13). Furthermore,(10,13)
represents itself a straight crossing byR of the interval(6,9). This leads to,
that R ◦ S performs during the time interval(14,17) a straight crossing of the
interval (6,9). On the other hand, during time(tb, tb + 4) S performs a straight
crossing of the interval(32,37). However,(32,37) is a crossing byR, but not a
straight one. It follows that(tb, tb + 4) is a crossing byR ◦ S, but not a straight
one.

The rule is: on a crossing byR which is not straight it is impossible to get a
crossing byR ◦ S which is straight. This is the second main combinatorial fact:

LEMMA 6. Let 0 < t1 < t2. Then(t1, t2) is a straight crossing byT of the
interval (x1, x2) iff there existsk1, k2 ∈ Z such that(t1, t2) is a straight crossing
byS of (k1, k2) and(k1, k2) is a straight crossing byR of (x1, x2).

Looking further at Figure 3, we see that in portionb of the path ofS on the
graph ofR we have: during the crossing(32,51) the first crossing byR of (3,6)

is (37,40) and the last one is(45,48). The first crossing byS of (37,40) during
(tb, tb + 51) is (tb + 5, tb + 8). The first crossing during(ta, ta + 25) by R ◦ S

of (3,6) is also(tb +5, tb +8). Thus, the first crossing during(ta, ta +25) by R ◦S

of (3,6) happens when during(ta, ta + 25) S crosses for the first time the first
crossing byR of (3,6).

We see that a first crossing byR ◦ S corresponds to a first crossing byS of a
first crossing byR. This yields our third combinatorial fact:

LEMMA 7. Let 0 < t1 < t2 < t3 < t4 and 0 < x1 < x2 < x3 < x4. Further-
more, let (t1, t4) be a crossing byR ◦S of (x1, x4). Then(t2, t3) is the first crossing
during (t1, t4) of (x2, x3) by R ◦ S iff it is the first crossing byS during (t1, t4)

of (k2, k3), where(k2, k3) is the first crossing byR of (x2, x3) during (k1, k4).

To illustrate this, consider Figures 3 and 4.
In Figure 4, the portionb of the path of the random walkS is traced on the graph

of R as a thick dotted line. It is a crossing byS of the crossing(0,13) by R. The
projection onto the horizontal line of this movement is a crossing, too. In Figure 4,
the crossingb, that is,(tb, tb + 18), is a crossing byS of (0,13). Furthermore,
(tb, tb + 18) is also a crossing byR ◦ S of (0,9).

Figure 4 is identical to Figure 3 except for the pathb. In Figure 3, the crossings
a andb by S take place “in different locations,” while in Figure 4 they take place
“on the same locations.” Given Figures 3 and 4, one can see if the crossingsa andb
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FIG. 4.

by S take place “in the same location” or not. However, from the input data of the
reconstruction problem, only the projection down onto the horizontal of the path
of S on the graph ofR is observable: In both cases, we observe two crossings
a andb by R ◦ S of the same interval(0,9). Based on the observation of those
crossings only, we need to infer if “the crossings occur on the same location” as in
Figure 4, or “on different locations” as in Figure 3.

More generally: Assume we observe two crossings(t1a, t2a) and (t1b, t2b)

by R ◦ S of an interval (0,3n); this interval instead of any other interval is
chosen for notational convenience. Because of Lemma 5, there existk1a, k2a such
that (k1a, k2a) is a crossing byR of (0,3n) while (t1a, t2a) is a crossing byS
of (k1a, k2a). Similarly, there existk1b, k2b such that(k1b, k2b) is a crossing byR
of (0,3n) while (t1b, t2b) is a crossing byS of (k1b, k2b).

In Figure 3, (t1a, t2a) = (0,17), (k1a, k2a) = (0,13), t2b = t1b + 25,
(k1b, k2b) = (32,51).
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We develop a statistical test to determine if the two crossings(t1a, t2a) and
(t1b, t2b) by S occur “on the same place” or not. Its input data are two observed
crossings(t1a, t2a) and (t1b, t2b) by R ◦ S of the same interval. We define the
hypotheses of our test:

HYPOTHESIS H0. During the crossings(t1a, t2a) and (t1b, t2b) the random
walk S is on the same crossing ofR. More precisely, (S(t1a), S(t2a)) =
(S(t1b), S(t2b)).

HYPOTHESISH1. (S(t1a), S(t2a)) �= (S(t1b), S(t2b)).

If H0 holds, thenS(t2a) = S(t2b), that is, the random walk is back at the same
place.

To determine if during two crossings byR ◦ S the random walkS was at the
same place we are going to count the number of common straight crossings on
three unit intervals. Let us explain how this is done.

We first partition the interval(0,9) in disjoint intervals of length 3. This gives us
the three intervals:(0,3), (3,6) and(6,9). Then we determine how many of these
intervals are crossed in a straight way byR ◦ S when they get crossed for the first
time duringa and and when they get crossed for the first time duringb. In Figure 3,
we see that the first crossing duringa of (0,3) by R ◦ S is straight. However, the
first crossing duringb of (0,3) by R ◦ S is not. Thus, for the interval(0,3) we do
not have a common first straight crossing. Next comes the interval(3,6). There,
the first crossing byR ◦ S of (3,6) duringa is not straight. [That first crossing is
equal to(5,10).] On the other hand, the first crossing byR ◦S of (3,6) duringb is
straight. [It is the first crossing(tb + 5, tb + 8).] Again with the interval(3,6) we
do not observe a common first straight crossing betweena andb. Eventually the
first crossing byR ◦S of (6,9) duringa is straight, while the first crossing byR ◦S

of (6,9) duringb is not. So, in total we have zero common straight first crossings
betweena andb. When we observe few common first straight crossings between
two crossingsa andb by S, we decide that the crossingsa andb took place on
different places. In the example of Figure 3, the person who only observesR ◦ S

would thus decide that the crossingsa andb by S took place on different places. In
the case of Figure 4, the first crossings byR ◦S of (0,3) duringa and duringb are
both straight. So for(0,3), we have a common first straight crossing. In Figure 4
again, the first crossings byR ◦ S of (3,6) during a and duringb are both not
straight. The first crossing byR ◦ S of (6,9) during a is straight while duringb
it is not. Again for(6,9) we do not have a common straight crossing. Thus in the
case of Figure 4, the total number of “straight common first crossings” equals 1.

General case: Let (t1a, t2a) and (t1b, t2b) be two crossings byR ◦ S of the
interval (0,3n). For 0≤ m < n, let wa(m) be equal to 1 if the first crossing
by R ◦ S of the interval(3m,3m+ 3) during(t1a, t2a) is straight, and be equal to 0
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otherwise. Letwa denote the binary wordwa(0),wa(1),wa(2), . . . ,wa(n − 1). In
the same manner, define the binary wordwb for the crossing(t1b, t2b). The number
of common straight crossings betweena andb is defined to be the scalar product

wa × wb :=
n−1∑
m=0

wa(m) · wb(m).

We usewa × wb as test statistic. What is its distribution underH0 and underH1?

EXAMPLE. To have a first common straight crossing in theH0-case we need
three crossings to be straight while in theH1-case we need four. In order to
understand why this is true, look at Figure 4 first: we have there form = 0 a first
common straight crossing. This means that whenR ◦S crosses duringa and during
b for the first time(0,3), we observe in both cases a straight crossing. That we have
a common first straight crossing follows from the fact that the first crossing byR

of (0,3) during (0,13) is straight and the first crossings duringa and duringb of
(0,3) are both straight as well. In Figure 3, we have thatwa(0) = 1 andwb(0) = 0.
Forwa(0) ·wb(0) to be equal to 1 in Figure 1, there is only one thing missing: The
first crossing(32,37) by R of the interval(0,3) should be straight.

General case: Let m ∈ N be such thatm < n. Let (k1a, k2a) = (S(t1a), S(t2a))

and(k1b, k2b) = (S(t1b), S(t2b)). Let (k1am, k2am) designate the first crossing byR

of (3m,3m + 3) during (k1a, k2a). Let (k1bm, k2bm) designate the first crossing
by R of (3m,3m + 3) during (k1b, k2b). In the case of HypothesisH0 we have
(k1a, k2a) = (k1b, k2b) and(k1am, k2am) = (k1bm, k2bm). We get:

UnderH0: wa(m) · wb(m) = 1 iff the following three crossingsare straight:

1. The crossing(k1am, k2am) by R of the interval(3m,3m + 3).
2. The first crossing byS during(t1a, t2a) of the interval(k1am, k2am).
3. The first crossing byS during(t1b, t2b) of the interval(k1am, k2am).

UnderH1: wa(m) · wb(m) = 1 iff the following four crossingsare straight:

1. The cr ossing(k1am, k2am) by R of the interval(3m,3m + 3).
2. The crossing(k1bm, k2bm) by R of the interval(3m,3m + 3).
3. The first crossing byS during(t1a, t2a) of the interval(k1am, k2am).
4. The first crossing byS during(t1b, t2b) of the interval(k1bm, k2bm).

R andS are independent simple random walks. For the simple random walk a
crossing of an interval of length 3 is straight with probability3

4, as is shown
below in Fact e.5. UnderH0, there are three such crossings involved, while under
H1 there are four. This is whyP (wa(m) · wb(m) = 1) = (3

4)3 in the caseH0

andP (wa(m) · wb(m) = 1) = (3
4)4 in the caseH1. By the Markov property, the

variableswa(m) · wb(m) for differentm’s are independent. This gives:
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The distribution of the test statisticwa × wb is equal to:
UnderH0: Binomial with parametern and(3

4)3.
UnderH1: Binomial with parametern and(3

4)4.
Let c := 1

2((3
4)3 + (3

4)4).
Localization testwith parametern:

(a) Whenwa × wb > c · n, we acceptH0.
(b) Whenwa × wb ≤ c · n, we acceptH1.

