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DYNAMIC IMPORTANCE SAMPLING FOR UNIFORMLY
RECURRENT MARKOV CHAINS

BY PAUL DUPUIS1 AND HUI WANG2

Brown University

Importance sampling is a variance reduction technique for efficient
estimation of rare-event probabilities by Monte Carlo. In standard importance
sampling schemes, the system is simulated using an a priori fixed change
of measure suggested by a large deviation lower bound analysis. Recent
work, however, has suggested that such schemes do not work well in many
situations. In this paper we consider dynamic importance sampling in the
setting of uniformly recurrent Markov chains. By “dynamic” we mean that
in the course of a single simulation, the change of measure can depend on
the outcome of the simulation up till that time. Based on a control-theoretic
approach to large deviations, the existence of asymptotically optimal dynamic
schemes is demonstrated in great generality. The implementation of the
dynamic schemes is carried out with the help of a limiting Bellman equation.
Numerical examples are presented to contrast the dynamic and standard
schemes.

1. Introduction. Among variance reduction techniques for efficient Monte
Carlo simulation is importance sampling, in which the data is generated using a
probability distribution different from the true underlying distribution. It can be
especially effective when applied to the estimation of expectations that are largely
determined by rare events. To demonstrate the difficulty involved in simulating
rare events by naive Monte Carlo, we consider a simple example. LetX be a
random variable taking values inRd , and suppose we are interested in estimating
p = P {X ∈ A} for some Borel setA ⊂ R

d . To this end, a sequence of independent
and identically distributed (i.i.d.) copiesX0,X1, . . . of X are generated. With
Ik

.= 1{Xk∈A}, an unbiased estimate forp based on the firstK samples is just the
sample mean:QK

.= (I0 + I1 + · · · + IK−1)/K . The relative error associated with
this estimator is

relative error.= standard deviation ofQK

mean ofQK

=
√

p − p2

p
· 1√

K
.
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Since
√

p − p2/p → ∞ as p tends 0, a large sample sizeK is required for
the estimatorQK to achieve a reasonable relative error bound. For example,
if p = 10−8, ten billion samples are required to achieve a relative error bound
of 10%.

The basic idea of importance sampling is as follows. Suppose thatX has
distributionθ , and consider an alternative sampling distributionτ . It is required
that θ be absolutely continuous with respect toτ , so that the Radon–Nikodym
derivative f (x)

.= (dθ/dτ )(x) exists. Independent and identically distributed
samplesX̄0, X̄1, . . . with distributionτ are generated. Form the estimate

Q̄K
.= 1

K

K−1∑
k=0

f (X̄k)1{X̄k∈A}

in lieu of QK . It is easy to check that̄QK is an unbiased estimate ofp, with a rate
of convergence determined by

var
[
f (X̄0)1{X̄0∈A}

] =
∫

R

1{x∈A}f (x)θ(dx) − p2.

The optimization of this quantity over all possibleτ is inappropriate. Indeed,
takingf (x) = p−11{x∈A} (i.e.,τ is the conditional distribution ofX givenX ∈ A),
the variance becomes 0, but this change of measure requires the knowledge of the
unknown parameterp. Instead, one typically seeks to minimize over parameterized
families of alternative sampling distributions.

When the distribution ofX is connected to a large deviations problem,
a standard heuristic is that the change of measure used to prove the large deviation
lower bound should be a good (perhaps nearly optimal) distribution to use for
the purposes of importance sampling. The first result of this type was given by
Siegmund [34]. The basic idea was subsequently investigated in many contexts,
and a small selection of the literally hundreds of papers on the topics is [1–3, 7–9,
11, 12, 15, 17, 18, 20, 24, 25, 29, 30, 33]. Necessary and sufficient conditions under
which a prescribed scheme is asymptotically optimal are discussed in [10, 31, 32],
while [21] gives a survey of rare-event simulation.

The validity of the heuristic, however, was challenged in [19]. Counterexamples
were constructed to show that, under some very common settings, the change of
measure suggested by large deviations leads to importance sampling schemes with
very poor properties.

In order to explain these counterexamples, and more importantly, to find
asymptotically optimal importance sampling algorithms in great generality,
[16] introduces a dynamic importance sampling scheme and shows its asymptotic
optimality in the setup of i.i.d. random variables (Cramér’s theorem). The key
observation is thatmany changes of measure are suggested by the large deviation
lower bound analysis, and one must consider this larger class if one hopes to
identify importance sampling schemes that work well in general. This leads to
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the development of schemes where the sampling distribution is dynamic (or,
“adaptive”) in the sense that the change of measure in the course of a single
simulation can depend on the outcome of the simulation up till that time. For this
reason, we also call such schemesadaptive importance sampling schemes.

The present paper analyzes the estimation of rare-event probabilities associated
with uniformly recurrent Markov chains. More precisely, let{Yj , j ∈ N0} be a
uniformly recurrent Markov chain taking values in a Polish spaceS, and let
g :S → R

d be a bounded measurable function. DefineSn
.= g(Y0) + g(Y1) +

· · · + g(Yn−1). The probability of interest isP {Sn/n ∈ A} for a Borel setA ⊂ R
d

andn large. An asymptotic optimality result for traditional importance sampling is
available in the one-dimensional case,d = 1, under the assumption which implies
that the setA is within a half interval that does not contain the expectation ofg

under the invariant distribution [9]. A “dissection” approach was introduced for the
high-dimensional case [9]. This approach was later on applied to Markov additive
sequences [11], and was also implicitly used in [19]. This dissection approach
requires that one appropriately partition the setA into a finite number of subsets,
and that a (possibly different) change of measure be applied to efficiently estimate
the probabilityof each individual subset. However, there is no constructive way to
obtain a suitable partition in general.

In this paper we develop adaptive importance sampling schemes for uniformly
recurrent Markov chains. The existence of asymptotically optimal adaptive
schemes is demonstrated for arbitrary dimensiond , under very mild conditions
on the setA. It turns out that one must study the asymptotics of a small
noise stochasticgame in order to analyze the optimality of importance sampling
schemes. The distinction between the change of measures used in traditional
importance sampling and adaptive importance sampling amounts, in control
terminology, to the difference between “open-loop” and “feedback” controls.
However, open loop controls are usually not optimal in the setting of stochastic
games, except for very special cases. For this reason, the traditional importance
sampling will not be asymptotically optimal in general. Our analysis indicates
that the adaptive scheme also works for estimating functionals (other than
probabilities) largely determined by rare events.

The paper is organized as follows. The setting of the problem is introduced
in Section 2, with a brief description of the large deviations principle for
uniformly recurrent Markov chains. We also give the definition of asymptotic
optimality in this section. In Section 3 we show that adaptive importance
sampling schemes designed to minimize the second moment are asymptotically
optimal. Section 4 discusses an alternative formal PDE approach to the adaptive
scheme, and describes a method for the construction of an asymptotically optimal
adaptive scheme that does not directly depend on the large deviation parametern.
Numerical examples are presented in Section 4.3. Certain technical proofs are
deferred to the appendices to ease exposition.
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2. Problem setup and background.

2.1. Problem setup. Let Y = {Yj , j ∈ N0} be a time-homogeneous Markov
chain taking values in a Polish spaceS, with transition probability kernel

p(x, dy) = P {Yj+1 ∈ dy|Yj = x}.
Let g :S → R

d be a bounded Borel-measurable function, and define

Sn
.= g(Y0) + g(Y1) + · · · + g(Yn−1).

For an arbitrary Borel setA ⊂ R
d , we wish to estimate

pn
.= P {Sn/n ∈ A}.

Throughout the paper we will make use of the followinguniform recurrency
assumption.

CONDITION 2.1. There exists a probability measureνp on S, an integer
m0 ∈ N and a pair of strictly positive real numbersa, b such that

aνp(B) ≤ p(m0)(x,B) ≤ bνp(B)

for all x ∈ S and Borel setsB. Herep(m) denotes them-step probability transition
kernel.

For example, an irreducible Markov chain with a finite state space is always
uniformly recurrent.

The large deviation principle for a uniformly recurrent Markov chain is well
known. It asserts that{Sn/n} satisfies the large deviation principle with a convex
rate functionL :Rd → [0,∞]. The identification ofL is deferred to the next
section. We will impose the following assumption throughout the paper.

CONDITION 2.2. The Borel setA ⊂ R
d satisfies the condition

inf
β∈Ā

L(β) = inf
β∈A◦ L(β).

Under Conditions 2.1 and 2.2, we have the large deviations approximation

lim
n→∞

1

n
logP {Sn/n ∈ A} = − inf

β∈A
L(β).

REMARK 2.1. The uniform recurrency assumption (Condition 2.1) is conve-
nient to work with. It includes the important case of irreducible finite state Markov
chains, and generalizes the results in [16] where i.i.d. sequences were considered.
However, this strong recurrency assumption also excludes many important Markov
chains. One difficulty in extending the present results to more general Markov
chains is that the uniform positivity and boundedness of the eigenfunctions (see
Section 2.2) may not be preserved [26, 27]. It is clear that generalization in this
direction will require a much more involved analysis.
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2.2. LDP for a uniformly recurrent Markov chain. In this section we discuss
two different approaches to the identification of the rate functionL. The first
approach suggests a parameterized family of change of measures (see Remark 2.2)
that will be used later on to build importance sampling schemes. The second
approach identifies the rate functionL in terms of relative entropy, and will be
used in the analysis of the asymptotic optimality of adaptive schemes.

