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A MICROSCOPIC PROBABILISTIC DESCRIPTION OF
A LOCALLY REGULATED POPULATION AND

MACROSCOPIC APPROXIMATIONS

BY NICOLAS FOURNIER AND SYLVIE MÉLÉARD

Institut Elie Cartan and Université Paris 10

We consider a discrete model that describes a locally regulated spatial
population with mortality selection. This model was studied in parallel by
Bolker and Pacala and Dieckmann, Law and Murrell. We first generalize this
model by adding spatial dependence. Then we give a pathwise description
in terms of Poisson point measures. We show that different normalizations
may lead to different macroscopic approximations of this model. The first
approximation is deterministic and gives a rigorous sense to thenumber
density. The second approximation is a superprocess previously studied by
Etheridge. Finally, we study in specific cases the long time behavior of the
system and of its deterministic approximation.

1. Introduction. We consider a spatial ecological system that consists of
motionless individuals (such asplants). Individuals are characterized by their
location. We assume that each plant produces seeds at a given rate. When a seed
is born, it immediately disperses from itsmotherand becomes a mature plant.
We also assume that plants are subjected tomortality selection. That is, each
plant dies at a rate that depends on the local population density. All these events
occur randomly in continuous time. This model was introduced by Bolker and
Pacala [2] and Dieckmann and Law [9]. To study the system, Bolker and Pacala
derived approximations for the time evolution of the moments (mean and spatial
covariance) of the population distribution. In the present article, we wish to give
a rigorous definition of the underlyingmicroscopicstochastic process and rewrite
rigorously the moment equations of [2], then to derive some tractable macroscopic
approximations, and finally to study the long time behavior of the stochastic
process and its approximations. Unfortunately, we obtained only partial results
concerning the last point.

In Section 2, we describe the Bolker–Pacala–Dieckmann–Law (BPDL) process
in detail. In fact, we generalize the model slightly by adding a spatial dependence
in all the rates. Then we give a pathwise representation of the system in terms
of Poisson point measures. We also produce a numerical algorithm to simulate
the BPDL process. Section 3 is devoted to existence and uniqueness. We also
show some martingale properties of the BPDL process. In Section 4, we find
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the mean equation that Bolker and Pacala [2] intuitively obtained. We also give a
rigorous sense to the covariance terms formally defined in [2] or [9], [4] and [10].
Section 5 is concerned with macroscopic approximations of the BPDL process.
We first show that, conveniently normalized, the BPDL process converges to the
solution of a deterministic nonlinear integrodifferential equation. We propose this
as a rigorous interpretation of thedensity number, often introduced by biologists
without a proper definition. We also show that with another normalization,
the BPDL process converges to the superprocess version of the BPDL model
introduced and studied by Etheridge [6]. We give partial results about extinction
and survival for the BPDL process in Section 6. In Section 7, we study the
convergence to equilibrium of the deterministic approximation. We obtain only
some partial results. We next show that in thedetailed balance caseto be specified
later on, there exists a nontrival steady state for the BPDL process. We conclude
the article with some simulations.

2. The model. Let us first describe the model in detail.

2.1. Definition of the parameters and heuristics.The plants are supposed to be
motionless and characterized by their spatial location. We assume that the spatial
domain is the closurēX of an open connected subsetX of R

d , for somed ≥ 1.
We denote byMF (X̄) [resp.P (X̄)] the set of finite nonnegative measures (resp.
probability measures) on̄X. Let alsoM be the subset ofMF (X̄) that consists of
all finite point measures:

M =
{

n∑
i=1

δxi
, n ≥ 0, x1, . . . , xn ∈ X̄

}
.(2.1)

Here and below,δx denotes the Dirac mass atx. For anym = ∑n
i=1 δxi

∈ M, any
measurable functionf on X̄, we set〈m,f 〉 = ∫

X̄ f dm = ∑n
i=1 f (xi).

NOTATION 2.1. For allx in X̄, we introduce the following quantities:

(i) µ(x) ∈ [0,∞) is the rate of “intrinsic” death of plants located atx,
(ii) γ (x) ∈ [0,∞) is the rate of seed production of plants located atx,
(iii) D(x,dz) is the dispersion law of the seeds of plants located atx. It is

assumed to satisfy, for eachx ∈ X̄,∫
z∈Rd ,x+z∈X̄

D(x,dz) = 1 and
∫
z∈Rd ,x+z/∈X̄

D(x,dz) = 0.

(iv) α(x) ∈ [0,∞) is the rate of interaction of plants located atx.
(v) Forx, y in X̄, U(x, y) = U(y, x) ∈ [0,∞) is the competition kernel.

The competition kernelU(x, y) describes the strength of competition between
plants located atx andy.
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We aim to study the stochastic processνt , taking its values inM and describing
thedistributionof plants at timet . We write

νt =
I (t)∑
i=1

δXi
t
,(2.2)

whereI (t) ∈ N stands for the number of plants alive at timet andX1
t , . . . ,X

I (t)
t

describe their locations (in̄X). The supposed dynamics for this population can be
roughly summarized as follows:

(i) At time t = 0, we have a (possibly random) distributionν0 ∈ M.
(ii) Each plant (located at somex ∈ X̄) has three independent exponen-

tial clocks: a seed productionclock with parameterγ (x), a natural death
clock with parameterµ(x) and acompetition mortalityclock with parameter
α(x)

∑I (t)
i=1 U(x,Xi

t ).
(iii) If one of the twodeathclocks of a plant rings, then this plant disappears.
(iv) If the seed productionclock of a plant (located at somex ∈ X̄) rings, then

it produces a seed. This seed immediately becomes a mature plant. Its location is
given byy = x + z, wherez is randomly chosen according to the dispersion law
D(x,dz).

In [2], γ , µ, α andD were assumed to be space-independent. Our generalization
might allow us to take into account external effects such as landscape, resource
distribution and so forth. Note also that assuming that all these clocks are
exponentially distributed allows us to reset all the clocks to 0 each time one clock
rings.

We wish to describe the system by the evolution in time of the empirical
measureνt . More precisely, we are looking for anM-valued Markov process
(νt )t≥0 with infinitesimal generatorL, defined for a large class of functionsφ
from M into R, for all ν ∈ M, by

Lφ(ν) =
∫
X̄

ν(dx)

∫
Rd

D(x, dz)[φ(ν + δx+z) − φ(ν)]γ (x)

(2.3)

+
∫
X̄

ν(dx)[φ(ν − δx) − φ(ν)]
{
µ(x) + α(x)

∫
X̄

ν(dy)U(x, y)

}
.

The first term is linear (inν) and describes the seed production and dispersal
phenomenon. The second term is nonlinear and describes death due to age or
competition. This infinitesimal generator can be compared with formula (3) in [2],
page 182.

2.2. Description in terms of Poisson measures.We now give a pathwise
description of theM-valued stochastic process(νt )t≥0. To this end, we use Poisson
point measures. For the sake of simplicity, we assume that the spatial dependence
of all the parameters is bounded in some sense.
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ASSUMPTION A. There exist some constants̄α, γ̄ and µ̄ such that, for
all x ∈ X̄,

α(x) ≤ ᾱ, γ (x) ≤ γ̄ , µ(x) ≤ µ̄.(2.4)

There exist a constantC > 0 and a probability densitỹD on R
d such that, for

all x ∈ X̄,

D(x,dz) = D(x, z) dz with D(x, z) ≤ CD̃(z).(2.5)

The competition kernelU is bounded by some constantŪ .

We also introduce the following notation.

NOTATION 2.2. LetN∗ = N \ {0}. LetH = (H 1, . . . ,Hk, . . . ) :M �→ (Rd)N
∗

be defined by

H

(
n∑

i=1

δxi

)
= (

xσ(1), . . . , xσ(n),0, . . . ,0, . . .
)
,(2.6)

wherexσ(1) � · · · � xσ(n) for some arbitrary order� onR
d (one may, e.g., choose

the lexicographic order).

This function H allows us to overcome the following (purely notational)
problem: Assume that a population of plants is described by a point measure
ν ∈ M. Choosing a plant uniformly among all plants consists of choosingi

uniformly in {1, . . . , 〈ν,1〉}, and then choosing the plantnumber i (from the
arbitrary order point of view). The location of such a plant is thusHi(ν).

NOTATION 2.3. We consider the path spaceT ⊂ D([0,∞),MF (X̄)) defined
by

T =
{
(νt )t≥0

/∀ t ≥ 0, νt ∈ M, and∃0 = t0 < t1 < t2 < · · · ,
limn tn = ∞ andνt = νti ∀ t ∈ [ti , ti+1)

}
.(2.7)

Note that for(νt )t≥0 ∈ T , andt > 0 we can defineνt− in the following way: If
t /∈ ⋃

i{ti}, νt− = νt , while if t = ti for somei ≥ 1, νt− = νti−1.

We now introduce the probabilistic objects we need.

DEFINITION 2.4. Let (�,F ,P ) be a (sufficiently large) probability space.
On this space, we consider the following four independent random elements:

(i) anM-valued random variableν0 (the initial distribution);
(ii) a Poisson point measureN(ds, di, dz, dθ) on [0,∞) × N

∗ × R
d × [0,1],

with intensity measurēγ ds (
∑

k≥1 δk(di))(CD̃(z) dz) dθ (the seed production
Poisson measure);
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(iii) a Poisson point measureM(ds, di, dθ) on [0,∞) × N
∗ × [0,1], with

intensity measurēµds (
∑

k≥1 δk(di)) dθ (the “intrinsic” death Poisson measure);
(iv) a Poisson point measureQ(ds, di, dj, dθ, dθ ′) on [0,∞) × N

∗ × N
∗ ×

[0,1] × [0,1], with intensity measurēUᾱ ds (
∑

k≥1 δk(di))(
∑

k≥1 δk(dj)) dθ dθ ′
(the “competition” mortality Poisson measure).

We also consider the canonical filtration(Ft )t≥0 generated by these processes.

We finally write the BPDL model in terms of these stochastic objects.

DEFINITION 2.5. Admit Assumption A. A(Ft )t≥0-adapted stochastic process
ν = (νt )t≥0 that belongs a.s. toT will be called a BPDL process if a.s., for all
t ≥ 0,

νt = ν0 +
∫ t

0

∫
N∗

∫
Rd

∫ 1

0
1{i≤〈νs−,1〉}δ(H i(νs−)+z)

× 1{θ≤(γ (H i(νs−))D(Hi(νs−),z))/(γ̄CD̃(z))}

× N(ds, di, dz, dθ)

−
∫ t

0

∫
N∗

∫ 1

0
1{i≤〈νs−,1〉}δHi(νs−)1{θ≤(µ(H i(νs−)))/(µ̄)}M(ds, di, dθ)(2.8)

−
∫ t

0

∫
N∗

∫
N∗

∫ 1

0

∫ 1

0
1{i≤〈νs−,1〉}1{j≤〈νs−,1〉}δHi(νs−)

× 1{θ ′≤(U(H i(νs−),Hj (νs−)))/(Ū)}

× 1{θ≤(α(H i(νs−)))/(ᾱ)}Q(ds, di, dj, dθ, dθ ′).

Although the formula looks complicated, the principle is very simple. The
indicator functions that involveθ andθ ′ are related to theratesand appear when
the parameters depend on the space variablex. In the case where the rates are
constant (studied in [2]), all the integrals and indicator functions that involveθ

may be cancelled.
Let us now show that ifν solves (2.8), then it follows the dynamics in which we

are interested.

