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LARGE DEVIATIONS FOR A CLASS OF NONHOMOGENEOUS
MARKOV CHAINS1

BY ZACH DIETZ AND SUNDER SETHURAMAN

Tulane University and Iowa State University

Large deviation results are given for a class of perturbed nonhomoge-
neous Markov chains on finite state space which formally includes some
stochastic optimization algorithms. Specifically, let{Pn} be a sequence of
transition matrices on a finite state space which converge to a limit transi-
tion matrix P . Let {Xn} be the associated nonhomogeneous Markov chain
wherePn controls movement from timen − 1 ton. The main statements are
a large deviation principle and bounds for additive functionals of the non-
homogeneous process under some regularity conditions. In particular, when
P is reducible, three regimes that depend on the decay of certain “connection”
Pn probabilities are identified. Roughly, if the decay istoo slow, too fast or in
an intermediate range, the large deviation behavior is trivial, the same as the
time-homogeneous chain run withP or nontrivial and involving the decay
rates. Examples of anomalous behaviors are also given when the approach
Pn → P is irregular. Results in the intermediate regime apply to geometri-
cally fast running optimizations, and to some issues in glassy physics.

1. Introduction. The purpose of this paper is to provide some large deviation
bounds and principles for a class of nonhomogeneous Markov chains related to
some popular stochastic optimization algorithms such as Metropolis and simulated
annealing schemes. In a broad sense, these algorithms are stochastic perturbations
of steepest descent or “greedy” procedures to find the global minimum of a
function H and are in the form of nonhomogeneous Markov chains whose
connecting transition kernels converge to a limit kernel associated with steepest
descent.

For instance, in the Metropolis algorithm on finite state space�, the transition
kernel connecting timesn − 1 andn is given by

Pn(i, j) =


g(i, j)exp
{−βn

(
H(j) − H(i)

)
+
}
, for j �= i,

1−∑
l �=i

Pn(i, l), for j = i,(1.1)

whereg is an irreducible transition function andβn represents an inverse tem-
perature parameter which diverges,βn → ∞. Here, the limit kernelP = limn Pn
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corresponds to steepest descent in that jumps fromi to j whenH(j) > H(i) are
not allowed.

These types of schemes are intensively used in image analysis [35], neural
networks [4], statistical physics of glassy systems and combinatorial optimiza-
tions [26]. More general tutorials include [8, 16, 17] and [32].

Virtually all previous large deviations work with respect to optimization
chains has been through Freidlin–Wentzell-type methods [14]. This approach is
to consider a sequence of time-homogeneous Markov chains, parametrized by
temperature, which approaches the steepest descent chain as the temperature cools,
and then to transfer “short time” large deviation estimates to a single related system
in which temperature varies with time. For instance, with respect to the Metropolis
algorithm, by studying the sequence of time-homogeneous chains{Xβ· :β ≥ 0}
whereβn ≡ β andβ ↑ ∞, estimates can be made on the nonhomogeneous chain
whereβn varies. Although this approach has had much success, especially related
to statistical physics metastability questions, it seems that only large deviation
bounds are recovered for the position of the nonhomogeneous process rather than
large deviation principles (LDPs) (see [2, 5, 6, 8, 9] and references therein). It
would be then natural to ask about LDPs for empirical averages which are more
regular objects than the positions.

In a different, more general vein, LDPs have been shown for independent non-
identically distributed variables whose Cesaro empirical averages converge [29],
and also for some types of Gibbs measures, which include nonhomogeneous chains
whose connecting transition kernels are positive entrywise and converge in Cesaro
mean to a positive limit matrix [31].

Other work in the literature treats an intermediate case of nonhomogeneity,
namely Markov chains whose transition kernels are chosen at random from a time-
homogeneous process. The results here are then to prove an LDP for almost all
realized nonhomogeneous Markov chains chosen in this fashion [20, 30]. Also, we
note that an LDP has been shown for a class of near irreducible time-homogeneous
processes that satisfy some mixing conditions [1].

In this context, we develop here an LDP in natural scalen with explicit rate
function for the empirical averages of nonhomogeneous Markov chains on finite
state spaces whose transition kernels converge to the general limit matrix which
allows for reducibility, a key concern in optimization schemes. We note the
methods used here differ from Freidlin–Wentzell-type arguments in that they focus
on the nonhomogeneous process itself rather than homogeneous approximations.
The specific techniques used are constructive and involve various “surgeries” of
path realizations and some coarse graining.

Let � = {1,2, . . . , r} be a finite set of points. LetPn = {pn(i, j) : i, j ∈ �} be a
sequence ofr × r stochastic matrices forn ≥ 1 and letπ be a distribution on�.
Let nowPπ = P

{Pn}
π be the (nonhomogeneous) Markov measure on the sequence

space�∞ with Borel setsB(�∞) that correspond to initial distributionπ and



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 423

transition kernels{Pn}. That is, with respect to the coordinate processX0,X1, . . . ,

we have the Markov property

Pπ(Xn+1 = j |X0,X1, . . . ,Xn−1,Xn = i) = pn+1(i, j)

for all i, j ∈ � andn ≥ 0. We see then thatPn+1 controls “transitions” between
timesn andn + 1.

We now specify the class of nonhomogeneous processes focused on in this
article. Letπ be a distribution and letP = {p(i, j)} be a stochastic matrix on�.
Define the collection

A(P ) = {
P

{Pn}
π :Pn → P

}
,

where the convergencePn → P is elementwise, that is, limn→∞ pn(i, j) = p(i, j)

for all i, j ∈ �. The collectionA can be thought of as perturbations of the time-
homogeneous Markov chain run withP and is a natural class in which to explore
how nonhomogeneity enters into the large deviation picture.

We also remark that this class has been studied in connection with other
types of problems such as ergodicity [19], laws of large numbers [34, 35] and
fluctuations [18]. See also [24] and [15] for some laws of large numbers and
fluctuation results for generalized annealing algorithms and Markov chains with
rare transitions.

Let nowf :� → Rd be a(d ≥ 1)-dimensional function. Let alsoPπ ∈ A(P )

be aP -perturbed nonhomogeneous Markov measure. In terms of the coordinate
process, define the additive sumZn = Zn(f ) for n ≥ 1 by

Zn = 1

n

n∑
i=1

f (Xi).

The specific goal of this paper is to understand the large deviation behavior of
the induced distributions of{Zn :n ≥ 1} with respect toPπ in scalen. That is, we
search for a rate functionJ so that for Borel setsB ⊂ Rd ,

− inf
z∈Bo

J(z) ≤ lim inf
1

n
logPπ (Zn ∈ B)

≤ lim sup
1

n
logPπ(Zn ∈ B) ≤ − inf

z∈
B
J(z).

An immediate question which comes to mind is whether these large deviations for
the nonhomogeneous chain, if they exist, differ from the deviations with respect to
the time-homogeneous chain run withP . The general answer found in our work
is “Yes” and “No,” and as might be suspected depends on the rate of convergence
Pn → P and the structure of the limit matrixP .

More specifically, whenP is irreducible, it turns out that the large deviation of
behavior of{Zn} underPπ is the same as that under the time-homogeneous chain
associated withP and independent of the rate of convergence ofPn to P . (Note
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that [31] covers the caseP is positive entrywise and [29] covers the case when
eachPn has identical rows.)

Perhaps the more interesting case is when the target matrixP is reducible.
Indeed, this is the case with stochastic optimization algorithms whereH has
several local minima, for example, with respect to the Metropolis process, the local
minima sets ofH do not communicate in the limit steepest descent chain. In this
situation, the large deviations of{Zn} depend on both the type of reducibilities
of P and the decay rate, with respect toPn, of certain “connection probabilities”
betweenP -irreducible sets, and fall into three categories. Namely, when the
decay is fast, or superexponential, the large deviation behavior is the same as
for the time-homogeneous Markov chain run underP ; when the speed is slow,
or subexponential, a trivial large deviation behavior is obtained; finally, when the
speed is intermediate, or when the connection probabilities are on the ordere−Cn,
a nontrivial behavior is found which differs from stationarity.

We remark now, in terms of applications, the intermediate processes are
important in situations such as (i) fast annealing simulations, and (ii) models of
glass formation.

(i) In Metropolis-type procedures, classic convergence theorems mandate that
the temperatures satisfyβn ≤ CH logn with respect to a known constantCH for
the process to converge to the global minima set ofH (cf. [8] and [17]):

lim
n→∞ Pπ(Xn ∈ global minima set ofH) = 1.

However, with only finite time and resources, the optimal logarithmic speed is too
slow to yield good results. In fact, in violation of classic results, exponentially fast
schemes whereβn ∼ n are often used for which the process may actually converge
to a nonglobal but local minimum ofH . Whereas connecting probabilities between
local minima sets are on the order of exp(−Cβn), these chains fit naturally in
the intermediate framework mentioned above (cf. discussion after Corollary 3.1).
Although there are some good error bounds for these geometrically cooling
experiments in finite time [7], it seems the structure of the associated dynamics
is not that well understood (cf. [35], Section 6.2).

(ii) In the manufacture of glass, a hot, fired material is quickly quenched into a
substance which is not quite solid or liquid. The interpretation is that under rapid
cooling the constructed glass is caught in a local energy optimum associated with
some spatial disorder—not the regularly structured global one associated with a
solid—from which over much longer time scales it may move to other states [22].
Such glassy systems are intensively studied in the literature. Two rough concerns
can be identified: What are the typical glass landscapes which specify the local
optima and what are the dynamics of the quick quenching phase and beyond?
Much discussion is focused on the first concern [27], but even in systems where
statics are quantified, dynamical questions remain open [23], Part IV, and [26].
However, with respect to metastability, as mentioned earlier, much work has been
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accomplished (cf. [3, 11] and [33] and references therein). Less work has been
done though when certain time inhomogeneities are severe, say on exponential
scalee−Cn, in the context of Metropolis models in the intermediate regime.

At this point, we observe, as alluded to above in the two examples, that (from
Borel–Cantelli arguments) the typical large scale picture of general intermediate
speed nonhomogeneous Markov chains is to get trapped in one of the irreducible
sets that correspond to the limitP (e.g., the localH -minima sets in the Metropolis
scheme). In this sense, the large deviations rate functionJ, found with respect to
averages{Zn}, is relevant to understanding how atypical deviations arise, namely
how the process average can “survive” for long times, that is, howZn ∼ z for
large n when z is not a P -irreducible set average. More specifically, whenP

corresponds toK ≥ 2 irreducible sets{Cζj
}, we show thatJ is an optimization

between two types of costs and is in the form

J(z) = min
σ∈S

inf
v∈�

inf
x∈D(v,z)

−
K−1∑
i=1

(
i∑

j=1

vj

)
U
(
ζσ(i), ζσ(i+1)

)+
K∑

i=1

viIζσ(i)
(xi).

HereIζj
is the rate function for theP time-homogeneous chain restricted toCζj

and represents a “resting” cost of moving withinCζj
, andU(ζj , ζk) is a large

deviation “routing” cost of traveling betweenCζj
andCζk

. Also, S and� are the
sets of permutations and probabilities on{1,2, . . . ,K}, respectively, andD(v, z) is
the set of vectorsx such that

∑K
j=1vjxj = z. The intuition then is thatZn optimally

deviates toz by visiting sets{Cζj
} finitely many times, in a certain orderσ with

time proportionsv, so that the averagez is maintained, and resting and routing
costs are minimized.

Our main theorem (Theorem 3.3) is that under some natural regularity
conditions on the approachPn → P , the averageZn satisfies an LDP with rate
function J. When U ≡ −∞ or U ≡ 0, that is, when connection probabilities
vanish too fast or too slow, the rateJ reduces to the rate function for the
time-homogeneous chain run underP or a trivial rate. When the connections
are exponential,−∞ < U < 0 andJ nontrivially incorporates the convergence
exponents (Corollary 3.1). Some comments on the Metropolis algorithm are made
at the end of Section 3. When the approach is irregular, large deviation bounds
(Theorems 3.1 and 3.2) and examples (Section 12) of anomalous behaviors are
also given.

Finally, it is natural to ask about the large deviations on scalesαn different
from scalen, that is, the lim inf and lim sup limits of(1/αn) logPπ (Zn ∈ B). The
metaresult should be, if the typical system behavior is to be absorbed into certain
sets, the analogous large deviation (LD) behavior holds in scaleαn with revised
resting and routing costs reflecting the scale. In fact, with respect to the Metropolis
model, by the methods in this article, large deviation bounds and principles in
scaleβn can be derived as long as lim infβn/nθ = ∞ for someθ > 0. In principle,
similar results should hold whenβn > C logn and C > 1, although this is not
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pursued here. On the other hand, large deviation principles in scaleβn ≤ logn

are of a completely different category, because in this case there is no local
minima absorption (see, however, [9] for LD bounds with respect to metastability
concerns).

2. Preliminaries. We now recall and develop some definitions and notation
before arriving at the main theorems. Throughout, we use the convention that
±∞ · 0= 0 and log 0= −∞.

2.1. Rate functions and extended LDP. Let I :Rd → R ∪ {∞} be an extended
real-valued function. We say thatI is an extended rate function if I is lower
semicontinuous and, further, thatI is agood extended rate function if, in addition,
the level sets ofI, namely{x : I(x) ≤ a} for a ∈ R, are compact. This definition
extends the usual notion of rate function where negative values are not allowed
(cf. [10], Section 1.2). Namely, we sayI is a (good ) rate function if I :Rd →
[0,∞] is a (good) extended rate function.

We denoteQI ⊂ Rd as the domain of finiteness,QI = {x ∈ Rd : I(x) < ∞}. We
also recall the standard notation forB ⊂ Rd thatI(B) = infx∈B I(x).

Let now {µn :n ≥ 1} be a sequence of nonnegative measures with respect to
Borel sets onRd . We say that{µn} satisfies a large deviation principle with
(extended) rate functionI if, for all Borel setsB ⊂ Rd , we have

− inf
x∈Bo

I(x) ≤ lim inf
1

n
logµn(B) ≤ lim sup

1

n
logµn(B) ≤ − inf

x∈
B
I(x).(2.1)

2.2. Nonnegative matrices. Let U = {u(i, j)} be a matrix on� and let
C ⊂ � be a subset of states. DefineUC = {u(i, j) : i, j ∈ C} as the corresponding
submatrix. We say thatUC is nonnegative, denotedUC ≥ 0, if all entries
are nonnegative. Analogously,UC is positive, denotedUC > 0, if its entries
are all positive. We say a nonnegative matrixUC is stochastic if all rows
add to 1,

∑
j∈C u(i, j) = 1 for all i ∈ C; of course,UC is substochastic when∑

j∈C u(i, j) ≤ 1 for all i ∈ C. Also, we sayUC is primitive if there is an integer
k ≥ 1 such thatUk

C > 0 is positive. In addition, we sayUC is irreducible if,
for any i, j ∈ C, there is a finite pathi = x0, x1, . . . , xn = j in C with positive
weight,UC(x0, x1) · · ·UC(xn−1, xn) > 0. Theperiod of a statei ∈ C is defined as
dC(i) = g.c.d{n ≥ 1 :Un

C(i, i) > 0}. WhenUC is irreducible, all states inC have
the same perioddC . WhendC = 1, we sayUC is aperiodic. Finally, note thatUC is
primitive ⇔ UC is irreducible and aperiodic⇔ (UC)r > 0.

2.3. Construction CON. We now construct a sequence of nonnegative Markov-
like measures. LetUk = {uk(i, j)} for 1 ≤ k ≤ n be a sequence ofr×r nonnegative
matrices. Let alsoπ be a measure on�. Then define the nonnegative measureUπ
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on�n for n ≥ 1, whereUπ(X0 ∈ B) = π(B) and

Uπ (Xn ∈ B) = ∑
x0∈�

∑
xn∈B

π(x0)

n∏
i=1

ui(xi−1, xi),

whereXn = 〈X1, . . . ,Xn〉 is the coordinate process up to timen. Let alsoXj
i =

〈Xi, . . . ,Xj 〉 for 0 ≤ i ≤ j be the observations between timesi andj , and denote,
for 0 ≤ k ≤ m ≤ l,

U(k,π)(Xl
m ∈ B) = U

′
π (Xl−k

m−k ∈ B),

whereU′
π is made with respect toU ′

i = Ui+k for i ≥ 1. Whenπ is the point
massδx for x ∈ �, we denoteU(k,δx) = U(k,x) for simplicity.

The measureUπ shares the Markov property:

Uπ (Xk ∈ A,Xn
k+1 ∈ B) = ∑

x0∈�

∑
xk∈A

∑
xn
k+1∈B

π(x0)

n∏
i=1

ui(xi−1, xi)

(2.2)
= ∑

xk∈A

Uπ (Xk = xk)U(k,xk)(X
n
k+1 ∈ B).

2.4. LDP for homogeneous nonnegative processes. Let U be a nonnegative
matrix on�. Let alsoC ⊂ � and letf :� → Rd be a subset and function on the
state space.

Forλ ∈ Rd , define the “tilted” matrix�C,λ,f,U = �C,λ by

�C,λ = {
u(i, j)e〈λ,f (j)〉 : i, j ∈ C

}
.

Suppose now thatC is such thatUC is irreducible. Then�C,λ is irreducible for all
λ andf , and we may define

ρ(C,λ) = ρ(C,λ;f,U) as the Perron–Frobenius eigenvalue of�C,λ(2.3)

(cf. [10], Theorem 3.1.1, or [28]). Define also the extended functionIC =
IC,f,U :Rd → R ∪ {∞} by

IC,f,U (x) = sup
λ∈Rd

{〈λ,x〉 − logρ(C,λ)}

and letQC = QIC be its domain of finiteness.
Let nowπ be a distribution on� and letUπ be made from CON withUk = U

for all k ≥ 1. We call such a measureUπ a homogeneous nonnegative process.
Also, for x0 ∈ C, define the measures onRd for n ≥ 2 by

µn(B) = Ux0

(
Zn(f ) ∈ B,Xn ∈ Cn).

Define also for 1≤ k ≤ l thatZl
k = Zl

k(f ) = (1/l − k + 1)
∑l

i=k f (Xi). Note,
as |�| < ∞, thatf is bounded,‖f ‖ = max1≤i≤d ‖fi‖L∞ < ∞ and soZl

k varies
within the closed cubeK = 
Bcu(0,‖f ‖) of width 2‖f ‖ about the origin.
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The following proposition is proved in the Appendix.

PROPOSITION 2.1. The function IC and domain QC satisfy the following
criteria:

1. Domain QC is a nonempty convex compact subset of the cube K.
2. Function IC is a good extended rate function. In fact, when UC is substochastic,

IC is a good rate function.
3. Function IC is convex on Rd and strictly convex on the relative interior of QC .

Also, when restricted to QC , IC is uniformly continuous and hence bounded
on QC .

4. Measure {µn} satisfies an LDP (2.1)with extended rate function IC .

2.5. Upper block form. For a stochastic matrixP = {p(i, j)} on �, we now
recall the upper block form. By reordering� if necessary, the matrixP may be
put in the form

P =



U(0,0) U(0,1) · · · · · · U(0,M0)

0 S(1) 0 · · · 0
... 0

. . .
...

...
. . .

. . .
...

