
The Annals of Applied Probability
2004, Vol. 14, No. 2, 881–902
© Institute of Mathematical Statistics, 2004

ON THE MINIMAL TRAVEL TIME NEEDED
TO COLLECT n ITEMS ON A CIRCLE

BY NELLY LITVAK AND WILLEM R. VAN ZWET

University of Twente and University of Leiden

Considern items located randomly on a circle of length 1. The locations
of the items are assumed to be independent and uniformly distributed
on [0,1). A picker starts at point 0 and has to collect alln items by
moving along the circle at unit speed in either direction. In this paper we
study the minimal travel time of the picker. We obtain upper bounds and
analyze the exact travel time distribution. Further, we derive closed-form
limiting results whenn tends to infinity. We determine the behavior of the
limiting distribution in a positive neighborhood of zero. The limiting random
variable is closely related to exponential functionals associated with a Poisson
process. These functionals occur in many areas and have been intensively
studied in recent literature.

1. Introduction. This paper is devoted to the properties of the optimal route
of the picker who has to collectn items independently and uniformly distributed
on a circle. Byoptimal route we mean the route providing the minimal travel time
(see Figure 1). The problem has applications in performance analysis of carousel
systems. A carousel is an automated storage and retrieval system which is widely
used in modern warehouses. The system consists of a large number of shelves
or drawers rotating in a closed loop in either direction. Orders are represented
by a list of items. The list specifies the type and retrieval quantity of each item.
The picker has a fixed position in front of the carousel, which rotates the required
items to the picker. In this paper we study the minimal travel (rotation) time of the
carousel while picking one order ofn items, the locations of which are assumed to
be independent and uniformly distributed on the carousel.

Let U0 = 0 be the picker’s starting point and, fori = 1,2, . . . , n, let the
random variableUi denote the position of theith item. The random vari-
ables U1,U2, . . . ,Un are independent and uniformly distributed on[0,1).
SetUn+1 = 1. Let

0= U0 :n < U1 :n < · · · < Un : n < Un+1 :n = 1

denote the orderedU0,U1, . . . ,Un+1. Then the picker’s starting point and the
positions of then items partition the circle inton + 1 uniform spacings

Di,n = Ui : n − Ui−1 : n, 1 ≤ i ≤ n + 1.
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FIG. 1. Minimal travel time on a circle.

Let X1,X2, . . . be independent exponential random variables with mean 1 and
write

S0 = 0, Si =
i∑

j=1

Xj , i ≥ 1.

It is well known that [cf. Pyke (1965)]

(D1,n,D2,n, . . . ,Dn+1,n)
d= (X1/Sn+1,X2/Sn+1, . . . ,Xn+1/Sn+1),(1.1)

that is, the spacings are distributed as normalized exponentials. According to Pyke
(1965), this construction is useful “to show that an ordering of uniform spacings
may be considered as an ordering of the exponential random variables.”

Now, letTn be the minimal travel time. We exploreTn in terms of the uniform
(n + 1)-spacingsD1,n,D2,n, . . . ,Dn+1,n. For n = 1, the problem is trivial. The
picker just chooses the shorter distance from the starting point to the item, and
thus the travel timeT1 is distributed as(1/2)D1,1 (a normalized minimum of two
exponentials). Forn = 2, one can easily verify that the optimal route is guaranteed
by the nearest item heuristic where the next item to be picked is always the nearest
one. The travel time distribution for this heuristic was obtained by Litvak and Adan
(2001). It follows from their result thatT2 is distributed as(1/2)D1,2+ (3/4)D2,2.
Forn ≥ 3, the problem becomes much more difficult.

A crucial and simple observation made by many authors [see, e.g., Bartholdi
and Platzman (1986)] is that the optimal route admits at most one turn. Obviously,
it is never optimal to cover the same segment of the circle more than twice. Thus,
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in general,Tn can be expressed as

Tn = 1− max
{

max
1≤j≤n

{Dj,n − Uj−1 :n},

max
1≤j≤n

{Dn+2−j,n − (1− Un+2−j : n)}
}
.