The first approach is based on a generalized Perron–Frobenius theorem. Fix any
α ∈ R

d . Then by [22], the nonnegative kernel

exp{〈α,g(y)〉}p(x, dy)

admits a unique real eigenvalue exp{H(α)} and a unique (up to a multiplicative
constant) eigenfunctionr(x;α) in the sense that, for everyx ∈ S,∫

S
e〈α,g(y)〉r(y;α)p(x, dy) = eH(α)r(x;α),(2.1)

and with the following properties.H(α) is an analytic, strictly convex function of
α ∈ R

d with H(0) = 0, and there exist 0< cα < Cα < ∞ such that

cα ≤ r(x;α) ≤ Cα ∀x ∈ S.(2.2)

The paper [22] also shows that the rate function of the large deviation principle for
{Sn/n} is the convex conjugate ofH , that is,

L(β) = sup
α∈Rd

[〈α,β〉 − H(α)].(2.3)

Note that in the special case when the Markov chainY is an i.i.d. sequence,H(α) is
the logarithm moment generating function ofg(Yj ) andr(x;α) ≡ 1. Therefore,
this result generalizes the classical Cramér’s theorem, at least for bounded i.i.d.
random variables. For the case whenY is an irreducible Markov chain with
finite state space, exp{H(α)} is just the maximal eigenvalue of the irreducible
nonnegative matrix exp{〈α,g(y)〉}p(x, dy), and r(·;α) is the associated right
eigenvector.

REMARK 2.2. It is not difficult to see that, thanks to (2.1), for eachα ∈ R
d ,

exp{〈α,g(y)〉 − H(α)} · r(y;α)

r(x;α)
· p(x, dy)

defines a probability transition kernel.

Another approach is the weak convergence methodology which utilizes a
stochastic control representation for certain exponential integrals [14]. It first
identifies the large deviations rate function for the empirical measure of the
Markov chain in theτ -topology, then uses contraction principle to obtain the rate
function for{Sn/n}. We will need the following definitions.
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For an arbitrary Polish spaceZ, we denote byP (Z) the collection of all
probability measures on space(Z,B(Z)). For a pair of probability measures
γ,µ ∈ P (Z), therelative entropy of γ with respect toµ is defined as

R(γ ‖µ)
.=




∫
Z

log
dγ

dµ
dγ, if γ  µ,

∞, otherwise.

Given a probability transition kernelq(x, dy) on spaceZ, we defineµq ∈ P (Z),
µ ⊗ q ∈ P (Z × Z) by

µq(B)
.=

∫
Z

q(x,B)µ(dx),

(µ ⊗ q)(D × B)
.=

∫
D×B

µ(dx)q(x, dy) =
∫
D

q(x,B)µ(dx)

for all Borel setsD,B ⊂ Z. The collection of all probability transition kernels
onZ is denoted byT (Z).

The weak convergence approach identifies the rate function for{Sn/n} in terms
of relative entropy:

L(β) = inf
{
R(µ ⊗ q‖µ ⊗ p) :µ ∈ P (S),

(2.4)
q ∈ T (S),µq = µ,

∫
S

g dµ = β

}
.

The validity of the representation (2.4) is implied by the results in [14], Chapters
8 and 9, where the large deviation principle of the empirical measures associated
with Markov chains are studied under weaker assumptions.

For future reference, we summarize the preceding discussion into the following
proposition. The only part that has not been mentioned is the superlinearity of the
rate functionL, which is an easy consequence of (2.3) and the finiteness ofH

([14], Lemma 6.2.3(c)).

PROPOSITION 2.1. Under Condition 2.1, the sequence {Sn/n} satisfies the
large deviation principle with rate function L, which is given by (2.3) and (2.4).
Moreover, the rate function L is convex, lower-semicontinuous and superlinear in
the sense that

lim
N→∞ inf

{β∈Rd : ‖β‖≥N}
L(β)

‖β‖ = ∞.

In particular, L has compact level sets.
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2.3. Asymptotic optimality. In this section we defineasymptotic optimality for
an importance sampling scheme.

Consider a probability space(�,F ,P ) and a family of events{An} with

lim
n→∞

1

n
logP {An} = −γ,

for someγ ≥ 0. A general formulation of importance sampling for this problem
can be described as follows. In order to estimateP {An}, a generic random
variable Z̄n is constructed such thatP {An} = EZ̄n. Independent replications
(Z̄0

n, Z̄
1
n, . . . , Z̄

K−1
n ) of Z̄n are then generated, and we obtain an estimator by

averaging

Q̄K
n

.= Z̄0
n + Z̄1

n + · · · + Z̄K−1
n

K
.

The estimator is unbiased, that is,EQ̄K
n = P {An}. The rate of convergence

associated with this estimator is determined by the variance of the summands,
or equivalently, their second momentE[(Z̄n)

2]. The smaller the second moment,
the faster the convergence, whence the smaller sample sizeK required. However,
it follows from Jensen’s inequality that

lim sup
n→∞

−1

n
logE[(Z̄n)

2] ≤ lim
n→∞−1

n
log(EZ̄n)

2 = 2γ.

The estimatorQ̄K
n is said to beasymptotically optimal if

lim
n→∞−1

n
logE[(Z̄n)

2] = 2γ.

REMARK 2.3. Since the performance of the estimatorQ̄K
n is completely

determined by the second moment of its generic, i.i.d. building blockZ̄k
n, we will

drop the superscriptk hereafter. Note thatn doesnot stand for sample size, but for
the large deviation parameter.

3. Statement of the main result. The adaptive importance sampling scheme
we consider dynamically selects the change of measure (or the parameterα) in
the form suggested by Remark 2.2, according to the sample history. Naturally,
the scheme is closely related to a control problem. Let the controlαn = {αn

j (·, ·),
j = 1, . . . , n − 1} be given, where eachαn

j :S × R
d → R

d is a Borel-measurable
function. Then the state dynamics are governed by

S̄n
j

.=
j−1∑
i=0

g(Ȳ n
i ), j = 0,1, . . . , n.
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Here we setȲ0 = Y0 ≡ y0, and forj ≥ 1, Ȳ n
j is conditionally distributed, given

{Ȳ n
i , i = 0,1, . . . , j − 1}, according to

vn
j (dy) = exp{〈αn

j , g(y)〉 − H(αn
j )} · r(y;αn

j )

r(Ȳ n
j−1;αn

j )
· p(Ȳ n

j−1, dy)

with (abusing notation a bit)αn
j = αn

j (Ȳ n
j−1, S̄

n
j /n).

An unbiased estimator ofP {Sn/n ∈ A} is defined as the average of independent
copies of

X̄n = 1{S̄n
n/n∈A} exp

{
n−1∑
j=1

(−〈αn
j , g(Ȳ n

j )〉 + H(αn
j )

)} ·
n−1∏
j=1

r(Ȳ n
j−1;αn

j )

r(Ȳ n
j ;αn

j )
.

Our goal is to minimize the second moment, hence the variance, of the
summands̄Xn by judiciously choosing the controlαn. Thus, we consider the value
function defined by

V n(y0)
.= inf

αn
E[X̄2

n]

= inf
αn

E

[
1{S̄n

n/n∈A} exp

{
n−1∑
j=1

(−2〈αn
j , g(Ȳ n

j )〉 + 2H(αn
j )

)}

×
n−1∏
j=1

r2(Ȳ n
j−1;αn

j )

r2(Ȳ n
j ;αn

j )

]
.

For convenience we writeV n(y0) asV n when no confusion is incurred. We also
consider the log transform

Wn = −1

n
logV n.

We have the following result, which asserts the existence of asymptotically optimal
adaptive importance sampling schemes.

THEOREM 3.1. Under Conditions 2.1and 2.2,we have

lim
n→∞Wn = 2 inf

β∈A
L(β).

The detailed proof is deferred to Appendix A. It is worth pointing out that the
construction of asymptotically optimal or nearly optimal adaptive schemes (i.e.,
selection of the controlαn) is implied by adynamic programming equation (DPE)
appearing in the proof. Since the proof is rather lengthy and technical, it makes
sense to give an outline and some intuitive discussion below, so that readers can
proceed to the construction of the adaptive schemes (Section 4), without having to
delve into the technical details of the proof.
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Outline and intuition of the proof. Thanks to the discussion in Section 2.3, it
suffices to show the lower bound

lim inf
n

Wn ≥ 2 inf
β∈A

L(β).(3.1)

The proof will utilize the DPE that is satisfied byWn. In order to do so,
we first extend the dynamics. Abusing notation a bit, forx ∈ R

d , y ∈ S and
i ∈ {0,1, . . . , n}, define the dynamics

S̄n
i,j = nx +

j−1∑
�=i

Ȳ n
i,�, j = i, . . . , n.

Here we setȲi,i ≡ y, and forj ≥ i + 1, Ȳ n
i,j is conditionally distributed, given

{Ȳi,�, � = i, . . . , j − 1}, according to

vn
i,j (dz) = exp{〈αn

j , g(z)〉 − H(αn
j )} · r(z;αn

j )

r(Ȳ n
i,j−1;αn

j )
p(Ȳ n

i,j−1, dz),

where αn
j = αn

j (Ȳ n
i,j−1, S̄

n
i,j /n). The original control problem corresponds to

x = 0, i = 0, y = y0. Define analogously

V n(x, y; i)

.= inf
αn

E

[
1{S̄n

i,n/n∈A} exp

{
n−1∑

j=i+1

(−2〈αn
j , g(Ȳ n

i,j )〉 + 2H(αn
j )

)}

×
n−1∏

j=i+1

r2(Ȳ n
i,j−1;αn

j )

r2(Ȳ n
i,j ;αn

j )

]

and its log transform

Wn(x, y; i) = −1

n
logV n(x, y; i).

The terminal conditions are

V n(x, y;n) = 1A(x), Wn(x, y;n) = ∞ · 1Ac(x).

Since it is inconvenient to study a problem with an∞ terminal condition, we
instead work with a mollified version of the control problem. LetF :Rd → R

be an arbitrary bounded and Lipschitz continuous function. Suppose thatV n
F

is defined asV n, save that the indicator function1{S̄n
i,n/n∈A} is replaced by

exp{−2nF (S̄n
i,n/n)}. Similarly define

Wn
F (x, y; i)

.= −1

n
logV n

F (x, y; i).(3.2)
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SinceV n
F is the value function of a control problem, one can write down the DPE

for V n
F . Substituting (3.2) in this DPE, one obtains an equation forWn

F ; see (A.1).
The proof of the desired inequality (3.1) is based on the analysis of this recursive
equation forWn

F .
The relative entropy representation for exponential integrals ([14], Proposi-

tion 1.4.2) states that

− log
∫
S

e−f (x)µ(dx) = inf
γ∈P (S)

[
R(γ ‖µ) +

∫
f dγ

]
(3.3)

for all bounded and Borel measurable functionsf . Applying this representation
formula to the equation (A.1) forWn

F , one obtains

Wn
F (x, y; i)

= sup
α∈Rd

inf
γ∈P (S)

[∫
Wn

F

(
x + 1

n
g(y), z; i + 1

)
γ (dz)

(3.4)
+ 1

n

(
R

(
γ (·)‖p(y, ·)) +

∫
〈α,g(z)〉γ (dz)− H(α)

)

+ 1

n

∫
log

r(z;α)

r(y;α)
γ (dz)

]
.