0 · · · · · · 0 S(M0)


,(2.4)

where 1≤ M0 ≤ r andS(1), . . . , S(M0) are stochastic irreducible submatrices that
correspond to disjoint subsets of recurrent states—denoted asstochastic sets—
and submatricesU(0,0), . . . ,U(0,M0) correspond to transient states when they
exist.

When there are transient states, the square blockU(0,0) itself may be
decomposed as (cf. [28], Section 1.2)

U(0,0) =



R(1) V (1,2) · · · · · · V (1,N0)

0 R(2) V (2,3) · · · V (2,N0)

... 0
. . .

...
...

. . .
. . .

...

0 · · · · · · 0 R(N0)


,

where 1≤ N0 ≤ r − 1 andR(i) is either the 1× 1 zero matrix or an irreducible
submatrix that corresponds to a subset of transient states for 1≤ i ≤ N0. We call
the R(i) = [0] matrices and corresponding statesdegenerate transient, and the
irreducibleR(i) and associated statesnondegenerate transient, since returns to
these states are, respectively, impossible and possible under the time-homogeneous
chain run withP .
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Define the number of degenerate transient submatrices as

N =
{

0, when no transient states inP,

|{1 ≤ i ≤ N0 :R(i) = [0]}|, otherwise.

Also let the number of nondegenerate and stochastic submatrices be

M =
{

M0, when no transient states inP,

(N0 − N) + M0, otherwise.

It will be useful to rewrite the upper block form by inserting the form for
U(0,0) into (2.4). To this end, when there are transient states, letP (i) = R(i) for
1 ≤ i ≤ N0 and letP (i) = S(i − N0) for N0 + 1 ≤ i ≤ N0 + M0. When all states
are recurrent, letP (i) = S(i) for 1≤ i ≤ M0. Also, in the following discussion, let
T (i, j) for i < j denote the appropriate “connecting” submatrixU(·, ·) or V (·, ·).
We remark thatT (i, j) is a matrix of zeroes forN0 + 1 ≤ i < j ≤ N + M .

We have now the canonical decomposition

P =



P (1) T (1,2) · · · · · · T (1,N + M)

0 P (2) T (2,3) · · · T (2,N + M)

... 0
. . .

...
...

. . .
. . .

... · · ·
0 · · · · · · 0 P (N + M)


.

Let now Ci = Ci(P ) ⊂ � be the subset which corresponds toP (i) so that
PCi

= P (i) = {p(x, y) :x, y ∈ Ci} for 1 ≤ i ≤ N + M . Define also the sets
D = D(P ), N = N (P ), M = M(P ) andG = G(P ) by

D = {i :P (i) degenerate transient},
N = {i :P (i) nondegenerate transient},
M = {i :P (i)stochastic},
G = N ∪ M

(= {i :P (i) nondegenerate transient or stochastic}).
To link with previous notation, note thatN = |D | andM = |G|.

It will be convenient to enumerate the elements ofG asG = {ζ1, ζ2, . . . , ζM}.
WhereasP (i) is (sub)stochastic and irreducible fori ∈ G, we may denote, with
respect tof :� → Rd , the rate functionIi = ICi,f,P and its domain of finiteness
Qi = QCi

. In addition, let

pmin = min{p(x, y) :p(x, y) �= 0, x, y ∈ Ci, i ∈ G}(2.5)

be the minimum positive transition probability in the irreducible submatrices ofP .
Consider now a sequence of transition matrices{Pn}, wherePn = {pn(i, j)}

converges toP . With respect to the sets{Ci(P ) : 1 ≤ i ≤ N + M} above for the
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matrix P , thenth step matrixPn can be put in the form

Pn =



Pn(1) Tn(1,2) · · · · · · Tn(1,N + M)

Tn(2,1) Pn(2) Tn(2,3) · · · Tn(2,N + M)

... Tn(3,2)
...

.

..
. . .

.

..

Tn(N + M,1) · · · · · · Tn(N + M,N + M − 1) Pn(N + M)


,

wherePn(i) = (Pn)Ci
→ P (i) for 1 ≤ i ≤ N + M , Tn(i, j) governsPn transitions

from Ci to Cj , andTn(i, j) → T (i, j) for i < j and vanishes otherwise. As a
warning, we note that the form above forPn is NOT the canonical decomposition
of Pn.

2.6. Routing costs and deviations. Let SM and�M be the set of permutations
and the collection of probability vectors on{1,2, . . . ,M},

�M =
{

v ∈ R
M :

M∑
i=1

vi = 1,0 ≤ vi ≤ 1 for 1≤ i ≤ M

}
.

For v ∈ �M andz ∈ Rd , define the set of convex combinations

D(M,v, z) =
{

x = 〈x1, . . . , xM〉 ∈ (Rd)M :
M∑
i=1

vixi = z

}
.(2.6)

Let alsoU = {u(i, j) : 1 ≤ i, j ≤ M} be a matrix of extended nonpositive real
numbers. For a permutationσ ∈ SM , v ∈ �M , x ∈ (Rd)M andz ∈ Rd , define the
extended functions

Cv,U (σ,x) =


−

M−1∑
i=1

(
i∑

j=1

vj

)
u
(
ζσ(i), ζσ(i+1)

)+
M∑
i=1

viIζσ(i)
(xi), for M ≥ 2,

I1(x1), for M = 1,

and

JU(z) = inf
v∈�M

inf
x∈D(M,v,z)

min
σ∈SM

Cv,U (σ,x).

It will be shown thatJU is a good rate function (Proposition 4.1). Moreover, it will
turn out, for well chosen routing cost matricesU , that JU(z) measures various
upper and lower large deviation rates of the additive sums{Zn(f )}. Note that
JU is defined in terms of{ζi} = G and depends oni ∈ D only possibly through
the routing costU , which makes sense since it would be too expensive to rest
on degenerate transient states in any positive time proportion. Also, we observe
whenM = 1, that is, when any transient states with respect toP do not allow
returns, andP corresponds to exactly one irreducible stochastic block, the function
JU(z) = I1(z) is independent ofU .



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 431

2.7. Upper and lower cost matrices. With respect to aPπ ∈ A(P ), we now
specify certain relevant upper and lower costsU whenN + M ≥ 2. Define, for
distinct 1≤ i, j ≤ N + M ,

t
(
n, (i, j)

) = max
x∈Ci

y∈Cj

pn(x, y)(2.7)

and the extended nonpositive numbers

υ(i, j) = lim sup
n→∞

1

n
logt

(
n, (i, j)

)
and τ (i, j) = lim inf

n→∞
1

n
logt

(
n, (i, j)

)
.

Also, for 0≤ k ≤ N +M − 2, let l0 = i, lk+1 = j and letLk = 〈l0, l1, . . . , lk, lk+1〉
be a(k + 2)-tuple of distinct indices. Now define the upper cost

U0(i, j) = max
0≤k≤N+M−2

max
Lk

k∑
s=0

υ(ls, ls+1)(2.8)

and the lower cost

T0(i, j) = max
0≤k≤N+M−2

max
Lk

k∑
s=0

τ (ls, ls+1).

We remark briefly thatU0(i, j) andT0(i, j) represent, respectively, maximal and
minimal asymptotic travel costs of moving fromCi to Cj in k + 1 ≤ N + M − 1
steps by visiting sets{Ci} in the orderLk .

A more subtle lower costT1 is the following. Let 0≤ k ≤ N + M − 2, l0 = i,
lk+1 = j andLk be as before. Let also

1 ≤ q0, qk+1 ≤ r and whenk > 1 and 1≤ s ≤ k,
(2.9)

let 1≤ qs ≤ r + 1

and callQk = 〈q0, . . . , qk+1〉. Letx0 = 〈x0
1, . . . , x0

q0
〉 andxk+1 = 〈xk+1

1 , . . . , xk+1
qk+1

〉
be vectors with components inCi and Cj , respectively, and whenk ≥ 1, let
xi = 〈xi

1, . . . , x
i
qi

〉 be a vector with elements inCli for 1 ≤ i ≤ k. Denote also
the(k + 2)-tupleVk = 〈x0,x1, . . . ,xk+1〉.

For distincti, j ∈ G, andy ∈ Ci andz ∈ Cj , define

γ 1(n, y, z) = max
0≤k≤N+M−2

max
Lk

max
Qk

max
Vk

P(n−1,y)

(
Xn+r(k+1)

n = 〈x0, . . . ,xk+1, z〉),
where the concatenated vector〈x0, . . . ,xk+1, z〉 = 〈x0

1, . . . , xk+1
qk+1

, z〉 is of length
at mostE0(N,M) + 1. Here,E0(N,M) = (r + 1)(M − 2) + N + 2r andr(u) =∑u

l=0 ql for 0≤ u ≤ k + 1.
Also define

γ 1(n, (i, j)
) = inf

y∈Ci,z∈Cj

γ 1(n, y, z).(2.10)
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Finally, define

T1(i, j) = lim inf
1

n
logγ 1(n, (i, j)

)
.

We now interpret the objectsγ 1(n, y, z), γ 1(n, (i, j)) andT1(i, j). As with the
routing costT0, Lk is an ordered list of sets to visit on the way from pointy to
point z. More specifically here,Qk lists theO(r) number of steps taken in each
visited set andVk details on which states this travel is made. Here,r is chosen
since all movement in a given irreducibleCi ⊂ � is possible in at mostr = |�|
steps. Thenγ 1(n, y, z) is the largest probability of movement fromy to z within
the constraints ofO(r) travel among distinct sets. Also,γ 1(n, (i, j)) is the smallest
such chance of moving fromCi to Cj , andT1(i, j) is the asymptotic exponential
rate of this quantity.

3. Results. We now come to the main results for processesPπ ∈ A(P ).
After a general upper bound and some lower bounds which depend on natural
assumptions, we present an LDP which follows from these bounds. Some remarks
on the Metropolis scheme and on the format of the article are made at the end of
this section.

The upper bound statement is the following.

THEOREM 3.1. With respect to good rate function JU0 and Borel � ⊂ Rd , we
have

lim sup
n→∞

1

n
logPπ(Zn ∈ 
� ) ≤ − inf

z∈
�
JU0(z).

We now label conditions and assumptions to give LD lower bounds.

Sufficient initial ergodicity. To avoid degenerate cases, we introduce an initial
ergodicity condition forPπ so that all information aboutP is relevant. A typical
situation to avoid is whenPn = P for n ≥ m, and distributionπP1 · · ·Pm locks
the process evolution into a strictP -irreducible subset of�. To avoid lengthy
technicalities and to be concrete, we impose the following assumption on the
chains considered in this article. Letn0 = n0({Pn}) ≥ 1 be the first indexm so
that for all s, t ∈ Ci andi ∈ G whenp(s, t) > 0 we havepn(s, t) > 0 for n ≥ m.
Such ann0 < ∞ exists sincePn → P .

CONDITION SIE. There is ann1 ≥ n0 − 1 such that

Pπ(Xn1 ∈ Ci) > 0 for all i ∈ G.

A simpler condition which implies Condition SIE is the following.
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CONDITION SIE-1. Letn0 = 1 and letπ(Ci) > 0 for all i ∈ G.

We say that a distributionπ is SIE-1positive if π(Ci) > 0 for all i ∈ G. A trivial
condition for SIE-1 positivity is whenπ is positive [e.g., whenπ(x) > 0 for all
x ∈ �].

Assumptions A, B and C. We now state three assumptions on the regularity of
the asymptotic approachPn → P .

ASSUMPTIONA. Supposeυ(i, j) = τ (i, j) for all distinct 1≤ i, j ≤ N +M .

ASSUMPTION B. Suppose for all distinct 1≤ i, j ≤ N + M there exists an
elementa = a(i, j) ∈ Ci and a sequence{bn = bn(i, j)} ⊂ Cj such that

τ (i, j) = lim
n→∞

1

n
logpn(a, bn).

In other words,τ (i, j) is achieved on a fixed departing pointa ∈ Ci .

ASSUMPTIONC. DefineP ∗(i) = {p∗(s, t) : s, t ∈ Ci} by

p∗(s, t) =


p(s, t), whenp(s, t) > 0,

1, when lim inf(1/n) logpn(s, t) = 0 andp(s, t) = 0,

0, otherwise.

Suppose thatP ∗(i) is primitive for i ∈ G.

In words, Assumption A specifies that the maximal connection probabilities in
the (1/n) log sense have limits. Assumption B states thatτ (i, j) can be achieved
in a systematic manner. Assumption C ensures there is “primitivity” in the system
and covers the case whenP is periodic but the approachPn is slow enough to give
a sense of primitivity. We now list some easy sufficient conditions to verify these
assumptions.

PROPOSITION3.1.
LIM. Assumptions A and B hold if, for distinct 1≤ i, j ≤ N +M and each pair

x ∈ Ci and y ∈ Cj , we have limn→∞(1/n) logpn(x, y) exists.
PRM. Assumption C holds when {P (i) : i ∈ G} are primitive.

We now come to lower bound statements for the process that obeys Condi-
tion SIE, the first of which holds in general and the second of which holds under
Assumption B or C.

THEOREM 3.2. Let Pπ satisfy Condition SIE.
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(i) Then with respect to good rate function JT1 and Borel � ⊂ Rd , we have

− inf
z∈�o

JT1(z) ≤ lim inf
n→∞

1

n
logPπ(Zn ∈ �o).

(ii) In addition, when either Assumption B or C holds, we have with respect to
good rate function JT0 that

− inf
z∈�o

JT0(z) ≤ lim inf
n→∞

1

n
logPπ(Zn ∈ �o).

We note in the caseM = 1 (i.e., whenP possesses exactly one irreducible
recurrent stochastic set and possibly some degenerate transient states) that
Theorems 3.1 and 3.2 already give an LDP with rate functionJT1 = JU0 = I1.
In particular, in this case, the large deviation behavior underPπ is independent of
the approachPn → P .

However, in the general situation whenM ≥ 2, the lower and upper bounds may
be different. In fact, there are nonhomogeneous processesPπ for which the lower
and upper rate function bounds in Theorems 3.1 and 3.2(i) differ and are achieved
so that the result is sharp in a certain sense (e.g., the example in Section 12.2).

Also, we remark that the two lower bounds in Theorem 3.2 may differ when
there is some periodicity in the system and the maximal connection weight
sequence is not regular. In this case, the process may not be allowed to visit
freely various states because certain cyclic patterns may be in force. Therefore,
the asymptotic routing costs in this general case should be larger than under
Assumption B or C when some regularity is imposed on connection probabilities
or when a form of primitivity is present; hence, the use ofT1 instead ofT0 in the
lower estimates. See Section 12.3 for an explicit process where lower bounds do
not respectT0.

It is natural now to ask when the lower and upper bounds match in the previous
results so that a large deviation principle holds. Forz ∈ Rd , let

J(z) = JU0(z).

Under Assumption A, costsT0 = U0 and so the following is a direct corollary of
Theorems 3.1 and 3.2.

THEOREM 3.3. Suppose Pπ satisfies Condition SIE and Assumption A, and
also either Assumption B or C. Then, with respect to good rate function J and
Borel sets � ⊂ Rd , we have the LDP

− inf
z∈�o

J(z) ≤ lim inf
n→∞

1

n
logPπ(Zn ∈ �o)

≤ lim sup
n→∞

1

n
logPπ (Zn ∈ 
� )

≤ − inf
z∈
�

J(z).
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Hence, by Proposition 3.1, when all limits exist (LIM; in particular, e.g., in
the time-homogeneous case,Pn ≡ P ) or when Assumption A holds and there
is no periodicity (PRM), the LDP is available. Also note that by takingf (x) =
〈11(x),12(x), . . . ,1r(x)〉, Theorem 3.3 gives the LDP for the empirical measure
and so is a form of Sanov’s theorem for these nonhomogeneous chains.

We remark that it may be tempting to think Assumption A by itself may
be sufficient for an LDP, but it turns out there are processes which satisfy
Condition SIE and Assumption A but neither B nor C for which the LDP
cannot hold (e.g., the example in Section 12.3). On the other hand, we note that
Assumption A is not even necessary for an LDP, for instance, with respect to
chains wherePn alternates between two alternatives (cf. Section 12.1). So although
Theorem 3.3 is broad in a sense, more work is required to identify necessary and
sufficient conditions for an LDP.

We now comment on the three types of LD behaviors mentioned in the
Introduction which follow from Theorem 3.3. These are (1) homogeneous,
(2) trivial and (3) intermediate behaviors for which easy sufficient (but not
necessary) conditions are given below.

COROLLARY 3.1. Let Condition SIE,and Assumption A and either Assump-
tion B or C hold. Let also N + M ≥ 2.

1. Suppose υ(i, j) = −∞ when lim supt (n, (i, j)) = 0 for distinct 1 ≤ i,

j ≤ N + M . Then J is also the rate function for the time-homogeneous chain
run under P (because the routing costs are the same as if Pn ≡ P ).

2. Suppose |M| ≥ 2 and U0(i, j) = 0 for all distinct i, j ∈ M. Then J vanishes on
the convex hull of

⋃
i∈M{z : Ii(z) = 0} and so is in a sense trivial.

3. Suppose |M| ≥ 2 and U0(i, j) ∈ (−∞,0) for all distinct i, j ∈ M. Then
J differs from the rate function for the time-homogeneous chain run with P

and also involves nontrivially the convergence speed of Pn to P in terms of
routing costs.

We now briefly comment on application to the Metropolis algorithm. Note

1−∑
j �=i

pn(i, j) = g(i, i) +∑
j �=i

g(i, j)
[
1− exp

(−βn

(
H(j) − H(i)

)
+
)]

.

Also, as βn → ∞, we have limn→∞ g(i, j)exp{−βn(H(j) − H(i))+} =
g(i, j)1[H(j)≤H(i)]. Therefore, the limit matrixP is formed in terms of entries

lim
n

pn(i, j) =


g(i, j)1[H(j)≤H(i)], if i �= j,

g(i, i) +∑
j �=i

g(i, j)1[H(j)>H(i)], if i = j.
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We now decomposeP into componentsD , N andM. First, note that a statex ∈ �

belongs to the “level” set

Cx = {x} ∪
{
y :∃ pathx = x0, . . . , xn = y, where

n−1∏
i=0

g(xi, xi+1) > 0

andH(xi) = H(x) for 1 ≤ i ≤ n

}
,

which corresponds to one of three types,D , N or M.
In particular, Cx is a stochastic set that corresponds toM exactly when

H(x) = min{H(y) :g(x, y) > 0} is a local minimum. Also,Cx is a nondegenerate
transient set exactly whenH(x) is not a local minimum and eitherg(x, x) > 0
or g(x, y) > 0, whereH(y) = H(x). Additionally, Cx is a degenerate singleton
exactly whenH(x) is not a local minimum,g(x, x) = 0, and wheng(x, y) > 0 we
haveH(y) �= H(x).

We now discuss the rate of convergencePn → P . Observe for distinct 1≤ i,

j ≤ N + M , andx ∈ Ci andy ∈ Cj that

lim sup
1

n
logpn(x, y) =

{−(
H(y) − H(x)

)
+lim sup(βn/n), if g(x, y) > 0,

−∞, if g(x, y) = 0,

with analogous expressions for lim inf(1/n) logpn(x, y). Hence LIM holds when
β = lim βn/n exists. Also, we remark that wheng(x, x) > 0 for x ∈ �, there are
no degenerate transient states, so allP submatrices are primitive and PRM holds.
In addition, given irreducibility ofg, Condition SIE is satisfied with respect to any
initial distributionπ .