The above statement about the distribution of the test statistic holds only if
we select the pair of crossings((t1a, t2a), (t1b, t2b)) in an appropriate manner.
For example, if we would choose(t1a, t2a) to be the first crossing byR ◦ S

of (0,3n) such thatwa(m) = 1 for all m < n and(t1b, t2b) to be the first crossing
by R of (0,3n) such thatwa(m) = 1 for all m < n, then obviously the above
statement about the distributions would not hold. In Lemma 8, the statement is
made rigorous. For this we need to numerate the crossings byR ◦ S of (0,3n),
in an appropriate manner. By Lemma 5 we know that any crossing byR ◦ S of
(0,3n) can be viewed as a crossing byS of a crossing byR of (0,3n). A crossing
by R ◦ S of (0,3n) can thus be described in a unique manner as theith crossing
by S of thezth crossing byR of (0,3n). We index the crossings byR of (0,3n)

by the setZ∗ := Z − {0}. We call thezth crossing byR of (0,3n):
If z > 0, thezth crossing byR(k), k ≥ 0 of (0,3n).
If z < 0, the|z|th crossing byR(k), k ≤ 0 of (0,3n), where we count in reverse

order starting at zero.
Thus, we index the crossings byR ◦ S of (0,3n) by the setN∗ × Z∗. For

(i, z) ∈ N∗ × Z∗, the (i, z)th crossing byR ◦ S of (0,3n) is the crossing which
corresponds to theith crossing byS of thezth crossings byR of (0,3n). Picking
(t1a, t2a) and (t1b, t2b) by choosing nonrandomly two elements in the index set
N∗ × Z∗ makes the statement about the distribution of the test statistic rigorous.
This is the content of the next lemma.

LEMMA 8. Let za, zb ∈ Z∗ and let ia, ib ∈ N∗ be nonrandom numbers. Let
(t1a, t2a) and(t1b, t2b) be the two crossings byR ◦ S of (0,3n) for which(t1a, t2a)

is the ia th crossing byS of theza th crossing byR of (0,3n) and (t1b, t2b) is the
ibth crossing byS of thezbth crossing byR of (0,3n). Then:

H0-case [i.e., case whereza = zb and (S(t1a), S(t2a)) = (S(t1b), S(t2b))]:
wa × wb has binomial distribution with parametern and(3

4)3.
H1-case [i.e., case whereza �= zb and (S(t1a), S(t2a)) �= (S(t1b), S(t2b))]:

wa × wb has binomial distribution with parametern and(3
4)4.

Note that the index inN∗×Z∗ of a crossing byR◦S of (0,3n) is not observable,
(although the crossings byR ◦ S of (0,3n) are themselves observable). However,
by large deviation for the binomial distribution, Lemma 8 guarantees that the
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probability of an error by our localization test is exponentially small inn, when the
crossings compared correspond to two nonrandom indexes inN∗ × Z∗. We cannot
pick crossings by their index inN∗ × Z∗ for our reconstruction algorithm, since
these are not observable. Hence, the crossings we select in an observable manner
have slightly different distributions from the distributions mentioned in Lemma 8.
But picking the crossings in a sensible, observable manner modifies the probability
of an error only slightly, so that it remains small. Next, we need to mention a few
facts which are useful for the proof of Lemma 8.

FACT a. Let M(k)k∈N be a Markov chain with state spaceM. Let a0, a1,

a2, . . . be a sequence of (nonrandom) elements ofM. Let η(i+1) denote the first
passage time ofM(k)k∈N ata(i+1) afterηi . Recursively:η0 := min{k ≥ 0|M(k) =
a0}. Then,ηi+1 := min{k ≥ ηi |M(k) = ai+1}. Let Zi be the path ofM betweenηi

andηi + 1:

Zi := (
M(ηi),M(ηi + 1),M(ηi + 2), . . . ,M(ηi+1)

)
.

Then, theZi ’s are independent of each other.

FACT b. LetX andZ be two random variables living on the same space and
independent of each other. LetA be an event that depends only onX, that is,
A ∈ σ(X). Then conditional onA, X andZ are still independent of each other.
Furthermore, conditional onA, Z has the same marginal distribution. Thus:

L(X,Z|A) = L(X|A) ⊗ L(Z).

FACT c. Let X0,X1, . . . ,Xn be a collection of random variables that are
independent of each other. LetA0,A1, . . . ,An be a collection of events such that
for each 0≤ i ≤ n, Ai ∈ σ(Xi). Let A := ⋂n

i=0 Ai . Then conditionally onA, the
Xi ’s are still independent of each other:

L(X0,X1, . . . ,Xn|A) =
n∏

i=0

L(Xi |Ai).

FACT d. Let X0,X1, . . . ,Xn be a collection of random variables that are
independent of each other. LetY0, Y1, . . . , Yn be a collection of random variables
satisfying: conditionally onσ(Xm|0 ≤ m ≤ n), theYm’s are independent of each
other and their distribution depends only on their respectiveXm’s:

L(Ym|X0,X1, . . . ,Xn) = L(Ym|Xm).

Let Zm := (Xm,Ym). Then, theZm’s are independent of each other.

FACT e. Let κ0 designate the first recurrence time ofS at 0, that is,κ0 :=
min{t > 0|S(t) = 0}. For l > 0, let κl designate the first passage time ofS
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at l, that is, κl := min{t|S(t) = l}. Let Ecrossl designate the event{κl < κ0}.
Let (j1i , j2i) be an increasing collection of intervals indexed byi ∈ N such that
the following holds:j1i < j2i ≤ j1(i+1). Assume furthermore thatj10 = 0. Let
(s1i, s2i) denote the first crossing byS of (j1i , j2i). For natural numberss < t , let
S(s, t) := (S(s), S(s + 1), . . . , S(t)). Let S∗(s, t) designate the recenteredS(s, t).
Hence,

S∗(s, t) := (
0, S(s + 1) − S(s), . . . , S(t) − S(s)

)
.

Recall that�(s) := S(s + 1) − S(s). Define �(s, t) := (�(s),�(s + 1), . . . ,

�(t − 1)). With these definitions the following things hold:

e.1. TheS(s1i, s2i)’s for variousi’s are independent of each other. Similarly,
the�(s1i , s2i)’s are independent of each other.

PROOF. Take the sequencej20, j21, j22, . . . for the sequencea0, a1, a2, . . . of
Fact a. The stopping times of Fact a are then equal toηi := s2i . The crossing
(s1i, s2i) happens between timeη(i−1) and timeηi . By Fact a, the pieces of path
of S during the time intervals[η(i−1), ηi] are independent of each other. Since
the crossings(s1i, s2i) for different i’s happen during different independent time
intervals, they are also independent.�

e.2. The distribution ofS∗(s1i, s2i) depends only on the lengthdi := j2i − j1i .
The distribution ofS(s1i , s2i) is equal to the distribution of the path of the random
walk starting at the pointj1i until it reachesj2i , conditioned that it first meetsj2i

before meetingj1i . In other words, it is conditioned on that the random walkS

makes a crossing of(j1i, j2i ). The random walk starting atj1i is defined as
{Si(t) := S(t) + j1i}t∈N. With this notation, the distribution ofS(s1i, s2i) equals

L
(
Si

(
0, κdi

)|Ecrossdi

)
or equivalently,

L
(
S(t, ν)|S(t) = j1i and after timet, S visits j2i

before it returns for the first time toj1i

)
,

where t designates any nonrandom time, andν designates the first visit aftert
to j2i .

e.3. The distribution of�(s1i, s2i) depends only on the lengthdi . It is equal
to the distribution of(�(0),�(1), . . . ,�(κdi

)) conditional on the event that the
random walk first meetsdi before meeting 0. Thus,

L
(
�(s1i, s2i)

) = L
(
�(0),�(1), . . . ,�

(
κdi

)|Ecrossdi

)
.
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e.4. The joint distribution of the path ofS during the crossings(s1i, s2i) is not
changed if we condition on the event that the crossings(s1i, s2i) have to occur
during a crossing. More precisely, we are considering the joint distribution of the
(s1i, s2i)’s for 0 ≤ i ≤ n. We conditionunder the event that we have a crossing
by S of (0, j2n) starting at zero. After conditioning we get the same distribution as
before:

L
(
S(s10, s20), S(s11, s21), . . . , S(s1n, s2n)

)
= L

(
S(s10, s20), S(s11, s21), . . . , S(s1n, s2n)|Ecrossj2n

)
.

PROOF. Let E2
cross(i) be the event thatS does not visit 0 during(s1i, s2i).

E2
cross(i) := {S(t) �= 0, ∀ t ∈ (s1i, s2i]}. In a similar manner defineE1

cross(i) :=
{S(t) �= 0, ∀ t ∈ (s2(i−1), s1i]}. We get

Ecrossj2n
=

(
n⋂

i=0

E1
cross(i)

)
∩

(
n⋂

i=0

E2
cross(i)

)
.

The different pieces of paths from the collection:

{S(s1i, s2i)|0 ≤ i ≤ n} ∪ {
S
(
s1(i−1), s1i

)|0 < i ≤ n
}

are independent of one another. Thus, we are exactly in the situation of Fact c.
Applying Fact c to{S(s1i, s2i)|0 ≤ i ≤ n}, we find that

L
(
S(s10, s20), S(s11, s21), . . . , S(s1n, s2n)|Ecrossj2n

)
(1)

equals
n⊗

i=0

L
(
S(s1i, s2i)|E2

cross(i)
)
.

However, since(s1i, s2i) is a crossing byS of (j1i , j2i ) where 0≤ j1i , j2i , it
follows that a.s.S during (s1i, s2i) does not visit 0. Thus the eventE2

cross(i) is
the almost sure event. Hence:

L
(
S(s1i, s2i)|E2

cross(i)
) = L

(
S(s1i, s2i)

)
.

This proves that the distribution 1 equals
⊗n

i=0 L(S(s1i, s2i)). The last expression,
by e.1, is, however, the joint distribution of the “unconditional”S(s1i , s2i)’s. �

e.5. The probability that a crossing byS of an interval of length 3 is straight
equals3

4. Thus, ifdi = 3, we have

P (s2i − s1i = 3) = 3
4.

PROOF. We need to calculate the probabilityP (κ3 = 3|Ecross 3). Ecross 3is the
event that before coming back to zero, the random walkS first visits 3. It can do it
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in exactly 3,5,7, . . . steps. For each given number of steps there is precisely one
path. The reason is that when the random walk is in the interval[0,3], in order to
not reach the border, there is always only one possible step. Any path of length
2k + 1 has probability(1

2)2k+1. The path of length 3 is the straight path. We find:

P (κ3 = 3|Ecross 3) = P (κ3 = 3)

P (Ecross 3)
= (1/2)3∑∞

k=1(1/2)2k+1 = 3

4
. �

Note that Fact e holds for any simple random walk.

FACT f. Let x1 < x2 ≤ y1 < y2. Let (t1xi, t2xi) designate theith crossing
by S of (x1, x2). Let (t1yi, t2yi) designate theith crossing byS of (y1, y2). Then,
(S(t1xi, t2xi))i≥0 is independent of(S(t1yi, t2yi))i≥0.