This equation suggests thatWn
F is the lower value of a discrete-time stochastic

game. One of the two players of the game (theα-player) selects the parameterα,
and is the weaker player. The other player (theγ -player) is the stronger player,
and selects the distributionγ that determines the evolution of the state. The right-
hand side of (3.4) would take a simpler form if we could permute the sup and inf.
However, this is not (in general) possible, since the last term

1

n

∫
log

r(z;α)

r(y;α)
γ (dz)(3.5)

may not be concave inα.
This difficulty is also the main distinction from the setting of Cramér’s theorem

where the Markov chainY reduces to an i.i.d. sequence of random variables. The
latter case givesr(x;α) ≡ 1 and the unpleasant term (3.5) disappears, whence the
min/max theorem can be applied to convert the DPE ofWn

F into a DPE associated
with a control problem, which is much simpler to analyze than a game [16].
However, the interchange of sup and inf is not possible with (3.4) as written.

The key idea to overcome this difficulty and to obtain a lower bound forWn
F

is as follows. Fix an integerm, and consider a variant of the game where the
α-player is constrained to policies such thatα must be constant over time intervals
of length 1/m. This new game is even more favorable to theγ -player, whence it
will have a smaller lower-value. Lettingn go to infinity, the lower value of the new
game converges to a functionUm

F , and we expect

lim inf
n→∞ Wn

F (x, y; �nk/m�) ≥ Um
F (x; k), k = 0,1, . . . ,m.
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A bonus of taking the limit is that the troubling terms (3.5), which can be
interpreted as part of the running cost, cancel off, and it is not difficult to guess
thatUm

F should satisfy

Um
F (x; k) = sup

α∈Rd

inf
β∈Rd

[
Um

F

(
x + 1

m
β; k + 1

)
(3.6)

+ 1

m

(
L(β) + 〈α,β〉 − H(α)

)]
,

with terminal condition

Um
F (x;m)

.= 2F(x).(3.7)

In the proof,Um
F is in fact defined recursively through equations (3.6) and (3.7).

Equation (3.6) is much easier to analyze. Analogously to [16], one can show by
a weak convergence argument that

lim inf
m→∞ Um

F (x,0) ≥ 2 inf
β∈Rd

{L(β) + F(x + β)},(3.8)

which in turn implies

lim inf
n→∞ Wn

F (x, y;0) ≥ 2 inf
β∈Rd

{L(β) + F(x + β)}.

Letting x = 0 and the mollifierF tend to∞ · 1Ac , one arrives at the desired in-
equality (3.1). �

The following result is useful in the identification of an optimal adaptive
importance sampling scheme in Section 4.

COROLLARY 3.2. Fix an arbitrary x ∈ R
d , and a bounded Lipschitz con-

tinuous function F :Rd → R. Assume Condition 2.1, and define Um
F recursively

by (3.6)with the terminal condition (3.7).Then

lim
m→∞Um

F (x; �tm�) = 2UF(x, t) ∀ t ∈ [0,1],
where

UF(x, t)
.= inf

β∈Rd

{
(1− t)L(β) + F

(
x + (1− t)β

)}
.(3.9)

PROOF. We will show the equality fort = 0. The case with generalt ∈ [0,1]
is similar and thus omitted.

Thanks to (3.8), it suffices to prove

lim sup
m→∞

Um
F (x;0) ≤ 2UF(x,0) = 2 inf

β∈Rd
{L(β) + F(x + β)}.
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Fix an arbitraryβ ∈ R
d . The recursive definition ofUm

F (3.6) and (2.3) yield

Um
F (x; k) ≤ sup

α∈Rd

[
Um

F

(
x + 1

m
β; k + 1

)
+ 1

m

(
L(β) + 〈α,β〉 − H(α)

)]

= Um
F

(
x + 1

m
β; k + 1

)
+ 2

m
L(β).

Repeatedly applying this inequality fork = 0,1, . . . ,m − 1, we arrive at

Um
F (x;0) ≤ Um

F (x + β;m) + 2L(β) = 2F(x + β) + 2L(β),

thanks to (3.7). This completes the proof.�

4. Implementation issues and examples.

4.1. The limit control problem and implementation issues. Theorem 3.1
establishes the existence of asymptotically optimal adaptive sampling schemes.
However, it does not explicitly discuss the construction of such schemes. On the
other hand, the proof of the theorem implies that one approach of construction
would be to solve, numerically if need be, the DPE (3.4) associated withWn

F

(Wn equalsWn
F when F = ∞ · 1Ac ). However, this approach may not only

require a lot of computation effort, but the resulting adaptive sampling control
(i.e., controlαn) will directly depend onn. In general, one would prefer schemes
without this dependence.

An alternative approach is to consider the DPE associated with the limit problem
of Um

F asm tends to infinity. To this end, we rewrite (3.6) as

0= sup
α∈Rd

inf
β∈Rd

[
�Um

F + 1

m

(
L(β) + 〈α,β〉 − H(α)

)]
,

where

�Um
F

.= Um
F

(
x + 1

m
β; k + 1

)
− Um

F (x; k).

Suppose that at subscript denotes the partial derivative with respect tot , and that
anx subscript denotes the vector of partials with respect toxi , i = 1, . . . , d . Since
Corollary 3.2 (forF bounded and Lipschitz continuous) asserts that

lim
m→∞Um

F (x; �tm�) = 2UF(x; t),

we have formally the approximation

�Um
F ≈

〈
1

m
β, (2UF)x

〉
+ 1

m
(2UF)t .
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Substituting this back, we have

0 = sup
α∈Rd

inf
β∈Rd

[〈β, (2UF)x〉 + (2UF )t + L(β) + 〈α,β〉 − H(α)]

= (2UF)t + sup
α∈Rd

inf
β∈Rd

[L(β) + 〈α + (2UF)x,β〉 − H(α)].
Representing the infimum in terms of the Legendre transformH of L gives

0 = (2UF)t + sup
α∈Rd

[−H
(−α − (2UF)x

) − H(α)
]
.

The strict convexity ofH implies that

α∗(x, t) = −(UF )x(x, t),(4.1)

and that

0= (UF )t − H
(−(UF )x

)
.(4.2)

Equation (4.1) identifies, at least formally, an optimal feedback control policy.
However, this observation is not entirely satisfactory sinceUF does not usually
have an explicit solution, and even if there is an exact formula forUF , the partial
derivatives may not be defined for all time and spatial points. In order to obtain a
formal characterization ofα∗ that is more useful, we observe that, thanks to the
definition (3.9) ofUF and the convexity ofL, UF is the value function of the
deterministic control problem

UF (x, t) = inf
φ

[∫ 1

t
L(φ̇(s)) ds + F(φ(1))

]
,

where the infimum is over all absolutely continuousφ which satisfyφ(t) = x. It
is straightforward to see from this control problem that an optimal control at(x, t)

is the minimizer in (3.9), sayβ∗(x, t), thanks to the convexity ofL. The standard
dynamic programming argument implies thatUF (in a weak sense) satisfies the
DPE

0 = (UF )t + inf
a∈Rd

[L(a) + 〈a, (UF )x〉] = (UF )t − H
(−(UF )x

)
,

which, not surprisingly, is just equation (4.2). The optimal controlβ∗(x, t) is,
at least formally, the minimizer in the DPE, orβ∗(x, t) and −(UF )x(x, t) are
conjugate. It follows that

α∗(x, t) is conjugate to the minimizerβ∗(x, t) in (3.9).

At points where(UF )x(x, t) exists this definition givesα∗(x, t) = −(UF )x(x, t).
At points where(UF )x(x, t) does not exist there are multiple minimizingβ∗(x, t),
and one should defineα∗(x, t) through conjugacy in any Borel measurable way.

REMARK 4.1. The original (unmollified) problem corresponds toF =∞·1Ac .
In this case,

β∗(x, t) ∈ arg min{(1− t)L(β) :x + (1− t)β ∈ A},(4.3)

andα∗(x, t) is its conjugate.
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4.2. Numerical examples. We give two numerical examples in order to
illustrate the asymptotic optimality of the adaptive schemes, in general, and the
pitfalls of the traditional importance sampling schemes. The first example is
concerned with a simple Markov chain with two states, while the second example
studies a discrete time Markov chain embedded in a tandem Jackson network with
finite buffers.

EXAMPLE 4.1. Consider a simple finite-state Markov chainY with state
spaceS = {1,−1} and probability transition matrix

Q =
[
p 1− p

1 0

]
.= [Q(i, j)]2×2,

for some constantp ∈ (0,1). Defineg :S → R by g(x)
.= x, andSn = g(Y0) +

g(Y1) + · · · + g(Yn−1) = Y0 + Y1 + · · · + Yn−1.
SinceY is an irreducible finite-state Markov chain, the eigenvalueeH(α) and

eigenfunctionr(·;α), as defined in (2.1) forα ∈ R, are just the maximal eigenvalue
of the kernel[eαjQ(i, j)] and the corresponding eigenvector, respectively. Simple
algebra gives

H(α) = log
peα +

√
p2e2α + 4(1− p)

2
∀α ∈ R,

which is a convex function withH(0) = 0, and an eigenvector[
r(1;α)

r(−1;α)

]
=

[
eH(α)

eα

]
.

Therefore, for any givenα ∈ R, the corresponding change of measure is
represented by the probability transition matrix

Qα =
[
eαj−H(α) r(j;α)

r(i;α)
Q(i, j)

]

=
[
peα−H(α) (1− p)e−2H(α)

1 0

]
.