Therefore, by Corollary 3.1, as routing costs are computed with respect to
different level sets, the three types of LD behavior follow when the limitβ exists
and there is more than one local minimum. Namely, trivial, intermediate or
homogeneous behaviors occur whenβ = 0, β ∈ (0,∞) or β = ∞.

Finally, we give a concrete example with respect to a simple geometrically
cooling Metropolis chain whereβ = 1. Let H be defined on� = {1,2, . . . ,9}
in terms of its graph (Figure 1) and letf (x) = H(x), so thatZn is the average
H value seen by the chain. Typically, for largen, these valuesZn will be near an
H -local minimum average.

Let the kernelg be a random walk so thatg(i, i + 1) = 1/2 for i = 2,6,7,8,
g(i + 1, i) = 1/2 for i = 1,2,6,7, andg(1,2) = 1, g(9,8) = 1, g(3,4) = 1/2,
g(4,3) = (1 − a)/2, g(4,4) = a, g(4,5) = (1 − a)/2, g(5,4) = (1 − b)/2,
g(5,5) = b andg(5,6) = (1 − b)/2 with 0< a,b < 1. Then states{2}, {6}, {8}
are distinct local minima,{4}, {5} are nondegenerate transient singletons and the
remaining states are degenerate transient.
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FIG. 1. Graph of H .

The routing costs satisfy, for distinct sets,

U0({i}, {j}) =


−

j−1∑
l=i

(
H(l) − H(l + 1)

)
+, for i < j,

−
i−1∑
l=j

(
H(l + 1) − H(l)

)
+, for i > j.

Also, the rate functions that correspond to local minima 2,6 and 8 are degenerate,
and equal∞ · 1H(2)(y), ∞ · 1H(6) and∞ · 1H(8), respectively. For the nondegen-
erate transient states 4 and 5, we have

I{4}(y) =
− log

1+ a

2
, for y = H(4),

∞, otherwise,

and

I{5}(y) =
− log

1+ b

2
, for y = H(5),

∞, otherwise.
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When − log(1 + a)/2 = 1/3 and − log(1 + b)/2 = 2/3, we compute, by
analyzing the not-too-large number of possibilities, the nonconvex rate function

J(z) =



∞, for z < −1 andz > 3,

4z/9+ 4/9, for −1 ≤ z ≤ −2/11,

−2z, for −2/11≤ z ≤ 0,

z/6, for 0 ≤ z ≤ 2,

5z/3− 3, for 2 ≤ z ≤ 12/5,

−5z/3+ 5, for 12/5≤ z ≤ 3.

Not surprisingly, J vanishes at local minima and is largest nearz ∼ 2+
(excluding infinite costs), with exact valuez = 12/5 found from computation. The
J calculation (see Figure 2) also gives optimal scenarios under whichZn ∼ z;
these include, for−1 ≤ z ≤ −2/11 that the averageZn is a convex combination
of rest stays initially on{4} and then at{8}; for −2/11≤ z ≤ 0, at {8}, then{6};
for 0 ≤ z ≤ 2, at{4}, then{6}; for 2≤ z ≤ 12/5, at{2}, then{4}; for 12/5≤ z ≤ 3,
at {6}, then{2}.

FIG. 2. Graph of J.
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We now discuss the plan of the paper. In the next section, we outline the proof
structure of the main theorems. After supplying proofs of stated results in the
outline in Sections 5–11, we give the three examples in Section 12 commented
on earlier. Finally, in the Appendix some technical proofs are collected.

4. Outline of the proofs of the main theorems. Consider a processPπ ∈
A(P ) and a functionf :� → Rd . We first observe thatJU0, JT0 and JT1 are
all good rate functions from the following proposition, which is proved in the
Appendix.

PROPOSITION4.1. For a nonpositive cost U , the function JU is a good rate
function and the domain of finiteness QJU

⊂ K.

In the following discussion, we say that the pathXn enters or visits a subset
C ⊂ � whenXi ∈ C for some 1≤ i ≤ n. We now outline the proofs of Theorems
3.1 and 3.2.

4.1. Upper bounds: proof of Theorem 3.1. The proof follows by first asurgery
of paths estimate, then ahomogeneous rest cost comparison, acoarse graining cost
estimate and finally a limit relationship on a perturbed rate function. Let� ⊂ Rd

be a Borel set.

Surgery of paths estimate. The first step is to overestimatePπ by another
measurêµπ,ε1,ε2 which allows more movement in terms of parametersε1, ε2 > 0.
However, we restrict the process to those paths which make at most one long
sojourn to each of the sets{Ci : 1≤ i ≤ N + M}, but connect among them in short
visits.

Before getting to the firstbound, the following technical monotonicity lemma,
proved in the Appendix, is needed.

LEMMA 4.1. Let δ ∈ [0,1] and let {tn} ⊂ [0,1] be a sequence which
converges to δ. Then there exists a sequence {t̂n} ⊂ (0,1] such that (i) tn ≤ t̂n,
(ii) t̂n ↓ δ monotonically and (iii) the limit lim(1/n) log t̂n exists and equals

lim
n→∞

1

n
log t̂n = lim sup

n→∞
1

n
logtn.

Recall now the definition oft (n, (i, j)) [cf. (2.7)] and let{
t̂
(
n, (i, j)

)}
be the sequence made from

{
t
(
n, (i, j)

)}
and Lemma 4.1.

Also, for distinct 1≤ i, j ≤ N + M , as in the definition ofU0(i, j) [cf. (2.8)], let
0 ≤ k ≤ N + M − 2, let l0 = i andlk+1 = j , and letLk = 〈l0, l1, . . . , lk, lk+1〉 be
composed of distinct indices. Then define

γ
(
n, (i, j)

) = max
0≤k≤N+M−2

max
Lk

k∏
s=0

t̂
(
n + s, (ls, ls+1)

)
.
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The termγ (n, (i, j)) bounds the largest possible transition probability between
setsCi andCj in at mostN + M − 1 steps.

We now create a certain sequence of positive transition matrices. For gen-
eral P and approaching sequence{Pn}, the submatricesP (i) and Pn(i) for
1 ≤ i ≤ N + M need not be positive. It will be helpful, however, to majorize
them as follows. Letε ≥ 0, and letP (i, ε) = {p(s, t; ε) : s, t ∈ Ci} andPn(i, ε) =
{pn(s, t; ε) : s, t ∈ Ci}, where

p(s, t; ε) = max{p(s, t), ε} and pn(s, t; ε) = max{pn(s, t), ε}.
Define nowP̂n,ε1,ε2 = {p̂n,ε1,ε2(s, t)} by

p̂n,ε1,ε2(s, t) =


γ
(
n, (i, j)

)
, for s ∈ Ci , t ∈ Cj

and distinct 1≤ i, j ≤ N + M,

pn(s, t; ε2), for s, t ∈ Ci andi ∈ G,

pn(s, t; ε1), for s, t ∈ Ci andi ∈ D,

whenn ≥ 2; for n = 1, let P̂1,ε1,ε2 be the unit constant matrix,̂p1,ε1,ε2(s, t) ≡ 1.
Form also through CON the measureµ̂π,ε1,ε2 with respect to initial distributionπ
and transition matrices{P̂n,ε1,ε2}.

PROPOSITION4.2. For ε1, ε2 > 0, the following upper bound holds:

lim sup
1

n
logPπ (Zn ∈ �)

≤ lim sup
1

n
logµ̂π,ε1,ε2(Zn ∈ �,Xn enters each Ci at most once).

The proof of this proposition is found in Section 5.

Homogeneous rest cost comparison. Next, we compare measureµ̂π,ε1,ε2 with
a measurēµπ,ε1,ε2, which replaces nonhomogeneous transitions within setsCi by
limiting homogeneous transition weights.

Define, forε1, ε2 ≥ 0, 
Pn,ε1,ε2 = {p̄n,ε1,ε2(s, t)} by

p̄n,ε1,ε2(s, t) =


γ
(
n, (i, j)

)
, for s ∈ Ci , t ∈ Cj

and distinct 1≤ i, j ≤ N + M,

p(s, t; ε2), for s, t ∈ Ci andi ∈ G,

ε1, for s, t ∈ Ci andi ∈ D,

whenn ≥ 2 and 
P1,ε1,ε2 = P̂1,ε1,ε2. Let now µ̄π,ε1,ε2 be formed from CON and
matrices{ 
Pn,ε1,ε2} andπ .
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PROPOSITION4.3. For ε1, ε2 > 0, we have

lim sup
1

n
logµ̂π,ε1,ε2(Zn ∈ �,Xn enters each Ci at most once)

≤ lim sup
1

n
logµ̄π,ε1,ε2(Zn ∈ �,Xn enters each Ci at most once).

The proof of this proposition is found in Section 7.

Coarse graining estimate. The next step is to further bound the right-hand side
in Proposition 4.3 through a detailed decomposition of visit times and locations in
terms of anε1, ε2-perturbed rateJU0,ε1,ε2.

Observe for 1≤ i ≤ N + M that the submatrix(
Pn,ε1,ε2)Ci
= P (i, ε1, ε2) is

independent ofn and

P (i, ε1, ε2) =
{

(ε1), for i ∈ D,

P (i, ε2), for i ∈ G.

Denote the extended rate functionIi,ε1,ε2 = ICi,f,P (i,ε1,ε2) and associated domain
of finitenessQi,ε1,ε2 = QCi,f,P (i,ε1,ε2). In fact, explicitly wheni ∈ D ,

Ii,ε1,ε2(x) =
{− log(ε1), for x = f (mi), whereCi = {mi},

∞, otherwise,
(4.1)

andIi,ε1,ε2(x) = Ii,ε2(x) = ICi,f,P (i,ε2) wheni ∈ G.
Recall now the objectCv,U near (2.6), and define forv ∈ �N+M , x ∈ (Rd)N+M ,

σ ∈ SN+M and matrixU = {u(i, j) : 1 ≤ i, j ≤ N + M}, the function

Cv,U,ε1,ε2(σ,x) = −
N+M−1∑

i=1

(
i∑

j=1

vj

)
u
(
σ(i), σ (i + 1)

)+
N+M∑
i=1

viIσ(i),ε1,ε2(xi)

whenN +M ≥ 2 andCv,U,ε1,ε2(σ,x) = I1,ε1,ε2(x1) whenN +M = 1. Define also,
for z ∈ Rd ,

JU,ε1,ε2(z) = inf
v∈�N+M

inf
x∈D(N+M,v,z)

min
σ∈SN+M

Cv,U,ε1,ε2(σ,x).(4.2)

We comment that whenN = 0 and allP (i) > 0 for i ∈ G, thatJU,ε1,ε2 = JU for
all ε1, ε2 small, so the following result already gives the desired upper bound.

PROPOSITION4.4. For ε1, ε2 > 0, we have

lim sup
n→∞

1

n
logµ̄π,ε1,ε2(Zn ∈ 
�,Xn enters each Ci at most once)

≤ −JU0,ε1,ε2(

� ∩ K).

The proof of the proposition is given in Section 8.
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Limit estimate on JU0,ε1,ε2. The last step is to analyzeJU0,ε1,ε2 asε1, ε2 ↓ 0
in the following proposition, which is proved in Section 10.

PROPOSITION4.5. We have

lim sup
ε2↓0

lim sup
ε1↓0

−JU0,ε1,ε2(

� ∩ K) ≤ −JU0(


� ).

Now, putting together the results above gives Theorem 3.1.

4.2. Lower bounds: proof of Theorem 3.2. The argument is similar in structure
to the upper bound. To prove part (i), a reduction is first made with respect to initial
ergodicity, which can be skipped if one is willing to assume thatPπ satisfies the
stronger Condition SIE-1 rather than just Condition SIE. Then a surgery of paths
estimate, a homogeneous rest cost comparison and finally a coarse graining cost
estimate are given. Last, having proved part (i), the second lower bound part (ii) is
argued.

Let� ⊂ Rd be a Borel set. If�o = ∅, the bound is trivial. Otherwise, letx0 ∈ �o

and�1 = B(x0, a) ⊂ �o be an open ball of radiusa > 0.

SIE estimate. The following estimate shows that under Condition SIE, the
first few transition kernels do not contribute effectively to lower bounds and,
in particular, Condition SIE may be replaced with Condition SIE-1. When
Pπ satisfies Condition SIE, letP ′

n = Pn+n1 for n ≥ 1, and letη(l) = Pπ (Xn1 = l)

for l ∈ �. Let alsoP′
η be constructed with respect to{P ′

n} and distributionη.
Clearly, we haven0({P ′

n}) = 1 andP′
η satisfies Condition SIE-1.

PROPOSITION 4.6. Let �2 = B(x0, a/2) and suppose Pπ satisfies Condi-
tion SIE.Then we have

lim inf
1

n
logPπ (Zn ∈ �1) ≥ lim inf

1

n
logP

′
η(Zn ∈ �2).

PROOF. Note that

{Zn ∈ B(x0, a)} ⊃
{
n − n1

n
Zn

n1+1 ∈ B

(
x0, a − c1

n

)}
,

wherec1 = n1‖f ‖. Then

Pπ (Zn ∈ �1) ≥ Pπ

((
(n − n1)/n

)
Zn

n1+1 ∈ B(x0, a − c1/n)
)

= ∑
l∈�

η(l)P(n1,l)

((
(n − n1)/n

)
Zn

n1+1 ∈ B(x0, a − c1/n)
)

= P
′
η

(
Zn−n1 ∈ (

n/(n − n1)
)
B(x0, a − c1/n)

)
.

The proposition now follows by simple calculations.�
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In view of the last proposition, with regard to the standard lower bound methods,
we may just as well assume thatPπ satisfies Condition SIE-1 if Condition SIE
already holds.

Surgery of paths estimate. We underestimatePπ by another measurěµπ,ε1,ε2

whose connection transitions correspond toT1. Slightly different from the surgery
for the upper bound, the paths focused on here are those which make at most one
long visit to sets{Ci : i ∈ G}, but travel between them in short trips through all
{Ci : 1 ≤ i ≤ N + M}.

Let E(N,M) = (M − 1)E0(N,M) and recall the connecting weight
γ 1(n, (i, j)) for distincti, j ∈ G [cf. (2.10)]. Define

γ̌ 0(n, (i, j)
) = min

0≤k≤E(N,M)
γ 1(n + k, (i, j)

)
,

which picks the smallest weight in a traveling frame.
Define alsoP̌n = {p̌n(s, t)} for n ≥ 1 by

p̌n(s, t) =


γ̌ 0(n, (i, j)

)
, for all s ∈ Ci, t ∈ Cj

and distincti, j ∈ G,

pn(s, t), for s, t ∈ Ci andi ∈ G

or s ∈ Ci , t ∈ Cj wheni or j ∈ D .

Let µ̌π be made through CON with{P̌n} andπ .
In addition, for convenience, let

Gn = {
Xn enters only{Ci : i ∈ G} with at most one visit to each set

}
.

PROPOSITION 4.7. Let �3 = B(x0, a/4) and suppose Pπ satisfies Condi-
tion SIE-1.Then

lim inf
1

n
logPπ

(
Zn(f ) ∈ �2

) ≥ lim inf
1

n
logµ̌π

(
Zn(f ) ∈ �3,Gn

)
.

The proof is given in Section 6.

Homogeneous rest cost comparision. As before, we comparěµπ with a
measureµ

π
, which replaces nonhomogeneous transitions within setsCi with

limiting homogeneous transition weights.
DefineP n = {p

n
(s, t)} for n ≥ 1 by

p
n
(s, t) =


γ̌ 0(n, (i, j)

)
, for all s ∈ Ci , t ∈ Cj and distincti, j ∈ G,

p(s, t), for s, t ∈ Ci andi ∈ G,

0, otherwise.

Correspondingly, defineµ
π

through CON with{P n} and initial distributionπ .
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PROPOSITION4.8. Suppose n0({Pn}) = 1. Then we have

lim inf
1

n
logµ̌π (Zn ∈ �3,Gn) ≥ lim inf

1

n
logµ

π
(Zn ∈ �3,Gn).

The proof is given in Section 7.

Coarse graining estimate. Again, we bound the right-hand side above through
a decomposition of visit times and locations.

PROPOSITION4.9. Let π be SIE-1-positive. Then

lim inf
1

n
logµ

π
(Zn ∈ �3,Gn) ≥ −JT1(�3).

The proof is given in Section 9.
Finally, whereasx0 ∈ �o is arbitrary, we have that

lim inf
n→∞

1

n
logPπ (Zn ∈ �o) ≥ − inf

z∈�o
JT1(z)

and so part (i) is proved.

PROOF OF THEOREM 3.2(ii). The following cost bound, proved in Sec-
tion 11, is the key step.

PROPOSITION 4.10. We have under Assumptions B or C that T1 ≥ T0 and
so JT1 ≤ JT0.

Therefore, given the lower bound in part (i), the second part follows directly.
�

5. Path surgery upper bound. The strategy of Proposition 4.2 is to compare
the probability of a path which moves many times between sets with that of a
respective rearranged path with fewer sojourns. To make estimates we need a few
more definitions.

Let t(n) be the largest entry which connects upward with respect to the ordering
of the sets{Ci} in the canonical decomposition ofP :

t(n) = max
1≤j<i≤N+M

t̂
(
n, (i, j)

)
.

Observe that as movement up the tree is impossible in the limit or, more precisely,
asTn(i, j) vanishes for 1≤ j < i ≤ N + M , we havet(n) → 0 asn → ∞.
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Define also forε1, ε2 ≥ 0, the matrixP̃n,ε1,ε2 = {p̃n,ε1,ε2(s, t)} by

p̃n,ε1,ε2(s, t) =


t̂
(
n, (i, j)

)
, for s ∈ Ci , t ∈ Cj

and distinct 1≤ i, j ≤ N + M,

pn(s, t; ε2), for s, t ∈ Ci andi ∈ G,

pn(s, t; ε1), for s, t ∈ Ci andi ∈ D,

for n ≥ 1. Form now through CON the measureνπ,ε1,ε2 with respect to initial
distributionπ and transition matrices{P̃n,ε1,ε2}.

Let alsop̃ = min{ε1, ε2} and observe that̃p is less than the minimum transition
probability within subblocks:

p̃ ≤ min
1≤l≤N+M

min
s,t∈Cl

p̃n,ε1,ε2(s, t).

We now describe a procedure to cut paths into resting and traveling parts, which
then are rearranged through a rearrangement map. Letxn = 〈x1, . . . , xn〉 ∈ �n be
a path of lengthn ≥ 2. We say thatxn possesses a “switch” at time 1≤ i ≤ n − 1
if xi ∈ Cj andxi+1 ∈ Ck for j �= k. For a pathxn which switchesl ≥ 1 times, let
gk(xn) be the time of thekth switch, where 1≤ k ≤ l. Set alsog0(xn) = 0 and
gl+1(xn) = n.

Define now, for 1≤ k ≤ l, the path segments between switch times:Jk(xn) =
〈xgk−1(xn)+1, . . . , xgk(xn)〉, and the remainderJl+1(xn) = 〈xgl(xn)+1, . . . , xn〉. De-
fine also thatJk,2(xn) = 〈xgk−1(xn)+2, . . . , xgk(xn)〉 whengk(xn) ≥ gk−1(xn) + 2.