PROOF. Let ιj designate thej th visit by S to the pointx2. This defines a
renewal process and a regenerative process. Since the random walkS cannot jump,
during each renewal period, it can either spend the whole time in]∞, x2[ or in
]x2,∞[ . During the same renewal period,S cannot visit both]∞, x2[ and]x2,∞[ .
This implies that a crossing byS of (x1, x2) and a crossing byS of (y1, y2) can
never occur during the same renewal period. The renewal periods are independent
of each other; that is, the pieces of pathS(ιj , ιj+1) are independent for variousj ’s.
Since the crossings byS of (x1, x2) and the crossings byS of (y1, y2) occur
during different independent renewal times, it follows that(S(t1xi, t2xi))i≥0 is
independent of(S(t1yi, t2yi))i≥0. �

FACT g. Let x1 < x2 be integer numbers. Let(t1xi, t2xi) designate theith
crossing byS of (x1, x2). Then the pieces of pathS(t1xi , t2xi) are independent
of each other for variousi’s.

PROOF. Assume without loss of generality that 0< x1 < x2. Let the sequence
a0, a1, a2, . . . be equal to the alternating sequencex1, x2, x1, x2, x1, . . . . Define as
in Fact a the stopping timesηj . In other words,η0 designates the first visit byS to
a0 andη(j+1) designates the first visit byS after timeηj to the pointa(j+1). The
pieces of path in between stopping times are by Fact a independent of each other.
In other words, theS(ηj , η(j+1))’s for differentj ’s are independent. However, in
each time interval[ηj , η(j+1)] there can be at most one crossing(t1xi, t2xi). It
follows that theS(t1xi, t2xi) are independent of each other.�

NOTATION. Let 0 ≤ m < n. Let (k1za , k2za ), respectively,(k1zb
, k2zb

), des-
ignate thezath, respectively,zbth, crossing byR of (0,3n). Let (k1am, k2am),
respectively,(k1bm, k2bm), designate the first crossing byR during (k1za , k2za ),
respectively,(k1zb

, k2zb
), of (3m,3m + 3). Let wR

a (m), respectively,wR
b (m), des-

ignate the variable which is equal to 1 iff(k1am, k2am), respectively,(k1bm, k2bm),
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is a straight crossing. Let(t1am, t2am), respectively,(t1bm, t2bm), designate the first
crossing byS during (t1a, t2a), respectively,(t1b, t2b), of (k1am, k2am), respec-
tively, (k1bm, k2bm). [Here (t1a, t2a), resp.(t1b, t2b), are defined as in Lemma 8.]
Let wS

a (m), respectively,wS
b (m), designate the Bernoulli variable which is equal

to 1 iff (t1am, t2am), respectively,(t1bm, t2bm), is a straight crossing. With this
notation and by Lemmas 5, 6 and 7, we getwS

a (m) · wR
a (m) = wa(m) and

wS
b (m) · wR

b (m) = wb(m). Hence, the test statisticwa × wb is equal to

n−1∑
m=0

wS
a (m)wR

a (m)wS
b (m)wR

b (m).

Note that the productswS
a (m)wR

a (m)wS
b (m)wR

b (m) are Bernoulli random vari-
ables. Thus to prove Lemma 8, we only need to prove that these products
wS

a (m)wR
a (m)wS

b (m)wR
b (m) for m = 0, . . . , n − 1 are i.i.d. random variables such

that:

CaseH0:

P
(
wS

a (m)wR
a (m)wS

b (m)wR
b (m) = 1

) = (3
4

)3
.(2)

CaseH1:

P
(
wS

a (m)wR
a (m)wS

b (m)wR
b (m) = 1

) = (3
4

)4
.(3)

PROOF OF LEMMA 8. We need to distinguish two cases:

CaseH0: In this caseza = zb andwR
a (m) = wR

b (m) for all 0 ≤ m < n. Thus,

wS
a (m)wR

a (m)wS
b (m)wR

b (m) = wS
a (m)wR

a (m)wS
b (m).

It follows:

P
(
wa(m)wb(m) = 1

) = P
((

wS
a (m)wS

b (m)
) = 1,wR

a (m) = 1
)
.

The right-hand side of the last equality can be written as

P
(
wS

a (m)wS
b (m) = 1|wR

a (m) = 1
)
P

(
wR

a (m) = 1
)
.(4)

We have that

P
(
wS

a (m)wS
b (m) = 1|wR

a (m) = 1
)

(5)
= E

[
P

(
wS

a (m)wS
b (m) = 1|R(k), k ∈ Z

)|wR
a (m) = 1

]
.

The crossings(t1a, t2a) and (t1b, t2b) are crossings byS of the random interval
(k1za , k2za ). So Fact g does not directly apply. However, by conditioning on
σ(R(k), k ∈ Z) the interval(k1za , k2za ) is no longer random and we can apply
Fact g: Conditioned onσ(R(k), k ∈ Z), S(t1a, t2a) andS(t1b, t2b) are independent
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of each other. Conditional onσ(R(k), k ∈ Z), wS
a (m) only depends onS(t1a, t2a),

while wS
b (m) only depends onS(t1b, t2b). Hence when we condition onR, wS

a (m)

andwS
b (m) become independent. We get

P
(
wS

a (m)wS
b (m) = 1|R(k), k ∈ Z

)
= P

(
wS

a (m) = 1|R(k), k ∈ Z
) · P (

wS
b (m) = 1|R(k), k ∈ Z

)
.

WhenwR
a (m) = 1, then the crossing(k1am, k2am) has length 3, that is,|k1am −

k2am| = 3. Thus, by Facts e.4 and e.5 we find thatP (wS
a (m) = 1|wR

a (m) = 1) = 3
4

andP (wS
b (m) = 1|wR

a (m) = 1) = 3
4. So, whenwR

a (m) = 1 holds, we find that

P
(
wS

a (m)wS
b (m) = 1|R(k), k ∈ Z

) = (3
4

)2
.

This implies that the right-hand side of (5) is equal toE[(3
4)2|wR

a (m) = 1] = (3
4)2.

Plugging this into (4) finishes establishing (2). Next we need to demonstrate the
independence of the productswS

a (m)wS
b (m)wR

a (m) for 0 ≤ m < n in the caseH0.
Conditional onσ(R(k), k ∈ Z) all of the following holds.

According to Fact g,S(t1a, t2a) is independent ofS(t1b, t2b). But thewS
a (m)’s

for variousm’s depend only onS(t1a, t2a) and thewS
b (m)’s for variousm’s depend

only on S(t1b, t2b). Thus, (wS
a (m))0≤m<n is independent of(wS

b (m))0≤m<n.
Furthermore, by Fact e.1, thewS

a (m)’s, respectively, thewS
b (m)’s, for variousm’s

are independent of each other. This leads to that the productswS
a (m)wS

b (m) are
independent of each other. [All the last arguments were meant to hold conditionally
onσ(R(k), k ∈ Z).]

By Fact e.1, theR(k1am, k2am)’s are independent among each other for
variousm’s. This puts as in the case of Fact d: Take for thisR(k1am, k2am) to
be Xm and Ym to be wS

a (m)wS
b (m). Conditional on(R(k1am, k2am))0≤m<n the

wS
a (m)wS

b (m)’s are independent of each other and the conditional distribution of
wS

a (m)wS
b (m) depends only onR(k1am, k2am). Fact d tells that in this case the

random pairs(wS
a (m)wS

b (m),R(k1am, k2am)) for 0 ≤ m < n must be independent.
It follows that the productswS

a (m)wS
b (m)wR

a (m) are also independent of each
other.

CaseH1: In this case the crossing(k1za , k2za ) is different from the cross-
ing (k1zb

, k2zb
). Fact g implies thatR(k1za , k2za ) is independent ofR(k1zb

, k2zb
).

This implies that(R(k1am, k2am))0≤m<n is independent of(R(k1bm, k2bm))0≤m<n.
Conditioned onσ(R(k), k ∈ Z), the crossings(t1a, t2a) and (t1b, t2b) by S are
crossing of nonrandom intervals. Hence, conditional onσ(R(k), k ∈ Z) and
by Fact f,S(t1a, t2a) andS(t1b, t2b) are independent of one another. Fact e.2 implies
that conditional onσ(R(k), k ∈ Z), the distribution of(S(t1am, t2am))0≤m<n, re-
spectively.(S(t1bm, t2bm))0≤m<n, depends only on(R(k1am, k2am))0≤m<n, respec-
tively, (R(k1bm, k2bm))0≤m<n. Thus, Fact d applies, and we get that((S(t1am, t2am),
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R(k1am, k2am)))0≤m<n is independent of((S(t1bm, t2bm),R(k1bm, k2bm)))0≤m<n.
Note that wS

a (m)wR
a (m), respectively, wS

b (m)wR
b (m), is σ((S(t1am, t2am),

R(k1am, k2am))), respectively, σ((S(t1am, t2am),R(k1am, k2am))), measurable.
Thus,(wS

a (m)wR
a (m))0≤m<n is independent of(wS

b (m)wR
b (m))0≤m<n.

Conditionally on (R(k1bm, k2bm))0≤m<n, the crossings byS(t1am, t2am) for
0 ≤ m < n are crossings of nonrandom intervals. Hence, Fact f applies so that
conditionally on (R(k1bm, k2bm))0≤m<n the pieces of pathsS(t1am, t2am) are
independent of each other for variousm’s. By Facts e.2 and e.4, conditionally
on (R(k1bm, k2bm))0≤m<n, the distribution ofS(t1am, t2am) depends only on
(R(k1am, k2am)). However, by Fact e.1, the pieces of paths(R(k1am, k2am)) are
independent of each other for variousm’s. Thus, we can apply Fact d, and get
that the pairs(R(k1am, k2am), S(t1am, t2am)) for 0 ≤ m < n are independent of
each other. SincewS

a (m)wR
a (m) is σ(R(k1am, k2am), S(t1am, t2am))-measurable,

it follows that the productswS
a (m)wR

a (m) for 0 ≤ m < n are independent of
each other. In a similar way, one can show that the productswS

b (m)wR
b (m)

for 0 ≤ m < n are independent of each other. It follows that the products
wS

a (m)wR
a (m)wS

b (m)wR
b (m) for variousm’s are i.i.d. By independence ofa andb,

we have that

P
(
wS

a (m)wR
a (m)wS

b (m)wR
b (m) = 1

)
= P

(
wS

a (m)wR
a (m) = 1

)
P

(
wS

b (m)wR
b (m) = 1

)
.

The right-hand side of the last equality is equal toP (wS
a (m)wR

a (m) = 1)2, because
P (wS

a (m)wR
a (m) = 1) = P (wS

b (m)wR
b (m) = 1). Furthermore,

P
(
wS

a (m)wR
a (m) = 1

) = P
(
wS

a (m) = 1|wR
a (m) = 1

)
P

(
wR

a (m) = 1
)
.