(4.4)

Let L be the convex conjugate ofH . It is not difficult to check thatL(β) = ∞ if
β < 0 orβ > 1, and that forβ ∈ (0,1),

L(β) = sup
α∈R

[αβ − H(α)]

= β

2
log

4(1− p)β2

p2(1− β2)
+ 1

2
log

1− β

1+ β
− 1

2
log(1− p)

with the minimizer

α∗ .= α∗(β) = 1

2
log

4(1− p)β2

p2(1− β2)
(4.5)
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and

L(0) = lim
β↓0

L(β) = −1
2 log(1− p),

L(1) = lim
β↑1

L(β) = − logp.

Furthermore,L(β) = 0 if and only if β = H ′(0) = p/(2− p).
AssumeY0 ≡ 1. We are interested in estimatingpn

.= P {Sn/n ∈ A} for the
Borel set

A = (−∞, a] ∪ [b,∞), 0 < a < H ′(0) < b < 1.

In all the following discussion we takep = 1/2, a = 1/6, b = 1/2, which implies

inf
β∈A

L(β) = L(b) < L(a).(4.6)

We will compare the naive Monte Carlo simulation, traditional importance
sampling and adaptive importance sampling schemes below.

The naive Monte Carlo simulation will simulate the Markov chain under the
original transition probability kernelQ. One can also regard this as a special
change of measure with the correspondingα = 0. In this case, the estimate is
just the sample mean ofK i.i.d. replications ofXn = 1{Sn/n∈A}. Since the second
moment ofXn satisfies

lim
n→∞−1

n
logE[(Xn)

2] = lim
n→∞−1

n
logpn

= inf
β∈A

L(β)

= L(b) < 2L(b),

the naive Monte Carlo sampling is not asymptotically optimal.
Thanks to (4.6), the traditional importance sampling will takeβ∗ = b, andα∗

is then defined by (4.5). The algorithm will generate a Markov chainỸ with
probability transition matrixQα∗ andỸ0 ≡ 1. Let

S̃n
.= Ỹ0 + · · · + Ỹn−1.

The estimate is the sample mean ofK i.i.d. replications of

X̃n = 1{S̃n/n∈A}
n−1∏
j=1

e−α∗Ỹj+H(α∗) ·
n−1∏
j=1

r(Ỹj−1;α∗)
r(Ỹj ;α∗)

= 1{S̃n/n∈A}e
−α∗S̃n+nH(α∗) · eα∗Ỹ0−H(α∗) r(Ỹ0;α∗)

r(Ỹn−1;α∗)
.
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Sincer(·;α∗) is clearly bounded from above and bounded away from zero, it is
not difficult to see that

lim
n→∞−1

n
logE[(X̃n)

2] = lim
n→∞−1

n
logE

[
1{S̃n/n∈A}e

−2n(α∗S̃n/n−H(α∗))].
Simple computation yields that{S̃n/n} satisfies the large deviation principle with
rate functionL̃(β) = L(β) + H(α∗) − α∗β. Now one can apply the Varadhan’s
theorem ([14], Theorem 1.3.4) (with slight modification) to show

lim
n→∞−1

n
logE[(X̃n)

2] = inf
β∈A

[2α∗β − 2H(α∗) + L̃(β)]

= inf
β∈A

[α∗β − H(α∗) + L(β)].

In the configuration of this example, the infimum in the right-hand side is achieved
atβ = a, and

lim
n→∞−1

n
logE[(X̃n)

2] = aα∗ − H(α∗) + L(a) < 2L(b).

Therefore, the traditional importance sampling scheme is not asymptotically
optimal either.

In Section 3 we argued the existence of asymptotically optimal adaptive
importance sampling schemes in general. The construction of such adaptive
schemes involved the selection of a nearly optimal controlαn = {αn

j (·, ·) : j = 0,
1, . . . , n − 1}. It was formally suggested in Section 4.1 that a good choice is
to sampleȲ n

j , conditional on{Ȳ n
i , i = 0, . . . , j − 1}, according to the transition

probability matrixQα as in (4.4) withα being the conjugate ofβ∗(x, t) given
in (4.3), wherex = S̄n

j /n = (Ȳ n
0 + · · · + Ȳ n

j−1)/n and t = 1 − j/n. In case the
conjugate ofβ∗(x, t) is ∞ or −∞, α is taken as a large positive or negative
number; see Remark 4.3 for more details. The estimate is the sample mean ofK

i.i.d. replications of

X̄n = 1{S̄n
n/n∈A} exp

{
n−1∑
j=1

(−〈αn
j , g(Ȳ n

j )〉 + H(αn
j )

)} ·
n−1∏
j=1

r(Ȳ n
j−1;αn

j )

r(Ȳ n
j ;αn

j )
.

The numerical results show that the controls constructed in this way have
asymptotically optimal performance (Table 6).

The numerical results are reported in Tables 1–3 forn = 60. The theoretical
value ofpn is

pn = P {Sn/n ≤ a} + P {Sn/n ≥ b}
= 0.83%+ 2.44%= 3.27%.

See Remark 4.2 for the computation of this theoretical value. For each table, we
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TABLE 1
Naive Monte Carlo scheme

No. 1 No. 2 No. 3 No. 4

Estimatep̂n (%) 3.11 3.20 3.23 3.09
Standard error (%) 0.17 0.18 0.18 0.17
95% confidence interval (%) [2.76, 3.46] [2.85, 3.55] [2.88, 3.58] [2.74, 3.44]

run four simulations each with sample sizeK = 10,000.
An interesting observation is that the traditional importance sampling scheme

exhibits seemingly bizarre and inconsistent simulation results (Table 2). Similar
phenomenon also occurs in the setting of Cramér’s theorem, that is, where the
Markov chainY reduces to a sequence of i.i.d. random variables; see [16, 19]. The
explanation is also very similar. Under the alternative sampling distributionQα∗ ,
most of the sample means̃Sn/n will end up near the pointb. However, a few
samples (“rogue” trajectories) have means that fall into the interval(−∞, a].
Even though the “rogue” trajectories are rare, the Radon–Nikodym derivatives
associated with them are so large that they dominate the variance. In simulation
No. 4, the presence of a single “rogue” trajectory greatly raises the standard
error associated with the estimate. Indeed, the proportion of the contribution to
the second moment from this single “rogue” trajectories is more than 99%. In
simulations No. 1, No. 2 and No. 3, however, there are no “rogue” trajectories, and
the standard error associated with the estimate is deceptively small. The reason
is that the standard error is itself estimated from the sample. Without “rogue”
trajectories, we actually underestimate the standard error. Therefore, we cannot put
much confidence in the standard errors thus obtained or in the “tight” confidence
intervals that follow. Indeed, the confidence intervals from these three simulations
do not contain the true value.

In contrast, the adaptive importance sampling, on the other hand, yields more
accurate estimates and its performance is much more stable. Even though it does
not show great advantage over naive Monte Carlo simulation forn = 60, it quickly
does so whenn gets larger. The numerical results for differentn (with K = 10,000

TABLE 2
Traditional importance sampling scheme

No. 1 No. 2 No. 3 No. 4

Estimatep̂n (%) 2.41 2.48 2.44 16.71
Standard error (%) 0.04 0.04 0.04 14.22
95% confidence interval (%) [2.34, 2.48] [2.41, 2.56] [2.37, 2.51] [−11.73, 45.15]
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TABLE 3
Adaptive importance sampling scheme

No. 1 No. 2 No. 3 No. 4

Estimatep̂n (%) 3.17 3.21 3.35 3.33
Standard error (%) 0.15 0.13 0.17 0.18
95% confidence interval (%) [2.86, 3.47] [2.85, 3.47] [3.00, 3.69] [2.96, 3.70]

fixed as before) are reported in Tables 4–6.
The naive Monte Carlo does not work well for biggern. For n = 120 and

n = 180, it yields estimates with large standard errors, and forn = 240, the
simulation yields an estimate 0, that is, no sample mean reaches the target
setA. As for the traditional importance sampling, each simulation gives a very
“tight” confidence interval, due to the absence of “rogue” trajectories. However, as
discussed before, we cannot put much belief into these estimates. Indeed, none of
these confidence intervals cover the true value ofpn.

On the other hand, the adaptive importance scheme yields much more accurate
estimates. In Table 6, the variablêV n denotes the sample estimate of the second
momentE[(X̄n)

2]. Observe that asn gets larger, the ratio

−(1/n) logE[(X̄n)
2]

−(1/n) logpn

= − logE[(X̄n)
2]

− logpn

≈ − logV̂ n

− logp̂n

approaches 2. In other words, the adaptive importance sampling scheme is
approaching optimality.

REMARK 4.2. The theoretical value ofpn can be computed as follows. Let
Xn be the number of−1’s in a trajectory, that is,

Xn
.=

n−1∑
j=0

1{Yj=−1}.

SinceY0 ≡ 1 andQ(−1,1) = 1, we have 0≤ Xn ≤ n/2 with probability one.

TABLE 4
Naive Monte Carlo simulation

n = 120 n = 180 n = 240

Theoreticalpn 1.61× 10−3 9.66× 10−5 6.35× 10−6

Estimatep̂n 1.80× 10−3 20.00× 10−5 0
Standard error 0.42× 10−3 14.14× 10−5 NA
95% confidence interval [0.95,2.65] × 10−3 [−8.28,48.28] × 10−5 NA
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TABLE 5
Traditional importance sampling scheme

n = 120 n = 180 n = 240

Theoreticalpn 1.61× 10−3 9.66× 10−5 6.35× 10−6

Estimatep̂n 1.40× 10−3 8.76× 10−5 6.01× 10−6

Standard error 0.02× 10−3 0.18× 10−5 0.13× 10−6

95% confidence interval [1.35,1.45] × 10−3 [8.41,9.12] × 10−5 [5.74,6.28] × 10−6

Clearly,

Sn = n − 2Xn,

whence it suffices to computeP (Xn ≥ m) for all nonnegative integersm such
that 2m ≤ n. But if we defineT1

.= inf{j ≥ 0 :Yj = −1}, thenT1 ≥ 1 andT1 − 1
is geometrically distributed with parameter(1 − p). Moreover,YT1 = −1, and
Y1+T1 = 1. Now recursively define fori ≥ 2, Ti

.= inf{j ≥ 1 + Ti−1 :Yj = −1}.
Then {T1 − 1, T2 − T1 − 2, T3 − T2 − 2, . . . } is clearly a sequence of i.i.d.
geometrically distributed random variables with parameter(1− p), and

P (Xn ≥ m) = P (Tm ≤ n)

= P (Tm − 2m + 1 ≤ n − 2m + 1).