In addition, letCik be the subset in which pathJk lies for 1≤ k ≤ l + 1 and
let Cl = Cl(xn) = 〈Ci1, . . . ,Cil+1〉 be the sequence of subsets visited, given in the
order of visitation. Also, let‖Cl‖ be the number of distinct elements inCl . We say
xn has no repeat visits if the sequenceCl contains no repetitions.

For 0≤ k ≤ n − 1 and 1≤ j ≤ N + M , define the sets

An(k) = {xn : xn switchesk times}
and

A′
n(j) = {xn : xn switchesj times, with no repeat visits}.

When there are at least two sets,N + M ≥ 2, we define the map

σl :An(l) →
min{N+M−1,l}⋃

j=1

A′
n(j)

for l ≥ 1, in the following steps.

1. Let xn ∈ An(l). Let s‖Cl‖ = l + 1 and s‖Cl‖−1 = l. Inductively define, for
k < ‖Cl‖,

sk = max
{
j :Cij /∈

{
Cisk+1

,Cisk+2
, . . . ,Cis‖Cl‖

}}
.

In words,Cis‖Cl‖
, . . . ,Cis1

are the‖Cl‖ distinct subsets visited in reverse order

starting from the last state ofxn.
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2. For 1≤ k ≤ ‖Cl‖, let Jαk
1
, . . . , Jαk

dk

, whereαk
1 < · · · < αk

dk
= sk , be thedk ≥ 1

paths which lie inCisk
.

3. Define

σl(xn) =
〈
Jα1

1
, . . . , Jα1

d1
, . . . , J

α
‖Cl‖
1

, . . . , J
α

‖Cl‖
d‖Cl‖

〉
.

In words,σl rearranges the paths that correspond to distinct subsets so that
the reverse visiting order is preserved. We comment that the last pathJ

αl+1
dl+1

is
preserved underσl and thatσ1 is the identity map.

EXAMPLE 1. SupposeN + M = 8 andxn ∈ An(25), where

C25 = 〈C8,C6,C8,C7,C5,C7,C6,C5,C6,C4,C2,C4,

C3,C1,C3,C1,C2,C1,C6,C7,C5,C4,C2,C5,C2,C4〉.
Here,‖C‖ = 8, s1 = 3, s2 = 15, s3 = 18, s4 = 19, s5 = 20, s6 = 24, s7 = 25 and
s8 = 26. Then〈

Cis1
,Cis2

,Cis3
,Cis4

,Cis5
,Cis6

,Cis7
,Cis8

〉 = 〈C8,C3,C1,C6,C7,C5,C2,C4〉
and

σ25(xn) = 〈J1, J3, J13, J15, J14, J16, J18, J2, J7, J9,

J19, J4, J6, J20, J5, J8, J21, J24J11, J17J23, J25, J10, J12, J22, J26〉.

Finally, we recall at this point useful versions of the “union of events” bound.

LEMMA 5.1. Let N ≥ 1 and let {ai
n : i, n ≥ 1} be an array of nonnegative

numbers. We have then

lim sup
n→∞

1

n
log

N∑
i=1

ai
n = max

1≤i≤N
lim sup
n→∞

1

n
logai

n

and

lim inf
n→∞

1

n
log

N∑
i=1

ai
n = lim inf max

1≤i≤N

1

n
logai

n ≥ max
1≤i≤N

lim inf
n→∞

1

n
logai

n.

In addition, let α ≥ 1 be an integer and let {β(n)} be a sequence where β(n) ≤ nα

for n ≥ 1. Then

lim sup
n→∞

1

n
log

β(n)∑
i=1

ai
n = lim sup

n→∞
max

1≤i≤β(n)

1

n
logai

n

with the same equality when lim inf replaces lim sup.
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See [10], Lemma 1.2.15, for the “lim sup” proof. The other statements follow
similarly.

PROOF OFPROPOSITION4.2. AsPn ≤ P̃n,ε1,ε2 elementwise, we have

Pπ(Zn ∈ 
� ) ≤ νπ,ε1,ε2(Zn ∈ 
� ).

Now consider the caseN + M = 1 whenP corresponds to one irreducible set
C1 = �. Trivially in this caseXn does not leaveC1, so more than one switch is
impossible. Therefore, the upper bound statement holds immediately.

We now assume thatN + M ≥ 2. By Lemma 5.1,

lim sup
1

n
logPπ (Zn ∈ �) ≤ max

x0∈�

π(x0)>0

lim sup
1

n
logνx0,ε1,ε2(Zn ∈ 
� ).(5.1)

Hence, it suffices to focus onνx0,ε1,ε2 for a givenx0 ∈ � such thatπ(x0) > 0.
The main idea exploited now is that for a realizationXn which switches between

sets{Ci} many times there will be guaranteed a large number of these switches “up
the tree” between setsCi andCj for i > j whose chance is small, and so such paths
are unlikely. For notational simplicity, we now suppressε1 andε2 subscripts.

STEP 1. Decompose according to the number of switches:

νx0(Zn ∈ �) =
n−1∑
i=0

νx0

(
Zn ∈ �,An(i)

)
.(5.2)

STEP 2. Let l ≥ 1 and letxn ∈ {Zn ∈ �} ∩ An(l). Let alsoyn ∈ σ−1
l (σl(xn)),

that is, yn is a path with l switches which rearranges toσl(xn). As yn =
〈J1(yn), . . . , Jl+1(yn)〉, whereJk(yn) is a path inCik for 1 ≤ k ≤ l + 1, we have

νx0(Xn = yn)

= νx0(X
g1
1 = J1)(5.3)

× ∏
1≤k≤l

gk≥gk−1+2

ν(gk+1,ygk+1)

(
Xgk+1

gk+2 = Jk+1,2
) l∏
k=1

t̂
(
gk + 1, (ik, ik+1)

)
,

wheregk = gk(yn) and Jk+1,2 = Jk+1,2(yn) (defined above) are shortened for
clarity.

We now bound the right-hand side of (5.3) by

(
p̃1(x0, y1)/1

)
µ̂x0

(
Xn = σl(xn)

) l∏
k=1

t̂
(
gk(yn) + 1, (ik, ik+1)

)
(5.4)

×
‖Cl‖−1∏

k=1

γ −1(gk

(
σl(xn)

)+ 1,
(
isk , isk+1

)) · (1/p̃)l−(‖Cl‖−1).
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The bound (5.4) is explained by first recalling that inσl(xn) there are‖Cl‖ −
1 connections between different sets{Ci}. Equation (5.3) is then multiplied
and divided by corresponding connection probabilities with respect toµ̂x0 to
give the

∏
γ −1(· · ·) term. Second, the prefactor(p̃1(x0, y1)/1) ≤ 1 arises in

connectingx0 to the first state ofσl(xn) with respect toµ̂x0 and noting the
constant form ofP̂1. Third, in forming σl(xn) from yn, with respect toνx0,
l − ‖Cl‖ + 1 connections between different sets are replaced by corresponding
internal transition probabilities and divided by them. Thesel − ‖Cl‖ + 1 divisors
are then underestimated by the product ofp̃’s.

STEP 3. We now bound further the product terms in (5.4). Consider the
subproduct

sr+1−1∏
k=sr

t̂
(
gk(yn) + 1, (ik, ik+1)

)
(5.5)

whose factors correspond to transitions between sets in subsequence〈Cisr
, . . . ,

Cisr+1
〉 for 1 ≤ r ≤ ‖Cl‖ − 1. From this subsequence, we derive a smaller

subsequence in the following algorithm.

1. Letβr
1 be the smallest indexsr + 1 ≤ q ≤ sr+1 such thatCiq = Cisr+1

.
2. If βr

1 > sr + 1, let βr
2 be the smallest indexsr + 1 ≤ q ≤ βr

1 − 1 such that
Ciq = Ciβr

1−1
. Otherwise, stop.

3. Continue iteratively: Ifβr
m > sr + 1, let βr

m+1 be the smallest indexsr + 1 ≤
q ≤ βr

m − 1 such thatCiq = Ciβr
m−1

. Otherwise, stop. Recalling the definition
of sr , there are at most‖Cl‖ − r distinct sets in the sequence〈Cisr

, . . . ,Cisr+1
〉.

The above process finishes inn(r) ≤ ‖Cl‖ − r steps to findβr
n(r) = sr + 1.

EXAMPLE 2. With respect to the pathxn in Example 1, we consider the
algorithm forr = 1. We saw thats1 = 3 ands2 = 15, and〈

Cis1
,Cis1+1, . . . ,Cis2

〉= 〈C8,C7,C5,C7,C6,C5,C6,C4,C2,C4,C3,C1,C3〉.
Here, there aren(1) = 4 distinct sets andβ1

1 = s1 + 10 is the smallest index so
thatCiq = C3. Similarly, β1

2 = s1 + 7 is smallest, whereCiq = Cis1+9 = C4. Also,

β1
3 = s1 + 4 andβ1

4 = s1 + 1.

By construction, the terms

t̂
(
gsr (yn) + 1,

(
isr , iβr

n(r)

))
,

t̂
(
gβr

n(r)
(yn) + 1,

(
iβr

n(r)
, iβr

n(r)−1

))
, . . . , t̂

(
gβr

2
(yn) + 1,

(
iβr

2
, iβr

1

))



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 449

all appear as factors in (5.5). Also, by monotonicity oft̂ (n, (i, j)),

t̂
(
gsr (yn) + 1,

(
isr , iβr

n(r)

)) n(r)−1∏
k=1

t̂
(
gβr

k+1
(yn) + 1,

(
iβr

k+1
, iβr

k

))
(5.6)

≤ t̂
(
gsr (yn) + 1,

(
isr , iβr

n(r)

))n(r)−1∏
k=1

t̂
(
gsr (yn) + n(r) − k + 1,

(
iβr

k+1
, iβr

k

))
.

Also, by construction, ther th switch time between setsCisr
andCisr+1

in the
rearranged pathσl(xn) is less than the last time to switch toCisr+1

in pathyn:

gr

(
σl(xn)

) ≤ gsr (yn).

So, by monotonicity again, the right-hand side of (5.6) is bounded above by
γ (gr(σl(xn)) + 1, (isr , isr+1)). Also, in particular, it will be convenient to note the
gross bound, becauset̂ (n, (i, j)) ≤ 1 applies to those terms in (5.5) not covered
by (5.6), that

∏sr+1−1
k=sr

t̂(gk(yn) + 1, (ik, ik+1)) ≤ γ (gr(σl(xn)) + 1, (isr , isr+1))

and so
l∏

k=1

t̂
(
gk(yn) + 1, (ik, ik+1)

) ≤
‖Cl‖−1∏

k=1

γ
(
gk

(
σl(xn)

)+ 1,
(
isk , isk+1

))
.(5.7)

STEP 4. We now consider cases whenl is large and small. Suppose first that
l is small, namelyl ≤ ‖Cl‖(‖Cl‖ − 1)/2+ N + M − 1. Then we have the bound,
noting (5.3), (5.4) and (5.7), that

νx0(Xn = yn) ≤ (1/p̃)lµ̂x0

(
Xn = σl(xn)

)
.(5.8)

Suppose now thatl is large, that is,l > ‖Cl‖(‖Cl‖−1)/2+N +M −1. Whereas
the chain can only make at mostN + M − 1 consecutive downward switches (i.e.,
from setsCi to Cj for i < j ), in q > N + M − 1 switches there will be at least
[q/(N + M − 1)] upward switches from setsCi to Cj for i > j .

Whereasn(k) ≤ ‖Cl‖ − k and so
∑‖Cl‖−1

k=1 n(k) ≤ ‖Cl‖(‖Cl‖ − 1)/2, we
see carefully in Step 3 that we take at most‖Cl‖(‖Cl‖ − 1)/2 factors from∏l

k=1 t̂ (gk(yn) + 1, (ik, ik+1)) whose product is then dominated by∏‖Cl‖−1
k=1 γk(σl(xn) + 1, (isk , isk+1)). Hence, remaining in the original product are

at leastl − ‖Cl‖(‖Cl‖ − 1)/2 uncommitted factors of which at least

l = ⌊(
l − ‖Cl‖(‖Cl‖ − 1)/2

)
/(N + M − 1)

⌋
correspond to upward transitions.

Then, using monotonicity oft(n), we have

l∏
k=1

t̂
(
gk(yn) + 1, (ik, ik+1)

) ≤
‖Cl‖−1∏

k=1

γk

(
σl(xn) + 1,

(
isk , isk+1

)) l∏
j=1

t(j).
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Furthermore, noting (5.3) and (5.4), we have, forl large,

νx0(Xn = yn) ≤ (1/p̃)l

[ l∏
j=1

t(j)

]
µ̂x0

(
Xn = σl(xn)

)
.(5.9)

STEP 5. We now estimate the size of the setσ−1
l (σl(xn)). Observe that the

ordering of states within thel + 1 subpaths inσl(xn) is preserved among the paths
σ−1

l (σl(xn)) with l switches. Then, to overestimate|σ−1
l (σl(xn))|, we need only

to specify the sequence in which the pairwise distinct setsCj1 �= Cj2 �= · · · �= Cjl+1

are visited and how long each visit takes, since once the ordering of the sets and
switch times are fixed, the arrangement within thel + 1 subpaths is determined.

A simple overcount of this procedure yields that∣∣σ−1
l

(
σl(xn)

)∣∣ ≤ (
n

l

)
Ml+1.

Therefore, from (5.8) and (5.9) we have that

νx0

(
Xn ∈ σ−1

l

(
σl(xn)

))

≤



(
n

l

)
Ml+1p̃−l µ̂x0

(
Xn = σl(xn)

)
, for l small,

(
n

l

)
Ml+1p̃−l

[ l∏
i=1

t(i)

]
µ̂x0

(
Xn = σl(xn)

)
, for l large.

(5.10)

STEP 6. By Stirling’s formula,

1

n
log

(
n

l

)
= o(1) − l

n
log

(
l

n

)
− n − l

n
log

(
n − l

n

)
.

With this estimate, we now analyze the factor
(n
l

)
Ml ∏l

i=1 t(i) in (5.10). We
consider cases whenl = o(n) and whenl ≤ n is otherwise.

Case 1. Whenl = ln = o(n), then log
(n
ln

)
/n → 0. Also,Mln = eo(n), p̃−ln =

eo(n) and
∏l n

i=1 t(i) = eo(n).

Case 2. Whenl = ln satisfies lim supln/n ≥ ε for some 0< ε ≤ 1, letn′ be a
maximal subsequence. Then(log

(n′
ln′
)
)/n′ = O(1), (logMln′ )/n′ ≤ 1 + logM and

(logp̃−ln′ )/n′ ≤ 1+ logp̃−1, but, ast(n′) ↓ 0 and lim supl′n/n′ ≥ ε/(N +M −1),

we have log[∏l n′
i=1 t(i)]/n′ → −∞ asn′ → ∞.

Therefore, with respect to aCn = eo(n), independent ofl ≥ 1 and the path, we
have from (5.10) that

νx0

(
Xn ∈ σ−1

l

(
σl(xn)

)) ≤ Cnµ̂x0

(
Xn = σl(xn)

)
.
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STEP 7. Let l ≥ 1, and let
An(l) = ⋃min{N+M−1,l}
j=1 A′

n(j). Let alsoÂn(l) =
σl({Zn ∈ �,An(l)}) and Ãn(l) = {Zn ∈ �, 
An(l)}. Whereas the averageZn is
independent of the order of observations{X1, . . . ,Xn},

Ân(l) ⊂ Ãn(l) and {Zn ∈ �,An(l)} = σ−1
l σl

(
Zn ∈ �,An(l)

)
.

Then we can write

νx0

(
Zn ∈ �,An(l)

) = νx0

(
σ−1

l

(
σl

(
Zn ∈ �,An(l)

)))
= νx0

(
Xn ∈ ⋃

xn∈Ân

σ−1
l (xn)

)

≤ ∑
xn∈Ân

νx0

(
Xn ∈ σ−1

l (xn)
)

≤ eo(n)
∑

xn∈Ân

µ̂x0(Xn = xn)

≤ eo(n)
∑

xn∈Ãn

µ̂x0(Xn = xn)

= eo(n)µ̂x0

(
Zn ∈ �, 
An(l)

)
.

STEP 8. Whereas
⋃

l≥1

An(l) ∪ An(0) ⊂ {Xn enters eachCi at most once},

we have
n−1∑
i=0

νx0

(
Zn ∈ �,An(i)

)
(5.11)

≤ (
(1+ (n − 1)eo(n))µ̂x0(Zn ∈ �,Xn enters eachCi at most once).

Then, noting (5.1), (5.2) and (5.11), we have

lim sup
1

n
logPπ(Zn ∈ �)

≤ max
x0∈�

π(x0)>0

lim sup
1

n
logµ̂x0(Zn ∈ �,Xn enters eachCi at most once).

Applying Lemma 5.1 completes the proof.�

6. Path surgery lower bound. The lower bound strategy is informed by the
upper bound result. Namely, given the rearranged paths focused on in the upper
bound surgery, we can more or less restrict to them and gain lower bounds.

PROOF OFPROPOSITION4.7. WhenN + M = 1, P is irreducible,C1 = �

andD = ∅. ThenP̌n = Pn for all n ≥ 1 and soPπ (Zn ∈ �) = µ̌π(Zn ∈ �). Also,
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as in the upper bound,Xn does not switch in this case. Hence, the lower bound
holds trivially.

We now assume thatN + M ≥ 2. Consider the subsetB ⊂ �n formed via the
following procedure.

1. Tor 1≤ m ≤ N + M , let J1, J2, . . . , Jm be subpaths that belong, respectively,
to distinct setsCi1,Ci2, . . . ,Cim , where{i1, . . . , im} ⊂ G. Let ji = |Ji |, Ji =
〈yi

1, . . . , y
i
ji
〉 andJi,2 = 〈yi

2, . . . , y
i
ji
〉 when|ji | ≥ 2 for 1≤ i ≤ m. We impose

now that the lengths satisfy
∑m

i=1 ji = n − E(N,M).
2. Whenm ≥ 2, we connect subpathsJs andJs+1 for s = 1, . . . ,m−1 as follows.

Let 0 ≤ k ≤ N + M − 2 be the number of sets entered in the connection
and letLk with i = is and j = is+1, Qk and Vk = {xs,0, . . . ,xs,k+1} be as
near (2.9). Denotews = 〈xs,0, . . . ,xs,k+1〉 andks = |ws |. Also, denoteb(s) =
js +∑s−1

i=1(ji + ki). Let nowws be such that

P(b(s),ys
2)

(
Xb(s)+ks+1

b(s)+1 = 〈ws, ys+1
1 〉) = γ 1(b(s) + 1, ys

js
, ys+1

1

)
.

Then, in particular, as
∑s−1

i=1 ki ≤ E(N,M), we have

P(b(s),ys
2)

(
Xb(s)+ks+1

b(s)+1 = 〈ws, ys+1
1 〉) ≥ γ 1(b(s) + 1, (is, is+1)

)
≥ γ̌ 0

(
s∑

i=1

ji + 1, (is, is+1)

)
.

3. Form ≥ 2, as
∑m−1

i=1 ki ≤ E(N,M), the length of the concatenation satisfies

L = |〈J1,w1, J2, . . . ,wm−1, Jm〉|

= n − E(N,M) +
m−1∑
i=1

ki ≤ n.