PROPOSITION2.6. Admit AssumptionA. Consider a solution(νt )t≥0 to (2.8).
Then(νt )t≥0 is a Markov process. Its infinitesimal generatorL is defined for all
bounded and measurable mapsφ :M �→ R, all ν ∈ M, by (2.3). In particular, the
law of (νt )t≥0 does not depend on the chosen order(see Notation2.2).
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PROOF. The fact that(νt )t≥0 is a Markov process is classical. Let us now
consider a functionφ as in the statement. Recall that with our notation,ν0 =∑〈ν0,1〉

i=1 δHi(ν0)
. Recall also thatLφ(ν0) = ∂tE[φ(νt )]t=0. A simple computation,

using the fact that a.s.φ(νt ) = φ(ν0) + ∑
s≤t [φ(νs− + {νs − νs−}) − φ(νs−)],

shows that

φ(νt ) = φ(ν0) +
∫ t

0

∫
N∗

∫
Rd

∫ 1

0

[
φ

(
νs− + δ(H i(νs−)+z)

) − φ(νs−)
]

× 1{i≤〈νs−,1〉}1{θ≤(γ (H i(νs−))D(Hi(νs−),z))/(γ̄CD̃(z))}

× N(ds, di, dz, dθ)

+
∫ t

0

∫
N∗

∫ 1

0

[
φ

(
νs− − δHi(νs−)

) − φ(νs−)
]

× 1{i≤〈νs−,1〉}1{θ≤(µ(H i(νs−)))/(µ̄)}M(ds, di, dθ)

+
∫ t

0

∫
N∗

∫
N∗

∫ 1

0

∫ 1

0

[
φ

(
νs− − δHi(νs−)

) − φ(νs−)
]
1{i≤〈νs−,1〉}1{j≤〈νs−,1〉}

× 1{θ ′≤(U(H i(νs−),Hj (νs−)))/(Ū)}1{θ≤(α(H i(νs−)))/(ᾱ)}

× Q(ds, di, dj, dθ, dθ ′).

Taking expectations, we obtain

E[φ(νt )] = E[φ(ν0)] +
∫ t

0
ds E

[∫
Rd

dz γ̄ CD̃(z)

×
〈νs ,1〉∑
i=1

γ (H i(νs−))D(H i(νs−), z)

γ̄ CD̃(z)

× [
φ

(
νs− + δ(H i(νs−)+z)

) − φ(νs−)
]]

+
∫ t

0
ds E

[
µ̄

〈νs ,1〉∑
i=1

µ(Hi(νs−))

µ̄

[
φ

(
νs− − δHi(νs−)

) − φ(νs−)
]]

+
∫ t

0
ds E

[
Ū ᾱ

〈νs ,1〉∑
i=1

〈νs ,1〉∑
j=1

U(Hi(νs−),Hj(νs−))

Ū

α(H i(νs−))

ᾱ

× [
φ

(
νs− − δHi(νs−)

) − φ(νs−)
]]
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= E[φ(ν0)] +
∫ t

0
ds E

[∫
X̄

νs(dx)

∫
Rd

dz γ (x)D(x, z)

× [
φ

(
νs + δ(x+z)

) − φ(νs)
]]

+
∫ t

0
ds E

[∫
X̄

νs(dx)[φ(νs − δx) − φ(νs)]

×
{
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

}]
.

Differentiating this expression att = 0 leads to (2.3). �

2.3. About simulation. This pathwise definition of the BPDL process leads to
the following simulation algorithm:

STEP 0. Simulate the initial stateν0 and setT0 = 0.

STEP 1. Compute the totaleventrate, given bym(0) = m1(0) + m2(0) +
m3(0), with

m1(0) = Cγ̄ 〈ν0,1〉, m2(0) = µ̄〈ν0,1〉, m3(0) = ᾱŪ〈ν0,1〉2.(2.9)

SimulateS1 exponentially distributed, with parameterm(0), and setT1 = T0 + S1.
Set νt = ν0 for all t < T1. Choose whether to go to Step 1.1, 1.2 or 1.3 with
probabilitym1(0)/m(0), m2(0)/m(0) andm3(0)/m(0).

Step1.1. Choosei uniformly in {1, . . . , 〈ν0,1〉}. Choosez ∈ R
d according to

the law D̃(z) dz. With probability 1− (γ (H i(ν0))D(H i(ν0), z))/(γ̄ CD̃(z)), do
nothing (i.e., setνT1 = ν0); else, add a new plant at the locationHi(ν0) + z (i.e.,
setνT1 = ν0 + δ(H i(ν0)+z)).

Step 1.2. Choosei uniformly in {1, . . . , 〈ν0,1〉}. With probability 1−
(µ(H i(ν0)))/µ̄, do nothing (i.e., setνT1 = ν0); else, remove theith plant (i.e.,
setνT1 = ν0 − δHi(ν0)

).
Step1.3. Choosei and j uniformly in {1, . . . , 〈ν0,1〉}2. With probability

1 − (U(H i(ν0),H
j(ν0))α(H i(ν0)))/Ū ᾱ, do nothing (i.e., setνT1 = ν0); else,

remove theith plant (i.e., setνT1 = ν0 − δHi(ν0)
).

STEP 2. Compute the totaleventrate, given bym(T1) = m1(T1) + m2(T1) +
m3(T1), with

m1(T1) = Cγ̄ 〈νT1,1〉,
m2(T1) = µ̄〈νT1,1〉,(2.10)

m3(T1) = ᾱŪ 〈νT1,1〉2.

SimulateS2 exponentially distributed, with parameterm(T1), and setT2 = T1+S2.
Setνt = νT1 for all t ∈ [T1, T2[ and so forth.
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3. Existence and first properties. We now show existence, uniqueness and
some moment estimates for the BPDL process.

THEOREM 3.1. (i) Admit AssumptionA and thatE(〈ν0,1〉) < ∞. Then there
exists a unique BPDL process(νt )t≥0 in the sense of Definition2.5.

(ii) If furthermore, for somep ≥ 1, E(〈ν0,1〉p) < ∞, then for anyT < ∞,

E

(
sup

t∈[0,T ]
〈νt ,1〉p

)
< ∞.(3.1)

PROOF. We first prove (ii). Consider thus a BPDL process(νt )t≥0. We
introduce for eachn the stopping timeτn = inf{t ≥ 0, 〈νt ,1〉 ≥ n}. Then a simple
computation using Assumption A shows that, neglecting the nonpositive death
terms,

sup
s∈[0,t∧τn]

〈νs,1〉p

≤ 〈ν0,1〉p +
∫ t∧τn

0

∫
N∗

∫
Rd

∫ 1

0
[(〈νs−,1〉 + 1)p − 〈νs−,1〉p]1{i≤〈νs−,1〉}

× 1{θ≤(γ (H i(νs−))D(Hi(νs−),z))/(γ̄CD̃(z))}
(3.2)

× N(ds, di, dz, dθ)

≤ 〈ν0,1〉p + Cp

∫ t∧τn

0

∫
N∗

∫
Rd

∫ 1

0
[1+ 〈νs−,1〉p−1]1{i≤〈νs−,1〉}

× N(ds, di, dz, dθ)

for some constantCp. Taking expectations, we thus obtain, the value ofCp

changing from line to line:

E

(
sup

s∈[0,t∧τn]
〈νs,1〉p

)

≤ Cp + CpE

(∫ t∧τn

0
ds γ̄C

∫
Rd

dz D̃(z)[〈νs−,1〉 + 〈νs−,1〉p]
)

(3.3)

≤ Cp + CpE

(∫ t

0
ds

[
1+ 〈νs∧τn,1〉p])

.

The Gronwall lemma allows us to conclude that for anyT < ∞, there exists a
constantCp,T , not dependent onn, such that

E

(
sup

t∈[0,T ∧τn]
〈νt ,1〉p

)
≤ Cp,T .(3.4)
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First, we deduce thatτn tends a.s. to infinity. Indeed, if not, we can find a
T0 < ∞ such thatεT0 = P (supn τn < T0) > 0. This would imply that for alln,
E(supt∈[0,T0∧τn]〈νt ,1〉p) ≥ εT0n

p, which contradicts (3.4). We may letn go to
infinity in (3.4) thanks to the Fatou lemma. This leads to (3.1).

Point (i) is a consequence of point (ii). Indeed, we can, for example, build the
solution(νt )t≥0 using the simulation algorithm previously described, and choosing
the rates and acceptance–rejection according to the Poisson measuresN , M andQ.
We have to check only that the sequence of (effective or fictitious) jump instants
Tn goes a.s. to infinity asn tends to infinity, and this follows from (3.1) withp = 1.
Uniqueness also holds, since we have no choice in the construction.�

We now prove that if there is at most one plant at each location at timet = 0,
then this also holds for allt ≥ 0.

PROPOSITION3.2. Assume AssumptionA and thatE(〈ν0,1〉) < ∞. Assume
also that a.s., supx∈X̄ ν0({x}) ≤ 1. Consider the Bolker–Pacala process(νt )t≥0.
Then for allt ≥ 0, a.s.,∫

X̄
νt (dx)νt ({x}) = 〈νt ,1〉 that is, sup

x∈X̄

νt({x}) ≤ 1.(3.5)

PROOF. Consider the nonnegative functionφ defined onM by φ(ν) =∫
X̄ ν(dx)ν({x}) − 〈ν,1〉. Then note that a.s.φ(ν0) = 0 and that for anyν ∈ M,

any x ∈ suppν, φ(ν − δx) − φ(ν) ≤ 0. Consider, for eachn ≥ 1, the stopping
time τn = inf{t ≥ 0, 〈νt ,1〉 ≥ n}. A simple computation allows us to obtain, for all
t ≥ 0, all n ≥ 1,

E
[
φ

(
νt∧τn

)]
≤ 0+ E

[∫ t∧τn

0
ds

∫
X̄

νs(dx)

∫
Rd

D(x, dz)γ (x)(3.6)

× {
φ

(
νs + δ(x+z)

) − φ(νs)
}]

.

We easily check, using thatν is atomic, that the right-hand side term identically
vanishes, sinceD(x,dz) has a density. Hence, a.s.,φ(νt∧τn) = 0. Thanks to (3.1)
with p = 1, τn a.s. grows to infinity withn, which concludes the proof.�

We carry on with a property that concerns the absolute continuity of the
expectation ofνt . For ν a random measure, we define the deterministic measure
E(ν) by 〈E(ν), f 〉 = E(〈ν,f 〉).

PROPOSITION3.3. Accept AssumtionA, thatE[〈ν0,1〉] < ∞ and thatE(ν0)

admits a densitỹn0 with respect to the Lebesgue measure. Consider the BPDL
process(νt )t≥0. Then for all t ≥ 0, E(νt) has a densitỹnt ; for all measurable
nonnegative functionsf on X̄, E[〈νt , f 〉] = ∫

X̄ dx f (x)ñt (x).
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PROOF. Consider a Borel setA of R
d with Lebesgue measure zero. Consider

also, for eachn ≥ 1, the stopping timeτn = inf{t ≥ 0, 〈νt,1〉 ≥ n}. A simple
computation allows us to obtain, for allt ≥ 0, all n ≥ 1,

E
[〈
νt∧τn,1A

〉] = E(〈ν0,1A〉)
+ E

(∫ t∧τn

0
ds

∫
X̄

νs(dx)γ (x)

∫
Rd

dzD(x, z)1A(x + z)

)
(3.7)

− E

(∫ t∧τn

0
ds

∫
X̄

νs(dx)1A(x)

×
(
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

))
.

By assumption, the first term on the right-hand side is zero. The second term is
also zero, since for anyx ∈ X̄,

∫
Rd dz1A(x + z)D(x, z) = 0. The third term is of

course nonpositive. Hence for eachn, E(〈νt∧τn,1A〉) is nonpositive and thus zero.
Thanks to (3.1) withp = 1, τn a.s. grows to infinity withn, which concludes the
proof. �

We finally give some martingale properties of the process(νt )t≥0.

PROPOSITION 3.4. Admit AssumptionA and that for somep ≥ 2,
E[〈ν0,1〉p] < ∞. Consider the BPDL process(νt )t≥0 and recall thatL is defined
by (2.3).