(1.2)

This formula is easy to understand by means of Figure 1. Clearly, forj = 1,

2, . . . , n, the termDj,n − Uj−1 :n is the gain in travel time (compared to one full
rotation) obtained by skipping the spacingDj,n and going back instead (ending in a
clockwise direction). The same can be said aboutDn+2−j,n − (1−Un+2−j : n), but
here the picker ends in a counterclockwise direction. Under the optimal strategy,
the picker chooses the largest possible gain.

Let T (m)
n be the travel time under so-calledm-step strategies: the picker chooses

the shortest route among 2(m + 1) candidate routes that change direction at most
once (as does the optimal route) and only do so after collecting no more thanm

items. It was proved by Litvak and Adan (2002) that for 2m < n,

T (m)
n = 1− max

{
max

1≤j≤m+1
{Dj,n − Uj−1 :n},

max
1≤j≤m+1

{Dn+2−j,n − (1− Un+2−j : n)}
}

d= 1− 1

Sn+1
max

{
max

1≤j≤m+1
{Xj − Sj−1},

max
1≤j≤m+1

{Xn+2−j − (Sn+1 − Sn+2−j )}
}

d= 1− max

{
m+1∑
j=1

1

2j − 1
Dj,n,

m+1∑
j=1

1

2j − 1
Dn+2−j,n

}
.

(1.3)

Formula (1.3) follows from the following curious property of exponential random
variables obtained by Litvak (2001).

LEMMA 1.1. For any m = 0,1, . . . and 0< q < 1,

max
1≤j≤m+1

{Xj − (q−1 − 1)Sj−1} d= (q−1 − 1)

m+1∑
j=1

qj (1− qj )−1Xj .(1.4)

The proof also implies that for anym = 0,1, . . . , n,

max
1≤j≤m+1

{Dj,n − (q−1 − 1)Uj−1 :n} d= (q−1 − 1)

m+1∑
j=1

qj (1− qj )−1Dj,n.(1.5)
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If 2m < n, then the two internal maxima in the third expression of (1.3) are
independent and (1.4) can be used to rewrite each of them separately. Moreover, the
same argument applies for the normalized exponentials yielding (1.3). If 2m ≥ n,
then the two internal maxima become dependent and the argument fails.

In fact, the optimal strategy is them-step strategy withm = n − 1. Intuitively,
it is clear, however, that with high probability the optimal route has only a few
steps before a turn. That is, them-step strategy often prescribes the optimal picking
sequence even whenm is relatively small. It was shown by Litvak and Adan (2002)
that already form = 2, them-step strategy is quite close to optimal and, on average,
outperforms the nearest item heuristic.

Let K
(m)
n andKn denote a number of items collected before a turn under the

m-step strategy and the optimal strategy, respectively. If there is no turn, these
numbers are set equal to zero. It was proved by Litvak and Adan (2002) that:
(i) T

(m)
n andK

(m)
n are independent random variables; (ii) for anyk = 0,1, . . . ,m

and 2m < n,

P
(
K(m)

n = k
) = P

([
arg max

1≤j≤m+1
{Dj,n − Uj−1 :n} = k + 1

])

= P

([
arg max

1≤j≤m+1
{Xj − Sj−1} = k + 1

])

= 1

2k+1 − 2k−m
;

(1.6)

(iii) for any k = 0,1, . . . , n − 2,

P(Kn > k) < 1/2k.(1.7)

The last estimate is helpful in the analysis of the limiting properties of the optimal
route. For example, it was proved by Litvak and Adan (2002) that for any fixed
k = 0,1, . . . ,

lim
n→∞ P(Kn = k) = 1/2k+1.(1.8)

Indeed, observe that fork = 0,1, . . . ,m,

P
(
K(m)

n = k
) − P(Kn > m) ≤ P(Kn = k) ≤ P

(
K(m)

n = k
)
.

Now, letm andn go to infinity in such a way that the inequality 2m < n is always
satisfied. Then (1.8) follows readily from (1.6) and (1.7).

In this paper we first derive simple upper bounds for the minimal travel time.
Then we analyse the distribution ofTn. Further, we obtain the limiting behavior
of Tn whenn tends to infinity.
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2. Upper bounds. LetTn be the minimal travel time needed to collectn items
independently and uniformly distributed on a circle of length 1. The following
lemma gives an upper bound that holds forany realization of the random items’
locations.