But

Tm − 2m + 1 = (T1 − 1) + (T2 − T1 − 2) + · · · + (Tm − Tm−1 − 2)

is the sum of i.i.d. geometrically distributed random variables, whence has a
negative binomial distribution with parameterm and(1 − p). Standard softwares
such as SPLUS contain the cumulative distribution functions of negative binomial
distributions, and can easily yield the desired probabilities.

REMARK 4.3. If β∗(x, t) ≥ 1, then its conjugate isα∗(x, t) = +∞, in the

TABLE 6
Adaptive importance sampling scheme: asymptotic optimality

n = 120 n = 180 n = 240

Theoreticalpn 1.61× 10−3 9.66× 10−5 6.35× 10−6

Estimatep̂n 1.56× 10−3 9.73× 10−5 6.29× 10−6

Standard error 0.04× 10−3 0.15× 10−5 0.07× 10−6

95% confidence interval [1.49,1.63] × 10−3 [9.44,10.02] × 10−6 [6.15,6.43] × 10−6

(− logV̂ n)/(− logp̂n) 1.72 1.87 1.93
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sense that

L
(
β∗(x, t)

) = sup
α

[αβ∗(x, t) − H(α)] = lim
α→+∞[αβ∗(x, t) − H(α)].

The corresponding change of measure (at least formally) is

Q+∞ .= lim
α→+∞Qα =

[
1 0
1 0

]
.

Similarly, if β∗(x, t) ≤ 0, then its conjugate isα∗(x, t) = −∞, with the
corresponding change of measure

Q−∞ .= lim
α→−∞Qα =

[
0 1
1 0

]
.

However, neither of these two probability transition kernels is suitable for the
purpose of importance sampling, since the probability measure induced by the
original probability transition kernelQ is not absolutely continuous with respect
to the probability measure induced byQ+∞ or Q−∞.

To overcome this difficulty, we just takeα to be a large positive or negative
number wheneverα∗(x, t) = +∞ or α∗(x, t) = −∞. In our numerical simulation,
α is taken to be 5 ifα∗(x, t) = +∞ and−5 if α∗(x, t) = −∞. The probability
transition kernels corresponding toα = ±5 are

Q+5 =
[

0.9999 0.0001
1 0

]
, Q−5 =

[
0.0047 0.9953

1 0

]
,

which are very close toQ±∞.

EXAMPLE 4.2. Consider a two-node tandem Jackson network with arrival
rateλ and consecutive service ratesµ1,µ2. We assume the queueing system is
stable, that is,λ < min{µ1,µ2}, and, without loss of generality,λ + µ1 + µ2 = 1.
The sizes of the first buffer and the second buffer are denoted byB1 and B2,
respectively. Both buffer sizes are assumed to be finite.

We will work with the embedded discrete-time Markov chainY = {Yi =
(Y 1

i , Y 2
i ) : i = 0,1, . . . }, representing the queue lengths of the nodes at the epochs

of transitions in the network. The chainY is irreducible and with finite state
spaceS = {(y1, y2) :yi = 0,1, . . . ,Bi ; i = 1,2}, whence uniformly recurrent. It
is assumed throughout this example that the initial state isY0 = (0,0).

We are interested in estimating a class of probabilities associated with buffer
overflow. More precisely, defineg = (g1, g2) :S → {0,1}2 by

g1(y)
.= 1{y1=B1}, g2(y)

.= 1{y2=B2}
for everyy = (y1, y2) ∈ S, and letSn

.= g(Y0) + g(Y1) + · · · + g(Yn−1). We wish
to estimatepn

.= P {Sn/n ∈ A} for some Borel setA of form

A = {(x1, x2) :x1 ≥ ε1 or x2 ≥ ε2} ⊂ R
2,
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TABLE 7
Traditional importance sampling scheme

No. 1 No. 2 No. 3 No. 4

Estimatep̂n (×10−5) 2.14 2.37 2.29 9.20
Standard error (×10−5) 0.11 0.15 0.14 6.85
95% confidence interval (×10−5) [1.92, 2.36] [2.07, 2.67] [2.01, 2.57] [−4.50, 22.90]

where 0≤ ε1, ε2 ≤ 1. Note that the setA is nonconvex.
The construction of the traditional and adaptive importance sampling schemes

are very similar to Example 4.1. However, here the functionH :R2 → R and its
conjugateL :R2 → R

+ do not admit closed-form expressions, and are computed
numerically.

Analogously to Example 4.1, if we letβ∗ be the minimizer that attains
inf{L(β) :β ∈ A} and letX̃n denote the traditional importance sampling estimate,
then we have

lim
n→∞−1

n
logE[(X̃n)

2] = inf
β∈A

[α∗β − H(α∗) + L(β)],(4.7)

where α∗ is the conjugate ofβ∗. It is not difficult to see that the traditional
importance sampling scheme is asymptotically optimal if and only ifβ∗ is also
a minimizer to the right-hand side of (4.7). However, this is oftennot the case, due
to the nonconvexity of setA; see [16] for more discussion on this issue.

The simulation results for the traditional and adaptive schemes are reported in
Tables 7 and 8. For comparison, the theoretical value ofpn is also obtained via
recursively computing the conditional distribution ofg(Yk) + g(Yk+1) + · · · +
g(Yn−1) given Yk , for eachk = n − 1, n − 2, . . . ,0. Unlike Example 4.1, we
choose not to report the results from naive Monte Carlo simulation (which is not
asymptotically optimal). Actually, the naive Monte Carlo simulation, often giving
an estimate 0 or an estimate with intolerably large standard error, is far inferior to
either of the importance sampling schemes.

We chooseB1 = B2 = 6, andλ = 0.2, µ1 = µ2 = 0.4. The state spaceS
consists of(B1 + 1)(B2 + 1) = 49 states. Setn = 50 andε1 = 0.3, ε2 = 0.4.

TABLE 8
Adaptive importance sampling scheme

No. 1 No. 2 No. 3 No. 4

Estimatep̂n (×10−5) 3.96 3.93 4.18 4.16
Standard error (×10−5) 0.17 0.15 0.30 0.16
95% confidence interval (×10−5) [3.62, 4.30] [3.63, 4.23] [3.58, 4.78] [3.84, 4.48]
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TABLE 9
Traditional importance sampling scheme

n = 50 n = 80 n = 110

Theoreticalpn 5.15× 10−9 3.47× 10−12 1.83× 10−15

Estimatep̂n 0.83× 10−9 0.81× 10−12 0.53× 10−15

Standard error 0.03× 10−9 0.02× 10−12 0.01× 10−15

95% confidence interval [0.77,0.89] × 10−9 [0.77,0.85] × 10−12 [0.51,0.55] × 10−15

Analogously to Example 4.1, one can check that the traditional importance
sampling is not asymptotically optimal. Indeed, the infimum ofL(β) over setA is
attained atβ∗ ≈ (0.02,0.4), while the minimizer for the right-hand side of (4.7) is
β̄ ≈ (0.3,0.01).

Each table consists of four simulation runs each with sample sizeK = 10,000.
The theoretical value ispn = 4.10× 10−5.

The explanation for the behavior of traditional importance sampling (Table 8)
is quite similar to that of Example 4.1—most of the sample means will end up
near pointβ∗, while a few “rogue” trajectories will have means near pointβ̄.
Even though these “rogue” trajectories are rare, they carry huge Radon–Nikodym
derivatives. Without the presence of “rogue” trajectories (simulations No. 1, No. 2
and No. 3), we have tight confidence intervals that we cannot put much faith in.
With the presence of “rogue” trajectories (simulations No. 4), we get an estimate
with very large standard error. On the contrast, the performance of adaptive
schemes is much more stable and much better.

Similar phenomenon is also observed for various sets of parameters. We just
list some numerical results in Tables 9 and 10 for the same setup, except the
arrival rate and service rates are now(λ,µ1,µ2) = (0.1,0.4,0.5). The sample
sizeK = 10,000 is fixed as before. The erratic behavior of traditional schemes
is more conspicuous. The asymptotic optimality of adaptive schemes is also clear
from these numerical results.

TABLE 10
Adaptive importance sampling scheme: asymptotic optimality

n = 50 n = 80 n = 110

Theoreticalpn 5.15× 10−9 3.47× 10−12 1.83× 10−15

Estimatep̂n 4.82× 10−9 3.36× 10−12 1.76× 10−15

Standard error 0.18× 10−9 0.11× 10−12 0.07× 10−15

95% confidence interval [4.46,5.18] × 10−9 [3.14,3.58] × 10−12 [1.62,1.90] × 10−6

(− logV̂ n)/(− log p̂n) 1.86 1.91 1.92
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APPENDIX A

PROOF OFTHEOREM 3.1. Proposition 2.1 and Condition 2.2 imply that

lim
n→∞

1

n
logP {Sn/n ∈ A} = − inf

β∈A
L(β).

Thanks to the discussion in Section 2.3, it suffices to show the lower bound (3.1),
or

lim inf
n

Wn ≥ 2 inf
β∈A

L(β).