(i) For all measurable functionsφ from M into R such that for some
constantC, for all ν ∈ M, |φ(ν)| + |Lφ(ν)| ≤ C(1+ 〈ν,1〉p), the process

φ(νt ) − φ(ν0) −
∫ t

0
ds Lφ(νs)(3.8)

is a cadlagL1-(Ft )t≥0-martingale starting from0.
(ii) Point (i) applies to any measurableφ satisfying|φ(ν)| ≤ C(1+〈ν,1〉p−2).
(iii) Point (i) applies to any functionφ(ν) = 〈ν,f 〉q , with 0 ≤ q ≤ p − 1 and

with f bounded and measurable on̄X.
(iv) For any bounded and measurable functionf on X̄, the process

M
f
t = 〈νt , f 〉 − 〈ν0, f 〉 −

∫ t

0
ds

∫
X̄

νs(dx)γ (x)

∫
Rd

dzD(x, z)f (x + z)

(3.9)

+
∫ t

0
ds

∫
X̄

νs(dx)f (x)

[
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

]

is a cadlagL2-martingale starting from0 with ( predictable) quadratic variation

〈Mf 〉t =
∫ t

0
ds

∫
X̄

νs(dx)

{
γ (x)

∫
Rd

dz f 2(x + z)D(x, z)

(3.10)

+ f 2(x)

[
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

]}
.
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PROOF. First of all, note that point (i) is immediate thanks to Proposi-
tion 2.6 and (3.1). Points (ii) and (iii) follow from a straightforward computation
using (2.3). To prove (iv), we first assume thatE[〈ν0,1〉3] < ∞. We apply (i) with
φ(ν) = 〈ν,f 〉. This yields thatMf is a martingale. To compute its bracket, we
first apply (i) withφ(ν) = 〈ν,f 〉2 and obtain that

〈νt , f 〉2 − 〈ν0, f 〉2

−
∫ t

0
ds

∫
X̄

νs(dx)γ (x)

∫
Rd

dzD(x, z)

× [f 2(x + z) + 2f (x + z)〈νs, f 〉](3.11)

−
∫ t

0
ds

∫
X̄

νs(dx){f 2(x) − 2f (x)〈νs, f 〉}

×
[
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

]

is a martingale. Then we apply the Itô formula to compute〈νt , f 〉2 from (3.9). We
deduce that

〈νt , f 〉2 − 〈ν0, f 〉2

−
∫ t

0
ds

∫
X̄

νs(dx)γ (x)

∫
Rd

dzD(x, z)2f (x + z)〈νs, f 〉
(3.12)

+
∫ t

0
ds

∫
X̄

νs(dx)2f (x)〈νs, f 〉

×
[
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

]
− 〈Mf 〉t

is a martingale. Comparing (3.11) and (3.12) leads to (3.10). The extension to
the case where onlyE[〈ν0,1〉2] < ∞ is straightforward since, even in this case,
E[〈Mf 〉t ] < ∞ thanks to (3.1) withp = 2. �

4. On the the BPDL moment equations. We now wish to give a sense to
the mean moment equation given in [2], formula (6). Note that in the biology
literature, one may be confused by the notation between the discrete measureνt ,
its expectationE(νt) [defined by〈E(νt), f 〉 = E(〈νt , f 〉)] and a measure with
densitynt (x) of which the definition is not clear. Following [2] in this section we
use the next assumption.

ASSUMPTION B. The spatial domain is̄X = R
d . All the parametersα, γ , µ

andD of the model are independent ofx. Moreover, the (bounded) competition
kernel U(x, y) has the formU(x − y), and both dispersal and competition
kernels are symmetric probability distribution functions, that is,D(z) = D(−z),
U(x − y) = U(y − x) and

∫
Rd dzD(z) = ∫

Rd dzU(z) = 1.
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We moreover assume thatE(〈ν0,1〉2) < ∞ and that there is at most one plant at
each location at timet = 0. So (3.1) withp = 1 holds and we can define, for each
time t ∈ [0, T ],

n(t) = E(〈νt ,1〉).(4.1)

Using Proposition 3.4(iv) withf = 1 and taking expectations in (3.9), we obtain

E(〈νt,1〉) = E(〈ν0,1〉) +
∫ t

0
ds (γ − µ)E(〈νs,1〉)

(4.2)

− α

∫ t

0
ds E

(∫
Rd×Rd

νs(dx)νs(dy)U(x − y)

)
.

Hence,

n(t) = n(0) + (γ − µ)

∫ t

0
ds n(s) − α

∫ t

0
ds E

(∫
Rd

νs(dx)U(0)νs({x})
)

(4.3)

− α

∫ t

0
ds E

(∫
Rd×Rd

νs(dx)νs(dy)1{x �=y}U(x − y)

)
.

However, thanks to Proposition 3.2, we know that for alls ≥ 0,
∫
Rd νs(dx)U(0) ×

νs({x}) = U(0)〈νs,1〉. We thus obtain

n(t) = n(0) + (
γ − µ − αU(0)

) ∫ t

0
ds n(s)

(4.4)

− α

∫ t

0
ds E

(∫
Rd×Rd

νs(dx)νs(dy)1{x �=y}U(x − y)

)
.

Let us now explain thecovariance termused by Bolker and Pacala. Writing

αE

(∫
Rd×Rd

νs(dx)νs(dy)1{x �=y}U(x − y)

)
(4.5)

= αE

(∫
Rd×Rd

νs(dx)
(
νs(dy) − n(s) dy

)
1{x �=y}U(x − y)

)
+ αn2(s),

we obtain, from (4.4),

n(t) = n(0) + (
γ − µ − αU(0)

) ∫ t

0
ds n(s) − α

∫ t

0
ds n2(s)

(4.6)

− α

∫ t

0
ds E

(∫
Rd×Rd

νs(dx)
(
νs(dy) − n(s) dy

)
1{x �=y}U(x − y)

)
.

Following the terminology of Bolker and Pacala, we define a covariance measure
Ct onR

d for each timet . Let τ−y denote the translation by the vector−y. We set

Ct(dr) = E

(∫
y∈Rd

1{r �=0}νt ◦ τ−1−y (dr) ⊗ νt (dy)

)
− n2(t) dr.(4.7)
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In other words, the covariance measure is defined for each measurable bounded
functionφ with compact support inRd by∫

Rd
Ct (dr)φ(r)

= E

(∫
Rd×Rd

νt (dx)νt (dy)1{x �=y}φ(x − y)

)
− n2(t)

∫
Rd

dr φ(r)(4.8)

= E

(∫
Rd×Rd

νt (dx)
(
νt (dy) − n(t) dy

)
1{x �=y}φ(x − y)

)
.

By using this notation, we obtain the mean equation obtained by Bolker and Pacala
([2], formula (6), page 183), with a rigorous sense for the quadratic term:

dn(t)

dt
= n(t)

(
γ − µ − αn(t)

) − αU(0)n(t) − α

∫
Rd

Ct(dr)U(r).(4.9)

Let us finally remark that we are also able to derive an evolution equation for the
covariance measure. In other words, we can write differential equations solved by∫
Rd Ct (dr)φ(r) for all measurable bounded functionsφ on R

d (we, however, do
not obtain the same equation as in [2]). Of course moments of higher order are
involved in such equations. So a remaining issue is to find reasonablemoment
closuresas developed in [4]. These closures are, at the moment, not rigorously
justified.

5. Infinite particle approximations. Our aim in this section is to describe
the effect of two different normalizations on the BPDL process. In both cases,
we make the initial number of plants grow to infinity. We first consider the case
where the birth and death rates are unchanged. We show that the random measure
(νt )t≥0 tends to a deterministic measure(ξt )t≥0 and solution of a nonlinear
integrodifferential equation.

In addition, the second normalization consists of accelerating the rates in a
convenient way. Then(νt )t≥0 converges to a superprocess(Xt )t≥0. This measure-
valued process was introduced by Etheridge [6], who called it thesuperprocess
version of the Bolker–Pacala model.

Let us first consider the most general situation.

NOTATION 5.1. For eachn ∈ N
∗, we consider a set of parameters(µn, γn,αn,

Un,Dn) as in Notation 2.1, that satisfy for eachn, Assumption A and consider
an initial conditionνn

0 ∈ M. Then, we denote by(νn
t )t≥0 the BPDL process (see

Definition 2.5) with the corresponding coefficients. We consider the subsetMn

of MF(X̄) defined by

Mn =
{

1

n
ν, ν ∈ M

}
.(5.1)

We finally consider the cadlagMn-valued Markov process(Xn
t )t≥0 defined

by Xn
t = 1

n
νn
t .
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The generator of(Xn
t )t≥0 is then given, for any measurable mapφ from Mn

into R, by

Lnφ(ν) = n

∫
X̄

ν(dx)

∫
Rd

dz γn(x)Dn(x, z)

[
φ

(
ν + 1

n
δx+z

)
− φ(ν)

]
(5.2)

+ n

∫
X̄

ν(dx)

{
µn(x) + nαn(x)

∫
X̄

ν(dy)Un(x, y)

}

×
[
φ

(
ν − 1

n
δx

)
− φ(ν)

]
.

Indeed, the generator̃Ln of (νn
t )t≥0 is given by (2.3), replacing(µ,γ,α,U,D) by

(µn, γn,αn,Un,Dn). Hence,

Lnφ(ν) = ∂tEν[φ(Xn
t )]t=0 = ∂tEnν[φ(νn

t /n)]t=0 = L̃nφn(nν),(5.3)

whereφn(µ) = φ(µ/n). The conclusion follows from a straightforward computa-
tion. We now restate Proposition 3.4 for the renormalized model.

LEMMA 5.2. Let n ≥ 1 be fixed and consider the process(Xn
t )t≥0 defined in

Notation5.1.Assume that for somep ≥ 2, E[〈Xn
0,1〉p] < ∞.

(i) For all measurable functionsφ from Mn into R such that for some
constantC, for all ν ∈ Mn, |φ(ν)| + |Lnφ(ν)| ≤ C(1+ 〈ν,1〉p), the process

φ(Xn
t ) − φ(Xn

0) −
∫ t

0
ds Lnφ(Xn

s )(5.4)

is a cadlagL1-martingale starting from0.
(ii) Point (i) applies to any measurableφ satisfying|φ(ν)| ≤ C(1+〈ν,1〉p−2).
(iii) Point (i) applies to any functionφ(ν) = 〈ν,f 〉q , with 0 ≤ q ≤ p − 1 and

with f bounded and measurable onM.
(iv) For anyf bounded and measurable on̄X, the process

M
n,f
t = 〈Xn

t , f 〉 − 〈Xn
0, f 〉

−
∫ t

0
ds

∫
X̄

Xn
s (dx)

∫
Rd

dz γn(x)Dn(x, z)f (x + z)(5.5)

+
∫ t

0
ds

∫
X̄

Xn
s (dx)

{
µn(x) + nαn(x)

∫
X̄

Xn
s (dy)Un(x, y)

}
f (x)

is a cadlagL2-martingale with( predictable) quadratic variation

〈Mn,f 〉t = 1

n

∫ t

0
ds

∫
X̄

Xn
s (dx)

∫
Rd

dz γn(x)Dn(x, z)f 2(x + z)

+ 1

n

∫ t

0
ds

∫
X̄

Xn
s (dx)(5.6)

×
{
µn(x) + nαn(x)

∫
X̄

Xn
s (dy)Un(x, y)

}
f 2(x).
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We endowMF(X̄) with the weak topology.

5.1. Convergence to a nonlinear integrodifferential equation.Let us now
consider the mean-field approximating case in which the initial number of particles
n tends to infinity, and the parameters of seed production and intrinsic death stay
unchanged, whereas the mortality competition parameter tends to zero as1

n
. We

show that the BPDL process can be approximated by a deterministic nonlinear
integrodifferential equation. This might be a better deterministic way to describe
the model than the moment equations of [2]. In particular, it allows us to deal with
space-dependent parameters.

ASSUMPTIONC1.

1. The initial conditionsXn
0 converge in law and for the weak topology onMF(X̄)

to some deterministic finite measureξ0∈ MF (X̄), and supnE(〈Xn
0,1〉3) < +∞.

2. There exist some continuous nonnegative functionsα,γ andµ on X̄, bounded
by ᾱ, γ̄ andµ̄, such thatγn(x) = γ (x), µn(x) = µ(x) andαn(x) = α(x)/n.