LEMMA 2.1. For any n ≥ 1, the travel time Tn never exceeds 1−αn+1, where

αn+1 = 1

2m+1 + 2m − 2
, n = 2m;

αn+1 = 1

2 · 2m+1 − 2
, n = 2m + 1.

This upper bound is tight.

PROOF. Assume thatn = 2m + 1. For n = 2m the proof is similar. The
positions of the items plus the picker’s starting point partition the circle into
n + 1 spacings with lengthsd1, d2, . . . , dn+1. Note that for any collection
d1, d2, . . . , dn+1 ≥ 0 there exists a numberj = 1,2, . . . ,m + 1 such that either
(i) dj ≥ 2j−1αn+1, dl < 2l−1αn+1, l = 1,2, . . . , j − 1, or (ii) dn+2−j ≥ 2j−1αn+1,
dn+2−l < 2l−1αn+1, l = 1,2, . . . , j − 1. This follows since

2
m+1∑
j=1

2j−1αn+1 = d1 + d2 + · · · + dn+1 = 1.

Without loss of generality assume (i). Then the route that skips the spacingdj and
goes back instead has length

1− dj + d1 + d2 + · · · + dj−1 ≤ 1− αn+1,

and its length must be greater or equal thanTn. This proves the upper bound.
To show the tightness we just putdj = dn+2−j = 2j−1αn+1, j = 1,2, . . . ,m + 1.

In this case the travel time under the optimal strategy equals 1− αn+1. �

Let us now consider the following approximation ofTn in (1.2),

T 0
n

d= 1− 1

Sn+1
max

{
max

1≤j≤m+1
{Xj − Sj−1},

max
1≤j≤m′+1

{Xn+2−j − (Sn+1 − Sn+2−j )}
}
,

wherem = m′ = (n − 1)/2 if n is odd andm = m′ + 1 = n/2 if n is even. In both
cases we havem+m′ = n−1 so that theXj ’s from the first internal maximum are
not involved in the second internal maximum. That is, the two internal maxima are
independent, and we can apply Lemma 1.1 to each of these separately to arrive at

T 0
n

d= 1− max

{
m+1∑
j=1

1

2j − 1
Dj,n,

m′+1∑
j=1

1

2j − 1
Dn+2−j,n

}
.(2.1)
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Clearly,T 0
n gives a tight stochastic upper bound forTn. In fact,T 0

n andTn differ
with probability of order 2−n/2 according to (1.7). It was shown by Litvak and
Adan (2002) thatT 0

n is stochastically larger than the weighted sum

T ∗
n =

n+1∑
j=2

(1− αj )Dj,n.

Straightforward estimation of the expected difference betweenT ∗
n andT 0

n yields

E(T 0
n − T ∗

n ) < 0.09E(D1,n) = 0.09

n + 1
.

Thus,

E(Tn) < E(T 0
n ) <

1

n + 1

n+1∑
j=2

(1− αj ) + 0.09

n + 1
.(2.2)

In Table 1 (see Section 4), we compare the mean travel timeE (Tn) obtained by
simulation with upper estimate (2.2) and approximation (4.8), which follows from
the limiting results in Section 4. The results prove that the bound (2.2) is quite
sharp. For largern, however, (4.8) gives a slightly better approximation.

3. The minimal travel time distribution. In this section we produce an
explicit expression forP(Tn ≥ 1 − t). First, note that it is never optimal to turn
after covering half of a circle. Now, consider the events

An,k(u, v) = [Uk : n = u < 1/2 < 1− v = Uk+1 :n],
0≤ u, v < 1/2, k = 0,1, . . . , n.

Fork = 2,3, . . . , n−2, the joint distribution ofU1 :n, . . . ,Uk−1 :n, 1−Uk+2 :n, . . . ,

1− Un : n givenAn,k(u, v) is that of

uU1 :k−1, . . . , uUk−1 :k−1, vVn−k−1 :n−k−1, . . . , vV1 :n−k−1,

whereU andV are independent vectors of uniform order statistics. As the event
[Tn ≥ 1− t] implies 1− v − u − u ∧ v ≤ t , we have fork = 2,3, . . . , n − 2,

P
(
Tn ≥ 1− t|An,k(u, v)

)
= P

(
max

1≤j≤k
{(Uj : k−1 − Uj−1 :k−1) − Uj−1 :k−1} ≤ t/u,

max
1≤j≤n−k

{(Vj : n−k−1 − Vj−1 :n−k−1) − Vj−1 :n−k−1} ≤ t/v

)

× 1[1−v−u−u∧v≤t]
= Pk−1(t/u)Pn−k−1(t/v)1[1−v−u−u∧v≤t].