By Fact e.5,P (wR
a (m) = 1) = 3

4. When wR
a (m) = 1, then |k1am − k2am| = 3.

|t1am − t2am| designates the first crossing byS of (k1am, k2am). Thus by Fact e.5,
P (wS

a (m) = 1|wR
a (m) = 1) = 3

4. We are done with proving (3).�

2.4. Details of the reconstruction algorithm.We gave already the main ideas
on how to reconstruct a finite piece of scenery. In this section we describe the
technical details. Let(kn+

1 , kn+
2 ) be the first crossing after time 0 byR of the

interval(0,3n). In other words:kn+
1 , kn+

2 ≥ 0 and for alls, t ≥ 0 such that(s, t) is
a crossing byR of the interval(0,3n) we havekn+

1 ≤ s andkn+
2 ≤ t .

Let (kn−
1 , kn−

2 ) be the last crossing before time 0 byR of the interval(0,3n). In
other words:kn−

1 , kn−
2 ≤ 0 and for alls, t ≤ 0 such that(s, t) is a crossing byR of

the interval(0,3n) we havekn−
1 ≥ s andkn−

2 ≥ t .
In the numerical example of Figure 1, we have that(k3+

1 , k3+
2 ) = (0,13). In

other words(0,13) is the first crossing after zero byR of (0,9). The part of the
graphz �→ R(z) with z < 0 is not represented in Figure 1, so we cannot see there
(k3−

1 , k3−
2 ).



RECONSTRUCTING A TWO-COLOR SCENERY 801

The reconstruction algorithm which reconstructs a finite piece of the sceneryξ ,
reconstructs the wordξ(kn−

2 ), ξ(kn−
2 +1), ξ(kn−

2 +2), . . . , ξ(kn+
2 ) or its transpose.

It achieves this by recognizing a time interval(r, s) during which the nearest-
neighbor walkS goes in a straight way: from the pointkn−

2 to the pointkn+
2 ,

or from the point kn+
2 to the point kn−

2 . (r, s) is thus a straight crossing
by S of (kn−

2 , kn+
2 ) or of (kn+

2 , kn−
2 ). During such a straight crossing(r, s)

the observations reveal the piece of the sceneryξ which is included between
kn−

2 and kn+
2 : χ(r),χ(r + 1),χ(r + 2), . . . , χ(s) is equal to the wordξ(kn−

2 ),

ξ(kn−
2 + 1), ξ(kn−

2 + 2), . . . , ξ(kn+
2 ) or its transpose. The reconstruction algorithm

“for a finite piece of scenery” depends on a parametern. That is why we will call
it the reconstruction algorithm at leveln. Thus, we have a collection of algorithms
indexed byn. Using these algorithms for increasingn’s will allow us to reconstruct
increasing finite pieces of the sceneryξ and eventually to reconstruct the whole
sceneryξ up to equivalence (as a limit, after infinite time). We can already mention
here that the reconstruction algorithm at leveln does not achieve this goal in
100% of the cases; rather, it has a small failure probability. However, this failure
probability is finitely summable overn. This insures that only a finite number of
the finite size reconstructions will contain errors. This finite number of errors has
no influence on the final total reconstruction, since that one is taken to be a limit.

Next we need a few definitions and notations: letz1, z2 ∈ Z be such that|z1−z2|
is a multiple of 3; that is, there existsz ∈ Z such thatz2 − z1 = 3z. Let (s1, s2) be
a crossing byR ◦ S of (z1, z2). Let, for 0≤ m < |z|, w(m) be equal to 1 iff the
first crossing byR ◦ S of (z1 + 3m(z/|z|), z1 + (3m + 3)(z/|z|)) during(s1, s2) is
straight and equal to zero otherwise. We writew(s1,s2) for the binary word:

w(0)w(1)w(2) · · ·w(|z| − 1)

and call it the binary word associated with the crossing(s1, s2) by R ◦ S.
Among the two crossings byR, (kn+

1 , kn+
2 ) and (kn−

1 , kn−
2 ), let (kn

1a, k
n
2a)

designate the one of the two which gets crossed first byS. In a similar way, let
(kn

1c, k
n
2c) designate the other one. In this way, ifkn+

2 gets visited byS beforekn−
2 ,

we have that(kn
1a, k

n
2a) equals(kn+

1 , kn+
2 ). Otherwise,(kn

1a, k
n
2a) equals(kn−

1 , kn−
2 ).

Let (tn1i , t
n
2i) designate theith crossing byR ◦ S of the interval(0,3n). Let wn

i

designate the binary words associated with the crossing(tn1i , t
n
2i ). Thus:

wn
i := w(tn1i ,t

n
2i )

.

For z �= 0 with z ∈ Z, let (kn
1z, k

n
2z) designate thezth crossing byR of (0,3n).

[By this we mean that ifz > 0, then(kn
1z, k

n
2z) is the zth crossing after 0 byR

of (0,3n). If z < 0, (kn
1z, k

n
2z) designates the|z|-last crossing before 0 byR

of (0,3n).] Note that with this notation, we have that(kn
11, k

n
21) = (kn+

1 , kn+
2 )

and(kn
1(−1), k

n
2(−1)) = (kn−

1 , kn−
2 ). BecauseS starts at the origin, it cannot reach

any zth crossing(kn
1z, k

n
2z), with |z| > 1, before it has not crossed(kn+

1 , kn+
2 ) or

(kn−
1 , kn−

2 ). By Lemma 5,(tn11, t
n
21) is also the first crossing byS of a crossing
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by R of (0,3n). It follows that (tn11, t
n
21) is obligatorily a crossing byS of either

(kn+
1 , kn+

2 ) or (kn−
1 , kn−

2 ). Thus,(tn11, t
n
21) is a crossing byS of (kn

1a, k
n
2a).

The above discussion suggests a method for constructing stopping times which
with high probability will stop the random walk at the pointkn

2a . Apply for
this the localization test to the two crossings(tn11, t

n
21) and (tn1i , t

n
2i ). If the test

decides that(tn11, t
n
21) and (tn1i , t

n
2i) are crossings byS of the same interval (i.e.,

HypothesisH0), decide thatS(tn2i ) = kn
2a . Let τn(i) designate theith stopping

time obtained by trying to stop the random walkS at kn
2a . More precisely,τn(i) is

equal to theith, tn2j for which

wn
j × wn

1 > c · n.

The scalar product for binary words of the same length× is defined in the
following way: letw = w(0)w(1)w(2) · · ·w(k) andv = v(0)v(1)v(2) · · ·v(k) be
two binary words.w × v := ∑k

l=0 w(l) · v(l). We define the relation≤: w ≤ v iff
for all l with 0 ≤ l ≤ k we have thatw(l) ≤ v(l). We define the transpose of the
word w and writew∗ for the wordw∗ := w(k)w(k − 1)w(k − 2) · · ·w(1).

Let (tn1a, t
n
2a) denote the first crossing byS of the interval (kn

1a, k
n
2a). We

have that(tn1a, t
n
2a) = (tn11, t

n
21). Let (tn1c, t

n
2c) denote the first crossing byS of the

interval (kn
1c, k

n
2c). As mentioned,(tn1a, t

n
2a) is also the first crossing byR ◦ S of

the interval(0,3n), and thus is observable. Letwn
a designate the binary word

associated with the crossing(tn1a, t
n
2a) by R ◦ S. Using our notation,

wn
a := w(tn1a ,tn2a).

Note that(tn1c, t
n
2c) is also a crossing byR ◦S of the interval(0,3n). Letwc denote

the binary word associated with the crossing(tn1c, t
n
2c) byR◦S. (tn1c, t

n
2c) andwn

c are
not directly observable. We can only estimate them. We denote byŵn

c our estimate
for wn

c and by(t̂ n
1c, t̂

n
2c) our estimate for(tn1c, t

n
2c). We will explain later how we

obtain these estimates.
As already mentioned, the goal of the reconstruction algorithm at leveln is to

reconstruct the finite piece of the sceneryξ :

ξ(kn
2c), ξ(kn

2c + u), ξ(kn
2c + 2u), . . . , ξ(kn

2a).

[Here u denotes the signu := (kn
2a − kn

2c)/|(kn
2a − kn

2c).] The reconstruction
algorithm at leveln achieves this by constructing a straight crossing(s, r) by S

of (kn
2c, k

n
2a). When going fromkn

2c to kn
2a in a straight way, the random walkS

first crosses the interval(kn
2c, k

n
1c) in a straight way and then the interval(kn

1a, k
n
2a).

Crossing(kn
2c, k

n
1c), respectively,(kn

1a, k
n
2a), in a straight way, we get the maximum

number of “straight crossings possible byR ◦ S.” Thus, when(s, r) with s < r is a
straight crossing byS of (kn

2c, k
n
2a) we have that there existss2 ≤ s1 ≤ r1 ≤ r2 with

s2 = s, r2 = r such that(s2, s1) is a straight crossing byS of (kn
2c, k

n
1c) and(r1, r2)

is a straight crossing byS of the interval(kn
1a, k

n
2a). In this case,

w(s1,s2) ≥ wn
c(6)
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and

w(r1,r2) ≥ wn
a.(7)

The above discussion suggests a method for how to search for straight crossings
(s, r) by S of the interval(kn

2c, k
n
2a): try to find (s, r) minimizing r − s with s < r

under the following constraint: there existss2 ≤ s1 ≤ r1 ≤ r2 with s2 = s, r2 = r

such that:

1. (s1, s2) is a crossing byR ◦ S of (0,3n) such that (6) is satisfied.
2. (r1, r2) is a crossing byR ◦ S of (0,3n) such that (7) is satisfied.

2.5. The reconstruction algorithm at leveln. Let n̄ := n10.89 andṅ := n11. We
are now ready to define thereconstruction algorithm at leveln in a precise way:

ALGORITHM 9. (i) Find (s, r) minimizing r − s with s < r under the
following constraint:

1. There existsi ≤ en̄ such thatτ ṅ(i) ≤ s < r ≤ τ ṅ(i) + n220.
2. There existss2 ≤ s1 ≤ r1 ≤ r2 with s2 = s, r2 = r such that:

(a) (s1, s2) is a crossing byR ◦ S of (0,3n) such thatw(s1,s2) ≥ ŵn
c holds.

(b) (r1, r2) is a crossing byR ◦ S of (0,3n) such thatw(r1,r2) ≥ wn
a holds.

(ii) The output of the reconstruction algorithm at leveln is the binary word
which we can read in the observationsχ during time(s, r), that is,

χ(s),χ(s + 1),χ(s + 2), . . . , χ(r),

where(s, r) designates the first ordered pair minimizingr − s under the conditions
2(a) and 2(b).