Whenm = 1, the lengthL = |〈J1〉| = n − E(N,M).

If now L < n, we then augment the last subpathJm by n −L ≤ E(N,M) states
in Cim . Specifically, define

J ′
m =

{
Jm, if L = n,

〈Jm,xm
1 , . . . , xm

n−L〉, if L < n,

where〈ym
jm

, xm
1 , . . . , xm

n−L〉 is a sequence ofn−L+1 elements inCim with positive
weight. Let alsoJ ′

m,2 = Jm,2 when L = n and J ′
m,2 = 〈Jm,2, x

m
1 , . . . , xm

n−L〉
otherwise.

Now let

xn =
{ 〈J1,w1, . . . ,wm−1, J ′

m〉, whenm ≥ 2,

〈J ′
1〉, whenm = 1.



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 453

Finally, we defineB as the set of all such sequencesxn possible.
Now write

Pπ(Zn ∈ �2)

≥ Pπ (Zn ∈ �2,Xn ∈ B)

= ∑
xn∈{Zn∈�2}∩B

Pπ

(
Xj1 = J1

)
γ
(
j1 + 1, y1

j1
, y2

1
)

× P(j1+k1+1,y2
1)

(
Xj1+k1+j2

j1+k1+2 = J2,2
)

(6.1)
× · · · × γ

(
b(m − 1) + 1, ym−1

jm−1
, ym

1
)

× P
(
∑m−1

1 (ji+ki )+1,ym
1 )

(
X
∑m−1

1 (ji+ki)+n−L∑m−1
1 (ji+ki)+2

= J ′
m,2

)
≥ c(L)µ̌π

(
Zn−E(N,M) ∈ �2,n,Xn−E(N,M) only enters{Ci : i ∈ G}

with at most one visit to each set
)
,

where

c(L) =
{

P(b(m),ym
jm

)

(
Xb(m)+n−L

b(m)+1 = 〈xm
1 , . . . , xm

n−L〉), whenn > L,

1, whenn = L,

and

�2,n = n

n − E(N,M)
B

(
x0,

a

2
− E(N,M)‖f ‖

n

)
.

In the last step, we rewrotePπ in terms of the measurěµπ by collapsing together
the subpaths{Ji}. At the same time, since the collapsed path〈J1, . . . , Jm〉 is of
lengthn − E(N,M), we correct the set�2 to �2,n.

We now estimate the prefactorc(L). With respect to the minimum probabil-
ity pmin [cf. (2.5)] andn > L large, asPn → P , we can certainly bound

P(b(m),ym
jm

)

(
Xb(m)+n−L

b(m)+1 = 〈xm
1 , . . . , xm

n−L〉) ≥ p
E(N,M)
min /2.

Therefore, lim(logc(L))/n = 0.
Hence, the proposition follows by taking lim inf in (6.1) and simple estimates.

�

7. Homogeneous “rest cost” replacement. We replace certain a priori
nonhomogeneous “resting” weights with homogeneous ones for both upper and
lower bound estimates.

PROOFS OF PROPOSITIONS 4.3 AND 4.8. The proofs follow as direct
corollaries of the more general Proposition 7.1 below.�
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PROPOSITION7.1. Let {Bn} ⊂ Rd be a sequence of Borel sets.
Upper bound.For ε1, ε2 > 0, we have

lim sup
1

n
logµ̂π,ε1,ε2(Xn ∈ Bn) ≤ lim sup

1

n
logµ̄π,ε1,ε2(Xn ∈ Bn).

Lower bound.Suppose n0({Pn}) = 1. Then we have

lim inf
1

n
logµ̌π(Xn ∈ Bn) ≥ lim inf

1

n
logµ

π
(Xn ∈ Bn).

PROOF. We prove the lower bound part, because the upper bound estimate
follows analogously and more simply. LetG = {(s, t) :p(s, t) > 0 wheres, t ∈ Ci

for i ∈ G}. As Pn → P , the state space is finite and, by assumptionn0 = 1, there
existsα > 0 and a sequenceα ≤ m(k) ↑ 1 such thatm(k) ≤ pk(s, t)/p(s, t) for all
(s, t) ∈ G andk ≥ 1. Write now that

µ̌π(Xn ∈ Bn)

= ∑
x0∈�

∑
xn∈Bn

π(x0)

n∏
i=1

p̌i(xi−1, xi)

= ∑
x0∈�

∑
xn∈Bn

π(x0)

× ∏
(xi−1,xi)∈Gc

p̌i(xi−1, xi)
∏

(xi−1,xi)∈G

p̌i(xi−1, xi)

p(xi−1, xi)
p(xi−1, xi)

≥ ∑
x0∈�

∑
xn∈Bn

π(x0)

× ∏
(xi−1,xi)∈Gc

p
i
(xi−1, xi)

∏
(xi−1,xi)∈G

pi(xi−1, xi)

p(xi−1, xi)
p

i
(xi−1, xi)

≥
[

n∏
i=1

m(i)

] ∑
x0∈�

∑
xn∈Bn

π(x0)

× ∏
(xi−1,xi)∈Gc

p
i
(xi−1, xi)

∏
(xi−1,xi)∈G

p
i
(xi−1, xi)

=
[

n∏
i=1

m(i)

]
µ

π
(Xn ∈ Bn).

Indeed, for the first bound, we note, if(xi−1, xi) /∈ G, that p̌i(xi−1, xi) =
p

i
(xi−1, xi) when (xi−1, xi) connects distinct sets inG, andp̌i(xi−1, xi) ≥ 0 =

p
i
(xi−1, xi) otherwise. The second bound follows by monotonicity of{m(i)}.
Then the proposition lower bound follows as(

∑n
1 logm(i))/n → 0. �
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8. Upper coarse graining bounds. The plan is to optimize over a coarse
graining of the possible locationsZn visits in K and associated visit times.
Some additional definitions which build on those in Section 5 are required in this
effort.

Define, for 1≤ H ≤ N +M andi H = 〈i1, . . . , iH 〉 composed of distinct indices
in {1, . . . ,N + M}, that

C( i H ) = {
Xn starts inCi1 and enters successivelyCi2, . . . ,CiH

}
.

Also, letk0 = 0, kH = n and, whenH ≥ 2, let 1≤ k1 < · · · < kH−1 ≤ n − 1, and
denotekH = 〈k0, . . . , kH 〉 and

Sn(kH) = {Xn switches at timesk1, k2, . . . , kH−1}.
Let also

vkH
= 〈k1/n, (k2 − k1)/n, . . . , (n − kH−1)/n〉.

We now specify a certain cube decomposition. Forv ∈ �H and z ∈ Rd ,
recall the setD(H,v, z) [cf. (2.6)] and letD(H,v,B) = ⋃

z∈B D(H,v, z) for
setsB ⊂ Rd .

Let nowF1 be the regular partition ofK into 2d closed cubes,{�1
s : 1 ≤ s ≤ 2d},

whose interiors nonintersect and
⋃

s �1
s = K. Forn ≥ 2, let alsoFn be the regular

refinement ofFn−1 into 2n−1(2d) closed cubes,{�n
s : 1 ≤ s ≤ 2n−1(2d)}, where

also
⋃

s �n
s = K. Observe also that the(2n−1(2d))H subcubes formed fromFn,

{�(n, s) = �n
s1

× · · · × �n
sH

: 1 ≤ si ≤ 2n−1(2d)}, refineKH as well.
ForB ⊂ K andj ≥ 1, define

Dj(H,v,B) = ⋃{�(j, s) :�(j, s) ∩ D(H,v,B) �= ∅}
be the nonempty union of all subcubes with respect toj th partition which intersect
D(H,v,B). Let also

F(H,n,v,B) = {s :�(n, s) ⊂ Dn(H,v,B)}.
Forα > 0, letmα be the first partition levelm so that, for each 1≤ l ≤ N + M ,

|Il,ε1,ε2(x) − Il,ε1,ε2(y)| ≤ α when|x − y| ≤ diam(�(m, ·)) andx, y ∈ Ql,ε1,ε2.
We also need the following technical lemmas, which can be skipped on first

reading.

LEMMA 8.1. For distinct i, j ∈ G, we have

U0(i, j) = lim sup
1

n
logγ

(
n, (i, j)

)
.
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PROOF. Write the left-hand side as

lim sup
1

n
logγ

(
n, (i, j)

)
= lim sup max

0≤k≤M−2
max
Lk

k∑
s=0

1

n
log t̂

(
n + s, (ls, ls+1)

)

= max
0≤k≤M−2

max
Lk

k∑
s=0

lim
1

n
log t̂

(
n, (ls, ls+1)

)

= max
0≤k≤M−2

max
Lk

k∑
s=0

υ(ls, ls+1) = U0(i, j),

where the second and third lines follow since the limit lim logt̂ (n, (k, l))/n =
υ(k, l) holds from Lemma 4.1. �

In the next result, let 1≤ H ≤ N + M and let� ⊂ K be a closed set. Let also
Iθ
l = min{Il,ε1,ε2, θ} for θ ≥ 1 and 1≤ l ≤ N + M .

LEMMA 8.2. Let vn ∈ �H be a convergent sequence, limn vn = v ∈ �H .
Then, for any i H , we have

lim sup
θ↑∞

lim sup
m↑∞

lim sup
n→∞

inf
x∈Dm(H,vn,�)

H∑
j=1

vn
j I

θ
ij
(xj )

≥ inf
x∈D(H,v,�)∩K

H∑
j=1

vj Iij ,ε1,ε2(xj ).

PROOF. WhereasDm(H,vn,�) ⊂ KH and KH is compact, we can find
a convergent sequencexm,nk ∈ Dm(H,vnk ,�) → xm ∈ KH so that by lower
semicontinuity of{Iθ

l },

lim sup
n→∞

inf
x∈Dm(H,vn,�)

H∑
j=1

vn
j I

θ
ij
(xj ) = lim

k→∞

H∑
j=1

v
nk

j I
θ
ij
(x

m,nk

j )

≥
H∑

j=1

vj I
θ
ij
(xm

j ).

Now, out of {xm} ⊂ KH , let xmj → x ∈ KH be a convergent subsequence
on which lim supm↑∞

∑H
j=1vj Iθ

ij
(xm

j ) is attained. Also observe thatIθ
l (xl) →
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Il,ε1,ε2(xl) for 1≤ l ≤ N + M asθ ↑ ∞. Then, again by lower semicontinuity,

lim sup
θ↑∞

lim sup
m↑∞

lim sup
n→∞

inf
x∈Dm(H,vn,�)

H∑
j=1

vn
j I

θ
ij
(xj )

≥ lim sup
θ↑∞

H∑
j=1

vj I
θ
ij
(xj )

=
H∑

j=1

vj Iij ,ε1,ε2(xj ).

To finish the argument, we show thatx ∈ D(H,v,�) ∩ KH . By construction,
the diameters of the partitioning cubes�(m, ·) uniformly vanish asm ↑ ∞.
As Dm(H,vnk ,�) is composed of cubes which intersectD(H,vnk ,�), we have
that any point inDm(H,vnk ,�) is at most a distance diam(�(m, ·)) away from
D(H,vnk ,�) ∩ KH . Hence, there are pointsym,nk ∈ D(H,vnk ,�) ∩ KH such
that |xm,nk − ym,nk | ≤ diam(�(m, ·)). Let ym,n′

k → ym ∈ KH be a convergent
subsequence. We have then|xm − ym| ≤ diam(�(m, ·)). Now since� is closed

and
∑H

j=1 v
n′

k

j y
m,n′

k

j ∈ � for all m,k, we have

lim
m

lim
k

H∑
j=1

v
n′

k

j y
m,n′

k

j = lim
m

H∑
j=1

vjy
m
j =

H∑
j=1

vjxj ∈ �

and sox ∈ D(H,v,�) ∩ KH . �

PROOF OFPROPOSITION4.4. WhenN +M = 1, there is only one irreducible
subsetC1 = � and 
Pk,ε1,ε2 = P (1, ε1) for k ≥ 2. So, modulo a first transition
(with respect to the constant matrix
P1), the measurēµπ is a “homogeneous
nonnegative process” with respect toP (1, ε1). Also, whereas there can no “repeat
visits” andJU0,ε1,ε2 = I1,ε1,ε2 in this case, the proposition follows from the LDP
in Proposition 2.1.

We now assume thatN + M ≥ 2. Also, to reduce notation we suppress
subscriptsε1 andε2 when there is no confusion in the following text.

STEP 1. WhereasZn takes only values in the setK, we have

µ̄π,ε1,ε2(Zn ∈ 
�,Xn enters eachCi at most once)
(8.1)

= ∑
1≤H≤N+M

∑
i H

µ̄π,ε1,ε2

(
Zn ∈ 
� ∩ K,A′

n(H − 1),C( i H )
)
,

where the sum oni H is over
(N+M

H

)
H ! possibilities.
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STEP 2. We first consider the case when “switching” actually occurs. Let
2 ≤ H ≤ N +M and fix indicesi H . Write, forn > N +M (larger than the number
of switches), that

µ̄π

(
Zn ∈ 
� ∩ K,A′

n(H − 1),C( i H )
)

(8.2)
= ∑

kH

µ̄π

(
Zn ∈ 
� ∩ K,A′

n(H − 1),C( i H ), Sn(kH)
)
,

where the sum onkH comprises
( n−1
H−1

)
possibilities.

For convenience, denote
B = 
� ∩ K and

En = A′
n(H − 1) ∩ C( i H ) ∩ Sn(kH).

Let alsoα > 0 and letm ≥ mα. Recall from part Section 2.4 thatZ
j
i ∈ K for i ≤ j ,

and so we may write the summand in (8.2) equal to

µ̄π

(〈
Z

k1
1 , . . . ,Zn

kH−1+1
〉 ∈ D

(
H,vkH

, 
B )∩ K
H ,En

)
≤ µ̄π

(〈
Z

k1
1 , . . . ,Zn

kH−1+1
〉 ∈ Dm

(
H,vkH

, 
B )
,En

)
(8.3)

= µ̄π

(〈
Z

k1
1 , . . . ,Zn

kH−1+1
〉 ∈ ⋃

s
�(m, s),En

)

≤ ∑
s

µ̄π

(
Z

k1
1 ∈ �m

s1
, . . . ,Zn

kH−1+1 ∈ �m
sH

,En

)
,

where the union and sum is overs ∈ F(H,m,vkH
, 
B )

STEP 3. For 1≤ l ≤ N + M , let πl be the uniform distribution onCl

and let Pl
π,ε1,ε2

denote the homogeneous nonnegative measure onCl formed
from CON with Un ≡ P (l, ε1, ε2) and initial distribution π . Let also θ >

max1≤l≤N+M maxx∈Ql,ε1,ε2
Il,ε1,ε2(x) be a number larger than the maxima of the

rate functions on their domains offiniteness (cf. Proposition 2.1).
We now use the Markov property (2.2) and simple estimates to further bound

the summand in (8.3) as

µ̄π

(
Z

k1
1 ∈ �m

s1
, . . . ,Zn

kH−1+1 ∈ �m
sH

,En

)
≤ µ̄π

(
Z

k1
1 ∈ �m

s1
,Xk1

1 in Ci1

)
×

H−1∏
j=1

|Cij |γ
(
kj + 1, (ij , ij+1)

)
(8.4)

× µ̄(πij+1,kj +1)

(
Z

kj+1
kj +1 ∈ �m

sj+1
,X

kj+1
kj +1 in Cij+1

)
≤

H−1∏
j=1

γ
(
kj + 1, (ij , ij+1)

)H−1∏
j=0

∣∣Cij+1

∣∣Pij+1
(πij+1,kj +1)

(
Z

kj+1
kj +1 ∈ �m

sj+1

)
.
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STEP 4. Recall the definition ofIθ
l just before Lemma 8.2. Let

c
(
kj+1 − kj ;�m

sj+1
, θ,Cij+1

)
= P

ij+1
(πij+1,kj +1)

(
Z

kj+1
kj +1 ∈ �m

sj+1

)
exp

(
(kj+1 − kj )I

θ
ij+1

(
�m

sj+1

))
.

From homogeneous nonnegative large deviation upper bounds (cf. Proposi-
tion 2.1), uniformly overH , kH , the finite number of cubess at level m, and
i H , we havec(kj+1 − kj ;�m

sj+1
, θ,Cij+1) ≤ eo(n).

Also by monotonicityγ (i + 1, . . . ) ≤ γ (i, . . . ). Then we have (8.4) is less than

eo(n)

[
H−1∏
j=1

γ
(
kj , (ij , ij+1)

)]
exp

{
−

H∑
j=1

(kj − kj−1)I
θ
ij
(�m

sj
)

}
.(8.5)

STEP 5. At this point, we now bound the terms that correspond to no
“switching” in (8.1), that is, whenH = 1. For 1≤ i1 ≤ N + M , we have

µ̄π

(
Zn ∈ 
� ∩ K,A′

n(0),C(i1)
) ≤ eo(n)

∑
s1∈F(1,n,1,
B )

exp
{−nI

θ
i1

(
�m

s1

)}
.(8.6)

STEP 6. It is convenient now to defineγ (0, (l, l′)) = 1 for distinct 1≤ l,

l′ ≤ N + M . We combine (8.5) and (8.6) to bound (8.1) as

µ̄π(Zn ∈ 
�,Xn enters each setCi at most once)

≤ ∑
1≤H≤N+M

∑
i H

∑
kH

∑
s

[
H∏

j=1

γ
(
kj−1, (ij−1, ij )

)]

× exp

{
−

H∑
j=1

(kj − kj−1)I
θ
ij

(
�m

sj

)}
.

[Note that (8.6) corresponds to indexH = 1.]
Since the sum overs ∈ F(H,m,vkH

, 
B ) contains at most(2m−1(2d))H terms,
we can apply Lemma 5.1 to obtain

lim sup
1

n
logµ̄π(Zn ∈ 
�,Xn enters each setCi at most once)

≤ lim sup max
1≤H≤N+M

max
i H

max
kH

max
s(8.7)

×
H−1∑
j=0

1

n
logγ

(
kj , (ij , ij+1)

)−
H∑

j=1

(kj − kj−1)

n
I
θ
ij

(
�m

sj

)
.

STEP 7. Now, by the choice ofθ , we haveIθ
l = Il on Ql for 1 ≤ l ≤

N + M . Also, recall thatIl is uniformly continuous onQl for 1 ≤ l ≤ N + M
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(Proposition 2.1). Then, fors ∈ F(H,m,vkH
, 
B ) such that�(m, s) ∩ Qi1 × · · · ×

QiH �= ∅, we have

1

n

H∑
j=1

(kj − kj−1)I
θ
ij

(
�m

sj

)

= 1

n

H∑
j=1

(kj − kj−1) inf
xj∈�m

sj
∩Qj

Iij (xj )

≥ inf
x∈�(m,s)∩∏H

l=1 Qil

1

n

H∑
j=1

(kj − kj−1)Iij (xj ) − α(8.8)

= inf
x∈�(m,s)∩∏H

l=1 Qil

1

n

H∑
j=1

(kj − kj−1)I
θ
ij
(xj ) − α

≥ inf
x∈�(m,s)

1

n

H∑
j=1

(kj − kj−1)I
θ
ij
(xj ) − α.