(3.1)
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Hereu ∧ v = min{u, v} denotes the smaller ofu andv and

Pm(t) = P

(
max

1≤j≤m+1
{Dj,m − Uj−1 :m} ≤ t

)
, m = 1,2, . . . ; t ≥ 0.(3.2)

One readily verifies that the final expression in (3.1) continues to hold fork = 1
andk = n − 1, provided we define

P0(t) = 1[t>1], t ≥ 0.(3.3)

Fork = 0 andk = n, we find

P
(
Tn ≥ 1− t|An,0(0, v)

) = Pn−1(t/v)1[1−v≤t],
P

(
Tn ≥ 1− t|An,n(u,0)

) = Pn−1(t/u)1[1−u≤t].
It follows that

P(Tn ≥ 1− t)

=
∫ 1/2

0

∫ 1/2

0

n−1∑
k=1

(
n

k

)
kuk−1(n − k)vn−k−1

× Pk−1(t/u)Pn−k−1(t/v)1[1−v−u−u∧v≤t] dudv

+ 2 · 1[t>1/2]
∫ 1/2

u=1−t
nun−1Pn−1(t/u) du.

(3.4)

Formula (1.5) and Theorem 2 of Ali and Obaidullah (1982) imply an expression
for Pm(t). Writing

cj = (2j − 1)−1, j = 1,2, . . . ,

andx+ = max{x,0} for the positive part of a numberx, we find that form = 1,

2, . . . ,

Pm(t) = P

(
m+1∑
j=1

cjDj,m ≤ t

)
=

m+1∑
j=1

{(t − cj )+}m
m+1∏
l=1,
l �=j

(cl − cj )
−1.(3.5)

The last expression is also valid form = 0. Of course, fort > 1, the terms in (3.5)
sum to 1.

Alternatively, one can determinePm(t), recursively. Conditioning onU1 :m, we
find for m = 2,3, . . . ,

P

(
max

1≤i≤m+1
{Di,m − Ui−1 : m} < t

∣∣∣U1 :m = u

)

= P

(
(1− u) max

1≤i≤m
{Di,m−1 − Ui−1 :m−1} − u < t

)
1[u≤t]

= Pm−1

(
t + u

1− u

)
1[u≤t].
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This yields the recursive equation

Pm(t) =
∫ t

0
m(1− u)m−1Pm−1

(
t + u

1− u

)
du,(3.6)

which is valid form = 1,2, . . . .
We can now find the distribution ofTn by substituting (3.3) and either

(3.5) or (3.6) in (3.4) and integrating. One obtains, for example, fort ≥ 0,

P1(t) = 1
2(3t − 1)+ − 3

2(t − 1)+,

P2(t) = 1
8{(7t − 1)+}2 − 7

8{(3t − 1)+}2 + 7
4{(t − 1)+}2

and for 0≤ t ≤ 1,

P(T1 ≥ 1− t) = (2t − 1)+,

P(T2 ≥ 1− t) = 1
3{(4t − 1)+}2 − 2{(2t − 1)+}2,

P(T3 ≥ 1− t) = 1
4{(6t − 1)+}3 − 41

36{(4t − 1)+}3

− 1
4{(4t − 1)+}2 + 11

4 {(2t − 1)+}3.

Although the general structure of these functions is fairly easy to understand, it
seems quite useless to provide explicit expressions forP(Tn ≥ 1 − t) for much
larger values ofn. Instead, we study their asymptotic behavior in Section 4.

4. Limiting results. In this section we shall obtain the limiting distribution of
(n + 1)(1− Tn). First of all, let us consider the limiting behavior of

Pm

(
t/(m + 1)

) = P

(
(m + 1)

m+1∑
j=1

1

2j − 1
Dj,m < t

)
.