3. There exists a bounded nonnegative symmetric continuous functionU on
X̄ × X̄ bounded byŪ such thatUn(x, y) = U(x, y).

4. There exists a continuous nonnegative functionD on X̄ × R
d that satisfies, for

eachx ∈ X̄,
∫
z∈Rd ,x+z∈X̄ dzD(x, z) = 1, D(x, z) = 0 as soon asx + z /∈ X̄

and such thatD(x, z) ≤ CD̃(z) for a constantC > 0 and a probability density
D̃ onR

d . We setDn(x, z) = D(x, z).

The first assertion of Assumption C1 is satisfied, for example, ifXn
0 =

1
n

∑n
i=1 δZi , where the random variablesZi are independent, with lawξ0. In this

case, the numbern can be seen as thevolumeof particles at initial time, and the
limit of Xn

t = 1
n
νn
t may give a rigorous sense to thenumber density.

THEOREM5.3. Admit AssumptionC1,and consider the sequence of processes
Xn defined in Notation5.1. Then for all T > 0, the sequence(Xn) converges
in law, in D([0, T ],MF (X̄)), to a deterministic continuous function(ξt )t≥0 ∈
C([0, T ],MF (X̄)). This measure-valued functionξ is the unique solution, satis-
fying supt∈[0,T ]〈ξt ,1〉 < ∞, of the integrodifferential equation written in its weak
form: for all bounded and measurable functionsf from X̄ into R,

〈ξt , f 〉 = 〈ξ0, f 〉 +
∫ t

0
ds

∫
X̄

ξs(dx)γ (x)

∫
Rd

dzD(x, z)f (x + z)

(5.7)

−
∫ t

0
ds

∫
X̄

ξs(dx)f (x)

{
µ(x) + α(x)

∫
X̄

ξs(dy)U(x, y)

}
.

Note that the link between (2.8) and (5.7) is the same as the link between the
continuous-time binary Galton–Watson process with birth rateγ and death rateµ,
and the deterministic differential equationf ′(t) = (γ − µ)f (t).



DESCRIPTION OF A REGULATED POPULATION 1895

PROOF. We divide the proof into several steps. Let us fixT > 0.

STEP 1. Let us first show the uniqueness for equation (5.7). We consider
two solutions(ξt )t≥0 and (ξ̄t )t≥0 of (5.7) that satisfy supt∈[0,T ]〈ξt + ξ̄t ,1〉 =
AT < +∞. We consider the variation norm defined forµ1 and µ2 in MF(X̄)

by

‖µ1 − µ2‖ = sup
f ∈L∞(X̄),‖f ‖∞≤1

|〈µ1 − µ2, f 〉|.(5.8)

Then we consider some bounded and measurable functionf defined onX̄ such
that‖f ‖∞ ≤ 1 and we obtain

|〈ξt − ξ̄t , f 〉|
≤

∫ t

0
ds

∣∣∣∣
∫
X̄

[ξs(dx) − ξ̄s(dx)]

×
(
γ (x)

∫
Rd

dzD(x, z)f (x + z) − µ(x)f (x)

)∣∣∣∣
+

∫ t

0
ds

∣∣∣∣
∫
X̄

[ξs(dx) − ξ̄s(dx)]α(x)f (x)

∫
X̄

ξs(dy)U(x, y)

∣∣∣∣(5.9)

+
∫ t

0
ds

∣∣∣∣
∫
X̄

[ξs(dy) − ξ̄s (dy)]
∫
X̄

ξ̄s(dx)α(x)f (x)U(x, y)

∣∣∣∣.
However, since‖f ‖∞ ≤ 1 for all x ∈ X̄,∣∣∣∣γ (x)

∫
Rd

dzD(x, z)f (x + z) − µ(x)f (x)

∣∣∣∣ ≤ γ̄ + µ̄,

while ∣∣∣∣α(x)f (x)

∫
X̄

ξs(dy)U(x, y)

∣∣∣∣ ≤ ᾱŪAT

and ∣∣∣∣
∫
X̄

ξ̄s(dx)α(x)f (x)U(x, y)

∣∣∣∣ ≤ ᾱŪAT .

We deduce that

|〈ξt − ξ̄t , f 〉| ≤ [γ̄ + µ̄ + 2ᾱŪAT ]
∫ t

0
ds ‖ξs − ξ̄s‖.(5.10)

Taking the supremum over all functionsf such that‖f ‖∞ ≤ 1 and using the
Gronwall lemma, we finally deduce that for allt ≤ T , ‖ξt − ξ̄t‖ = 0. Uniqueness
holds.
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STEP 2. Let us prove some moment estimates. By Assumption C1, it is easy
to check that, for allT > 0,

sup
n

E

(
sup

t∈[0,T ]
〈Xn

t ,1〉3
)

< +∞.(5.11)

Indeed, recalling thatXn
t = 1

n
νn
t , we can prove, following line by line the proof

of Theorem 3.1(ii) withp = 3, thatE[supt∈[0,T ]〈νn
t ,1〉3] ≤ CT E[〈νn

0,1〉3], noting
that the constantCT does not depend onn. We easily conclude using part 1 of
Assumption C1.

STEP 3. We first endowMF(X̄) with the vague topology, the extension to the
weak topology being handled in Step 6. To show the tightness of the sequence
of laws Qn = L(Xn) in P (D([0, T ],MF (X̄))), it suffices, following [15], to
show that for any continuous bounded functionf on X̄, the sequence of laws
of the processes〈Xn,f 〉 is tight in D([0, T ],R). To this end, we use the Aldous
criterion [1] and the Rebolledo criterion (see [7]). We have to show

sup
n

E

(
sup

t∈[0,T ]
|〈Xn

s , f 〉|
)

< ∞,(5.12)

and the tightness, respectively, of the laws of the martingale part and of the drift
part of the semimartingales〈Xn,f 〉. Sincef is bounded, (5.12) is a consequence
of (5.11). Let us thus consider a couple(S, S′) of stopping times satisfying a.s.
0 ≤ S ≤ S′ ≤ S + δ ≤ T . Using Lemma 5.2, we get

E[|Mn,f

S′ − M
n,f
S |]

≤ E[|Mn,f

S′ − M
n,f
S |2]1/2 ≤ E[〈Mn,f 〉S+δ − 〈Mn,f 〉S]1/2(5.13)

≤ E

[
(γ̄ + µ̄ + ᾱŪ)

∫ S+δ

S
ds (〈Xn

s ,1〉 + 〈Xn
s ,1〉2)

]1/2

≤ C
√

δ,

where the last inequality comes from (5.11). The finite variation part of〈Xn
S′ , f 〉−

〈Xn
S,f 〉 is bounded by∫ S+δ

S
ds [(γ̄ + µ̄)〈Xn

s ,1〉 + ᾱŪ 〈Xn
s ,1〉2]

(5.14)

≤ δC

[
1+ sup

s∈[0,T ]
〈Xn

s ,1〉2
]
.

Hence, formula (5.11) allows us to conclude that the sequenceQn = L(Xn) is
tight.

STEP 4. Let us now denote byQ the limiting law of a subsequence ofQn.
We still denote this subsequence byQn. Let X = (Xt )t≥0 a process with lawQ.
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We remark that by construction, almost surely,

sup
t∈[0,T ]

sup
f ∈L∞(X̄),‖f ‖∞≤1

|〈Xn
t , f 〉 − 〈Xn

t− , f 〉| ≤ 1/n.(5.15)

This implies that the processX is a.s. strongly continuous.

STEP 5. Let us now check that a.s. the processX is the unique solution
of (5.7). Thanks to (5.11), it satisfies supt∈[0,T ]〈Xt,1〉 < +∞ a.s. for eachT .
Standard density arguments show that it suffices to check thatX solves (5.7)
for all f ∈ Cb(X̄) and all t ≥ 0. Let thusf ∈ Cb(X̄) and t ≥ 0 be fixed. For
ν ∈ C([0,∞),MF (X̄)), denote

t(ν) = 〈νt , f 〉 − 〈ν0, f 〉
−

∫ t

0
ds

∫
X̄

νs(dx)γ (x)

∫
Rd

dzD(x, z)f (x + z)(5.16)

+
∫ t

0
ds

∫
X̄

νs(dx)f (x)

{
µ(x) + α(x)

∫
X̄

νs(dy)U(x, y)

}
.

We have to show that

EQ[|t(X)|] = 0.(5.17)

However, Lemma 5.2 and Assumption C1 imply that for eachn,

M
n,f
t = t(X

n).(5.18)

A straightforward computation using Lemma 5.2, Assumption C1 and (5.11)
shows that

E[|Mn,f
t |2] = E[〈Mn,f 〉t ] ≤ Cf

n
E

[∫ t

0
ds {1+ 〈Xn

s ,1〉2}
]

≤ Cf,t

n
,(5.19)

which goes to 0 asn tends to infinity. On the other hand, sinceX is a.s. strongly
continuous, sincef is continuous and thanks to Assumption C1, the functiont

is a.s. continuous atX. Furthermore, for anyν ∈ D([0, T ],MF (X̄)),

|t(ν)| ≤ Cf,t sup
s∈[0,t]

(1+ 〈νs,1〉2).(5.20)

Hence using (5.11), we see that the sequence(t (X
n))n is uniformly integrable

and thus

lim
n

E
(|t(X

n)|) = E
(|t(X)|).(5.21)

Associating (5.18), (5.19) and (5.21), we conclude that (5.17) holds.
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STEP 6. The previous steps imply that the sequence(Xn) converges toξ in
D([0, T ],MF (X̄)), whereMF(X̄) is endowed with the vague topology. To extend
the result to the case whereMF (X̄) is endowed with the weak topology, we use
a criterion proved in [12]: Since the limiting process is continuous, it suffices to
prove that the sequence(〈Xn,1〉) converges to〈ξ,1〉 in law, in D([0, T ], X̄). We
may of course apply Step 5 withf ≡ 1, which concludes the proof.�

PROPOSITION 5.4. Assume thatξ0 in MF(X̄) has a density with respect to
the Lebesgue measure. Consider the associated solution(ξt )t≥0 to (5.7). Then
for everyt ≥ 0, the finite measureξt has a density with respect to the Lebesgue
measure.

PROOF. The proof is similar to that of Proposition 3.3. We consider a Borel
subsetA of X̄ with measure zero. We apply (5.7) withf = 1A. The right-hand side
expression is equal to 0 since the first term is zero by hypothesis, the second one
is zero since for allx,

∫
Rd dz1x+z∈AD(x, z) = 0, and the last term is nonpositive.

�

REMARK 5.5. (i) Equation (5.7) is the weak form of, for allx ∈ X̄, t ≥ 0,

∂tξt (x) =
∫
X̄

dy ξt(y)γ (y)D(y, x − y)

(5.22)
− µ(x)ξt (x) − α(x)ξt (x)

∫
X̄

dy ξt (y)U(x, y).

(ii) Assume now thatX̄ = R
d , that the competition kernel is of the form

U(x, y) = U(x − y) and thatD(x, z) = D(z) does not depend onx. Then (5.7) is
the weak form of, for allx ∈ R

d , t ≥ 0,

∂t ξt (x) = [γ ξt � D](x) − µ(x)ξt (x) − α(x)ξt (x)[ξt � U ](x),(5.23)

where, for example,[γ ξt � D](x) = ∫
Rd ξt (dy)γ (y)D(x − y).

5.2. Convergence to a superprocess.In this section we show the relationship
between the original BPDL model (rigorously written in Definition 2.5) and the
superprocess version of the Bolker–Pacala model introduced by Etheridge [6].
More precisely, we show that accelerating the rates of production and natural death
by a factor ofn makes the BPDL processes converge to a continuous random
measure-valued process which generalizes the one studied in [6].

ASSUMPTIONC2.