On the other hand, if there existsG ⊂ {1, . . . ,H } such that�m
sj

∩ Qij = ∅ for

all j ∈ G, we have thatIθ
ij
(�m

sj
) = infxj ∈�m

sj
Iij = θ . Then, combining with (8.8),

we have

1

n

H∑
j=1

(kj − kj−1)I
θ
ij

(
�m

sj

)
= 1

n

∑
j∈Gc

(kj − kj−1)I
θ
ij

(
�m

sj

)+ 1

n

∑
j∈G

(kj − kj−1)I
θ
ij

(
�m

sj

)
(8.9)

≥ inf
x∈�(m,s)

1

n

H∑
j=1

(kj − kj−1)I
θ
ij
(xj ) − α.

With the estimate (8.9), we have that (8.7) is less than

lim supmax
H

max
i H

max
kH

H−1∑
j=0

1

n
logγ

(
kj , (ij , ij+1)

)
(8.10)

= inf
x∈Dm(H,vkH

,
B )

1

n

H∑
j=1

(kj − kj−1)I
θ
ij
(xj ) + α.

STEP 8. Without loss of generality, we may assume that the lim sup sequence
in (8.10) occurs on a subsequence with fixed 1≤ H ≤ N +M , i H and vectorskn

H ,



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 461

where

vkn
H

= vn → v = 〈v1, . . . , vH 〉
and

lim
n→∞

1

n
logγ

(
kn
j , (ij , ij+1)

)
exists for 1≤ j ≤ H.

Whereas values ofθ andm above a certain range are arbitrary, by Lemma 8.2 we
have

lim sup
θ↑∞

lim sup
m↑∞

lim
n→∞ inf

x∈Dm(H,vn,
B )

H∑
j=1

vn
j I

θ
ij
(xj )

≥ inf
x∈D(H,v,
B )∩KH

H∑
j=1

vj Iij ,ε1,ε2(xj ).

STEP 9. We now argue that

lim
1

n
logγ

(
kn
j , (ij , ij+1)

) ≤
( j∑

l=1

vl

)
lim sup

1

n
logγ

(
n, (ij , ij+1)

)
.(8.11)

Indeed, by definition
∑j

l=1 vl = lim kn
j /n for 1 ≤ j ≤ N + M . Then, whereas

1

n
logγ

(
kn
j , (ij , ij+1)

) = kn
j

n

1

kn
j

logγ
(
kn
j , (ij , ij+1)

)
,

inequality (8.11) follows easily when
∑l

l=1 vl > 0 or 0 ≥ lim sup(logγ (kn
j ,

(ij , ij+1)))/n > −∞, but in the exceptional case, (8.11) still holds: Whereas
logγ (kn

j , (ij , ij+1)) ≤ 0, we have by the convention 0· (−∞) = 0 that

lim
1

n
logγ

(
kn
j , (ij , ij+1)

) ≤ 0 = 0 · (−∞)

=
( j∑

l=1

vl

)
lim sup

1

n
logγ

(
n, (ij , ij+1)

)
.

Therefore, we have
H−1∑
j=0

lim
1

n
logγ

(
kn
j , (ij , ij+1)

)

≤ 1[H≥2]
H−1∑
j=0

( j∑
l=1

vl

)
lim sup

1

n
logγ

(
n, (ij , ij+1)

)

= 1[H≥2]
H−1∑
j=1

( j∑
l=1

vl

)
U0(ij , ij+1)
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from Lemma 8.1, where the indicator reflects that the right-hand side vanishes
whenH = 1. So (8.10) is bounded above by

1[H≥2]
H−1∑
j=0

(
j∑

l=1

vl

)
U0(ij , ij+1) − inf

x∈D(H,v,�)∩KH

H∑
j=1

vj Iij ,ε1,ε2(xj ) + α

≤ −min
H

min
i H

min
v∈�(H)

−1[H≥2]
H−1∑
j=0

( j∑
l=1

vl

)
U0(ij , ij+1)

+ inf
x∈D(H,v,
B )∩KH

H∑
j=1

vj Iij ,ε1,ε2(xj ) + α

≤ −JU0,ε1,ε2(

B ) + α = −JU0,ε1,ε2(


� ∩ K) + α.

Whereasα is arbitrary, the proposition follows.�

9. Lower coarse graining bounds. As with the lower surgery estimate, the
plan is to restrict the process to conveniently chosen events to derive lower bounds.
Recall the notationA′

n(l), i H , C( i H ), kH andSn(kH) from Sections 5 and 8.
Also, for l ∈ G, let Pl

η denote the homogeneous nonnegative measure onCl with
transition matrixP (l) and initial distributionη.

PROOF OF PROPOSITION 4.9. Whereasπ is SIE-1 positive, letel ∈ Cl be
such thatπ(el) > 0 for l ∈ G. Now, whenM = 1, G = {ζ1}, JT1 = Iζ1 and on the
setGn, the process never leavesCζ1. In this case,

µ
π
(Zn ∈ �3,Gn) ≥ P

ζ1
eζ1

(Zn ∈ �3)

and the desired lower bound follows from Proposition 2.1.
Suppose thatM ≥ 2.

STEP 1. Let nowi M = 〈i1, . . . , iM〉, whereij ∈ G for 1 ≤ j ≤ M , be a given
ordering of the nondegenerate irreducible setsG. Let also�+

M = {v ∈ �M :vi > 0
for 1 ≤ i ≤ M} be the set of positive measures and letv ∈ �+

M . Define also
v(0) = 0 andv(u) = ∑u

j=1vj for 1 ≤ u ≤ M and, in addition, forn large enough
so that�nv(u)� < �nv(u + 1)� for 1 ≤ u ≤ M − 1, that kn = 〈�nv(1)�, . . . ,
�nv(M − 1)�〉.

Then, for all largen,

µ
π
(Zn ∈ �3,Gn)

≥ µ
π

(
Zn ∈ �3,A

′
n(M − 1),C( i M)

)
(9.1)

=∑
kM

µ
π

(
Zn ∈ �3,A

′
n(M − 1),C( i M), Sn(kM)

)
≥ µ

π

(
Zn ∈ �3,A

′
n(M − 1),C( i M), Sn(kn)

)
.
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STEP 2. Whereas�3 is open, the setD(M,v,�3) [cf. (2.6)] is also open.
Then, for x ∈ D(M,v,�3), let ε > 0 be so small so that the open cube�ε(x)

aboutx with side lengthε is contained:�ε(x) = ∏M
j=1�ε(xj ) ⊂ D(M,vM,�3).

Also, for simplicity, let

En = A′
n(M − 1) ∩ C( i M) ∩ Sn(kn)

and

an(u,v) = 1

vu

�nv(u)� − �nv(u − 1)�
n

for 1 ≤ u ≤ M . Then (9.1) equals

µ
π

(〈
an(1,v)Z

�nv(1)�
1 , . . . , an(M,v)Zn�nv(M−1)�+1

〉 ∈ D(M,v,�3),En

)
(9.2)

≥ µ
π

(〈
an(1,v)Z

�nv(1)�
1 , . . . , an(M,v)Zn�nv(M−1)�+1

〉 ∈ �ε(x),En

)
.

STEP 3. To make notation easier, we now get rid of thean(u,v) terms at
the cost of a further lower bound. Namely, becauseZu

i ∈ K is bounded for all
1 ≤ i ≤ u, andan(u,v) → 1 for 1≤ u ≤ M , we have for alln large enough that{〈

Z
�nv(1)�
1 ,Z

�nv(2)�
�nv(1)�+2, . . . ,Z

n�nv(M−1)�+2
〉 ∈ �ε/2(x)

}
⊂ {〈

an(1,v)Z
�nv(1)�
1 , . . . , an(M,v)Zn�nv(M−1)�+1

〉 ∈ �ε(x)
}
.

Therefore, dropping the superscript�(x) = �ε/2(x), we have for largen that

(9.2) ≥ µ
π

(〈
Z

�nv(1)�
1 ,Z

�nv(2)�
�nv(1)�+2, . . . ,Z

n�nv(M−1)�+2
〉 ∈ �(x),En

)
.(9.3)

STEP 4. We now decompose (9.3) in terms of resting and routing transitions.
Recall that the transition probability between statesx ∈ Cl andy ∈ Cm at timen

with respect toµ
π

equalsγ̌ 0(n+1, (l,m)) and does not depend on atomsx andy.
Bound (9.3) below by

π(ei1)µei1

(〈
Z

�nv(1)�
1 ,Z

�nv(2)�
�nv(1)�+2, . . . ,Z

n�nv(M−1)�+2
〉 ∈ �(x),

X�nv(u−1)� = eiu andX�nv(u−1)�+1 = eiu+1 for 2 ≤ u ≤ M − 1,En

)
=

M−1∏
u=1

γ̌ 0(�nv(u)� + 1, (iu, iu+1)
) · P

i1
ei1

(
Z

�nv(1)�
1 ∈ �(x1),X�nv(1)� = ei2

)
(9.4)

×
M−1∏
u=2

P
iu
(�nv(u−1)�+1,eiu)

(
Z

�nv(u)�
�nv(u−1)�+2 ∈ �(xu),X�nv(u)� = eiu+1

)
× P

iM
(�nv(M−1)�+1,eiM

)

(
Zn�nv(M−1)�+2 ∈ �(xM)

)
.
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STEP 5. Observe, by definition, for distincti, j ∈ G, that

lim inf
1

k
log γ̌ 0(k, (i, j)

) = lim inf
1

k
log min

0≤r≤E(N,M)
γ 1(k + r, (i, j)

) = T1(i, j).

Then, because large deviations of finite time-homogeneous irreducible chains are
independent of the first and last observations, we have

lim inf
1

n
log(9.4)

≥
M−1∑
u=1

(
lim inf

�nv(u)� + 1

n

)

×
(

lim inf
1

�nv(u)� + 1
log γ̌ 0(�nv(u)� + 1, (iu, iu+1)

))
(9.5)

−
M∑

u=1

vuIiu

(
�(xu)

)

≥
M−1∑
u=1

v(u)T1
(
ζiu , ζiu+1

)−
M∑

u=1

vuIiu(xu).

STEP 6. Whereasv ∈ �+
M , x ∈ D(M,v,�) and arrangementi M composed of

members inG are arbitrary, we have from (9.5) that

lim inf
1

n
logµ

π
(Zn ∈ �3,Gn) ≥ sup

v∈�+
M

max
σ∈SM

g(v, σ ),(9.6)

where

g(v, σ ) =
M−1∑
u=1

v(u)T1
(
ζσ(u), ζσ(u+1)

)− inf
y∈D(M,v,�3)

M∑
u=1

vuIζσ(u)
(yu).

We now argue that we can replace�+
M with the larger�M in (9.6). In

Lemma 9.1 below we show, for eachσ , thatg(·, σ ) is lower semicontinuous as a
function on�M . In particular, becauseSM is a finite set, maxσ∈SM

g(·, σ ) is lower
semicontinuous. Therefore, by taking limits, we improve the bound in (9.6) to

lim inf
1

n
logµ

π
(Zn ∈ �3,Gn) ≥ sup

v∈�M

max
σ∈SM

g(v, σ ),

which is identified as− infz∈�3 JT1(z). �

LEMMA 9.1. Let B ⊂ Rd be an open set, and let M ≥ 2 and σ ∈ SM . Then
g(·, σ ) :�M → [0,∞] is lower semicontinuous.



LDP FOR NONHOMOGENEOUS MARKOV CHAINS 465

PROOF. Let {vn} ⊂ �M be a sequence which converges,vn → v. Recalling
our convention 0· (−∞) = 0, we note thath1(v) = ∑M−1

u=1 v(u)T1(ζσ(u), ζσ(u+1))

is lower semicontinuous, so we need only to proveh2(v) = infy∈D(M,v,B) ×∑M
u=1 vuIζσ(u)

(yu) is upper semicontinuous.
Let now w ∈ D(M,v,B). BecauseB is open andvn converges tov, we must

havew ∈ D(M,vn,B) for all largen. Then,

lim suph2(vn) ≤ lim sup
M∑

u=1

vn
uIζσ(u)

(wu) =
M∑

u=1

vuIζσ(u)
(wu).

However, becausew ∈ D(M,v,B) is arbitrary, we have in fact that

lim suph2(vn) ≤ inf
y∈D(M,v,B)

M∑
u=1

vuIζσ(u)
(yu) = h2(v).

�

10. Limit estimate on JU0,ε1,ε2 . The proof of Proposition 4.5 follows in two
steps (Propositions 10.1 and 10.2). The first step is to takeε1 ↓ 0 and estimate in
terms of a quantity independent of degenerate transient setsD in Proposition 10.1.
The second step is to letε2 ↓ 0 and recoverJU0 in the limit in Proposition 10.2.

It will be helpful to reduce the expressionJU0,ε1,ε2 for ε1, ε2 > 0 [cf. (4.2)].
WhereasIi,ε1,ε2 is degenerate aroundf (i) for i ∈ D [cf. (4.1)], we can evaluate
JU0,ε1,ε2(B) for B ⊂ Rd andN + M ≥ 2 as

min
σ∈SN+M

inf
v∈�N+M

inf
x∈D′(v)

{
−

N+M−1∑
i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

vj

]

− ∑
σ(i)∈D

vi logε1 + ∑
σ(i)∈G

viIσ(i),ε2(xi)

}
,

whereD′(v) = {x ∈ D(N + M,v,B) :xi = f (σ (i)), for σ(i) ∈ D}. WhenN +
M = 1, the formula collapses toJU0,ε1,ε2 = I1,ε2.

We describe now anε2 ≥ 0 “perturbation” ofJU0, where we replace ratesIi

with Ii,ε2 for i ∈ G. Define, for BorelB ⊂ Rd andM ≥ 2, that

J
ε2
U0

(B) = min
σ∈SM

inf
v∈�M

inf
x∈D(M,v,B)

−
M−1∑
i=1

U0
(
ζσ(i), ζσ(i+1)

)[ i∑
j=1

vj

]
+

M∑
i=1

viIζσ(i),ε2(xi).

WhenM = 1, letJε2
U0

= I1,ε2.
We give now a triangle cost bound useful for the first step.

LEMMA 10.1. For distinct i, j, k ∈ G,

U0(i, j) + U0(j, k) ≤ U0(i, k).
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PROOF. By definition, for somek1 and distinct elementsL1 = 〈l10 = i, l11, . . . ,

l1k1
, l1k1+1 = j〉 we haveU0(i, j) = ∑k1

s=0 υ(l1s , l1s+1). Similarly, we have for some

k2 andL2 = 〈l20 = j, l21, . . . , l2k2
, l2k2+1 = k〉 thatU0(j, k) = ∑k2

s=0 υ(l2s , l2s+1). Let

now T be the first index of an element inL1 which belongs toL2. Clearly,
1 < T ≤ k1 + 1. Call alsoT ′ the index of this element inL2.

Form nowL3 = 〈l10, l11, . . . , l1T , l2T ′+1, . . . , l
2
k2+1〉. From construction,L3 is a list

of distinct elements which we relabel asL3 = 〈l30, . . . , l3k3
〉 for somek3.

Now, sinceυ(a, b) ≤ 0 for all distincta, b, we have

k3∑
s=0

υ(l3s , l
3
s+1) ≥

k1∑
s=0

υ(l1s , l1s+1) +
k2∑

s=0

υ(l2s , l2s+1).

However,

U0(i, k) = max
0≤k≤M−2

max
Lk

k∑
s=0

υ(ls, ls+1) ≥
k3∑

s=0

υ(l3s , l
3
s+1)

≥ U0(i, j) + U0(j, k). �

PROPOSITION 10.1. Let B ⊂ K be a compact set and fix ε2 ≥ 0. Then, we
have

lim inf
ε1↓0

JU0,ε1,ε2(B) ≥ J
ε2
U0

(B).

PROOF. First, whenN = 0, we inspect thatJU0,ε1,ε2(B) = J
ε2
U0

(B). There-
fore, we assume thatN ≥ 1 in the following procedure.

STEP 1. Let ε(k) ↓ 0, vε(k), xε(k) and σε(k) be sequences so that the limit
inferior is attained:

lim inf
ε1↓0

JU0,ε1,ε2(B)

= lim
k→∞−

N+M−1∑
i=1

U0
(
σε(k)(i), σε(k)(i + 1)

)[ i∑
j=1

v
ε(k)
j

]
(10.1)

− ∑
σε(k)(i)∈D

v
ε(k)
i logε(k) + ∑

σε(k)(i)∈G

v
ε(k)
i Iσε(k)(i),ε(k)

(
x

ε(k)
i

)
.

Because�N+M is compact andSN+M is finite, a further subsequence may be
found so that, with the same labels,vε(k) → v andσε(k) = σ for all smallε1.

STEP 2. When
∑

σ(i)∈D vi > 0, we have (10.1) diverges to∞, which is
automatically greater than the right-hand side in the proposition. On the other hand,
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if
∑

σ(i)∈D vi = 0, we must have
∑

σ(i)∈G vi = 1, becausev is a probability vector.
Now, if (10.1) = ∞, the proposition bound again holds.

Suppose therefore that(10.1) is finite. Recall that cubeK contains the the do-
mains of finiteness of the rate functions{Ii,ε2 : i ∈ G} (cf. Proposition 2.1). There-
fore, by taking a subsequence and relabeling, we can takexε(k) ∈ D′(vε(k)) ∩ K

and ensure the sequence is convergent,xε(k) → x. Moreover,x ∈ D(N + M,v,B)

since
∑N+M

i=1 v
ε(k)
i x

ε(k)
i ∈ B converges to

∑N+M
i=1 vixi andB is closed.

Then, because−∑
σ(i)∈D v

ε(k)
i logε(k) ≥ 0 and the rate functionsIi,ε2 are

lower semicontinuous, we have that

(10.1) ≥ lim inf
k→∞ −

N+M−1∑
i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

v
ε(k)
j

]

+ ∑
σ(i)∈G

v
ε(k)
i Iσ(i),ε2

(
x

ε(k)
i

)
(10.2)

≥ −
N+M−1∑

i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

vj

]
+ ∑

σ(i)∈G

viIσ(i),ε2(xi).

STEP 3. WhenM = 1 andN ≥ 1, thenG = {ζ1} is a singleton andvζ1 = 1.
Moreover, whereas−U0 is nonnegative, (10.2) is bounded below byIζ1,ε2(xζ1) ≥
J
ε2
U0

(B) to finish the proof in this case.

STEP 4. Suppose then thatM ≥ 2 andN ≥ 1. The strategy is to form a
permutationη ∈ SM and vectoru ∈ �M for which (10.2) reduces to an expression
that involves only terms that relate toG. Write σ−1(G) = {χ1, . . . , χM}, where
χi is ordered as follows:

χ1 = min{s :σ(s) ∈ G} and

χi = min{s > Xi−1 :σ(s) ∈ G} when 2≤ i ≤ M.

Now, whereasvi = 0 for σ(i) /∈ G and, in particular,vi = 0 for 1 ≤ i ≤ χ1 − 1
whenχ1 ≥ 2, we have

−
N+M−1∑

i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

vj

]

= −
N+M−1∑

i=χ1

U0
(
σ(i), σ (i + 1)

) ∑
χ1≤j≤i

j∈σ−1(G)

vj

= −
M−1∑
k=1

χk+1−1∑
i=χk

U0
(
σ(i), σ (i + 1)

) ∑
χ1≤j≤i

j∈σ−1(G)

vj + K0,
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where

K0 =


−

N+M−1∑
i=χM

U0
(
σ(i), σ (i + 1)

)[ ∑
1≤j≤i

j∈σ−1(G)

vj

]
, whenχM < N + M,

0, whenχM = N + M.