To this end, we extend the dynamics as in Section 3, and consider a mollified
version of the original control problem. In other words, letF :Rd → R be
an arbitrary bounded and Lipschitz continuous function, and defineV n

F ,Wn
F

correspondingly; see the discussion from (3.1) to (3.2).
SinceV n

F is the value function of a control problem, it satisfies the Bellman
equation [4]

V n
F (x, y; i)

= inf
α∈Rd

∫
S
e−2〈α,g(z)〉+2H(α) · r2(y;α)

r2(z;α)
V n

F

(
x + 1

n
g(z), z; i + 1

)

× e〈α,g(z)〉−H(α) · r(z;α)

r(y;α)
p(y, dz)

= inf
α∈Rd

∫
S
e−〈α,g(z)〉+H(α) · r(y;α)

r(z;α)
V n

F

(
x + 1

n
g(y), z; i + 1

)
p(y, dz),

together with terminal condition

V n
F (x, y;n) = exp{−2nF (x)}.

It follows from (3.2) that

Wn
F (x, y; i) = −1

n
log inf

α∈Rd

∫
S
e−〈α,g(z)〉+H(α)

(A.1)
× r(y;α)

r(z;α)
e−nWn

F (x+1/ng(y),z;i+1)p(y, dz)

and thatWn
F (x, y;n) = 2F(x).

The discussion in Section 3 now prompts the following definition. Fixing an
arbitrarym ∈ N, for 0≤ k ≤ m − 1, define recursively

Um
F (x; k) = sup

α∈Rd

inf
β∈Rd

[
Um

F

(
x + 1

m
β; k + 1

)
(A.2)

+ 1

m

(
L(β) + 〈α,β〉 − H(α)

)]
,
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given the terminal condition

Um
F (x;m)

.= 2F(x) ∀x ∈ R
d .(A.3)

See Section 3 for the interpretation ofWn
F andUm

F as lower values of games. The
key observation is the following lemma, whose proof is deferred to Appendix C.

LEMMA A.1. For an arbitrary sequence xn → x ∈ R
d , we have

lim inf
n→∞ inf

y∈S
Wn

F (xn, y; �nk/m�) ≥ Um
F (x; k), k = 0,1, . . . ,m.

Assume Lemma A.1 holds for the moment. All that remains to show is the
inequality

lim inf
m→∞ Um

F (x;0) ≥ 2 inf
β∈Rd

{L(β) + F(x + β)}.(A.4)

Indeed, suppose (A.4) is true. Fix an arbitraryj ∈ N, and defineFj(y)
.=

j (d(y, Ā) ∧ 1), which is bounded and Lipschitz continuous. Since1A(y) ≤
exp{−2nFj(y)}, we have

lim inf
n→∞ Wn ≥ lim inf

n→∞ Wn
Fj

(0, y0;0)

≥ lim inf
m→∞ Um

Fj
(0;0)

≥ 2 inf
β∈Rd

[L(β) + Fj(β)].

Exactly as in [14], pages 10 and 11, a compactness argument shows that

lim
j→∞ inf

β∈Rd
{L(β) + Fj (β)} = inf

β∈Ā
L(β),

and we complete the proof.
Now we show inequality (A.4). The idea is to representUm

F as the value function
of a control problem with the help of the min/max theorem. To this end, define

C
.=

{
θ ∈ P (Rd) :

∫
L(β)θ(dβ) < ∞

}

and rewrite (A.2) as

Um
F (x; k) = sup

α∈Rd

inf
θ∈C

[∫
Um

F

(
x + 1

m
β; k + 1

)
θ(dβ)

+ 1

m

(∫
L(β)θ(dβ) +

〈
α,

∫
βθ(dβ)

〉
− H(α)

)]
.

We make the following useful observation, whose proof is deferred to Appendix C.
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LEMMA A.2. Um
F (·; k) is bounded and Lipschitz continuous for every k.

Indeed,

‖Um
F (x; k)‖ ≤ 2‖F‖∞ ∀x ∈ R

d, k = 0,1, . . . ,m,

and Um
F (·; k) is Lipschitz continuous with Lipschitz constant 2LF , where LF is the

Lipschitz constant for the mollifier F .

The next lemma is a version of min/max theorem, whose proof is almost
identical to [16], Lemma 2.2, and thus omitted.

LEMMA A.3. For any bounded and lower semicontinuous function f :Rd →
R, we have

sup
α∈Rd

inf
θ∈C

[∫
f (β) dθ +

∫
L(β)dθ +

〈
α,

∫
β dθ

〉
− H(α)

]

= inf
θ∈C

sup
α∈Rd

[∫
f (β) dθ +

∫
L(β)dθ +

〈
α,

∫
β dθ

〉
− H(α)

]
.

Thanks to Lemmas A.2 and A.3, we obtain

Um
F (x; k) = inf

θ∈C
sup
α∈Rd

[∫
Um

F

(
x + 1

m
β; k + 1

)
θ(dβ)

+ 1

m

(∫
L(β)θ(dβ) +

〈
α,

∫
βθ(dβ)

〉
− H(α)

)]
(A.5)

= inf
θ∈C

[∫
Um

F

(
x + 1

m
β; k + 1

)
θ(dβ)

+ 1

m

(∫
L(β)θ(dβ) + L

(∫
βθ(dβ)

))]
.

This last display implies thatUm
F has an interpretation as the minimal cost of a

stochastic control problem. To simplify the notation, we state the control problem
only for the casek = 0. The control problem will be defined on a probability
(�̃, F̃ , P̃ ), andẼx will denote that the initial condition of the state process isx.
An admissible control is a sequence{νm

j , j = 0,1, . . . ,m−1}, with eachνm
j being

a stochastic kernel onRd given R
d . Given an admissible control sequence, the

state dynamics are defined byS̃m
0 = mx and

S̃m
j+1

.= S̃m
j + Ỹ m

j ,

where

P̃ {Ỹ m
j ∈ dy|Ỹ m

i ,0 ≤ i < j} = P̃ {Ỹ m
j ∈ dy|S̃m

j /m} = νm
j (dy|S̃m

j /m).
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We then define the value function

ṽm
F (x;0)

.= inf
{νm

j }
Ẽx

[
m−1∑
j=0

1

m

[∫
L(y)νm

j (dy) + L

(∫
yνm

j (dy)

)]
+ 2F(S̃m

m/m)

]
,

where the infimum is taken over all controls{νm
j } and resulting controlled

processes{S̃m
j /m} that start atx at time 0. Sincẽvm

F also satisfies the DPE (A.5)
([4], Chapter 8) and terminal conditioñvm

F (x;m) = Um
F (x;m) = 2F(x), we obtain

by induction thatUm
F (x; k) = ṽm

F (x; k) for all x ∈ R
d andk ∈ {0, . . . ,m}.

Define a stochastic kernelνm onR
d given[0,1] by

νm(dy|t) .=
{

νm
j (dy), if t ∈ [

j/m, (j + 1)/m
)
, j = 0,1, . . . ,m − 2,

νm
m−1(dy), t ∈ [(m − 1)/m,1].

Let λ denote Lebesgue measure. Then the definition ofνm(dy|t) and the convexity
of L imply that

Um
F (x;0) = inf

{νm
j }

Ẽx

[∫ 1

0

∫
Rd

L(y)νm(dy|t) dt

+
m−1∑
j=0

1

m
L

(∫
Rd

yνm
j (dy)

)
+ 2F(S̃m

m/m)

]

≥ inf
{νm

j }
Ẽx

[∫ 1

0

∫
Rd

L(y)νm(dy|t) dt

+ L

(
m−1∑
j=0

1

m

∫
Rd

yνm
j (dy)

)
+ 2F(S̃m

m/m)

]

= inf
{νm

j }
Ẽx

[∫
Rd×[0,1]

L(y)νm(dy × dt)

+ L

(∫
Rd×[0,1]

yνm(dy × dt)

)
+ 2F(S̃m

m/m)

]
,

whereνm(dy × dt)
.= νm(dy|t) dt . A straightforward weak convergence approach

will be adopted to derive the desired inequality (A.4). Since the proof is essentially
the same as [14], Theorem 5.3.5, we only give a sketch.

For eachε > 0, there exist a sequence of controls{νm,m ∈ N} such that, for
everym, we have

Um
F (x;0) + ε ≥ Ẽx

[∫
Rd×[0,1]

L(y)dνm + L

(∫
Rd×[0,1]

y dνm

)
+ 2F(S̃m

m/m)

]
.

Furthermore, sinceL is nonnegative andF is bounded, we have

sup
m∈N

Ẽx

∫
Rd×[0,1]

L(y)νm(dy × dt) < ∞.
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However, since functionL is superlinear (Proposition 2.1), it is not difficult to
check that{νm} is uniformly integrable in the sense that

lim
C→∞ sup

m∈N

Ẽx

∫
{y : ‖y‖>C}×[0,1]

‖y‖νm(dy × dt) = 0.

It follows from that proof of [14], Proposition 5.3.2, that{νm} is indeed
tight. Therefore, we can extract a weakly convergent sub-subsequence, still
denoted by{νm}, such thatνm ⇒ ν for some stochastic kernelν whose second
marginal is Lebesgue measure ([14], Lemma 5.3.4). We utilize the Skorokhod
representation [6], which allows us to assume (when calculating the limits of
the integrals) that the convergence is actually w.p.1. It follows from the uniform
integrability of{νm} and the proof of [14], Proposition 5.3.5, that∫

Rd×[0,1]
yνm(dy × dt)

P→
∫

Rd×[0,1]
yν(dy × dt)

and

S̃m
m/m

P→ Z
.= x +

∫
Rd×[0,1]

yν(dy × dt).

Furthermore, it follows from the lower-semicontinuity and nonnegativity ofL

([14], Lemma A.3.12) that, with probability one,

lim inf
m

∫
Rd×[0,1]

L(y)νm(dy × dt) ≥
∫

Rd×[0,1]
L(y)ν(dy × dt).

Thanks to convexity ofL and Jensen’s inequality, we have∫
Rd×[0,1]

L(y)ν(dy × dt) ≥ L

(∫
Rd×[0,1]

yν(dy × dt)

)
.

By Fatou’s lemma and the lower-semicontinuity ofL [28], we have

lim inf
n

Um
F (x;0) + ε ≥ Ẽx

[
2L

(∫
Rd×[0,1]

yν(dy × dt)

)
+ 2F(Z)

]
.