REMARK 10. (i) wn
c is not directly observable. Thus, for our reconstruction

algorithm we use the estimatêwn
c instead ofwn

c .
(ii) The reader might be wondering why the algorithm uses conditions

2(a) and 2(b) instead of the localization test. As a matter of fact, one could imagine
to replace condition 2 by the following two conditions:

(a) (s1, s2) is a crossing byR ◦ S of (0,3n) such that, when compared to
the crossing(t̂ n

1c, t̂
n
2c), the localization test decides that the two crossings occurred

in the same place (H0-case).
(b) (r1, r2) is a crossing byR ◦ S of (0,3n) such that, when compared to

the crossing(tn1a, t
n
2a), the localization test decides that the two crossings occurred

in the same place (H0-case).
Replacing conditions 2(a) and 2(b) by the above conditions 1 and 2 does

not work. The reason is the following: typically the pointskn
2a and kn

2c are at
distance order(n2) from each other. [To simplify calculations, we will just prove
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that the order is smaller than order(n9) and work with that.] To get at least one
straight crossing byS of an interval of length order(n2) we need order(2n

2
) trials.

Thus our algorithm needs to be able to identify correctly order(2n2
) crossings

by S of (kn
2c, k

n
2a) [in our proof order(2n

9
)]. The localization algorithm (with

parametern) has a positive probability of making an error of order(e−k·n) where
k > 0 is a constant not depending onn. With order(2n

9
) trials we can be sure that

the localization test (with parametern) will make many errors, and thus cannot be
used instead of conditions 2(a) and 2(b).

(iii) If we perform the localization test with parameterṅ instead ofn, the
probability of an error is of order(e−kṅ). This is so small that, with high probability,
we can apply it order(ekn̄) times without making a single mistake. This is more than
enough trials to get, with high probability, one straight crossing byS of an interval
of length order(n9). This is why for condition 1 in the reconstruction algorithm
at leveln, we construct the stopping timesτ ṅ(i) using the localization algorithm
with parameteṙn.

(iv) The conditions 2(a) and 2(b) can be seen as a modified version of the
localization algorithm with parametern. We will show that with high probability
within distancen220 of the pointkṅ

2a we have: only the crossing(kn
1a, k

n
2a) is such

that a crossing(r1, r2) by S of it can satisfy the inequalityw(r1,r2) ≤ wa . A similar
condition also holds for(kn

1c, k
n
2c). This implies that as long as we are within

distancen220 of the pointkṅ
2a , conditions 2(a) and 2(b) can never make a mistake

at identifying crossings byS of (kn
1a, k

n
2a) and of(kn

1c, k
n
2c). WhenS(τ ṅ(i)) = kṅ

2a ,
then by definition, a crossing(s, r) satisfying condition 1 of the selection rule
of the reconstruction algorithm at leveln, is such thatS(s) andS(r) are within
distancen220 of the point kṅ

2a . For more details about why the reconstruction
algorithm at leveln works, see Section 4.

2.6. Construction of(t̂ n
1c, t̂

n
2c) and ofŵn

c . Recall that a crossing(s, t) is called
positive if s < t and negative otherwise. Recall also that from the two crossings
(kn

11, k
n
21) and (kn

1(−1), k
n
2(−1)) by R of (0,3n), the one which gets first crossed

by S is called (kn
1a, k

n
2a) while the other one is called(kn

1c, k
n
2c). After having

crossed from the pointkn
1a to the pointkn

2a , S first needs to cross back from the
point kn

2a to the pointkn
1a before being able to cross(kn

1c, k
n
2c). More precisely,

after a positive crossing byS of (kn
1a, k

n
2a) there first needs to be a negative crossing

by S of (kn
1a, k

n
2a) before there can be a crossing byS of (kn

1c, k
n
2c). On the other

hand, right after a negative crossing byS of (kn
1a, k

n
2a) the random walkS is

always located between the pointskn
1a andkn

1c. When the random walkS is located
betweenkn

1a andkn
1c, the next time it crosses an interval(kn

1z, k
n
2z) this must be the

interval (kn
1a, k

n
2a) or (kn

1c, k
n
2c). This gives a way to characterize(tn1c, t

n
2c) [recall

that (tn1c, t
n
2c) is the first crossing byS of (kn

1c, k
n
2c)]: (tn1c, t

n
2c) is the first crossing

by S of an interval(kn
1z, k

n
2z) such that the following two conditions are satisfied:
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(i) (tn1c, t
n
2c) is not a crossing byS of (kn

1a, k
n
2a).

(ii) the last crossing byS of an interval(kn
1z, k

n
2z) before(tn1c, t

n
2c) is a negative

crossing byS of (kn
1a, k

n
2a).

Note that Lemma 5 implies that the crossings byS of an interval(kn
1z, k

n
2z) can

be characterized as follows:(s, t) is a crossing byS of an interval(kn
1z, k

n
2z) iff

(s, t) is a crossing byR ◦ S of (0,3n). Applying the last characterization to the
above conditions leads to:(tn1c, t

n
2c) is equal to the first crossing(tn1i , t

n
2i)) by R ◦ S

of (0,3n) with i > 1 such that the following two conditions hold:

(i) (tn1i , t
n
2i) is not a crossing byS of (kn

1a, k
n
2a).

(ii) (tn1(i−1), t
n
2(i−1)) is a negative crossing byS of (kn

1a, k
n
2a).

Which crossings are crossings byR ◦ S of (0,3n) is observable. That means
that the crossings(tn1i , t

n
2i) are known to us. On the other hand, which crossings

are crossings byS of (kn
1a, k

n
2a) is not directly observable. However,(tn11, t

n
21) is

observable and is a crossing byS of (kn
1a, k

n
2a). So we can estimate if(tn1i , t

n
2i) is a

crossing byS of (kn
1a, k

n
2a) or not. For this we ask our localization test to compare

the crossings(tn11, t
n
21) and(tn1i , t

n
2i ). The localization test can then estimate if the

crossings(tn11, t
n
21) and(tn1i , t

n
2i) of S occur on the same place or not. Our estimate

for (tn1c, t
n
2c) will be defined to be the first(tn1i , t

n
2i ) for which the above character-

izing conditions are estimated to be true:

We define(t̂ n
1c, t̂

n
2c) to be equal to the first(tn1i, t

n
2i ) with i > 1 for which the

following three conditions hold:

(i) The localization test, when comparing(tn11, t
n
21) with (tn1i , t

n
2i ), rejects the

H0-hypothesis.
(ii) tn1(i−1) > tn2(i−1).
(iii) The localization test, when comparing(tn11, t

n
21) with (tn1(i−1), t

n
2(i−1)),

accepts theH0-hypothesis.

We defineŵn
c to be the binary word associated with the crossing(t̂ n

1c, t̂
n
2c).

3. Assembling the pieces. The reconstruction algorithm at leveln tries to
reconstruct the finite piece of the sceneryξ :

ξn := ξ(kn
1c), ξ(kn

1c + u), ξ(kn
1c + 2u), . . . , ξ(kn

1a),

whereu := (kn
1a − kn

1c)/|(kn
1a − kn

1c)|. In this section, we explain how to construct
a sceneryξ̄ :Z → {0,1}, equivalent toξ , from the collection of finite pieces
ξ1, ξ2, . . . . The reconstruction algorithm at leveln gives us the binary wordξn,
but does not tell us where it is located in the sceneryξ . This implies that we need
to “assemble” the piecesξn in order to get̄ξ .
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Let us introduce a few definitions: letv = v(0)v(1)v(2) · · ·v(i) and
w = w(0)w(1)w(2) · · ·w(j) be two binary words. We say thatv is contained inw
iff there existj1, j2 ∈ {0,1,2, . . . , j} such thatv is equal to

v = w(j1)w(j1 + u)w(j1 + 2u) · · ·w(j2)(8)

whereu := (j2 − j1)/|j2 − j1|. We writev � w whenv is contained inw. We say
that v is uniquely contained inw and writev �1 w, iff there exists exactly one
ordered pair(j1, j2) in {0,1,2, . . . , j}2 such that (8) is satisfied.

Note that the sequence of piecesξ1, ξ2, . . . is an increasing sequence, in the
sense thatξn � ξn+1 for all n ∈ N. (The reason for this being true is that
by definition,kn−

2 > k
(n+1)−
2 andkn+

2 < k
(n+1)+
2 for all n ∈ N. Thus the interval

with the two endpointskn
2c, k

n
2a is contained in the interval with endpointskm

2c, k
m
2a

whenn < m.) Imagine that not onlyξn � ξn+1, but evenξn �1 ξn+1 for all n ∈ N.
Then there would be a unique way to assemble the piecesξ1, ξ2, ξ3, . . . . The
situation in this case is similar to that of a puzzle: for a puzzle, once we have
decided on the position of one piece, there is a unique way to assemble the whole
puzzle. Furthermore, when we assemble a puzzle we always get the same image
up to an isometric mapping. This is exactly the situation we encounter with the
pieces of scenery whenξn �1 ξn+1 for all n ∈ N.

Let us illustrate this with a practical example. Letξ :Z → {0,1} be the scenery
from which we show below a finite portion close to the origin:

ξ(k) . . . 1 0 1 0 0 0 1 1 1 0 0 1 . . .

k . . . −4 −3 −2 −1 0 1 2 3 4 5 6 7 . . .
.

Assume that we would be given the three pieces (of the part of the sceneryξ

which is represented above): 11000, 1000111 and 0100011100. In this case the
first piece lies in the sceneryξ between the points 3 and−1. The second piece
is the piece ofξ which lies between−1 and 4. The last piece lies between the
points−3 and 6. We see that the first piece is uniquely contained in the second
which itself is uniquely contained in the third piece. To assemble the three pieces
we first place the first piece anywhere inZ. Then we place the second piece so
that it covers the first piece, and so that on the first piece it coincides with the first
piece. Eventually we place the third piece so that it coincides with and covers the
second one. If we place the first piece starting at the origin we get

ξ̄ (k) 1 1 0 0 0
k −4 −3 −2 −1 0 1 2 3 4 5 6 7

.

Then we place the second piece so that it covers and coincides with the first piece.
For this we have to turn the second piece around. We obtain

ξ̄ (k) 1 1 1 0 0 0 1
k −4 −3 −2 −1 0 1 2 3 4 5 6 7

.
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Eventually we place the third word and get

ξ̄ (k) 0 0 1 1 1 0 0 0 1 0
k −4 −3 −2 −1 0 1 2 3 4 5 6 7

.

If we would go on with more and more pieces, asn tends to infinity we would
obtain a scenerȳξ which is equivalent toξ .

Let En
0 denote the event that

En
0 = {ξn �1 ξn+1}.