THEOREM 4.1. Let X1,X2, . . . be independent exponential random variables
with mean 1. Then

(m + 1)

m+1∑
j=1

1

2j − 1
Dj,m

d→
∞∑

j=1

1

2j − 1
Xj ,(4.1)

and the limiting distribution is given by

P (t) = lim
m→∞Pm

(
t/(m + 1)

)

= 1−
∞∑

j=1

(−1)j−12j exp{−(2j − 1)t}
j∏

l=1

1

2l − 1
.

(4.2)

The distribution function P satisfies the integral equation

e−tP (t) =
∫ 2t

t
e−uP (u) du.(4.3)
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PROOF. The argument essentially repeats the proof of Theorem 4 of Litvak
and Adan (2001). Define

Jm =
m+1∑
j=1

1

2j − 1
Xj , J =

∞∑
j=1

1

2j − 1
Xj .(4.4)

By the monotone convergence theorem,E(J ) = limm→∞ E(Jm) < ∞. In particu-
lar, it impliesP(J < ∞) = 1.

Now, using (1.1), we write

(m + 1)

m+1∑
j=1

1

2j − 1
Dj,m

d= (m + 1)Jm

Sm+1
.

By definition, the sequence{Jm} converges a.s. toJ . The strong law of large
numbers implies that the sequence{(m + 1)/Sm+1} converges a.s. to 1. Thus,
{(m + 1)Jm/Sm+1} converges a.s. toJ which immediately gives (4.1).

The distributionP of J can be obtained via inversion of its Laplace–Stieltjes
transform

ϕ(s) = E
(
exp(−sJ )

) =
∞∏

j=1

2j − 1

2j − 1+ s
.

One can expandϕ(s) in rational fractions ofs and obtain

ϕ(s) =
∞∑

j=1

(−1)j−12j

2j − 1+ s

j−1∏
l=1

1

2l − 1
.(4.5)

Here, in order to write the formula for the residues ofϕ(s), one can apply
well-known expressions from so-calledq-calculus [see, e.g., Gasper and Rahman
(1990)], but in our case it is not difficult to verify this formula directly. Inversion
of (4.5) yields (4.2).

Finally, we use (3.6) and the dominated convergence theorem to obtain

P (t) = lim
m→∞Pm

(
t/(m + 1)

)

= lim
m→∞

∫ t/(m+1)

0
m(1− u)m−1Pm−1

(
t/(m + 1) + u

1− u

)
du

=
∫ t

0
e−uP (t + u)du

= et
∫ 2t

t
e−uP (u) du,

which proves (4.3). �
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Obviously, we also have convergence of moments. For thekth moment ofP ,
(4.2) yields

E(J k) =
∫ ∞

0
tk dP (t) = k!

∞∑
j=1

(−1)j−1 2j

(2j − 1)k

j∏
l=1

1

2l − 1
.

Alternatively, one can directly use (4.4) to find a simple expression for
cumulantsκν , ν ≥ 1, of P . It is immediate that

E(J ) = κ1 =
∞∑

j=1

(2j − 1)−1,

Var(J ) = κ2 =
∞∑

j=1

(2j − 1)−2.

Furthermore,

log
(
Eexp(itJ )

) = −
∞∑

j=1

log
(
1− (2j − 1)−1it

) =
∞∑

j=1

∞∑
ν=1

(it)ν

ν(2j − 1)ν
,

where i is the imaginary unit. Since log(Eexp(itJ )) = ∑∞
ν=1 κν(it)

ν(ν!)−1, it
follows that

κν = (ν − 1)!
∞∑

j=1

(2j − 1)−ν, ν ≥ 1.

The distribution functionP on [0,∞) has the remarkable property that it is
infinitely often differentiable and that all of its derivativesP (k) vanish at the origin.
This is most easily seen by differentiating (4.3), but one may also use (4.2) to
show analytically thatP (k)(0) = 0 for all k = 1,2, . . . . It follows that P is not
analytic at the origin. The series (4.2) diverges for allt < 0 and, hence,P cannot
be represented by its Taylor series aroundt = 0.