It is now trivial that the right-hand side of the last inequality is bounded below by

2 inf
β∈Rd

[L(β) + F(x + β)].

Sinceε > 0 is arbitrary, (A.4) follows readily, which completes the proof.�

APPENDIX B

A large deviation upper bound. In this section we study a uniform
large deviation principle upper bound, which is essential for proving the key
Lemma A.1. We present a proof based on the weak convergence approach [14].
Alternatively, one can adapt the methodology in [13].

The following two lemmas will be useful:
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LEMMA B.1. Suppose S is a Polish space and P (S) is the space of
probability measures on S endowed with the weak convergence topology. Consider
a sequence of random variables µn : (�n,F n,P n) → P (S). In other words, {µn}
is a sequence of random probability measures. Then {µn} is tight if and only if the
sequence {Enµn} is tight. Here Enµn ∈ P (S) is defined by

(Enµn)(A)
.=

∫
�n

µn(ω)(A)P n(dω)

for every Borel set A in P (S).

PROOF. See [23], Theorem 6.1, Chapter 1.�

LEMMA B.2. Suppose S is a Polish space, {µn} ⊂ P (S), and p(·, ·) a
probability transition kernel. If µn → µ in the τ -topology for some µ ∈ P (S),
then

µn ⊗ p → µ ⊗ p

in the τ -topology. Here µ ⊗ p denotes the probability measure on S × S given by

(µ ⊗ p)(B)
.=

∫
B

µ(dx)p(x, dy)

for every Borel set B ⊆ S × S.

PROOF. It suffices to show that∫
S×S

f (x, y)µn(dx)p(x, dy) →
∫
S×S

f (x, y)µ(dx)p(x, dy)

for every bounded, measurable functionf . Sinceµn → µ in the τ -topology, it
remains to show that ∫

S
f (x, y)p(x, dy)

is a bounded and measurable function (overx). The boundedness is trivial, and the
measurability follows from Fubini’s theorem; compare [5], Exercise 18.20.�

PROPOSITION B.3. Suppose Y = {Yj , j ∈ N} is a Markov chain that takes
values in a Polish space S. Let p denote the probability transition kernel of Y ,
and assume Condition 2.1 holds. Suppose g :S → R

d is a bounded measurable
function, and define H and L as in (2.1)–(2.3).Then for any fixed α ∈ R

d , bounded
and continuous function f :Rd → R, and sequence xn → x ∈ R

d , we have

lim inf
n→∞ inf

y∈S
−1

n
logEy

[
exp

{
−

〈
α,

n−1∑
j=0

g(Yj )

〉}

× exp

{
−nf

(
xn + 1

n

n−1∑
j=0

g(Yj )

)}]
≥ If (x),
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where

If (x)
.= inf

β
[f (x + β) + L(β) + 〈α,β〉].

PROOF. Let

vn(x, y)
.= −1

n
logEy

[
exp

{
−

〈
α,

n−1∑
j=0

g(Yj )

〉}
exp

{
−nf

(
x + 1

n

n−1∑
j=0

g(Yj )

)}]

= −1

n
log

∫
exp

{
−

〈
α,

n−1∑
j=0

g(yj )

〉}
exp

{
−nf

(
x + 1

n

n−1∑
j=0

g(yj )

)}
dπn

y .

Hereπn
y is the joint distribution of(Y0, Y1, . . . , Yn−1), or

πn
y (dy0, dy1, . . . , dyn)

.= δy(dy0)p(y0, dy1)p(y1, dy2) · · ·p(yn−1, dyn).

Clearlyvn is bounded, thanks to the boundedness ofg andf . It suffices to show
that for every sequencexn → x and{yn} ⊆ S,

lim inf
n→∞ vn(xn, yn) ≥ If (x).(B.1)

For an arbitraryε > 0, the relative entropy representation of exponential
integrals (3.3) ([14], Proposition 1.4.2) yields the existence of a probability
measureµn onSn+1 such that

vn(xn, yn) + ε ≥ 1

n
R(µn‖πn

yn) +
〈
α,

∫ 1

n

n−1∑
j=0

g(yj ) dµn

〉

(B.2)

+
∫

f

(
xn + 1

n

n−1∑
j=0

g(yj )

)
dµn.

In particular, it is not hard to see that

sup
n∈N

1

n
R(µn‖πn

yn) < ∞.(B.3)

We can factorµn as in [14], Theorems A.5.4 and A.5.6:

µn(dy0, dy1, . . . , dyn) = µn
0(dy0)µ

n
1(dy1|y0) · · ·µn

n(dyn|yn−1, yn−2, . . . , y0).

Now consider a probability space(�̃, F̃ , P̃ ), on which we define a stochastic
process given by

P̃ (Ỹ n
0 ∈ dy) = µn

0(dy0),

P̃ (Ỹ n
j+1 ∈ dy|Ỹ n

i , i = 0,1, . . . , j) = µn
j+1(dy|Ỹ n

i , i = 0,1, . . . , j)
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for j = 0,1, . . . , n − 1. To ease exposition, let

µ̄n
j+1(dy)

.= µn
j+1(dy|Ỹ n

i , i = 0,1, . . . , j),

which is a random probability measure onS. Also define a random probability
measure onS × S by

γ n(dx × dy) = 1

n

n−1∑
j=0

δ
Ỹ n

j
(dx) × µ̄n

j+1(dy),

whose marginals are

(γ n)1 = 1

n

n−1∑
j=0

δ
Ỹ n

j

.= L̃n, (γ n)2 = 1

n

n−1∑
j=0

µ̄n
j+1.

Thanks to the chain rule [14], Theorem B.2.1, we have

1

n
R(µn‖πn

yn) = 1

n
Ẽ

[
R(µn

0‖δyn) +
n−1∑
j=0

R
(
µ̄n

j+1(·)‖p(Ỹj , ·))
]
.(B.4)

However,

1

n

n−1∑
j=0

R
(
µ̄n

j+1(·)‖p(Ỹ n
j , ·))

= 1

n

n−1∑
j=0

R
(
δ
Ỹ n

j
(dy) × µ̄n

j+1(dz)‖δ
Ỹ n

j
(dy) × p(Ỹ n

j , dz)
)

= 1

n

n−1∑
j=0

R
(
δ
Ỹ n

j
(dy) × µ̄n

j+1(dz)‖δ
Ỹ n

j
(dy) ⊗ p(y, dz)

)

≥ R

(
1

n

n−1∑
j=0

δ
Ỹ n

j
(dy) × µ̄n

j+1(dz)

∥∥∥∥1

n

n−1∑
j=0

δ
Ỹ n

j
(dy) ⊗ p(y, dz)

)

= R(γ n‖L̃n ⊗ p),

where the inequality follows from the convexity of relative entropyR(·‖·). Thanks
to (B.2), and observing that

∫ 1

n

n−1∑
j=0

g(yj ) dµn = Ẽ

∫
g dL̃n,

∫
f

(
xn + 1

n

n−1∑
j=0

g(yj )

)
dµn = Ẽf

(
xn +

∫
g dL̃n

)
,
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we arrive at

vn(xn, yn) + ε ≥ Ẽ

[
R(γ n‖L̃n ⊗ p) +

〈
α,

∫
g dL̃n

〉
+ f

(
xn +

∫
g dL̃n

)]
.

It suffices to show{γ n} is tight. Indeed, if this is true, the same argument as in [14],
Theorem 8.2.8, allows us to extract a weak convergent subsequence of(γ n, L̃n),
still indexed byn, such that

(γ n, L̃n) ⇒ (γ, L̃)

for some stochastic kernelγ on S × S and some stochastic kernelL̃ on S, and a
(random) transition probability functionq such that

γ (dy × dz) = L̃(dy) ⊗ q(y, dz)

and

L̃q = L̃(B.5)

hold almost surely. In particular, we have

(γ n)2 ⇒ (γ )2 = L̃q = L̃.

Note (B.5) says that̃L is indeed the invariant measure for the transition probability
functionq. Also observe that

sup
n∈N

ẼR(γ n‖L̃n ⊗ p) < ∞.

This implies the existence of a subsequence, still indexed byn, such that

L̃n → L̃, (γ n)2 → L̃

in theτ -topology; see the proof of [14], Lemma 9.3.3. Therefore,∫
g dL̃n →

∫
g dL̃

almost surely. Furthermore, thanks to Lemma B.2,L̃n ⊗ p → L̃ ⊗ p in
the τ -topology (hence, in the weak-topology) almost surely. The lower semi-
continuity ofR(·‖·) implies

lim inf
n→∞ R(γ n‖L̃n ⊗ p) ≥ R(γ ‖L̃ ⊗ p).

It follows readily from Fatou’s lemma that

lim inf
n→∞ vn(xn, yn) + ε

≥ Ẽ

[
R(γ ‖L̃ ⊗ p) +

〈
α,

∫
g dL̃

〉
+ f

(
x +

∫
g dL̃

)]

= Ẽ

[
R(L̃ ⊗ q‖L̃ ⊗ p) +

〈
α,

∫
g dL̃

〉
+ f

(
x +

∫
g dL̃

)]

≥ inf{µq=µ}

[
R(µ ⊗ q‖µ ⊗ p) +

〈
α,

∫
g dµ

〉
+ f

(
x +

∫
g dµ

)]
.
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Recalling (2.4) and lettingε → 0, we obtain

lim inf
n→∞ vn(xn, yn) ≥ inf

β
[L(β) + 〈α,β〉 + f (x + β)],

which is the desired inequality (B.1).
It remains to show the tightness of{γ n}. All we need is the tightness of the two

marginals,{(γ n)1} and{(γ n)2}. However, it is not difficult to observe that

Ẽ(γ n)1 = ẼL̃n = 1

n

n−1∑
j=0

Ẽδ
Ỹ n

j
= 1

n

n−1∑
j=0

µn,j ,

whereµn,j denotes thej th marginal of the probabilityµn and, similarly,

Ẽ(γ n)2 = 1

n

n−1∑
j=0

Ẽµ̄n
j+1 = 1

n

n−1∑
j=0

µn,j+1.