We will show that
∞∑

n=1

P (Enc
0 ) < ∞,

where Enc
0 denotes the complement ofEn

0. From the last inequality above it
follows that a.s. for all but a finite number ofn’s we have thatξn �1 ξn+1. The
assemblage procedure we define below still works ifξn �1 ξn+1 holds for all but
a finite number ofn’s.

Let us mention an additional problem: each reconstruction algorithm at leveln

has a small probability of making an error. Thus the output of the reconstruction
algorithm at leveln is not a.s. equal toξn but is only an estimate ofξn. For the
output of the reconstruction algorithm at leveln, we will thus write ξ̂ n instead
of ξn. We denote byEn the event that the algorithm at leveln works. That is,

En := {ξn = ξ̂ n}.
By Enc we denote the complementary event ofEn. In the next section it is shown
that

∞∑
n=1

P (Enc) < ∞.(9)

From this it follows that almost surely all but a finite number of reconstructions
ξ̂ n are correct, that is, are such thatξn = ξ̂ n. Our assembling procedure defined
below is robust against this kind of problem: if only a finite number of pieces
ξ̂ n are wrong it still works. Let us next define in a precise way ourassemblage
procedure:

ALGORITHM 11. (i) Let ln + 1 designate the length of the wordξ̂ n and let
ξ̂ n(i) designate theith bit of the binary word̂ξn. In this way,

ξ̂ n = ξ̂ n(0)ξ̂ n(1)ξ̂ n(2) · · · ξ̂ n(ln).

(ii) Let n0 designate the smallest natural (random) number such that for all
n ≥ n0 we have that̂ξn �1 ξ̂ n+1 holds.
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(iii) We construct the scenerȳξ by induction onn starting atn0.
We first place the word̂ξn0 at the origin.
Once the word̂ξn is placed, we place the word̂ξn+1 in the unique manner such

that it covers and coincides witĥξn on ξ̂ n.
(dn

1 , dn
2 ) designates the position of where we placed the wordξ̂ n. More

precisely,
(a) Let d

n0
1 := 0 and letdn0

2 := ln0. For all k ∈ [0, d
n0
2 ] define: ξ̄ (k) :=

ξ̂ n0(k).

(b) Oncedn
1 , dn

2 are defined and̄ξ(k) is defined for allk ∈ [dn
1 , dn

2 ] let
dn+1

1 , dn+1
2 with dn+1

1 ≤ dn+1
2 be the unique ordered pair of integers such that

[dn
1 , dn

2 ] ⊂ [dn+1
1 , dn+1

2 ] and such that one of the following two cases holds:
1. For allk ∈ [dn

1 , dn
2 ] we have that

ξ̄ (k) = ξ̂ n+1(k − dn+1
1 ).

2. For allk ∈ [dn
1 , dn

2 ] we have that

ξ̄ (k) = ξ̂ n+1(ln+1 − (k − dn+1
1 )

)
.

For all k ∈ [dn+1
1 , dn+1

2 ], let ξ̄ (k) be equal to
1. When case 1 above holds,

ξ̄ (k) := ξ̂ n+1(k − dn+1
1 ).

2. When case 2 above holds,

ξ̄ (k) := ξ̂ n+1(ln+1 − k − dn+1
1 ).

The constructed sceneryξ̄ is equivalent toξ as soon as for all but a finite number
of n’s we have thatξn �1 ξn+1 andξn = ξ̂ n. This should be obvious and we leave
the proof to the reader. It thus only remains to prove that almost surely for all but
a finite number ofn’s, ξn �1 ξn+1 andξn = ξ̂ n hold.

4. Proof that the reconstruction at level n works. In this section we prove
that the reconstruction algorithm at leveln works with high probability; that is, we
prove (9). For this we decomposeEn into several elementary events. Let us start
with some definition.

We say that(s, r) satisfies the conditions of Algorithm 9 withwn
c instead ofŵn

c

iff s < r and it satisfies all of the following conditions:

1. There existsi ≤ en̄ such thatτ ṅ(i) ≤ s < r ≤ τ ṅ(i) + n220.
2. There existss2 ≤ s1 ≤ r1 ≤ r2 with s2 = s, r2 = r such that:

(a) (s1, s2) is a crossing byR ◦ S of (0,3n) such thatw(s1,s2) ≥ wn
c holds.

(b) (r1, r2) is a crossing byR ◦ S of (0,3n) such thatw(r1,r2) ≥ wn
a .



RECONSTRUCTING A TWO-COLOR SCENERY 809

Let En
1 designate the event that if Algorithm 9 is given the realwn

c instead of the
estimateŵn

c , it produces a straight crossing byS of (kn
2c, k

n
2a):

En
1 := {There exists at least one pair(s, r), satisfying the conditions

of Algorithm 9 withwn
c instead ofŵn

c }
∩ {Any pair (s, r), minimizing r − s under the conditions of Algorithm 9

with wn
c instead ofŵn

c , is a straight crossing byS of (kn
2c, k

n
2a)}.

Let En
t c be the event that the construction of(tnc1, t

n
c2) works:

En
t c := {(t̂ n

c1, t̂
n
c2) = (tnc1, t

n
c2)}.(10)

Note that whenEn
t c holds, thenwn

c = ŵn
c :

En
all correct:= {All (s, r) satisfying the constraints of Algorithm 9

with wn
c instead ofŵn

c , are such thatS(s) = kn
2c, S(r) = kn

2a},
En

at least one:= {There exists(s, r) satisfying the constraints of Algorithm 9

with wn
c instead ofŵn

c , such that(s, r) is a straight crossing

by S of (kn
2c, k

n
2a)}.

Let (tn1ai, t
n
2ai) be theith crossing byS of (kn

1a, k
n
2a). LetEn

stoppingbe the event that
the stopping timesτn(i) stop the random walk atkn

2a :

En
stopping:= {tn2ai = τn(i), ∀ i ≤ exp(n0.99)}.

Let:

En
no othera crossing byR

:= {
The only crossing(k1, k2) by R of (0,3n)

with |k1 − kṅ
2a|, |k2 − kṅ

2a| ≤ n220 such thatwR
(k1,k2)

≥ wn
a is (kn

1a, k
n
2a)

}
,

En
no otherc crossing byR

:= {
The only crossing(k1, k2) by R of (0,3n)

with |k1 − kṅ
2a|, |k2 − kṅ

2a| ≤ n220 such thatwR
(k1,k2)

≥ wn
c is (kn

1c, k
n
2c)

}
,

En
no other crossing byR

:= En
no othera crossing byR ∩ En

no otherc crossing byR,

En
straight

:= {There existsi ≤ en̄ ands, r with t ṅ2ai ≤ s, r ≤ t ṅ2ai + n220

such that(s, r) is a straight crossing byS of (kn
1c, k

n
2a)}.
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Let En
visit be the event that the random walkS visits the pointkn

2c before time
exp(n0.5):

En
visit := {tn2c < exp(n0.5)}.

Recall thatṅ := n11. In Section 4.1 we prove the following inclusions:

En
1 ∩ En

t c ⊂ En,(11)

En
at least one∩ En

all correct⊂ En
1,(12)

Eṅ
stopping∩ En

no other crossing byR ⊂ En
all correct,(13)

En
straight∩ Eṅ

stopping⊂ En
at least one,(14)

En
stopping∩ En

visit ⊂ Et c.(15)

From the inclusions (11)–(15) it follows that

En
straight∩ Eṅ

stopping∩ En
stopping∩ En

no other crossing byR ∩ En
visit ⊂ En,

which implies

P (Enc
straight) + P (Eṅc

stopping) + P (Enc
stopping)

+ P (Enc
no other crossing byR) + P (Enc

visit) ≥ P (Enc).

(HereEnc
somethingdesignates the complement of the eventEn

something.) In Section 4.2
we prove that

P (Enc
straight), P (Eṅc

stopping), P (Enc
stopping),

P (Enc
no other crossing byR) and P (Enc

visit)

are all finitely summable overn. Together with the last inequality, this proves that
P (Enc) is finitely summable overn.

4.1. Combinatorics.

PROOF THAT En
1 ∩ En

t c ⊂ En HOLDS. When En
t c holds, thenwn

c = ŵn
c .

In this case, the eventEn
1 amounts to the same as eventEn. It follows that

En
1 ∩ En

t c = En ∩ En
t c, which implies inclusion (11). �

PROOF THAT En
at least one∩ En

all correct ⊂ En
1 HOLDS. Let (s, r) be a pair

minimizing r − s under the constraint of Algorithm 9 withwn
c instead ofŵn

c .
Then if En

all correct holds, we have thatS(s) = kn
2c, S(r) = kn

2a . If En
at least onealso

holds, there exists a straight crossing(s′, r ′) by S of (kn
2c, k

n
2a) satisfying the

constraint of Algorithm 9 withwn
c instead ofŵn

c . For a straight crossing we have
r ′ − s′ = |kn

2c − kn
2a|. Sincer − s is minimal under the constraint of Algorithm 9,

we get |r − s| ≤ |kn
2c − kn

2a|. This together withS(s) = kn
2c, S(r) = kn

2a is only
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possible if(s, r) is a straight crossing byS of (kn
2c, k

n
2a). We just proved that when

En
at least oneandEn

all correcthold, all pair(s, r) minimizingr − s under the constraint
of Algorithm 9 are straight crossings byS of (kn

2c, k
n
2a). In this caseEn

1 holds. Thus,
togetherEn

at least oneandEn
all correct imply En

1. �

PROOF THAT Eṅ
stopping∩ En

no other crossing byR ⊂ En
all correct HOLDS. Let (s, r)

satisfy all the constraints of Algorithm 9. Then there existss2 ≤ s1 ≤ r1 ≤ r2
with s2 = s, r2 = r , where(r1, r2) is a crossing byR ◦ S of (0,3n) such that
w(r1,r2) ≥ wn

a holds. By Lemma 5 we have that there exists a crossing(k1, k2) by R

of (0,3n) such that(r1, r2) is a crossing byS of (k1, k2). By Lemmas 6 and 7, we
have thatwR

(k1,k2)
≥ w(r1,r2). Thus,wR

(k1,k2)
≥ wn

a .

Additionally by the constraints of Algorithm 9 there existsi ≤ en̄ such that
τ ṅ(i) ≤ s < r ≤ τ ṅ(i) + n220. If additionallyEṅ

stoppingholds, thenS(τ ṅ(i)) = kṅ
2a .