In any case, becauseK0 is nonnegative, we have that

−
N+M−1∑

i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

vj

]
(10.3)

≥ −
M−1∑
k=1

[ χk+1−1∑
i=χk

U0
(
σ(i), σ (i + 1)

) ∑
χ1≤j≤i

j∈σ−1(G)

vj

]
.

STEP 5. We now bound individually the terms in large brackets in (10.3). For
eachχk ≤ i ≤ χk+1 − 1, as{vj :χ1 ≤ j ≤ i andj ∈ σ−1(G)} = {vχs : 1 ≤ s ≤ k},
we may write

χk+1−1∑
i=χk

U0
(
σ(i), σ (i + 1)

) ∑
χ1≤j≤i

j∈σ−1(G)

vj

= [
U0

(
σ(χk), σ (χk + 1)

)+ U0
(
σ(χk + 1), σ (χk + 2)

)
+ · · · + U0

(
σ(χk+1 − 1), σ (χk+1)

)][ k∑
s=1

vχs

]

≤ U0
(
σ(χk), σ (χk+1)

) k∑
s=1

vχs

by repeatedly applying the triangle inequality Lemma 10.1.
Hence, pulling together the inequalities, we have

−
N+M−1∑

i=1

U0
(
σ(i), σ (i + 1)

)[ i∑
j=1

vj

]
(10.4)

≥ −
M−1∑
k=1

U0
(
σ(χk), σ (χk+1)

)[ k∑
s=1

vχs

]
.

STEP 6. Define nowu ∈ �M by uk = vχk
for 1≤ k ≤ M . Then

∑
i∈σ−1(G)

viIσ(i),ε2(xi) =
M∑

k=1

vχk
Iσ(χk),ε2(xχk

) =
M∑

k=1

ukIσ(χk),ε2(xχk
).
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Now letη ∈ SM be the permutation whereζη(i) = σ(χi) for 1 ≤ i ≤ M . Noting
(10.4), we can then bound (10.2) below by

−
M−1∑
k=1

U0
(
σ(χk), σ (χk+1)

)[ k∑
s=1

us

]
+

M∑
k=1

ukIσ(χk),ε2(xχk
)

(10.5)

= −
M−1∑
k=1

U0
(
ζη(k), ζη(k+1)

)[ k∑
s=1

us

]
−

M∑
k=1

ukIζη(k),ε2(xχk
).

STEP 7. By construction
∑N+M

i=1 vixi ∈ B. Then, becausevj = 0 when
σ(j) /∈ G, we have

N+M∑
j=1

vjxj = ∑
j∈σ−1(G)

vj xj = ∑
j∈σ−1(G)

vj xj =
M∑

s=1

vχs xχs =
M∑

s=1

usxχs

and so〈xχ1, . . . , xχM
〉 ∈ D(M,u,B). Hence, tracing through the argument,

(10.5) ≥ inf
x∈D(M,u,B)

−
M−1∑
k=1

U0
(
ζη(k), ζη(k+1)

)[ k∑
s=1

us

]
−

M∑
k=1

ukIζη(k),ε2(xk)

≥ J
ε2
U0

(B). �

PROPOSITION10.2. Let � ⊂ Rd be compact. Then we have

lim inf
ε↓0

J
ε
U0

(�) ≥ JU0(�).(10.6)

PROOF. When lim infε↓0 Jε
U0

(�) = ∞, of course (10.6) is immediate.

STEP 1. Suppose then that lim infε↓0 Jε
U0

(�) < ∞. As in Step 2 in Proposi-

tion 10.1, letε(k) ↓ 0, σε(k) = σ independent ofk, vε(k) → v and xε(k) → x ∈
D(M,v,�) be such that

lim inf
ε↓0

J
ε
U0

(�)

= lim
k→∞−

M−1∑
i=1

(
i∑

j=1

v
ε(k)
j

)
U0

(
ζσ(i), ζσ(i+1)

)+
M∑
i=1

v
ε(k)
i Iζσ(i),ε(k)

(
x

ε(k)
i

)
.

STEP 2. We now claim fori ∈ G that

lim inf
k→∞ Ii,ε(k)

(
x

ε(k)
i

) ≥ Ii (xi).(10.7)
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For λ ∈ Rd , let ρi,ε(λ) and ρi(λ) be the Perron–Frobenius eigenvalues that
correspond to theλ tilts of P (i, ε) andP (i) [cf. (2.3)]. From [21], we have that
limε↓0 logρi,ε(λ) = logρi(λ).

Now, for λ′ ∈ Rd , observe that

lim inf
k

Ii,ε(k)

(
x

ε(k)
i

) = lim inf
k

sup
λ∈Rd

〈
λ,x

ε(k)
i

〉− logρi,ε(k)(λ)

≥ lim inf
k

〈
λ′, xε(k)

i

〉− logρi,ε(k)(λ
′)

= 〈λ′, x〉 − logρi(λ
′).

Hence, becauseλ′ is arbitrary, we have lim infk Ii,ε(k)(x
ε(k)
i ) ≥ supλ{〈λ,x〉 −

logρi(λ)} = Ii(x).

STEP3. In fact, (10.7) proves the proposition whenM = 1. On the other hand,
whenM ≥ 2, we have with (10.7) that

lim inf
ε↓0

J
ε
U0

(�) ≥ −
M−1∑
i=1

(
i∑

j=1

vj

)
U0

(
ζσ(i), ζσ(i+1)

)+
M∑
i=1

viIζσ(i)
(xi)

≥ JU0(�). �

11. Routing cost comparisons. We separate the proof of Proposition 4.10
into two separate results.

PROPOSITION 11.1. Suppose Assumption B holds. Then, for distinct
i, j ∈ G(P ),

T1(i, j) ≥ T0(i, j).

PROOF. Recall the definitions ofγ 1(n, y, z) andγ 1(n, (i, j)). It is enough to
prove fory ∈ Ci andz ∈ Cj that

lim inf
n→∞

1

n
logγ 1(n, y, z) ≥ T0(i, j).(11.1)

Then, clearly

T1(i, j) = lim inf
n→∞

1

n
logγ 1(n, (i, j)

) ≥ T0(i, j),

finishing the proof.
We now show (11.1). Letk andLk = 〈i = l0, l1, . . . , lk, lk+1 = j〉 be such that

T0(i, j) =
k∑

s=0

τ (ls, ls+1).
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To connect with the definition ofγ 1(n, (i, j)), form vectors x0 = 〈x0
1, . . . ,

x0
q0

〉, . . . ,xk+1 = 〈xk+1
1 , . . . , xk+1

qk+1
〉 with distinct elements inCl0, . . . ,Clk+1 such

that, for 0≤ s ≤ k,

xs
qs

= a(ls, ls+1) and xs+1
1 = bn+r(s)(ls, ls+1),

1 ≤ qs ≤ r + 1 and 1≤ q0, qk+1 ≤ r. In addition, because{P (i) : i ∈ G} are
irreducible, we specify that the paths are possible. Namely, for all largen,

P(n−1,y)

(
Xn+r(0)−1

n = x0) ≥ (pmin/2)r,

P(n+r(s−1),xs
1)

(
Xn+r(s)−1

n+r(s−1)+1 = xs
2
) ≥ (pmin/2)r

and

P
(n+r(k+1)−1,xk+1

qk+1)

(
Xn+r(k+1) = z

) ≥ pmin/2

whenqs ≥ 2 and 1≤ s ≤ k + 1. Here,xs
2 = 〈xs

2, . . . , x
s
qs

〉 whenqs ≥ 2, r(s) =∑s
u=0 qu andpmin is defined in (2.5).
Since the length of the connecting path fromy to z is at mostE0(N,M)

[cf. near (2.10)], we have

lim inf
n→∞

1

n
logγ 1(n, y, z)

≥ lim inf

[
log(pmin/2)E0(N,M)

n

+ 1

n

k+1∑
s=0

logpn+r(s)

(
a(ls, ls+1), bn+r(s)(ls , ls+1)

)]

=
k+1∑
s=0

τ (ls , ls+1) = T0(i, j)

from Assumption B. �

PROPOSITION 11.2. Suppose that Assumption C holds. Then, for distinct
i, j ∈ G,

T1(i, j) ≥ T0(i, j).

PROOF. The proof is similar to that of Proposition 11.1. As before, it is
enough to show (11.1). Letk and Lk = 〈i = l0, l1, . . . , lk, lk+1 = j〉 be such
that T0(i, j) = ∑k

s=0 τ (ls, ls+1). Form the path vectorx0 = 〈x0
1, . . . , x0

q0
〉 with

1 ≤ q0 ≤ r of distinct elements inCi and statex1
1 ∈ Cl1 such that

pn−1+(q0+1)

(
x0
q0

, x1
1
) = t

(
n + q0, (i, l1)

)
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and

lim inf
n→∞

1

n
logP(n−1,y)(Xn+q0−1

n = x0)

= lim inf
1

n

[
logpn(y, x0

1) + logpn(x
0
1, x0

2) + · · · + logpn

(
x0
q0−1, x

0
q0

)] = 0.

Such a vectorx0 exists from the primitivity ofP ∗(i).
Similarly, form vectorsxs = 〈xs

1, . . . , x
s
qs

〉 in Cls , where 1≤ qs ≤ r + 1 for
1 ≤ s ≤ k and 1≤ qk+1 ≤ r. Also specify that

pn−1+r(s)+1
(
xs
qs

, xs+1
1

) = t
(
n − 1+ r(s) + 1, (ls, ls+1)

)
for 1 ≤ s ≤ k. In addition, the paths are chosen so

lim inf
1

n
logP(n−1+r(s−1)+1,xs

1)

(
Xn+r(s)−1

n+r(s−1)+1 = xs
2
) = 0

and

lim inf
1

n
logP

(n+r(k+1)−1,x
k+1
qk+1)

(
Xn+r(k+1) = z

) = 0

whenls ∈ G andqs ≥ 2, andxs
2 andr(s) are as before. Then

lim inf
n→∞

1

n
logγ 1(n, y, z) ≥ lim inf

1

n

k+1∑
s=0

logt
(
n − 1+ r(s), (ls, ls+1)

)

≥
k+1∑
s=0

τ (ls, ls+1) = T0(i, j).
�

12. Examples. In this section, we present three examples that concern
possible LD behaviors of{Zn(f )} underPπ ∈ A(P ). The first shows that even
if Assumption A is violated, an LDP may still hold with respect to some processes
and functionsf . The second example shows that the bounds in Theorems
3.1 and 3.2(ii) may be achieved. The third example shows that it is possible
that an LDP is nonexistent under Assumption A when one of the submatrices
{P (i) : i ∈ G} is periodic and Assumptions B and C do not hold.

12.1. Assumption A is not necessary for LDP. The point is that if the
connecting transition probabilities oscillate so that Assumption A fails, but not
too wildly, then the process on the large deviation scale can wait ano(n) time to
select optimal connections. Let� = {0,1} and initial distributionπ = 〈1/2,1/2〉.
Let alsof :� → R be given byf (0) = 1 andf (1) = 0, and fork ≥ 1, define
transition matrices

Ak =
[

1− (1
2

)k (1
2

)k
0 1

]
and Bk =

[
1− (1

3

)k (1
3

)k
0 1

]
.
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Then, forn ≥ 1, let

Pn =
{

An, for n even,

Bn, for n odd.

The limit matrix P is the 2× 2 identity matrix I2, with two irreducible sets,
C0 = {0} and C1 = {1}. Both sets correspond to degenerate rate functions, for
i = 0,1, Ii(x) = 0 for x = 1 − i and = ∞ otherwise. Also, one sees that
τ (0,1) = − log 3< − log2= υ(0,1), so Assumption A is not satisfied here. Of
course,τ (1,0) = υ(1,0) = −∞. Also, the process satisfies Condition SIE-1.

To identify the large deviations of{Zn(f )} under P
{Pn}
π , we focus on sets

� = (a, b] for 0 < a < b < 1, because the analysis on other types of sets is similar.
As before,A(0) andA(1) are the events thatXn does not switch and switches

exactly once between setsC0 andC1. Since� is such thatPπ(Zn ∈ �,A(0)) = 0
and also since the chain cannot switch from state 1 to 0, we have

Pπ(Zn ∈ �) = Pπ

(
Zn ∈ �,A(1)

)= Pπ

(
Zn ∈ �,A(1),X1 = 0,Xn = 1

)
.

The event{A(1),X1 = 0,Xn = 1} ⊂ �n consists exactly ofn−1 pathsxn,i that
start at 0 but switch to 1 at time 1≤ i ≤ n − 1. Now compute that

Pπ (Xn = xn,i) = π(0)

i∏
k=1

(
1− α(k)k

)(
α(i + 1)

)i+1
n∏

l=i+2

(
1− α(l)l

)
= eo(n)

(
α(i + 1)

)i+1
,

whereα(k) = 1/2 for k even and= 1/3 for k odd. Also, on the pathxn,i , we have
thatZn = i/n.

Let Go
n = {1≤ i ≤ n : i/n ∈ �o}. Then, by Lemma 5.1, we have

lim inf
1

n
logPπ

(
Zn ∈ �o,A(1),X1 = 0,Xn = 1

)
= lim inf max

i∈Go
n

1

n
logPπ(Xn = xn,i)

= lim inf max
{�an�

n
log

(
α(�an�)), �an� + 1

n
log

(
α(�an� + 1)

)}
= a log

(
1

2

)
= −a log(2).

Similarly, lim sup(1/n) logPπ (Zn ∈ 
�,A(1),X1 = 0,Xn = 1) = −a log(2).
A related analysis works for more general� and we have that{Zn(f )} satisfies

an LDP with rate function

I(z) =


z log 2, z ∈ [0,1),

0, z = 1,

∞, otherwise.
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12.2. Bounds may be sharp in Theorems 3.1and 3.2. The key in this example
is that the connection probabilities oscillate “unboundedly,” so picking out the
optimal strategy is time-dependent. As before, let� = {0,1}, π = 〈1/2,1/2〉 and
let f :� → R be given byf (0) = 1 andf (1) = 0. Let {g(n)} be a fast divergent
sequence of integers,g(n) ↑ ∞, g(n) < g(n + 1) andg(n − 1)/g(n) → 0. Also,
for k ≥ 1, let

Pi =


I2, for 1≤ i ≤ g(2),

Ai, for g(2k) < i ≤ g(2k + 1),

Bi, for g(2k + 1) < i ≤ g(2k + 2),

whereAi andBi are defined in Section 12.1.
To compute the large deviations of{Zn(f )}, we focus now on sets� = (a, b) ⊂

[0,1], where 0≤ a < b < 1. Calculations for other sets are analogous. Then, in the
notation of the previous example,

lim inf
1

n
logPπ(Zn ∈ �) = lim inf

1

n
logPπ

(
Zn ∈ �,A(1),X1 = 0,Xn = 1

)
.

Let nownk = g(2k +2) for k ≥ 1. Theni/nk ∈ � exactly when�g(2k +2)a� ≤
i ≤ �g(2k + 2)b�. Also, whereas

lim
n

�g(2k + 2)a�
g(2k + 2)

= a > 0= lim
g(2k + 1)

g(2k + 2)
,

we have for all largek that g(2k + 1) + 1 ≤ �g(2k + 2)a� ≤ �g(2k + 2)b� ≤
g(2k + 2). Note also thatPi = Bi for g(2k + 1) + 1 ≤ i ≤ g(2k + 2). Hence,

lim
1

nk

logPπ

(
Znk

∈ �,A(1),X1 = 0,Xnk
= 1

)
= lim inf max

i : i/nk∈�

1

nk

logPπ

(
Xnk

= xnk,i

)
= lim

�g(2n + 2)a�
g(2n + 2)

log
(

1

3

)
= −a log(3).

Moreover, in fact lim inf(1/n) logPπ(Zn ∈ �) = −a log(3).
Similarly, by considering subsequencenk = g(2k + 1), we get

lim sup
1

n
logPπ

(
Zn ∈ 
�,A(1),X1 = 0,Xn = 1

) = −a log(2).

These calculations, and analogous ideas give, for any�, that

lim sup
1

n
logµπ(Zn ∈ 
� ) = − inf

z∈�


J(z)

and

lim inf
1

n
logµπ(Zn ∈ �o) = − inf

z∈�o
J(z),
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where


J(z) =


z log 2, for z ∈ [0,1),

0, z = 1,

∞, otherwise,
and

J(z) =


z log 3, for z ∈ [0,1),

0, z = 1,

∞, otherwise.
On the other hand, these lower and upper rate functions match those in

Theorems 3.1 and 3.2(i). WhereasT0(0,1) = − log3, U0(0,1) = − log 2 and
t (k, (1,0)) = 0 for all k ≥ 1, we have

JT0(z) = − inf
δ∈[0,1] inf〈x,y〉∈D(2,〈δ,1−δ〉,z)min{I0(y), δ log(3) + δI0(x) + (1− δ)I1(y)}

= J(z)

and analogouslyJU0 =
J.

12.3. Periodicity and nonexistence of LDP. We consider a process which
satisfies Assumptions A but not Assumptions B or C for which an LDP cannot
hold through an explicit contradiction. Also, we show that the lower bound with
respect toT0 in Theorem 3.2 does not work for this example.

Let � = {1, . . . ,9} and letπ be the uniform distribution on�. Forn of the form
n = 1+ 3j for j ≥ 0, except whenn = 32j + 1 for j ≥ 5, let


Pn =



1/3 1/3 1/3 0 0 0 0 0 0

1/3 1/3 1/3 0 0 t
(
n, (1,2)

)
0 0 0

1/3 1/3 1/3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 t
(
n, (2,3)

)
0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 t
(
n, (2,3)

)
0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3



,


Pn+1 =



1/3 1/3 1/3 0 0 0 0 0 0

1/3 1/3 1/3 0 0 0 0 0 0

1/3 1/3 1/3 t
(
n + 1, (1,2)

)
0 0 0 0 0

0 0 0 0 1 0 t
(
n + 1, (2,3)

)
0 0

0 0 0 0 0 1 t
(
n + 1, (2,3)

)
0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3



,
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Pn+2 =



1/3 1/3 1/3 0 t
(
n + 2, (1,2)

)
0 0 0 0

1/3 1/3 1/3 0 0 0 0 0 0

1/3 1/3 1/3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 t
(
n + 2, (2,3)

)
0

0 0 0 1 0 0 0 t
(
n + 2, (2,3)

)
0

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3



.

Forn = 32j + 1 for j ≥ 5, let P̂n+1 andP̂n+2 be defined as before, but now let


Pn =



1/3 1/3 1/3 0 0 0 0 0 0

1/3 1/3 1/3 0 0 t
(
n, (1,2)

)
0 0 0

1/3 1/3 1/3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 t
(
n, (2,3)

)
0 0 0 0 0 1 0 0 t

(
n, (2,3)

)
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 1/3 1/3 1/3


.