1. The spaceX̄ = R
d . The initial conditionsXn

0 converge in law, for the weak
topology onMF(Rd), to a (random) measureX0 ∈ MF(Rd). Furthermore,
supn E(〈Xn

0,1〉3) < +∞.
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2. There exist some continuous positive functionsσ(x),α(x), γ (x) and β(x)

on R
d , respectively bounded bȳσ , ᾱ, γ̄ and β̄, a nonnegative symmetric

continuous functionU(x, y) onR
d × R

d bounded byŪ , such that

γn(x) = nγ (x) + β(x),

µn(x) = nγ (x),

αn(x) = α(x)

n
,(5.24)

Un(x, y) = U(x, y),

Dn(x, z) =
(

n

2πσ(x)

)d/2

exp
(

− n|z|2
2σ(x)

)
.

Note that Dn(x, z) is the density of a Gaussian vector with mean 0 and
varianceσ(x)

n
Id . With these coefficients and whenn tends to infinity, we have

more and more seed production and natural death, and less and less competition.
Each seed falls more and more close to itsmother.

THEOREM 5.6. Admit AssumptionC2 and consider the sequence of pro-
cessesXn defined in Notation5.1. Then for all T > 0, the sequence(Xn)

converges in law, in D([0, T ],MF (Rd)), to the unique(in law) superprocess
X ∈ C([0, T ],MF (Rd)), defined by the conditions

sup
t∈[0,T ]

E[〈Xt,1〉3] < ∞(5.25)

and, for anyf ∈ C2
b(Rd),

M̄
f
t = 〈Xt,f 〉 − 〈X0, f 〉 − 1

2

∫ t

0
ds

∫
Rd

Xs(dx)σ (x)γ (x)�f (x)

(5.26)

−
∫ t

0
ds

∫
Rd

Xs(dx)f (x)

[
β(x) − α(x)

∫
Rd

Xs(dy)U(x, y)

]

is a continuous martingale with quadratic variation

〈M̄f 〉t = 2
∫ t

0
ds

∫
Rd

Xs(dx)γ (x)f 2(x).(5.27)

PROOF. We break the proof into several steps.

STEP 1. Let us first prove the uniqueness of the solution of the martingale
problem defined by (5.25)–(5.27); that is, the uniqueness of a probability
measureP on C([0, T ],MF (Rd)) under which the canonical processX satisfies
(5.25)–(5.27). This result is well known for the super-Brownian process (defined
by a similar martingale problem, but withα = β = 0 andσ = γ = 1). As noted
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in [6], we can use the version of Dawson’s Girsanov transform obtained in [5],
Theorem 2.3, to deduce the uniqueness in our situation, provided the condition

EP

(∫ t

0
ds

∫
Rd

Xs(dx)

[
β(x) − α(x)

∫
Xs(dy)U(x, y)

]2)
< +∞

is satisfied. This is easily obtained from (5.25) since the coefficients are bounded.

STEP 2. Next we obtain some moment estimates. First we check that for all
T < ∞,

sup
n

sup
t∈[0,T ]

E[〈Xn
t ,1〉3] < ∞.(5.28)

To this end, we use Lemma 5.2(i) withφ(ν) = 〈ν,1〉3. [To be completely rigorous,
first useφ(ν) = 〈ν,1〉3 ∧ A and then makeA tend to infinity.] We obtain, using
Assumption C2, that for allt ≥ 0, all n,

E [〈Xn
t ,1〉3]

= E[〈Xn
0,1〉3] +

∫ t

0
ds E

[∫
Rd

Xn
s (dx)[n2γ (x) + nβ(x)]

×
{[

〈Xn
s ,1〉 + 1

n

]3

− 〈Xn
s ,1〉3

}]
(5.29)

+
∫ t

0
ds E

[∫
Rd

Xn
s (dx)

{
n2γ (x) + nα(x)

∫
Rd

Xn
s (dy)U(x, y)

}

×
{[

〈Xn
s ,1〉 − 1

n

]3

− 〈Xn
s ,1〉3

}]
.

Neglecting the nonpositive competition term, we get

E[〈Xn
t ,1〉3]
≤ E[〈Xn

0,1〉3]

+
∫ t

0
ds E

[∫
Rd

Xn
s (dx)n2γ (x)

(5.30)

×
{[

〈Xn
s ,1〉 + 1

n

]3

+
[
〈Xn

s ,1〉 − 1

n

]3

− 2〈Xn
s ,1〉3

}]

+
∫ t

0
ds E

[∫
Rd

Xn
s (dx)nβ(x)

{[
〈Xn

s ,1〉 + 1

n

]3

− 〈Xn
s ,1〉3

}]
.
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However, for allx ≥ 0, all ε ∈ (0,1], (x + ε)3 − x3 ≤ 6ε(1+ x2) and|(x + ε)3 +
(x − ε)3 − 2x3| = 6ε2x. We finally obtain

E[〈Xn
t ,1〉3] ≤ E[〈Xn

0,1〉3] + 6γ̄

∫ t

0
ds E[〈Xn

s ,1〉2]
(5.31)

+ 6β̄

∫ t

0
ds E[〈Xn

s ,1〉 + 〈Xn
s ,1〉3].

Part 1 of Assumption C2 and the Gronwall lemma allow us to conclude that (5.28)
holds.

Next, we have to check that

sup
n

E

(
sup

t∈[0,T ]
〈Xn

t ,1〉
)

< ∞.(5.32)

Applying Lemma 5.2(iv) withf ≡ 1 and Assumption C2, we obtain

〈Xn
t ,1〉 = 〈Xn

0,1〉 +
∫ t

0
ds

∫
Rd

Xn
s (dx)

(5.33)

×
[
β(x) − α(x)

∫
Rd

Xn
s (dy)U(x, y)

]
+ M

n,1
t .

Hence

sup
s∈[0,t]

〈Xn
s ,1〉 ≤ 〈Xn

0,1〉 + β̄

∫ t

0
ds 〈Xn

s ,1〉 + sup
s∈[0,t]

|Mn,1
s |.(5.34)

Thanks to the Doob inequality, part 1 of Assumption C2 and the Gronwall lemma,
there exists a constantCt that is not dependent onn such that

E

(
sup

s∈[0,t]
〈Xn

s ,1〉
)

≤ Ct(1+ E[〈Mn,1〉t ]1/2).(5.35)

Using (5.6) now and Assumption C2, we obtain, for some other constantCt not
dependent onn,

E[〈Mn,1〉t ] ≤ (2γ̄ + β̄)

∫ t

0
ds E[〈Xn

s ,1〉]+ ᾱŪ

∫ t

0
ds E[〈Xn

s ,1〉2] ≤ Ct(5.36)

thanks to (5.28). This concludes the proof of (5.32).

STEP 3. We first endowMF(Rd) with the vague topology. The extension to
the weak topology is handled in Step 5. We prove the tightness of the sequence of
laws (L(Xn))n in P (D([0,∞),MF (Rd))) by following the same approach as in
Theorem 5.3. First, we deduce from Step 2 that supn E[sups∈[0,T ] |〈Xn

s , f 〉|] < ∞
for any boundedf . We thus have to prove that for anyf ∈ C2

b(Rd), the
sequence〈Xn

t , f 〉 satisfies the Aldous–Rebolledo criterion. Let us consider a
couple(S, S′) of stopping times satisfying a.s. 0≤ S ≤ S′ ≤ S + δ ≤ T . Using
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Lemma 5.2, Assumption C2 and the fact that| ∫
Rd dzDn(x, z)f (x + z)−f (x)| ≤

σ̄‖�f ‖∞/2n, we deduce the existence of a constantC independent ofn such that
the finite variation part of〈Xn

S′, f 〉 − 〈Xn
S,f 〉 is bounded by∫ S+δ

S
ds

∫
Rd

Xn
s (dx)β̄‖f ‖∞

+
∫ S+δ

S
ds

∫
Rd

Xn
s (dx)nγ (x)

∣∣∣∣
∫

Rd
dzDn(x, z)f (x + z) − f (x)

∣∣∣∣
(5.37)

+
∫ S+δ

S
ds

∫
Rd

Xn
s (dx)ᾱŪ‖f ‖∞

∫
Rd

Xn
s (dy)

≤ C

∫ S+δ

S
ds (〈Xn

s ,1〉 + 〈Xn
s ,1〉2).

We can also show that, for some constantC,

E[〈Mn,f 〉S+δ − 〈Mn,f 〉S] ≤ CE

[∫ S+δ

S
ds (〈Xn

s ,1〉 + 〈Xn
s ,1〉2)

]
.(5.38)

Using the moment estimate (5.28), we finally obtain that the laws of(Mn,f ) and
the laws of the drift parts of〈Xn,f 〉 are tight and then, by Rebolledo’s criterion,
the laws of〈Xn,f 〉 are tight.

STEP 4. Let us identify the limit. Let us setQn = L(Xn), denote byQ a
limiting value of the tight sequenceQn and denote byX = (Xt )t≥0 a process with
law Q. Exactly as in the proof of Theorem 5.3, we can show thatX belongs a.s.
to C([0, T ],MF (Rd)). We have to show thatX satisfies conditions (5.25)–(5.27).
First note that (5.25) is straightforward from (5.28). Then, we show that for any
function f in C3

b(Rd), the processM̄f
t defined by (5.26) is a martingale (the

extension to every function inC2
b is not hard). We consider 0≤ s1 ≤ · · · ≤ sk <

s < t and some continuous bounded mapsφ1, . . . , φk on MF(Rd). Our aim is to
prove that, if the function from D([0, T ],MF (Rd)) into R is defined by

(ν) = φ1
(
νs1

) · · ·φk

(
νsk

)
×

{
〈νt , f 〉 − 〈νs, f 〉 −

∫ t

s
du 〈νu, γ σ �f/2〉(5.39)

−
∫ t

s
du

∫
Rd

νu(dx)f (x)

[
β(x) −

∫
Rd

νu(dy)α(x)U(x, y)

]}
,

then

E((X)) = 0.(5.40)

We know from Lemma 5.2 that using Assumption C2,

0= E
[
φ1

(
Xn

s1

) · · ·φk

(
Xn

sk

){Mn,f
t − Mn,f

s }] = E[(Xn)] − An,(5.41)



DESCRIPTION OF A REGULATED POPULATION 1903

whereAn is defined by

An = E

[∫ t

s
du

∫
Rd

Xn
u(dx)

×
{
γ (x)n

[∫
Rd

dzDn(x, z)f (x + z) − f (x) − σ(x)

2n
�f (x)

]
(5.42)

+ β(x)

[∫
Rd

dzDn(x, z)f (x + z) − f (x)

]}

× φ1
(
Xn

s1

) · · ·φk

(
Xn

sk

)]
.

First, an easy computation using Assumption C2, thatf is C3
b and (5.28) shows

that

|An| ≤ Cf

n

∫ t

s
duE[〈Xn

u,1〉] → 0(5.43)

asn grows to infinity. Next, it is clear from Assumption C2, the fact thatf is C3
b

and thatQ only charges the space of continuous processes that the map is Q-a.s.
continuous. Furthermore,

|(ν)| ≤ C

(
1+ 〈νs,1〉 + 〈νt ,1〉 +

∫ t

s
du〈νu,1〉2

)
(5.44)

and we easily deduce from (5.28) that the sequence(|(Xn)|)n is uniformly
integrable. Hence,

lim
n

E
(|(Xn)|) = EQ

(|(X)|).(5.45)

Associating (5.41), (5.43) and (5.45) allows us to conclude that (5.40) holds and
thusM̄f is a martingale.