The random walkS during a time interval ofn220 time cannot walk further
thann220. Thus,|S(r1) − kṅ

2a|, |S(r2) − kṅ
2a | ≤ n220. This is equivalent to saying

that|k1 − kṅ
2a|, |k2 − kṅ

2a| ≤ n220. Hence the condition in eventEn
no other crossing byR

applies to the crossing(k1, k2). It follows that if En
no other crossing byR also holds,

then(k1, k2) equals(kn
1a, k

n
2a). This implies thatS(r) = kn

2a. We have proven that
whenEṅ

stopping andEn
no other crossing byR both hold, thenS(r) = kn

2a . In a similar
way, one can prove that in this caseS(s) = kn

2c. (We leave that proof to the reader.)
Thus,Eṅ

stoppingandEn
no other crossing byR jointly imply En

all correct. �

PROOF THAT En
straight∩ Eṅ

stopping⊂ Eat least oneHOLDS. En
straightandEṅ

stopping

jointly imply that there existi ≤ en̄ ands, r with τ ṅ(i) ≤ s, r ≤ τ ṅ(i) + n220 such
that (s, r) is a straight crossing byS of (kn

2c, k
n
2a). Thus,(s, r) already satisfies

condition 1 of Algorithm 9. It remains to show that(s, r) also satisfies condition 2.
During the time interval(s, r), S crosses from the pointkn

2c to the pointkn
2a in a

straight way. For this,S first needs to cross(kn
2c, k

n
1c) in a straight manner and then

(kn
1a, k

n
2a). Thus, there existss2 ≤ s1 ≤ r1 ≤ r2 with s2 = s, r2 = r such that(s2, s1)

is a straight crossing byS of (kn
2c, k

n
1c) and(r1, r2) is a straight crossing byS of

(kn
1a, k

n
2a). We know by Lemma 5 that a crossing of a crossing is a crossing of the

composition. Thus,(s1, s2) and (r1, r2) are both crossings byR ◦ S of (0,3n).
Since the crossing(s1, s2) by S is straight, we have by Lemmas 6 and 7 that
w(s1,s2) = wR

(kn
2c,k

n
1c)

. By Lemmas 6 and 7 again, we have thatwR
(kn

2c,k
n
1c)

≥ wn
c . Thus,

w(s1,s2) ≥ wn
c . In a similar way one can show thatw(r1,r2) ≥ wn

a . This proves that
(s, r) satisfies the conditions of Algorithm 9 withwn

c instead ofŵn
c . However,

(s, r) is a straight crossing byS of (kn
2c, k

n
2a). Thus,Eat least oneholds. We just

proved thatEn
straightandEṅ

stoppingtogether implyEat least one. �

PROOF THAT En
stopping∩ En

visit ⊂ Et c HOLDS. In Section 2.6, we saw that
(tn1c, t

n
2c) can be characterized as follows:(tn1c, t

n
2c) is equal to the first crossing
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(tn1i , t
n
2i ) by R ◦ S of (0,3n) with i > 1 such that the following two conditions

hold:

(i) (tn1i , t
n
2i) is not a crossing byS of (kn

1a, k
n
2a).

(ii) (tn1(i−1), t
n
2(i−1)) is a negative crossing byS of (kn

1a, k
n
2a).

The estimate(t̂ n
c1, t̂

n
c2) is defined to be the first crossing byR ◦ S of (0,3n)

for which our localization test decides that the two conditions in the last
characterization above hold. Thus, if up to timetnc2, the localization test gets all
the crossings byS of (kn

1a, k
n
2a) right, then the reconstruction of(tn1c, t

n
2c) works,

that is,Et c holds. The eventEn
stoppingtells us that up totn2ai with i = exp(n0.99) the

localization test makes no errors in recognizing the crossings byS of (kn
1a, k

n
2a).

However, exp(n0.99) ≤ tn2ai for i = exp(n0.99), since each crossing lasts at least
one time unit. Thus, up to time exp(n0.99) the localization test makes no errors
in recognizing the crossings byS of (kn

1a, k
n
2a). However, if En

visit holds, then
the random walkS visits the pointkn

2c before time exp(n0.5). Also, exp(n0.5) ≤
exp(n0.99). In that case, beforeS visits the pointkn

2c, no errors occur. This proves
thatEn

stoppingandEn
visit jointly imply Et c. �

4.2. Probability bounds.

High probability ofEn
visit. We need a few definitions. LetEn

2 be the event that
the random walkS visits both pointsn10 and−n10 before time exp(n0.5). Let

En
k a,c := {|kn

2a|, |kn
2c| ≤ n10}.

S first needs to visit|kn
2a| and|kn

2c| in order to visit both pointsn10 and−n10, when
|kn

2a|, |kn
2c| ≤ n10 (sinceS starts at the origin). Thus,

En
k a,c ∩ En

2 ⊂ En
visit.

Thus,

P (Enc
k a,c) + P (Enc

2 ) ≥ P (Enc
visit).

If P (Enc
k a,c) and P (Enc

2 ) are both finitely summable overn, then P (Enc
visit) is

also. We prove thatP (Enc
k a,c) is finitely summable and leave the proof that

P (Enc
2 ) is finitely summable to the reader since it is very similar to the other

one. LetXR+, respectively,XR−, be the first passage time of the random walk
R(k)k∈N, respectively,R(−k)k∈N, at the point 3n. Let En

R+ := {XR+ ≤ n10}
and let En

R− := {XR− ≤ n10}. Then,En
R+ ∪ En

R− = En
k a,c. Thus, P (Enc

R+) +
P (Enc

R−) ≥ P (Enc
k a,c). By symmetry,P (Enc

R+) = P (Enc
R−). Thus, 2P (Enc

R+) ≥
P (Enc

k a,c). Let Zi denote the first passage time of{R(k)}k∈N at the pointi.

Let Xi := Zi − Zi−1. Then, XR+ := ∑3n
1 Xi and P (Enc

R+) = P (
∑3n

1 Xi >
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n10) ≤ P ((
∑3n

1 Xi)
1/3 > n3). For positive numbersa1, a2, . . . , aj , we always have

that (
∑j

l=1 ai)
3 ≥ ∑j

l=1(ai)
3. Thus

∑3n
i=1(Xi)

1/3 ≥ (
∑3n

i=1 Xi)
1/3. It follows that

P (Enc
R+) ≤ P (

∑3n
i=1(Xi)

1/3 ≥ n3). By Chebyshev, we get

P (Enc
R+) ≤ 3E[(X1)

1/3]
n2 .

In [5] it is shown thatE[(Xi)
1/3] is finite. Thus,P (Enc

R+) is finitely summable
overn, which finishes this proof.

High probabilityof En
stopping. Let En

3 := {∀ i ≤ exp(n0.99), t2ai ≤ exp(n0.999)}.
If up to time t2ai with i = exp(n0.99) the localization test makes no mistake
in identifying exactly all the crossings byR ◦ S of (0,3n) which occur in the
same place, thenEn

stopping holds. Thus, ift2ai ≤ exp(n0.999) for i = exp(n0.99)

and the localization test makes no mistake of this type up to time exp(n0.999),
then En

stopping holds. Let En
test correct be the event that for allza, zb ∈ Z with

0 < |za|, |zb| ≤ n0.999 and for all 0< ia, ib ≤ n0.999 the localization test makes
no error when comparing the crossings(t1a, t2a) and(t1b, t2b). [Here(t1a, t2a) and
(t1b, t2b) are defined as in Lemma 8:(t1a, t2a) is theia th crossing byS of theza th
crossing byR of (0,3n) and(t1b, t2b) is theibth crossing byS of thezbth crossing
by R of (0,3n).] Up to time exp(n0.999), S can cross a crossing byR at most
exp(n0.999) times. Thus, if(t1a, t2a) and(t1b, t2b) occur before time exp(n0.999),
then 0< ia, ib ≤ n0.999. Furthermore, to reach thezth crossing(kn

1z, k
n
2z), S needs

first to cross all the crossings(kn
1z′, kn

2z′) with z′ strictly between 0 andz. Thus up
to time exp(n0.999) S cannot reach any crossing(kn

1z, k
n
2z) with |z| > exp(n0.999). If

the crossings(t1a, t2a) and(t1b, t2b) occur before time exp(n0.999), we hence have
that 0< ia, ib ≤ n0.999 and 0< |za|, |zb| ≤ n0.999. Thus,En

3 andEn
test correctboth

hold; the localization test makes no mistake in identifying which of(0,3n) occur
in the same place up to timet2ai . In this case,En

stoppingholds. Thus,

En
3 ∩ En

test correct⊂ En
stopping.

It follows that

P (Enc
3 ) + P (Enc

test correct) ≥ P (Enc
stopping).

If P (Enc
3 ) andP (Enc

test correct) are both finitely summable overn, thenP (Enc
stopping)

is also. The proof thatP (Enc
3 ) is finitely summable is very similar to the proof for

P (Enc
k a,c), so we leave it to the reader. LetEn

test correctia,ib,za,zb
be the event that the

localization test recognizes correctly if with the crossings(t1a, t2a) and(t1b, t2b)

we are in theH0-case or not. By definition,⋂
En

test correctia ,ib,za,zb
= En

test correct,
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where the last intersection is taken over allia, ib, za, zb such that 0< |za|, |zb| ≤
n0.999 and 0< ia, ib ≤ n0.999. Thus,∑

P
(
Enc

test correctia ,ib,za,zb

) ≥ P (Enc
test correct),

where the sum is taken over the same domain as before the union. There
are n3.996 quadruples(ia, ib, za, zb) such that 0< |za|, |zb| ≤ n0.999 and 0<

ia, ib ≤ n0.999. By the large deviation principle and Lemma 8, the probability
P (Enc

test correctia,ib,za,zb
) is exponentially small inn. Thus there existk > 0 not

depending onn or on(ia, ib, za, zb) such thatP (Enc
test correctia,ib,za,zb

) ≤ exp(−kn).
This implies that

P (Enc
test correct) ≤ n3.996 · exp(−kn).

Thus,P (Enc
test correct) is finitely summable overn.

High probability ofEn
straight. Let t̄ n

2ai denote the 20,000th stopping timetn2ai .

Thus, t̄ n
2ai := tn2a(20,000·i). Let En

4 be the event that there existsi ≤ n−20,000 · en̄

ands, r with t̄ n
2ai ≤ s, r ≤ t̄ n

2ai + n220 such that(s, r) is a straight crossing byS of
(kn

1c, k
n
2a). We have thatEn

4 ⊂ En
straight. Let En

5 := En
k a,c ∩ Eṅ

k a,c. We find that the
last inclusion implies

P (Enc
4 ∩ En

5) + P (Enc
5 ) ≥ P (Enc

straight).