Now repeating the argument from the proof of Theorem 4.1, one can show that

(n + 1)(1− T 0
n )

d→ max

{ ∞∑
j=1

1

2j − 1
Xj ,

∞∑
j=1

1

2j − 1
X′

j

}
,

whereX1,X2, . . . ,X
′
1,X

′
2, . . . are independent exponentials with mean 1. Since

the two sums in the maximum are independent and (1.7) ensures that

P(Tn �= T 0
n ) < 2−(n−2)/2,

we have proved the following statement.
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THEOREM 4.2. Let X1,X2, . . . ,X
′
1,X

′
2, . . . be independent exponential ran-

dom variables with mean 1. Then

(n + 1)(1− Tn)
d→ max

{ ∞∑
j=1

1

2j − 1
Xj ,

∞∑
j=1

1

2j − 1
X′

j

}
,(4.6)

and the limiting distribution is

lim
n→∞P

(
Tn > 1− t/(n + 1)

) = [P (t)]2,(4.7)

where P (t) is given by (4.2).

Again we have moment convergence and for thekth moment we find

lim
n→∞ E[(n + 1)(1− Tn)]k

= 2k!
∞∑

j=1

(−1)j−1 2j

(2j − 1)k

j∏
l=1

1

2l − 1

− 2k!
∞∑

j=1

∞∑
i=1

(−1)i+j 2i+j

(2i + 2j − 2)k+1

j∏
l=1

1

2l − 1

i−1∏
r=1

1

2r − 1
.

An equivalent expression for the expectation can be obtained as

lim
n→∞E[(n + 1)(1− Tn)]

=
∫ ∞

0

(
1− [P (t)]2)

dt

= 2
∞∑

j=1

1

2j − 1
−

∞∑
i=1

∞∑
j=1

(−1)i+j 2i+j

2i + 2j − 2

j∏
l=1

1

2l − 1

i∏
r=1

1

2r − 1

≈ 2.1578.

For largen we therefore have the estimate

E(Tn) ≈ 1− 2.1578

n + 1
.(4.8)

In Table 1 we compare the mean travel time obtained by simulation with
upper estimate (2.2) (see Section 2) and approximation (4.8). We see that both
approximations are quite sharp, but (4.8) performs somewhat better. It is no
surprise that both (2.2) and (4.8) are close toE(Tn) for large n since all three
quantities converge to 1 asn → ∞. What is encouraging is that, already forn = 30,
both approximations of(n + 1)(1 − E(Tn)) are very good. That (4.8) yields a
better approximation ofE(Tn) than (2.2) is to be expected since it is asymptotically
correct up to and including ordern−1, whereas (2.2) has a slight asymptotic error
of about+ 0.006/(n + 1). After all, (2.2) was derived as an upper bound.



892 N. LITVAK AND W. R. VAN ZWET

TABLE 1
Estimation of the mean travel time under the optimal strategy

n 3 5 10 15 20 30

E(Tn) 0.5262 0.6591 0.8052 0.8653 0.8972 0.9304
E[(n + 1)(1− Tn)] 1.8952 2.0454 2.1423 2.1548 2.1592 2.1572

Upper estimate (2.2) 0.5433 0.6670 0.8068 0.8658 0.8976 0.9306
(n + 1)[1-upper estimate(2.2)] 1.8268 1.9980 2.1252 2.1472 2.1504 2.1514

Approximation (4.8) 0.4605 0.6404 0.8038 0.8651 0.8972 0.9304
(n + 1)[1-approximation (4.8)] 2.1578 2.1578 2.1578 2.1578 2.1578 2.1578

5. Asymptotic behavior in the neighborhood of zero. In this section we
study the behavior ofP (t) as t → +0. So far we have found only thatP has
vanishing derivatives at the origin and can not be expanded in a Taylor expansion
aroundt = 0. We shall, therefore, have to attack this problem in a different manner.

Let X1,X2, . . . be independent exponential random variables with mean 1, let

cj = (2j − 1)−1, j = 1,2, . . . ,

and define

J =
∞∑

j=1

cjXj .

We want to determine the behavior of

P (t) = P(J ≤ t)

for small positive values oft . In principle this problem is solved in Theorem 3.2
of Davis and Resnick (1991), but we need to do a substantial amount of analysis
to make their result explicit, even in our relatively simple case.