We finally have to show that the bracket ofM̄f is given by (5.27). To this end,
we first check that

N̄
f
t = 〈Xt,f 〉2 − 〈X0, f 〉2 −

∫ t

0
ds

∫
Rd

Xs(dx)2γ (x)f 2(x)

−
∫ t

0
ds 2〈Xs,f 〉

∫
Rd

Xs(dx)f (x)

(5.46)

×
[
β(x) − α(x)

∫
Rd

Xs(dy)U(x, y)

]

−
∫ t

0
ds 2〈Xs,f 〉

∫
Rd

Xs(dx)1
2σ(x)γ (x)�f (x)
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is a martingale. This can be done exactly as forM̄
f
t , using the fact that, thanks to

Lemma 5.2(iii) (withq = 2),

N
n,f
t = 〈Xn

t , f 〉2 − 〈Xn
0, f 〉2

−
∫ t

0
ds

∫
Rd

Xn
s (dx)γ (x)

[∫
Rd

dz f 2(x + z)Dn(x, z) + f 2(x)

]

−
∫ t

0
ds 2〈Xn

s , f 〉
∫

Rd
Xn

s (dx)

×
[
β(x)

∫
Rd

dz f (x + z)Dn(x, z) − α(x)f (x)

∫
Rd

Xn
s (dy)U(x, y)

]
(5.47)

−
∫ t

0
ds 2〈Xn

s , f 〉
∫

Rd
Xn

s (dx)γ (x)n

×
[∫

Rd
dz f (x + z)Dn(x, z) − f (x)

]

− 1

n

∫ t

0
ds

∫
Rd

Xn
s (dx)β(x)

∫
Rd

dz f 2(x + z)Dn(x, z)

− 1

n

∫ t

0
ds

∫
Rd

Xn
s (dx)α(x)

∫
Rd

Xn
s (dy)U(x, y)f 2(x)

is a martingale for eachn. Next, using the Itô formula in the definition (5.26)
of M̄

f
t , we deduce that

〈Xt,f 〉2 − 〈X0, f 〉2 − 〈M̄f 〉t
−

∫ t

0
ds 2〈Xs,f 〉

∫
Rd

Xs(dx)f (x)

[
β(x) − α(x)

∫
Rd

Xs(dy)U(x, y)

]
(5.48)

−
∫ t

0
ds 2〈Xs,f 〉

∫
Rd

Xs(dx)1
2σ(x)γ (x)�f (x)

is a martingale. Comparing this formula with (5.46) allows us to conclude that
(5.27) holds.

STEP 5. The extension to the case whereMF(Rd) is endowed with the weak
topology uses similar arguments as in Step 6 of the proof of Theorem 5.3.�

6. About extinction and survival. First of all, we recall a result in [6].
Consider the superprocessX obtained in Theorem 5.6, and assume thatσ , γ , β and
α are constant onRd . Suppose also thatU(x, y) = h(|x−y|) for some nonnegative
decreasing functionh on R+ that satisfies

∫ ∞
0 h(r)rd−1dr < ∞. Then if β is

sufficiently small andα is sufficiently large,X does not survive: a.s., there exists
a t ≥ 0 such that for alls ≥ 0, Xt+s = 0.
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We can also find a complementary result in [6] which shows nonextinction with
positive probability for another model—thestepping-stoneversion of the Bolker–
Pacala process. Let us now come back to the BPDL process defined as the solution
of (2.8). The techniques used in [6] are specific to continuous processes and cannot
be generalized to the BPDL discontinuous process.

Before giving our results, let us point out the following obvious remark.

REMARK 6.1. Assume Assumption A and thatE[〈ν0,1〉] < ∞. Consider the
BPDL process(νt )t≥0. Assume also that there exist some constantsγ0 ≤ µ0 such
that for allx ∈ X̄, µ(x) ≥ µ0 andγ (x) ≤ γ0. Then(νt )t≥0 does a.s. not survive,
that is,P [ ∃ s > 0, 〈νs,1〉 = 0] = 1.

The proof of this remark is not hard. In such a case, the processZt = 〈νt ,1〉
can be bounded from above by a standard continuous-time binary Galton–Watson
processYt with death rateµ0 and birth rateγ0. Sinceµ0 ≥ γ0, extinction a.s.
occurs.

In this section, we first prove almost sure extinction in a case where the state
spaceX̄ is compact. Then we show nonextinction in the case of a discrete version
of the BPDL process with a specific (and not quite realistic) competition kernelU .

6.1. Extinction in the compact case.We check a result which essentially says
that if the state spacēX is compact, then the population does almost surely not
survive. Let us make the following assumption:

ASSUMPTIONE.

(i) The mapsα(x) andµ(x) + α(x)U(x, x) are bounded below.
(ii) There exists a nondecreasing functionϕ :R+ �→ R+, satisfyingϕ(0) = 0,

such that limx→∞ ϕ(x) = ∞, such that the mapxϕ(x) is convex on[0,∞) and
such that, for allν ∈ M,

〈ν ⊗ ν,U 〉 ≥ 〈ν,1〉ϕ(〈ν,1〉).(6.1)

REMARK 6.2. Assumption E(ii) holds ifX̄ is compact inR
d , and if there

existε > 0 andδ > 0 such thatU(x, y) ≥ ε1{|x−y|≤δ}.

THEOREM 6.3. Admit AssumptionsA and E, ν0 ∈ M and E(〈ν0,1〉) < ∞.
Consider the corresponding unique BPDL process(νt )t≥0 obtained in Theo-
rem3.1.Then there is almost surely extinction, that is, P (∃ t ≥ 0, 〈νt ,1〉 = 0) = 1.

PROOF OFREMARK 6.2. First of all, we coverX̄ with a family {Cl}l∈{1,...,L}
of disjoint cubes ofRd with sideδ/

√
d. Note thatL is clearly finite and that for

eachl and eachx, y ∈ Cl , |x − y| ≤ δ. Recall the following consequence of the
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Cauchy–Schwarz inequality, which says that for allL ≥ 1 and all{α1, . . . , αL}
in R,

∑L
l=1 α2

l ≥ 1
L
[∑L

l=1 αl]2. Hence for alln ≥ 1 and allx1, . . . , xn ∈ X̄,

n∑
i,j=1

U(xi, xj ) ≥
n∑

i,j=1

ε1{|xi−xj |≤δ} ≥ ε

n∑
i,j=1

L∑
l=1

1Cl
(xi)1Cl

(xj )

(6.2)

= ε

L∑
l=1

[
n∑

i=1

1Cl
(xi)

]2

≥ ε
1

L

[
L∑

l=1

n∑
i=1

1Cl
(xi)

]2

= ε
1

L
n2.

We immediately deduce that for anyν ∈ M, sinceν is atomic, 〈ν ⊗ ν,U 〉 ≥
ε 1

L
〈ν,1〉2. Hence Assumption E(ii) holds withϕ(n) = ε 1

L
n. �

PROOF OFTHEOREM 6.3. We break the proof into several steps.

STEP 1. We first of all prove that

A = sup
t≥0

E(〈νt ,1〉) < +∞.(6.3)

To this end, we setf (t) = E(〈νt ,1〉) and use Proposition 3.4 withφ(ν) = 〈ν,1〉
to obtain

f (t) = f (0) +
∫ t

0
ds E

[
〈νs, γ − µ〉 −

∫
X̄

∫
X̄

νs(dx)νs(dy)α(x)U(x, y)

]
.(6.4)

Hencef is differentiable. If we setδ = ‖γ − µ‖∞ and α0 = infx∈X̄ α(x), we
deduce that for anyt ≥ 0,

f ′(t) ≤ δf (t) − α0E(〈νt ⊗ νt ,U 〉).(6.5)

Using Assumption E and then the Jensen inequality, we obtain that

f ′(t) ≤ δf (t) − α0f (t)ϕ(f (t)).(6.6)

Let now x0 be the greatest solution ofδx0 = α0x0ϕ(x0) [recall that ϕ(x) is
nondecreasing and goes to infinity withx, and thatϕ(0) = 0]. Then we deduce
from (6.6) that for anyt ≥ 0, f (t) ≤ f (0) ∨ x0. This concludes the first step.

STEP 2. We now check that a.s.

lim inf
t→∞ 〈νt ,1〉 ∈ {0,∞}.(6.7)

Since〈νt ,1〉 is N-valued, it suffices to check that for anyM ∈ N
∗,

P

[
lim inf
t→∞ 〈νt ,1〉 = M

]
= 0,

but this is clear: If lim inft→∞〈νt ,1〉 = M , then 〈νt ,1〉 reaches the stateM
infinitely often, but reaches the stateM − 1 only a finite number of times. This
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is (a.s.) impossible because each time〈νt ,1〉 reaches the stateM , the probability
that its next state isM − 1 is bounded below by

Mε0

Mγ̄ + Mµ̄ + ᾱŪM2
> 0,(6.8)

whereε0 = infx∈X̄[µ(x) + α(x)U(x, x)] > 0.

STEP 3. Since〈νt ,1〉 is N-valued and 0 is an absorbing state, we immediately
deduce from (6.7) that a.s. limt→∞〈νt ,1〉 exists and

lim
t→∞〈νt ,1〉 ∈ {0,∞}.(6.9)

STEP 4. By Fatou’s lemma and Step 1,

E

[
lim

t→∞〈νt ,1〉
]

= E

[
lim inf
t→∞ 〈νt ,1〉

]
≤ lim inf

t→∞ E[〈νt ,1〉] ≤ A.(6.10)

Hence limt→∞〈νt ,1〉 < ∞ a.s. and we deduce from (6.9) that limt→∞〈νt ,1〉 = 0
a.s. This concludes the proof.�

6.2. Survival in a simplified case.Next, we show that in some cases, the
BPDL process survives with positive probability. We are not able to handle a proof
in a general case, because the problem seems very difficult. It actually looks much
more difficult than the problem of survival for the contact process, which has been
studied by many mathematicians (see [11]). The only result we are able to prove
is deduced from a comparison with the contact process.

ASSUMPTIONS.

(i) The state spacēX = Z
d .

(ii) The competition kernelU is pointwise, that is,U(x, y) = 1{x=y}.
(iii) The dispersion measureD(x,dz) = D(dz) = (1/2d)

∑
u∈Zd ,|u|=1 δu(dz).

(iv) γ , µ andα are positive constants that satisfy

γ 2−d

µ + α
> 2.(6.11)

Note thatX̄ = Z
d was not covered by our construction. The adaptation is,

however, immediate.

PROPOSITION 6.4. Admit AssumptionS, assume thatν0 ∈ M, 〈ν0,1〉 ≥ 1
a.s. and assume thatE[〈ν0,1〉] < ∞. Consider the corresponding BPDL pro-
cess(νt )t≥0. This process survives with positive probability. That means that
P (inft≥0〈νt ,1〉 ≥ 1 ) > 0.
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We do not handle a completely rigorous proof. To do so we would have to build
a rigorous coupling between the contact process and the BPDL process.

PROOF ORPROPOSITION6.4. We split the proof into two steps.

STEP 1. Let us first recall definitions and results about the contact process
(see [11], Chapter VI). First, denote byMs

F the set of nonnegative finite measuresη

onZ
d such that for allx ∈ Z

d , η({x}) ∈ {0,1}. The contact process with parameters
λd > 0 andλm > 0 is a Markov process(ηt )t≥0, taking its values inMs

F and with
generatorK , defined for all bounded and measurable mapsφ from MF(Zd) into
R and allη ∈ MF (Zd) by

Kφ(η) = λd

∫
Zd

η(dx)
∑

u∈Zd ,|u|=1

1{η({x+u})=0}[φ(η + δx+u) − φ(η)]
(6.12)

+ λm

∫
Zd

η(dx)1{η({x})=1}[φ(η − δx) − φ(η)].
Consider an (possibly random) initial stateη0 in Ms

F satisfying〈η0,1〉 ≥ 1 a.s.
Then it is known (see [11], Chapter VI) that the contact process(ηt )t≥0 with
parametersλd > 0, λm > 0 and initial stateη0 exists, is unique (in law) and that
under the conditionλd > 2λm, survives with positive probability.