We already saw thatP (Enc
5 ) is finitely summable overn. So it only remains to

be proven thatP (Enc
4 ∩ En

5) is finitely summable overn. Let Xi be the Bernoulli
variable which is equal to 1 iff there existss, r with t̄ n

2ai ≤ s, r ≤ t̄ n
2ai + n220 such

that (s, r) is a straight crossing byS of (kn
1c, k

n
2a). By the Markov property of the

random walkS, we have that conditional underσ(R(k)|k ∈ Z) the variablesXi

are i.i.d. Also,En
5 is σ(R(k)|k ∈ Z)-measurable. We are next going to evaluate the

conditional probability:P (X1 = 1|R(k), k ∈ Z) whenEn
5 holds. WhenEn

5 holds,
then |kṅ

2a − kn
2c| ≤ 2ṅ10. We have 2̇n10 := 2n110. By definition at any timet ṅ2ai

the random walkS is at the pointkṅ
2a . By the local central limit theorem, when

|kṅ
2a − kn

2c| ≤ 2ṅ10, the probability thatS goes fromkṅ
2a to kn

2c in less than1
2n220

steps is bigger thank2 · n−110. (Herek2 denotes a constant not depending onn

and not depending onR as long asR ∈ En
5.) Crossing in a straight way to the

point kn
2a right after the random walkS is at the pointkn

2c, has probability bigger

than(1
2)2n10

, when|kn
2a − kn

2c| ≤ 2n10. But, whenEn
5 holds,|kn

2a − kn
2c| ≤ 2n10. All

this implies that whenEn
5 holds,

P
(
X1 = 1|R(k), k ∈ Z

) ≥ (k2n
−110)

(1
2

)2n10
.(16)

Let ε1 := (k2n
−110)(1

2)2n10
. Let n̂ := n−20,000 · en̄. Note that

Enc
4 :=

{
n̂∑

i=1

Xi = 0

}
.
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Conditional underσ(R(k)|k ∈ Z) theXi ’s are i.i.d. Thus,

P
(
Enc

4 |R(k), k ∈ Z
) = (

1− P
(
Xi = 1|R(k), k ∈ Z

))n̂
.

Using (16), we get forR ∈ En
5,

P
(
Enc

4 |R(k), k ∈ Z
) ≤ (1− ε1)

n̂.(17)

Whenn goes to infinity, thenε1 tends to zero. Thus, forn big enough we get

(1− ε1)
1/ε1 ≤ e−0.5.

Applying this to (17) leads in the case thatR ∈ En
5, to

P
(
Enc

4 |R(k), k ∈ Z
) ≤ e−0.5n̂ε1.

Integrating the last inequality overEn
5 leads to

P (Enc
4 ∩ En

5) ≤ e−0.5n̂ε1.(18)

Recall thatn̄ := n10.89 andṅ := n11. In n̂, the leading term isen̄. In ε1 the leading
term iseln(0.5)·2n10

. Sincen10.89 � n10 we get thaten̄ � e− ln(0.5)·2n10
. This implies

that the leading term in̂nε1 is en̄. Thus, the term on the right-hand side of (18) is
finitely summable overn.

High probabilityof En
no other crossing byR. Let n∗ := n110+n220. Let (tn111, t

n
211)

designate the first crossing byS of (kn
11, k

n
21). Let wn

11 := w(tn111,t
n
211)

. Define

En
61 := {

The only crossing(kn
1z, k

n
2z) with 0< |z| ≤ n∗

such thatwR
(kn

1z,k
n
2z)

≥ wn
11 is (kn

11, k
n
21)

}
.

Let (tn1(−1)1, t
n
2(−1)1) designate the first crossing byS of (kn

1(−1), k
n
2(−1)). Let

wn
1(−1) := w(tn1(−1)1,tn2(−1)1). Define

En
6(−1) := {

The only crossing(kn
1z, k

n
2z) with 0 < |z| ≤ n∗

such thatwR
(kn

1z,k
n
2z)

≥ wn
1(−1) is

(
kn

1(−1), k
n
2(−1)

)}
.

If Eṅ
k a,c holds, then|kṅ

2a| ≤ n110. All the crossings(k1, k2) concerned by the

eventEn
no other crossing byR are such that|k1 − kṅ

2a |, |k2 − kṅ
2a| ≤ n220. Thus, when

Eṅ
k a,c holds, then all the crossings concerned byEn

no other crossing byR are within
n∗ of the origin. When we write those crossings in the form(kn

1z, k
n
2z) they must

be such that|z| ≤ n∗. Thus, whenEṅ
k a,c holds, the eventsEn

61 andEn
62 cover all

the crossings involved in the definition of the eventEn
no other crossing byR. One of

the crossings(kn
1a, k

n
2a) and(kn

1c, k
n
2c) is equal to(kn

11, k
n
21) while the other one is
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equal to(kn
1(−1), k

n
2(−1)). Similarly, one of the crossings(tn1a, t

n
2a) and(tn1c, t

n
2c) is

equal to(tn111, t
n
211) while the other one is equal to(tn1(−1)1, t

n
2(−1)1). Eventually,

one of the wordswn
a and wn

c is equal town
11 while the other one is equal

to wn
1(−1). This implies that whenEṅ

k a,c holds, the eventsEn
61 andEn

62 jointly
imply En

no other crossing byR. Thus,

En
61 ∩ En

62 ∩ Eṅ
k a,c ⊂ En

no other crossing byR.

It follows that

P (Enc
61) + P (Enc

62) + P (Eṅc
k a,c) ≥ P (Enc

no other crossing byR).

We already saw thatP (Eṅc
k a,c) is finitely summable overn. By symmetry

P (Enc
61) = P (Enc

62). Thus, it only remains to prove thatP (Enc
61) is finitely

summable overn. Let

En
61z := {

wR
(kn

1z,k
n
2z)

� wn
11

}
.

We have

En
61 := ⋂

0<|z|≤n∗,z �=1

En
61z.

It follows that

P (Enc
61) ≤ ∑

0<|z|≤n∗,z �=1

P (Enc
61z).

We saw in the proof of Lemma 8 the distribution, ofwR
(kn

1z,k
n
2z)

does not depend

on z. Thus, the expression on the right-hand side of the last inequality is equal to
(2n∗ − 2)P (Enc

612). This yields

P (Enc
61) ≤ (2n∗ − 2)P (Enc

612).(19)

We have thatEnc
612= {wR

(kn
12,k

n
22)

≥ wn
11}. Hence,

Enc
612=

n−1⋂
m=0

{
wR

(kn
12,k

n
22)

(m) ≥ wn
11(m)

}
.

As in the proof of Lemma 8, the bits of the wordwR
(kn

12,k
n
22)

are i.i.d. as well as the

bits ofwn
11 andwR

(kn
12,k

n
22)

is independent ofwn
11. This gives

P (Enc
612) =

n−1∏
m=0

P
(
wR

(kn
12,k

n
22)

(m) ≥ wn
11(m)

) = P
(
wR

(kn
12,k

n
22)

(1) ≥ wn
11(1)

)n
.

The probabilityq := (wR
(kn

12,k
n
22)

(1) ≥ wn
11(1)) is strictly smaller than 1 and does

not depend onn. Thus, the bound(2n∗ − 2)qn on the left-hand side of (19) is
finitely summable overn.
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5. Why the reconstruction of ξ works. Our reconstruction algorithm con-
structs a scenerȳξ . The main result of this paper is that a.s.ξ̄ is equivalent toξ .
This is also what we need to prove in this section. The reconstruction algorithm
we propose constructs̄ξ by assembling (as explained in Section 3) the finite re-
constructed pieceŝξn. The piecêξn is provided by the reconstruction algorithm at
leveln. The reconstruction algorithm at leveln tries to reconstruct the finite piece
of the sceneryξ :

ξn := ξ(kn
1c), ξ(kn

1c + u), ξ(kn
1c + 2u), . . . , ξ(kn

1a),

where u := (kn
1a − kn

1c)/|kn
1a − kn

1c|. We have proven in the last section that
(1 − P (ξn = ξ̂ n)) is finitely summable overn. It follows that a.s.ξn = ξ̂ n for all
but a finite number ofn’s. In Section 3 we have seen that the constructed scenery
ξ̄ is equivalent toξ as soon as for all but a finite number ofn’s we have that
ξn �1 ξn+1 andξn = ξ̂ n. It thus only remains to prove that a.s. for all but a finite
number ofn’s, ξn �1 ξn+1 holds. Define

ξn
inside := ξ(−n), ξ(−n + 1), ξ(−n + 2), . . . , ξ(n)

and

ξn
outside:= ξ(−n10), ξ(−n10 + 1), ξ(−n10 + 2), . . . , ξ(n10).

By definition, |kn
2a|, |kn

2c| ≥ n from which it follows thatξn
inside � ξn. On the

other hand, ifEn
k a,c holds, then|kn

2a|, |kn
2c| ≤ n10 and ξn � ξn

outside. Recall that

ξn � ξn+1 always holds by definition. Summing up: whenEn+1
k a,c holds, we find

that

ξn
inside� ξn � ξn+1 � ξn+1

outside.

Next, note that ifζa, ζb, ζc, ζd ∈ ⋃
l∈N{0,1}l with ζa � ζb � ζc � ζd andζa �1 ζd ,

then alsoζb �1 ζc. Thus, whenEn+1
k a,c holds, if ξn

inside�1 ξn+1
outside, then alsoξn �1

ξn+1. Let

En
unique:= {ξn

inside�1 ξn+1
outside}.

We have shown that

En
unique∩ En+1

k a,c ⊂ {ξn �1 ξn+1}.
For (1 − P (ξn �1 ξn+1)) to be finitely summable overn, it is thus enough that
P (Enc

unique) andP (E
c(n+1)
k a,c ) both are. We have already proven that the probability

of the complementP (E
c(n+1)
k a,c ) is finitely summable overn. It remains to show that

P (Enc
unique) also is finitely summable. Let

En
unique, +l := {

ξn
inside �= (

ξ(l), ξ(l + 1), ξ(l + 2), . . . , ξ(l + 2n)
)}
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and

En
unique, −l := {

ξn
inside �= (

ξ(l), ξ(l − 1), ξ(l − 2), . . . , ξ(l − 2n)
)}

.

With this notation, ⋂
l �=−n,|l|≤n10

(En
unique, +l ∩ En

unique, −l) ⊂ En
unique.

The last inclusion implies∑
l �=−n,|l|≤n10

P (Enc
unique, +l) + P (Enc

unique, −l) ≥ P (Enc
unique).(20)

Because the sceneryξ consists of i.i.d. Bernoulli variables with parameter1
2, we

find thatP (Enc
unique, +l) = P (Enc

unique, −l) = (1
2)2n. Furthermore, there are less than

2n10 elements in the set{l �= −n, |l| ≤ n10}. This finishes the proof that the bound
on the left-hand side of (20) is finitely summable overn.
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