Letting ‖ · ‖v denote the total variation metric, we have

‖Ẽ(γ n)1 − Ẽ(γ n)2‖v = 1

n
‖µn,0 − µn,n‖v ≤ 2

n
.(B.6)

If we can show{(γ n)2} is tight, then Lemma B.1 implies{Ẽ(γ n)2} is tight, which
in turns yields the tightness of{Ẽ(γ n)1}, thanks to (B.6). Applying Lemma B.1
once again, we have the tightness of{(γ n)1}. Therefore, it is sufficient to show
that{(γ n)2} is tight. The proof will distinguish two cases:m0 = 1 andm0 > 1.

Suppose thatm0 = 1. Note that the nonnegativity of relative entropy, (B.3)
and (B.4) imply

sup
n∈N

Ẽ
1

n

n−1∑
j=0

R
(
µ̄n

j+1(·)‖p(Ỹ n
j , ·)) < ∞.

It follows from the assumption of uniform recurrency

aνp(·) ≤ p(y, ·) ≤ bνp(·) ∀y ∈ S,

that

R
(
µ̄n

j+1(·)‖p(Ỹ n
j , ·)) ≥ cR(µ̄n

j+1‖νp)

for some constantc > 0. It is now easy to derive from the convexity of relative
entropy that

sup
n∈N

ẼR
(
(γ n)2‖νp

) ≤ sup
n∈N

Ẽ
1

n

n−1∑
j=0

R(µ̄n
j+1‖νp) < ∞,
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which further implies the tightness of{(γ n)2} sinceR(·‖νp) is a tightness function
onP (S). Note that

Ẽ(γ n)2 = 1

n

n−1∑
j=0

µn,j+1

is also tight, thanks to Lemma B.1.
The general case withm0 > 1 is slightly more complicated. We will give a

proof with m0 = 2, and observe that the proof form0 > 2 is essentially the same
and thus omitted. Without loss of generality, we show{(γ n)2 :n even} to be tight.
The tightness for{(γ n)2 :n odd} is similar.

To ease notation, letπn .= πn
yn , andπn,e be the marginal distribution ofπn over

even coordinates; that is,

πn,e(dy0, dy2, . . . , dyn−2, dyn) = δy(dy0)p
(2)(y0, dy2) · · ·p(2)(yn−2, dyn).

One can similarly defineµn,e, or

µn,e(dy0, dy2, . . . , dyn) = µn
0(dy0)µ

n,e
2 (dy2|y0) · · ·µn,e

n (dyn|yn−2, . . . , y2, y0).

Thanks to the chain rule ([14], Theorem B.2.1) and nonnegativity of the relative
entropy, we have

R(µn,e‖πn,e) ≤ R(µn‖πn),

and, thus, supn
1
n
R(µn,e‖πn,e) < ∞. With the same proof as for the casem0 = 1,

we have that

2

n

(n/2)−1∑
j=0

µn,e,j+1

is tight; hereµn,e,j is thej th marginal ofµn,e; that is,

µn,e,j (dy2j ) = µn,e(S, . . . ,S, dy2j ,S, . . . ,S).

One can similarly defineµn,o as the marginal distribution ofµn over odd
coordinates, and the same argument can be carried over to prove the tightness
of

2

n

(n/2)−1∑
j=0

µn,o,j+1.

However, observe that

µn,e,j = µn,2j , µn,o,j = µn,2j+1.

We have

1

2

(
2

n

(n/2)−1∑
j=0

µn,e,j+1 + 2

n

(n/2)−1∑
j=0

µn,o,j+1

)
= 1

2

n−1∑
j=0

µn,j+1 = Ẽ(γ n)2.

This implies the tightness of{Ẽ(γ n)2 :n even}, which is equivalent to the tightness
of {(γ n)2 :n even}, thanks to Lemma B.1.�
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APPENDIX C

Proofs of Lemmas A.1 and A.2.

PROOF OFLEMMA A.2. ThatUm
F (·; k) is Lipschitz continuous with Lipschitz

constant 2LF follows trivially by induction and the terminal condition (A.3).
As for the boundedness ofUm

F (·; k), we first show it is bounded from below.
SinceH(0) = 0 andL is nonnegative, definition (A.2) gives

Um
F (x; k) ≥ inf

β∈Rd

[
Um

F

(
x + 1

m
β; k + 1

)
+ 1

m
L(β)

]

≥ inf
β∈Rd

Um
F

(
x + 1

m
β; k + 1

)

= inf
z∈Rd

Um
F (z; k + 1)

for everyx. It follows that, for everyk,

inf
x∈Rd

Um
F (x; k) ≥ inf

x∈Rd
Um

F (x; k + 1) ≥ · · · ≥ inf
x∈Rd

Um
F (x;m) ≥ −2‖F‖∞.

It remains to show thatUm
F is bounded from above. Let̄β be a subdifferential of

the convex functionH atα = 0. Then

L(β̄) = sup
α∈Rd

[〈α, β̄〉 − H(α)] = 0

and the supremum is achieved atα = 0. By definition (A.2) again, we have

Um
F (x; k) ≤ sup

α∈Rd

[
Um

F

(
x + 1

m
β̄; k + 1

)
+ 1

m

(〈α, β̄〉 − H(α)
)]

= Um
F

(
x + 1

m
β̄; k + 1

)

≤ sup
z∈Rd

Um
F (z; k + 1)

for everyx. It follows that, for everyk,

sup
x∈Rd

Um
F (x; k) ≤ sup

x∈Rd

Um
F (x; k + 1) ≤ · · · ≤ sup

x∈Rd

Um
F (x;m) ≤ 2‖F‖∞.

This completes the proof.�

PROOF OF LEMMA A.1. The proof is by induction. Fork = m, we have
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�nk/m� = n. By definition,

lim inf
n→∞ inf

y∈S
Wn

F (xn, y;n) = lim inf
n→∞ inf

y∈S
2F(xn) = lim inf

n→∞ 2F(xn),

and Lemma A.1 follows trivially from the continuity ofF .
Assume now the claim holds fork + 1. Let �(n)

.= �n(k + 1)/m� − �nk/m�.
Also, letπj

y be the probability measure onSj+1 defined by

πj
y (dy0, dy1, . . . , dyj )

.= δy(dy0)p(y0, dy1)p(y1, dy2) · · ·p(yj−1, dyj )

for everyy ∈ S and everyj ∈ N.
For an arbritraryα ∈ R

d , let

Um
α,F (x; k)

.= inf
β∈Rd

[
Um

F

(
x + 1

m
β; k + 1

)
+ 1

m

(
L(β) + 〈α,β〉 − H(α)

)]
.

It follows from the definition thatUm
F (x; k) = supα Um

α,F (x; k). Therefore, all we
need to show is that, for everyα ∈ R

d and any sequencexn → x,

lim inf
n→∞ inf

y∈S
Wn

F (xn, y; �nk/m�) ≥ Um
α,F (x; k).

However, for an arbitrary fixedα ∈ R
d , the dynamic programming principle

implies that

Wn
F (x, y; �nk/m�)

≥ −1

n
log

∫
exp

{
−

〈
α,

�(n)∑
j=1

g(yi)

〉
+ �(n)H(α)

}
·
�(n)∏
j=1

r(yj−1;α)

r(yj ;α)

× exp

{
−nWn

F

(
x + 1

n

�(n)−1∑
j=0

g(yj ), y�(n);

�n(k + 1)/m)�
)}

dπ�(n)
y

= −1

n
log

∫
exp

{
−

〈
α,

�(n)∑
j=1

g(yi)

〉
+ �(n)H(α)

}
· r(y0;α)

r(y�(n);α)

× exp

{
−nWn

F

(
x + 1

n

�(n)−1∑
j=0

g(yj ), y�(n);

�n(k + 1)/m)�
)}

dπ�(n)
y .
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Sinceg is bounded andr(·;α) is both bounded from above and bounded away
from zero by (2.2), it suffices to show

lim inf
n→∞ inf

y∈S
v̄n
F (xn, y;0) ≥ Um

α,F (x; k),(C.1)

where

v̄n
F (x, y;0)

.= −1

n
log

∫
exp

{
−

〈
α,

�(n)−1∑
j=0

g(yi)

〉
+ �(n)H(α)

}

× exp

{
−nWn

F

(
x + 1

n

�(n)−1∑
j=0

g(yj ), y�(n); �n(k + 1)/m�
)}

dπ�(n)
y .

We claim that inequality (C.1) is a direct consequence of

lim inf
n→∞ inf

y∈S
vn
F (xn, y;0) ≥ Um

α,F (x; k),(C.2)

where

vn
F (x, y;0)

.= −1

n
log

∫
exp

{
−

〈
α,

�(n)−1∑
j=0

g(yi)

〉
+ �(n)H(α)

}

× exp

{
−nUm

F

(
x + 1

n

�(n)−1∑
j=0

g(yj ); k + 1

)}
dπ�(n)

y .

Indeed, since�(n) ≤ n, one can always find a compact setK ⊆ R
d such that

xn + 1

n

�(n)−1∑
j=0

g(yj ) ∈ K ∀ (
y0, y1, . . . , y�(n)

)
, ∀n ∈ N,

thanks to the boundedness ofg and the assumptionxn → x. It is also not hard
to show by contradiction from the induction hypothesis and the continuity ofUm

F

(Lemma A.2) that, for anyε > 0, there existsN(ε) ∈ N such that for allx ∈ K and
n ≥ N(ε),

inf
y∈S

Wn
F

(
x, y; �n(k + 1)/m�) − Um

F (x; k + 1) ≥ −ε.

We arrive at

lim inf
n→∞ inf

y∈S
v̄n
F (xn, y;0) ≥ lim inf

n→∞ inf
y∈S

vn
F (xn, y;0) − ε

for everyε > 0. It follows that (C.1) is implied by (C.2).
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It remains to show (C.2), which is an easy consequence of the uniform large
deviation bound Proposition B.3, Lemma A.2, boundedness ofg, and that∣∣∣∣�(n)

n
− 1

m

∣∣∣∣ → 0.

This completes the proof.�
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