STEP 2. Consider now the BPDL process(νt )t≥0, which takes its values in
the integer-valued measures onZ

d . Denoteη̃t = ∑
x∈Zd 1{νt ({x})≥1}δx . Note that

η̃t is always dominated byνt . Then(η̃t )t≥0 is a process with values inMs
F and

we can observe that(η̃t )t≥0 is a sort of contact process with time- and space-
dependent, random parametersλd(t, x,ω) = γ 2−d [1∨ νt({x})] andλm(t, x,ω) =
1νt ({x})≤1(µ + α). Under Assumption S,λd(t, x,ω) is uniformly bounded from
below by λd = γ 2−d , while λm(t, x,ω) is uniformly bounded from above by
λm = µ + α. Hence, the process(η̃t )t≥0 is bounded below by a contact process
with parametersλd andλm. Since (6.11) ensures that 2λm < λd , the conclusion
follows from Step 1. �

Note that the previously described method may not apply to the continuous-state
BPDL process, since we really need the interaction to be strictly local. In fact, the
only case we could treat by such a method is the case where the competition kernel
is completely localand cannot propagate; for example,X̄ = R

d andU(x, y) ≤∑
p∈Zd 1Cp(x)1Cp(y), where, forp ∈ Z

d , Cp = [p1,p1 + 1] × · · · × [pd,pd + 1].

7. On equilibria. An interesting question is that of the existence of nontrivial
equilibria for the BPDL process. Since this question seems very complicated, we
first try to give some results about the deterministic equation (5.7). Then we show
that there exists a nontrivial equilibrium for the BPDL process that is related to the
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carrying capacity under a detailed balance condition which is unfortunately very
restrictive. We finally present some simulations. We suppose Assumption B in the
whole section.

7.1. Equilibrium of the deterministic equation.We first of all point out a
trivial remark.

REMARK 7.1. Suppose Assumption B and thatγ < µ, and consider a
nonnegative finite measureξ0 on R

d . Consider the corresponding unique solution
(ξt )t≥0 ∈ C([0,∞),MF (Rd)) of (5.7). Thenξt tends to 0 ast grows to infinity in
the sense that〈ξt ,1〉 ≤ 〈ξ0,1〉e−(µ−γ )t .

This remark follows from a straightforward application of (5.7) withf = 1 and
of the Gronwall lemma. We next generalize the existence of solutions to (5.7) to
the case of possibly nonintegrable initial conditions.

PROPOSITION 7.2. Admit AssumptionB. Consider a nonnegative bounded
measurable functionξ0 onR

d .

1. There exists a unique function(ξt (x))t≥0,x∈Rd such that:
(i) for all t ≥ 0 and allx ∈ R

d , ξt (x) ≥ 0;
(ii) for all T < ∞, supt∈[0,T ],x∈Rd ξt (x) < ∞;

(iii) for all t ≥ 0 and allx ∈ R
d ,

ξt (x) = ξ0(x) +
∫ t

0
ds [γ (ξs � D)(x) − µξs(x) − αξs(x)(ξs � U)(x)],(7.1)

where, for example, (ξt � D)(x) = ∫
Rd dy D(x − y)ξt (y).

2. For all x ∈ R
d , the mapt �→ ξt (x) is of classC1 on [0,∞), and for allT < ∞,

|∂t ξt (x)| is bounded on[0, T ] × R
d .

3. If furthermore
∫
Rd ξ0(x) dx < ∞, then for allT < ∞,

sup
t∈[0,T ]

∫
Rd

dxξt (x) < ∞

and the finite measure-valued function(ξt (x) dx)t≥0 is the unique solution
to (5.7).

Since this proposition isquite unsurprising, weonly sketch the proof.

PROOF OF PROPOSITION 7.2. First note that point 2 is an immediate
consequence of (7.1) and of the fact thatξ is bounded, obtained in (i) and (ii).
Point 3 is also easily deduced from point 1. To check the uniqueness part of point 1,
it suffices to consider two solutions(ξt (x))t≥0,x∈Rd and(ξ̃t (x))t≥0,x∈Rd to (i)–(iii),
both bounded by some constantAT on[0, T ]×R

d . A straightforward computation
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shows that, forφ(t) = sups≤t,x∈Rd |ξs(x) − ξ̃s (x)|, for t ≤ T ,

φ(t) ≤ (γ + µ + 2αAT )

∫ t

0
ds φ(s).(7.2)

[Recall that since
∫
Rd U(x) dx = 1, supx∈Rd (ξs � U)(x) ≤ supx∈Rd ξs(x).] The

Gronwall lemma allows us to conclude thatξ ≡ ξ̃ .
The existence part follows from animplicit Picard iteration. Defineξ0

t (x) =
ξ0(x) and construct by induction a sequence of functions(ξn

t )t≥0 such that for
eachx ∈ R

d , t �→ ξn
t (x) is of classC1 onR

+ and satisfies, forn ≥ 1,

ξn+1
t (x) = ξ0(x)

(7.3)

+
∫ t

0
ds [γ (ξn

s � D)(x) − µξn+1
s (x) − αξn+1

s (x)(ξn
s � U)(x)].

We can, moreover, check at each step thatξn is well defined, nonnegative and
bounded on[0, T ] × R

d for eachn and eachT . A straightforward computation
shows that for allt ≥ 0, supn supx∈Rd ξn

t (x) ≤ supx∈Rd ξ0(x)eγ t , and next that for
anyT , there exists a constantBT such that for allt ≤ T ,

sup
x∈Rd

|ξn+1
t (x) − ξn

t (x)|
(7.4)

≤ BT

∫ t

0
ds

[
sup
x∈Rd

|ξn+1
s (x) − ξn

s (x)| + sup
x∈Rd

|ξn
s (x) − ξn−1

s (x)|
]
.

Thanks to the Gronwall lemma, we deduce that for allT , all t ≤ T and alln,

sup
x∈Rd

|ξn+1
t (x) − ξn

t (x)| ≤ BT exp(T BT )

∫ t

0
ds sup

x∈Rd

|ξn
s (x) − ξn−1

s (x)|.(7.5)

The Picard lemma allows us to conclude that for allT ,∑
n≥1

sup
t∈[0,T ],x∈Rd

|ξn+1
t (x) − ξn

t (x)| < ∞.(7.6)

Hence, there exists a function(ξt (x))t≥0,x∈Rd such that for any T ,
supt∈[0,T ],x∈Rd |ξt (x) − ξn

t (x)| tends to 0. We easily check that this function satis-
fies points (i)–(iii). �

We may now define the equilibria.

DEFINITION 7.3. Admit Assumption B. For a nonnegative bounded continu-
ous functionf onR

d , define the functionFf onR
d by

Ff (x) = γ [f � D](x)

µ + α[f � U ](x)
.(7.7)
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Then (7.1) can be rewritten as

ξt (x) = ξ0(x) +
∫ t

0
ds

(
µ + α[ξs � U ](x)

)(
Fξs(x) − ξs(x)

)
.(7.8)

This leads us to define the equilibria in the following sense. A continuous bounded
nonnegative functionc onR

d is said to be areasonable equilibriumof (7.1) if for
all x ∈ R

d ,

c(x) = Fc(x).(7.9)

This definition is slightly restrictive, but we may note that ifD and U are
continuous, then any solution to (7.9) such that

lim sup
|x|→∞

[c � D](x)/[c � U ](x) < ∞

will be continuous and bounded.

REMARK 7.4. Assume Assumption B, thatγ > µ and thatα > 0. Then the
constant functionc0(x) ≡ (γ − µ)/α is a reasonable equilibrium of (7.1). The
constant functionc(x) ≡ 0 is also, of course, a reasonable equilibrium of (7.1).

Note that the quantity(γ − µ)/α appears in [2] and is called thecarrying
capacity, which can be understood as a sort ofmaximum number of plants per
unit of volume. We use the following estimate.

LEMMA 7.5. Assume AssumptionB, that γ > µ and thatα > 0. Define the
signed functionR on R

d by R(x) = D(x) + γ−µ
µ

(D(x) − U(x)). Then, for all

bounded functionsf and allx ∈ R
d ,

Ff (x) − Fc0(x) = µ

µ + α[f � U ](x)
[(f − c0) � R](x).(7.10)

This result is immediately proved by using simply the expression ofF . We now
state an assumption which ensures thatR(x)dx is a probability measure and hence
thatF is a contraction aroundc0 in the space of bounded functions.

ASSUMPTION C. γ > µ and for all x ∈ R
d , γD(x) ≥ (γ − µ)U(x). This

implies thatR(x)dx is a probability measure onRd .

Let us now describe a situation for which the constant functionc0 is the unique
nontrivial reasonable equilibrium.

PROPOSITION 7.6. Assume AssumptionsB and C, that γ > 2dµ and that
α > 0. Suppose also thatD(x) = D(|x|), where the mapD is nonincreasing
on [0,∞). (This hypothesis is physically reasonable; see[2].) Then any nontrivial
reasonable equilibrium c of (7.1) identically equalsc0.
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PROOF. Let c thus be a nontrivial reasonable equilibrium for (7.1).

STEP 1. Sincec is nontrivial, there existsx0 such thatc(x0) > 0. Sincec

is continuous, we deduce thatc is bounded below on a neighborhood ofx0.
Then (7.9) and the fact thatD charges any neighborhood of 0 (since it is
nonincreasing) ensure thatc never vanishes.

STEP 2. We now show that there exists a constantε0 > 0 such that for all
x ∈ R

d , c(x) ≥ ε0. To this end, we first considerε > 0 such thatγ (1/2d − ε) > µ

and then considera > 0 such that
∫
[0,a]d D(x) dx ≥ 1/2d − ε, which is possible

sinceD is radial. Consider now any pointx = (x1, . . . , xd) ∈ R
d and the box

B = [x1, x1 + a] × · · · × [xd, xd + a]. Denotem = infx∈B c(x), which is positive
sincec is continuous and never vanishes. Our aim is to show thatm ≥ g(m), where
theC1 functiong is defined on[0,∞) by

g(u) = f

[
u

(
1

2d
− ε

)]
,

(7.11)
f (u) = γ u

µ + αγ/(γ − µ)u
.

This concludes the proof of Step 2 since we can check thatg′(0) = (1/2d −
ε)γ /µ > 1 so thatm ≥ ε0 > 0 whereε0 is the smallest positive solution to
u = g(u).

We thus check thatm ≥ g(m). Let y ∈ B. Using (7.9) and Assumption C, we
deduce thatc(y) ≥ f ([c � D](y)). However,f is nondecreasing, so thatc(y) ≥
f (m

∫
B dzD(y − z)). Using the symmetry and the nonincreasing properties ofD,

we easily deduce that sincey ∈ B,
∫
B dzD(y − z) ≥ ∫

[0,a]d dzD(z) ≥ 1/2d − ε.
Thus for ally ∈ B, c(y) ≥ f (m(1/2d − ε)) = g(m), which ends Step 2.

STEP 3. Using (7.10), Step 2 and Assumption C, we obtain

sup
x∈Rd

|c(x) − c0| = sup
x∈Rd

|Fc(x) − Fc0(x)|
(7.12)

≤ µ

µ + αε0
sup
x∈Rd

|c(x) − c0|.

This implies that supx∈Rd |c(x) − c0| = 0. �

Although the above uniqueness result seems quite promising, we are at the
moment not able to prove that under the conditions of the previous proposition,
any solution(ξt )t≥0 to (7.1) starting from a nontrivial initial condition converges
to c0 in some sense. We can, however, obtain two partial results.
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ASSUMPTIONDBC. α > 0, γ > 0, µ = 0 andD = U .

This assumption is adetailed balance condition. Indeed, under this condition,
the equilibriumc0(x) ≡ γ/α ensures that for any couple of pointsx andy, the
rate of appearance of plants atx due to seed production aty equals the rate of
disappearance of plants atx because of competition of plants aty. In other words,
γD(x − y)c0(y) = αc0(x)c0(y)U(x − y). Unfortunately, this condition is very
restrictive.

PROPOSITION 7.7. Take AssumptionsB and DBC. Let ξ0 be a positive
bounded and measurable function onR

d . Consider the associated unique solution
(ξt )t≥0 of (7.1) starting fromξ0 obtained in Proposition7.2. Thenξt tends to
c0 = γ/α as t grows to infinity in the sense that for allx and all t ,

[ξt (x) − c0]2 ≤ [ξ0(x) − c0]2 exp
(−2α[(ξ0 ∧ c0) � D](x)t

)
.(7.13)

We furthermore see in the proof below that the behavior ofξt is quite simple:
If ξ0(x) < c0, thenξt (x) increases toc0, while if ξ0(x) > c0, thenξt (x) decreases
to c0.