Suppose now thatt (n, (1,2)), t (n, (2,3)) andt(n, (2,3)) vanish asn tends to
infinity and limits

lim
1

n
logt

(
n(1,2)

)
, lim

1

n
logt

(
n, (2,3)

)
and lim

1

n
logt

(
n, (2,3)

)
exist and equal, respectively,

υ(1,2) = τ (1,2) = 0, υ(2,3) = τ (2,3) = A

and

lim
1

n
logt

(
n, (2,3)

)= 2A + ε,

whereA < 0 andε > 0 is chosen small enough so that 2A + ε < A.
Define the diagonal matrix�n = diag{λ−1

1 , . . . , λ−1
9 }, whereλi is the ith row

sum of 
Pn. Then lim�n = I9. Let Pn = �n

Pn for n ≥ 1. The limit matrix

P = lim Pn = lim 
Pn corresponds to three sets:C1 = {1,2,3}, C2 = {4,5,6} and
C3 = {7,8,9}.

Let alsof be a one-dimensional function on the state space such thatf (1) =
f (2) = f (3) = 1,f (4) = f (5) = f (6) = 2 andf (7) = f (8) = f (9) = 3. We now

concentrate the sequence{Zn(f )} with respect to the processP{Pn}
π .

Assumptions. By inspection, it is clear that Condition SIE-1 and Assump-
tion A hold, but Assumptions B and C do not hold.
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Nonexistence of LDP. First, letµπ be the measure constructed from{
Pn} and
π through CON. It is not difficult to see that the large deviation ofZn underPπ is
the same as with respect toµπ , that is, for Borel� ⊂ Rd ,

lim sup
1

n
logPπ(Zn ∈ 
� ) = lim sup

1

n
logµπ(Zn ∈ 
� )

and

lim inf
1

n
logPπ (Zn ∈ �o) = lim inf

1

n
logµπ(Zn ∈ �o)

(cf. Proposition 7.1). Second, the rate functions on the three sets are degenerate:

Ii(z) =
{

0, if z = i,

∞, otherwise,
for i = 1,2,3.

Consider now the following two lemmas, which are proved later.

LEMMA 12.1. For 0 < ε < 1/2, let � = [2+ ε,2+ 2ε]. Then

lim sup
1

n
logµπ(Zn ∈ 
� ) > (1− 2ε)A.

LEMMA 12.2. For 0 < ε < 1/2 and θ > 0, let �(θ) = (2+ ε − θ,2+2ε + θ).
Then

lim inf
θ↓0

lim inf
n→∞

1

n
logµπ

(
Zn ∈ �(θ)

)≤ (1− 2ε)A.

These results show that no LDP is possible. If an LDP were to hold with rate
functionI , say, then

(1− 2ε)A ≥ lim inf
θ↓0

lim inf
n→∞

1

n
logµπ

(
Zn ∈ �(θ)

)
≥ lim inf

θ↓0
− inf

x∈�(θ)
I (x) ≥ − inf

x∈
�
I (x)

≥ lim sup
n→∞

1

n
logµπ(Zn ∈ 
� ) > (1− 2ε)A,

leading to a contradiction.

Lower bound in Theorem 3.2(ii) does not hold. Consider the following lemma
proved at this end of this section.

LEMMA 12.3. With respect to �(θ) as in Lemma 12.2,we have

− inf
z∈�(θ)

JT0(z) = (1− 2ε − θ)
A

2
.
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Then a clear contradiction with Lemma 12.2 would arise if the lower bound in
Theorem 3.2(ii) were valid.

PROOF OFLEMMA 12.1. Non-wordxn that remains solely in a single closed
set can have an average in
�. Also, by construction, non-word can pass fromCi to
Cj for i > j , or in one step fromC1 to C3. Therefore, the onlyn-words such that
(1/n)

∑n
i=1 f (xi) ∈ [2+ε,2+2ε] are those which visit succesivelyC1, C2 andC3

or those which visit firstC2 and thenC3.
We now examine(1/n) logµπ(Zn ∈ 
� ) along the sequence

nk =
⌈
32k

/(
1− 2ε

2

)⌉
for k ≥ 1. Let nowA(nk) be the set ofnk-words xnk

which stays inC1 until

time 32k
, spends one time unit inC2 and then switches toC3. By definition, for

xnk
∈ A(nk) andk large enough, we have

1

nk

nk∑
i=1

f (xi) = 32k

nk

+ 2

nk

+
(

1− 32k + 1

nk

)
3∈ [2+ ε,2+ 2ε].

Then, withδ(ε) = (1− 2ε)/2, we have

lim sup
n→∞

1

n
logµn

π(Zn ∈ 
� )

≥ lim inf
k→∞

1

nk

logµnk
π

(
Znk

∈ 
�,A(nk)
)

≥ − inf
〈x,y〉∈D(2,〈δ(ε),1−δ(ε)〉,
� )

− δ(ε)

{
lim inf

1

k
logt

(
k, (1,2)

)+ lim inf
1

k
log t

(
k, (2,3)

)}
+ δ(ε)I1(x) + (

1− δ(ε)
)
I3(y)

= δ(ε)

{
lim

1

k
logt

(
k, (1,2)

)+ lim
1

k
log t

(
k, (2,3)

)}
− δ(ε)I1(1) − (

1− δ(ε)
)
I3(3)

= 1− 2ε

2
(2A + ε) > (1− 2ε)A. �

PROOF OFLEMMA 12.2. Let nownk = 32k
for k ≥ 1. We first show thatxnk

cannot visitC1, C2 andC3 in succession and satisfy1
nk

∑nk

i=1 f (xi) ∈ �(θ) for
all small θ . Indeed, by construction, a pathxnk

which visitsC1,C2 andC3 must

switch fromC2 to C3 at a time less than or equal to 32k−1
. However, then, because
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f (·) ≥ 1 and 32
k−1

/nk → 0, we have for largek andθ sufficiently small that

1

nk

nk∑
i=1

f (xi) ≥ 32k−1

nk

+
(

1− 32k−1 + 1

nk

)
3 > 2+ 2ε + θ.

Thus, ifxnk
∈ �(θ), we deducexnk

begins inC2 and then switches toC3. Now let
τ (ε) = 1− 2ε. We have

lim inf
θ↓0

lim inf
n→∞

1

n
logPπ

(
Zn ∈ �(θ)

)
≤ lim inf

θ↓0
lim inf
k→∞

1

nk

logPπ

(
Znk

∈ �(θ)
)

= lim inf
θ↓0

sup
0≤δ≤1

sup
〈x,y〉∈D(2,〈δ,1−δ〉,�(θ))

δ lim sup
1

k
log t

(
k, (2,3)

)
− δI2(x) − (1− δ)I3(y)

= τ (ε) lim sup
1

k
logt

(
k, (2,3)

)= (1− 2ε)A,

becauseτ (ε) is the smallestδ such that(2,3) ∈ D(2, 〈δ,1− δ〉, [2 − ε,2 + 2ε]).
�

PROOF OFLEMMA 12.3. Since motion is possible only fromC1 to C2 to C3,
and the corresponding rate functions are degenerate atx1 = 1, x2 = 2 andx3 = 3,
we have

JT0(�(θ)) = sup
v1+v2+v3=1
0≤v1,v2,v3≤1

sup
x∈D(3,v,�(θ))

v1τ (1,2) + (v1 + v2)τ (2,3) −
3∑

i=1

viIi(xi)

= sup
v1+2v2+3(1−v1−v2)∈�(θ)

0≤v1,v2≤1

(v1 + v2)A

= (1− 2ε − θ)(A/2). �

APPENDIX

A.1. Proof of Lemma 4.1. We consider separately the situations when 0< δ<1
andδ = 0.

CASE δ > 0. Let t̂n = sups≥n ts . Thentn ≤ t̂n, 0< t̂n ≤ 1 andt̂n ↓ δ. Also

lim
1

n
log t̂n → 0= lim sup

1

n
log tn.

CASE δ = 0. The proof is split into two subcases.



480 Z. DIETZ AND S. SETHURAMAN

Subcase 1. lim sup(1/n) logtn = t < 0. If tn vanishes eventually, that is,tn = 0
for n ≥ N0, someN0 ≥ 1, then we may take

t̂n =
{

1, for 1≤ n < N0,

e−n2
, for n ≥ N0.

Otherwise, letan = supj≥n(1/j) logtj and t̂n = exp{supl≥n lal}. Note an ↓ t

andt̂n ≥ exp{nan} ≥ exp{n(1/n) logtn} = tn, and also that 1≥ t̂n > 0. In addition,
(1/n) log t̂n ≥ an → t .

Let now 1> ε > 0 and letN1 be such thatan < (1− ε)t for n ≥ N1. Then

1

n
log t̂n ≤ 1

n
sup
l≥n

lt (1− ε) = t (1− ε)

for n ≥ N1. Whereasε is arbitrary, we then have(1/n) log t̂n → t .

Subcase 2. lim sup(1/n) logtn = t = 0. As tn → 0, we havetn < 1 for n ≥ N2,
say. Letbj = maxN2≤l≤j (1/l) logtl for j ≥ N2 and let

t̂n =


1, for n < N2,

exp
{

sup
j≥n

jbj

}
, for n ≥ N2.

Note thattn ≤ t̂n and 1≥ t̂n > 0, and as supj≥n jbj decreases withn, that t̂n is a
decreasing sequence.

We now identify the limit. Note thatbj ≤ 0 for all j ≥ N2 and(1/l) logtl → 0.
Then, for eachK ≥ N2, there is an indexJK ≥ K such that

bj = max
K≤l≤j

(1/l) logtl for j ≥ JK.

Hence, for largen and givenK ≥ N2,

t̂n = exp
{

sup
j≥n

j max
K≤l≤j

(1/l) logtl

}
≤ exp

{
sup
j≥n

max
K≤l≤j

logtl

}
= sup

j≥n

max
K≤l≤j

tl .

WhereasK is arbitrary, we have that̂tn ↓ 0.
Finally, asbj → 0, we have forε > 0 and largen that

0≥ (1/n) log t̂n = (1/n)sup
j≥n

jbj ≥ (1/n)sup
j≥n

j (−ε) = −ε.

Whereasε is arbitrary, we have(1/n) log t̂n → 0. �
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A.2. An extended Gärtner–Ellis theorem. We give here a minor extension
of the Gärtner–Ellis theorem and state some general conditions under which a
sequence of bounded nonnegative measures{µn} onRd satisfies an LDP.

For λ ∈ Rd , define the extended real sequence�n(λ) = log
∫
Rd e〈λ,x〉 dµn(x)

and also�(λ) = limn→∞(1/n)�n(nλ), provided the extended limit exists. We
now recall when� is essential smoothness (cf. [10]).

ASSUMPTIONE.

1. For allλ ∈ Rd , �(λ) exists as an extended real number in(−∞,∞].
2. LetD� = {λ :−∞ < �(λ) < ∞}. Suppose 0∈ Do

�.
3. The function�(·) is differentiable throughoutDo

�.
4. When {λn} ⊂ Do

� converges to a boundary point ofD�, we have
|∇�(λn)| → ∞.

5. The function�(λ) is a lower semicontinuous function.

We now state the standard Gärtner–Ellis theorem (cf. [10]).

PROPOSITION A.1. Let {νn} be a sequence of probability measures which
satisfy Assumption E. Let I be the Legendre transform of �. Then I is a rate
function and {νn} satisfies LDP (2.1).

The main result of this section is the following proposition.

PROPOSITIONA.2. Let {µn} be a sequence of bounded nonnegative measures
on Rd that satisfy Assumption E.Let I be the Legendre transform of �. Then I is an
extended rate function and the LDP (2.1) holds. Moreover, I can be decomposed
as the difference of a rate function of a probability sequence and a constant,
I = I1 − �(0).

PROOF. By Assumption E, withλ = 0, we have that(1/n) logµn(R
d) →

�(0) ∈ R. Consider now the probability measuresνn(·) = µn(·)/µn(R
d). The

pressure of the sequence{νn} is calculated as�(·) − �(0). Since Assumption E
holds for�(·), it also holds for the shifted function�(·) − �(0). Therefore, by
Proposition A.1, we have that{νn} satisfies (2.1) with rate functionI1 given by

I
1(x) = sup

λ

{〈λ,x〉 − (
�(λ) − �(0)

)}
= sup

λ

{〈λ,x〉 − �(λ)} + �(0).

Let now I(x) = supλ{〈λ,x〉 − �(λ)}, so thatI = I1 − �(0). Whereasµn(·) =
µn(R

d)νn(·), by translating we obtain that (2.1) holds for the{µn} sequence with
rate functionI. �
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A.3. Proof of Proposition 2.1.

Extended pressure �. We follow the method in [10] to identify the extended
pressure of the sequence{µn}:

�(λ) = lim
1

n
log�n(nλ)

= lim
1

n
log

∫
Xn∈Cn

exp
(〈

λ,
∑

f (Xi)
〉)

dUπ

= lim
1

n
log

(
πt (�C,λ)

n1
)
.

Since �C,λ is an irreducible matrix, the Perron–Frobenius eigenvalueρ(C,λ)

possesses a right Perron–Frobenius eigenvectorv(λ) with positive entries. Leta
andb be the smallest and largest entries. Then

log
(
πt(�C,λ)

n1
) ≤ log

(
(1/a)πt(�C,λ)

nv
) = 1

n
log

(
1

a
πtv

)
+ logρ(C,λ)

and, similarly, log(πt(�C,λ)
n1) ≥ logρ(C,λ) + o(1). Hence,

�(λ) = lim
1

n
log�n(nλ) = logρ(C,λ).

Analyticity, convexity and essential smoothness of �. Perron–Frobenius the-
ory guarantees thatρ(λ) has multiplicity 1 and is positive for allλ ∈ Rd . Then,
by Theorem 7.7.1 in [21],ρ(·) is analytic and so�(·) is analytic. Now, because
�(λ) is the limit of a sequence of convex functions, it is convex. Finally, by the
comments of Section 3.1 in [10], we have that� is essentially smooth.

I is an extended rate function and {µn} satisfies an LDP. Recall now thatI =
IC is the Legendre transformI(x) = supλ∈Rd 〈λ,x〉 − �(λ). By Proposition A.2,
we have thatI is an extended rate function and{µn} satisfies an LDP with respect
to I.

I is a rate function when UC is substochastic. WhenUC is substochastic, we
have�(0) ≤ 0. Hence, by Proposition A.2,I = I1 − �(0) ≥ 0 and so is a rate
function.

I is not identically ∞. Let x̂ = ∇�(0). Then, by Theorem 23.5 in [25],

I(x̂) = sup
λ∈Rd

〈λ,∇�(0)〉 − �(λ) = 〈0,∇�(0)〉 − �(0) = −�(0) < ∞.
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Convexity of I and strict convexity on the relative interior of QC . Whereas
� is convex, the Legendre transformI is convex. Also, because�(·) is real-
valued and lower semicontinuous, by Lemma 4.5.8 of [10],� is the conjugate
of I. WhereasI is not identically∞, it is a proper convex function. Moreover,
sinceI is lower semicontinuous, it is a closed convex function as well (cf. [25],
page 52). Then, since� is essentially smooth, we have from Theorem 26.3 of [25]
thatI is strictly convex on the relative interior of its domain of finitenessQC .

QC is convex and QC ⊂ K. Let x, y ∈ QC . The convexity ofI implies that
I((x + y)/2) ≤ (I(x) + I(y))/2< ∞. Hence,QC is convex.

Forλ ∈ Rd , let λ̄ = 〈|λ1|, . . . , |λd |〉. Then

exp
〈
−λ̄,

(
max

i
|f (i)|

)
1d

〉
PC ≤ �C,λ ≤ exp

〈
λ̄,

(
max

i
|f (i)|

)
1d

〉
PC.

Whereas the Perron–Frobenius value ofPC is 1, we have

exp
〈
−λ̄,

(
max

i
|f (i)|

)
1d

〉
≤ ρ(λ) ≤ exp

〈
λ̄,

(
max

i
|f (i)|

)
1d

〉
.

Now let x be such thatxj > maxi |f (i)| for some 1≤ j ≤ d . Then, forα ∈ R,

let λj,α ∈ Rd be such thatλj,α
i = 0 for i �= j andλ

j,α
j = α. We have then

I(x) ≥ sup
λ∈Rd

〈λ,x〉 −
〈
λ̄,

(
max

i
|fi |

)
1d

〉

≥ 〈λj,α, x〉 −
〈
λj,α,

(
max

i
|fi|

)
1d

〉
≥ αxj − |α|max

i
|fi |.

By taking α ↑ ∞, we have thatI(x) = ∞. Similarly, if xj < −maxi |fi |, then
I(x) = ∞. Thus,I(x) < ∞ implies maxi |xi | < maxi |fi| and soQC ⊂ K.

QC is compact. If I can be shown to be uniformly bounded onQC , then the
lower semicontinuity ofI will imply that QC is closed. Also, since it was shown
above thatQC is bounded,QC will then be compact.

Let p be the smallest positive entry inPC and letG = {x : I(x) ≤ − logp}.
By the lower semicontinuity ofI, G is a closed set. Letx0 ∈ Gc. We show that
I(x0) = ∞ and henceQC ⊂ G.

Since Gc is open, letB = 
B(x0; δ) ⊂ Gc be a closed ball aroundx0 with
some radiusδ > 0. If now lim sup(1/n) logµn(Zn ∈ B) > −∞, then there exists a
sequence{xnk

} such that
∑nk

i=1 f (xi)/nk ∈ B andµn(Xn = xnk
) > 0. However, we

haveµn(Xn = xnk
) ≥ pnk , and so lim sup(1/nk) logµn(Znk

∈ B) ≥ logp. Hence,
using the LD upper bound,

−I(B) ≥ lim sup
1

n
logµn(Zn ∈ B) ≥ logp.
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However, sinceI is lower semicontinuous,I(B) = I(x1) on some pointx1 in the
compact setB ⊂ Gc. Hence,I(B) > − logp, giving a contradiction.

Therefore, we must haveI(x0) = ∞ because

−∞ = lim sup
1

n
logµn(Zn ∈ B)

≥ lim inf
1

n
logµn(Zn ∈ B) ≥ −I(Bo) ≥ −I(x0).

I is uniformly continuous on QC . WhereasI is convex,I restricted toQC is
continuous. SinceQC is compact,I is in fact uniformly continuous onQC .

I is a good rate function. WhereasI is lower semicontinuous, the level set
{x : I(x) ≤ a} for a ∈ R is a closed subset ofQC and hence compact.

A.4. Proof of Proposition 4.1. WhenM = 1,P (ζ1) is stochastic andJU = Iζ1,
and the proof follows from Proposition 2.1. Suppose now thatM ≥ 2. Consider
that JU ≤ min{Ii : i ∈ G} and soQJU

⊃ ⋃
i∈G Qi is nonempty. Also,QJU

⊂ K:
Indeed, forz /∈ K, andv ∈ �M andx ∈ D(M,v, z) we must have thatvi > 0 and
xi /∈ K for some 1≤ i ≤ M . ThenCv,U (σ,x) = ∞ and soJU(z) = ∞.

In addition, JU is lower semicontinuous and nonnegative because{Ii} that
correspond to substochastic matrices{P (i) : i ∈ G} are rate functions with compact
domains of finiteness. Finally,JU is a good rate function from the same argument
given for Proposition 2.1.
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