PROOF OFPROPOSITION 7.7. Since in this case,∂t ξt (x) = −αξt � D(x) ×
(ξt (x) − c0), we easily show that for allt ≥ 0 and allx ∈ R

d ,

∂t [ξt (x) − c0]2 = −2α[ξt (x) − c0]2[ξt � D](x).(7.14)

Sinceξ is nonnegative, we deduce that[ξt (x) − c0]2 is nonincreasing int for
eachx. Since furthermoreξt (x) is continuous int for eachx, we deduce that for
anyt, x, ξt (x) ≥ ξ0(x) ∧ c0. Hence

∂t [ξt (x) − c0]2 ≤ −2α[ξt (x) − c0]2[(ξ0 ∧ c0) � D](x),(7.15)

from which the conclusion follows.�

We now treat quite a general case of coefficientsα, γ , µ, U andD, but we
consider an initial condition which is only asmall perturbationof c0.

PROPOSITION 7.8. Admit AssumptionsB and C, that α > 0 and thatU is
bounded below by a positive continuous functionh onR

d . Consider a nonnegative
bounded measurable functionξ0 on R

d such that
∫
Rd [ξ0(x) − c0]2 dx < ∞.

Consider the associated unique solution(ξt )t≥0 of (7.1)starting fromξ0 obtained
in Proposition7.2.Thenξt tends toc0 as t grows to infinity in the sense that there
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existsa > 0 such that for allt ,∫
Rd

[ξt (x) − c0]2 dx ≤ e−at
∫

Rd
[ξ0(x) − c0]2 dx.(7.16)

PROOF. We break the proof into three steps.

STEP 1. A straightforward computation using part 2 of Proposition 7.2,
(7.8) and (7.10) shows that for allt ≥ 0 and allx ∈ R

d ,

∂t [ξt (x) − c0]2
= 2[ξt (x) − c0] ∂t ξt (x)

= 2[ξt (x) − c0][µ + α(ξt � U)(x)][Fξt (x) − ξt (x)]
= 2[ξt (x) − c0][µ + α(ξt � U)(x)][Fξt (x) − Fc0(x)]

+ 2[ξt (x) − c0][µ + α(ξt � U)(x)][c0 − ξt (x)](7.17)

= 2µ[ξt (x) − c0][(ξt − c0) � R](x)

− 2[ξt (x) − c0]2[µ + α(ξt � U)(x)]
= −2α[ξt (x) − c0]2(ξt � U)(x)

− 2µ[ξt (x) − c0][(ξt (x) − c0
) − {(ξt − c0) � R}(x)

]
.

Integrating this differential inequality against time, we obtain

[ξt (x) − c0]2

= [ξ0(x) − c0]2 − 2
∫ t

0
ds α[ξs(x) − c0]2[ξs � U ](x)(7.18)

− 2
∫ t

0
ds µ[ξs(x) − c0]{[ξs(x) − c0] − [(ξs − c0) � R](x)}ds.

Thanks to Assumption C,R is a probability measure. We furthermore know thatξt ,
and thusξt � U , is bounded on[0, T ] × R

d for eachT . Thus an application of the
Cauchy–Schwarz and Young inequalities yields∫

Rd
dx [ξt (x) − c0][(ξt (x) − c0

)
� R(x)

] ≤
∫

Rd
dx [ξt (x) − c0]2.(7.19)

We easily deduce that for allT ≥ 0, sup[0,T ]
∫
Rd dx [ξt (x) − c0]2 < ∞. Hence

(7.18) may be integrated onx ∈ R
d and we get that for allt ≥ 0,

∂t

∫
Rd

dx [ξt (x) − c0]2 ≤ −2α

∫
Rd

dx [ξt (x) − c0]2[ξt � U ](x).(7.20)
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STEP 2. We now wish to bound[ξt � U ](x) from below. First, we deduce
from (7.20) that

∫
Rd dx [ξt (x) − c0]2 is nonincreasing in time. Hence there exists

a constantb < ∞ such that for allt ≥ 0,∫
Rd

dx 1{ξt (x)≤c0/2} ≤ b.(7.21)

However, sinceU(x) ≥ h(x), for some positive continuous functionh there exists
a constanta > 0 such that

inf
A∈B(Rd),

∫
A dx≤b

∫
Rd/A

dzU(z) ≥ ba.(7.22)

Indeed, choose any compact subsetK of R
d whose Lebesgue measure equals 2b

and seta = infx∈K h(x). Note that for allA ∈ B(Rd) such that
∫
A dx ≤ b, we also

have
∫
K/A dx ≥ b, so that∫

Rd/A
dzU(z) ≥

∫
K/A

dzh(z) ≥ ba.(7.23)

Finally using (7.22) withA = At,x = {y ∈ R
d, ξt (x − y) ≥ c0/2}, of which the

Lebesgue measure is smaller thanb thanks to (7.21), we obtain for allx ∈ R
d and

all t ≥ 0,

[ξt � U ](x) =
∫

Rd
dy ξt (x − y)U(y)

(7.24)

≥ c0

2

∫
At,x

dy U(y) ≥ bac0

2
.

STEP 3. Gathering (7.20) and (7.24), we finally obtain

∂t

∫
Rd

dx [ξt (x) − c0]2 ≤ −bac0α

∫
Rd

dx [ξt (x) − c0]2(7.25)

from which the conclusion follows.�

7.2. Equilibrium of the BPDL process.We now to show that it might be
possible to find an equilibrium for the BPDL processes. This is a first step to
study the long time behavior of the BPDL process(νt )t≥0 defined in Definition 2.5
conditioned on nonextinction. We unfortunately are able to treat only the case
where the detailed balance condition holds. Of course, such an equilibrium will
be infinite. We can, however, state the following rigorous result.

We first of all denote byM̄ the set of nonnegative (possibly infinite) integer-
valued measures onRd . We also denote byA the set of functionsφ from M̄ into
R of the formφ(ν) = F(〈ν,f 〉), for some bounded measurable functionF on R

and some functionf with compact support onRd .
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PROPOSITION7.9. Admit AssumptionsB andDBC (see Section7.1)and that
U(0) = 0. Consider a Poisson measureπ on R

d with intensity measurec0dx,
wherec0 = γ/α. Thenπ is a stationary BPDL process in the sense that for all
φ ∈ A, Lφ(π) a.s. exists, belongs toL1 andE[Lφ(π)] = 0, whereL is defined
in (2.3).

Note that allowing Assumption DBC and thatU(0) = 0 implies that there is
no natural death. We remark also that this result is somewhat surprising, since it
suggests that at equilibrium, the plant locations are independent. Let us finally
mention that a similar result without Assumption DBC would be much more
interesting. However, the stationary processπ does not seem to be Poisson in such
a case. The proof relies on the following lemma, known as Slivnyak’s formula
in [13] and also can be obtained from Palm measure considerations (see [8],
Chapter 10).

LEMMA 7.10. Let ν be a Poisson measure onRd with intensitym(dx).
Denote by{xi}i≥1 the points ofν, that is, ν = ∑

i≥1 δxi
. Then for all measurable

functionsh fromR
d × M̄ into R such that

∫
Rd m(dx)E[|h(x, ν + δx)|] < ∞,

E

[∑
i≥1

h(xi, ν)

]
=

∫
Rd

m(dx)E[h(x, ν + δx)].(7.26)

PROOF OFPROPOSITION 7.9. Letφ belong toA. The fact thatLφ(π) a.s.
exists and belongs toL1 for φ ∈ A can be easily checked using the explicit
expression ofL and standard results about Poisson measures. We thus prove only
that E[Lφ(π)] = 0. Denote by{xi}i≥1 the points ofπ , that is,π = ∑

i≥1 δxi
.

Hence, we obtain, using Assumption DBC,

E[Lφ(π)] = γE

[∑
i≥1

∫
Rd

dzD(z)
{
φ

(
π + δxi+z

) − φ(π)
}]

+ αE

[∑
i≥1

{
φ

(
π − δxi

) − φ(π)
} ∑

j≥1

D(xi − xj )

]
(7.27)

=: γA1 + αA2.

We first use Lemma 7.10 with the functionh1(x, ν) = ∫
Rd dzD(z){φ(ν + δx+z)−

φ(ν)}:

A1 = E

[∑
i≥1

h1(xi,π)

]

(7.28)

=
∫

Rd
c0dx E

[∫
Rd

dzD(z){φ(π + δx + δx+z) − φ(π + δx)}
]
.
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Next, withh2(x, ν) = {φ(ν − δx) − φ(ν)} ∫
Rd ν(dy)D(x − y), we obtain

A2 = E

(∑
i≥1

h2(xi,π)

)

(7.29)

=
∫

Rd
dx c0E

[
{φ(π) − φ(π + δx)}

∫
Rd

(π + δx)(dy)D(x − y)

]
.

Since D(0) = U(0) = 0, we obtain, settinghx
3(y, ν) = D(x − y){φ(ν) −

φ(ν + δx)},

A2 =
∫

Rd
dx c0E

( ∑
j≥1

hx
3(xj ,π)

)
.(7.30)

Using Lemma 7.10 again, we obtain

A2 =
∫

Rd
dx c0

∫
Rd

dy c0E[D(x − y){φ(π + δy) − φ(π + δx + δy)}]
(7.31)

= c2
0

∫
Rd

dx

∫
Rd

dzE[D(z){φ(π + δx) − φ(π + δx+z + δx)}],
where we have used in the last equality the substitution(y, x) �→ (x, x + z). Since
αc2

0 = γ c0, we deduce thatγA1 = −αA2, which ends the proof.�

7.3. Simulations. The previous results suggest that the BPDL process, condi-
tioned on nonextinction, should converge as time tends to infinity to a random
measureν∞, quite well distributed (not far from the Lebesgue measure), with
(γ − µ)/α plants per unit of volume on average. We present simulations of this
situation.

We assume that̄X = R and thatγ = 5, µ = 1 andα = 1. We consider the case
whereU(x, y) = 1{|x−y|≤1/2} andD(z) = 1

61{|z|≤3}. Then we compare the BPDL
process(νt )t≥0 with the stationary solutionc0(dx) = [(γ − µ)/α]dx of (7.1).

On Figure 1, we assume thatν0 = δ0. The boxes represent the empirical density

FIG. 1. (a)t = 3; (b) t = 25.
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FIG. 2. (a)ν0 = δ0; (b) ν0 = 60δ0.

of the BPDL process at timest = 3 [Figure 1(a)] and thent = 25 [Figure 1(b)],
obtained with one simulation, while the dotted line is the density ofc0 [i.e.,
(γ − µ)/α]. We check that after some time, the BPDL process is quite well
approximated byc0.

Figure 2 represents the evolution in time ofνt ([−5,5]) (full line), starting either
from ν0 = δ0 [Figure 2(a)] or fromν0 = 60δ0 [Figure 2(b)], and compares it with
c0([−5,5]) = 10(γ − µ)/α (dotted line).

Finally, we measure the power of competition. To this end, we compare the
evolution in time of the rate of interaction of all particles on particles located in a
ball. We assume thatν0 = δ0. Figure 3(a) represents, in full line, the evolution in
time of

∫
R

νt (dx)
∫
R

νt (dy)1|x|≤5U(x, y) obtained by one simulation. The constant
value (dotted line) is

∫
R

c0(dx)
∫
R

c0(dy)1|x|≤5U(x, y) = 10 ∗ [(γ − µ)/α]2.
Figure 3(b) shows the same quantities replacing 5 by 50.

In conclusion, we can say that, on one hand,c0 seems to be a good deterministic
approximation of the BPDL process after a long time. On the other hand, there are
clearly stochastic fluctuations around the deterministic approximation that could
be interesting to study.

FIG. 3. Rate of interaction endured by all particles in(a) [−5,5] or (b) [−50,50].
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