In our case, the distribution functionF(x) = P (X1 < x) = 1−exp{−x} and the
densityf (x) = exp{−x} are regularly varying at 0 with indexα = 1 andα−1 = 0,
respectively. Thecj ’s are positive and nonincreasing, their sum converges and for
everyθ ∈ (0,1),

θn
∞∑

j=1

{c2
j /c

2
n}1[j≥θ−n] = θn

∞∑
j=1

{(2n − 1)/(2j − 1)}21[j≥θ−n] → 0

asn → ∞. The densityf satisfies∫ ∞
0

e−2λxf 2(x) dx = 1/{2(1+ λ)} for λ > 0.

Hence, we have verified the assumptions of Theorem 3.2 of Davis and Resnick
(1991) in our case. The theorem states that

P (mλ) ∼ exp{λmλ}ϕJ (λ)/
(
λSλ

√
2π

)
asλ → ∞.(5.1)



COLLECTING ITEMS ON A CIRCLE 893

Here

mλ =
∞∑

j=1

cj

1+ λcj

=
∞∑

j=1

1

2j − 1+ λ
,

ϕJ (λ) =
∞∏

j=1

1

1+ λcj

=
∞∏

j=1

2j − 1

2j − 1+ λ

and

S2
λ =

∞∑
j=1

c2
j

(1+ λcj )
2 =

∞∑
j=1

1

(2j − 1+ λ)2 .

We obviously have to study the behavior of these quantities asλ → ∞ and,
hence,mλ → 0. It is easier to deal with integrals than sums. Fork = 1,2, . . . and
λ → ∞, we have

0 ≤
∫ ∞

0
(2x − 1+ λ)−k dx −

∞∑
j=1

(2j − 1+ λ)−k

≤
∞∑

j=0

(2j − 1+ λ)−k −
∞∑

j=1

(2j − 1+ λ)−k

= λ−k

and, hence,

∞∑
j=1

(2j − 1+ λ)−k =
∫ ∞

0
(2x − 1+ λ)−k dx + O(λ−k).

Fork = 2, this yields

S2
λ = (log 2)−1

∫ ∞
0

(y + λ)−2(y + 1)−1dy + O(λ−2)

= (logλ)/(λ2 log 2) + O(λ−2),

(5.2)

asλ → ∞. If we apply the same approach toλmλ and logϕJ (λ), however, then
the error caused by approximating these sums by integrals is of the orderO(1) and
O(logλ), respectively, which yields a multiplicative error factor(1 + O(aλb))

in (5.1) for some positivea and b. Of course this is not good enough so we
shall have to expand the series representingλmλ and logϕJ (λ) directly with
remaindero(1) in both cases.

Let k be a natural number andθ ∈ [0,1) be such that

λ = 2k+θ ,
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and thus

k = (logλ)/ log2− θ = 
(logλ)/ log 2�,
θ = (logλ)/ log2− k = frac

(
(logλ)/ log2

)
.

Here
x� and frac(x) are the integer and the fractional part ofx, respectively. In
order forλ → ∞, it is necessary and sufficient thatk → ∞, while θ may vary
arbitrarily in [0,1) with k. Using (5.2) we find

λmλ =
∞∑

j=1

λ

2j − 1+ λ

=
∞∑

j=1

2k+θ

2j − 1+ 2k+θ

=
∞∑

j=1

2k+θ

2j + 2k+θ
+ O(λ−1 logλ)

=
k∑

j=1

1

2j−k−θ + 1
+

∞∑
j=k+1

1

2j−k−θ + 1
+ O(λ−1 logλ)

=
k−1∑
j=0

1

2−j−θ + 1
+

∞∑
j=1

1

2j−θ + 1
+ O(λ−1 logλ)

=
k∑

j=1

2j

2j + 21−θ
+

∞∑
j=1

1

2j−θ + 1
+ O(λ−1 logλ)

= k −
k∑

j=1

21−θ

2j + 21−θ
+

∞∑
j=1

2θ

2j + 2θ
+ O(λ−1 logλ)

= logλ

log2
−

∞∑
j=1

21−θ

2j + 21−θ
+

∞∑
j=1

2θ

2j + 2θ
− θ + O(λ−1 logλ).

Hence,

λmλ = (logλ)/ log2+ A(θ) + O(λ−1 logλ),(5.3)

with

A(θ) = −
∞∑

j=1

21−θ

2j + 21−θ
+

∞∑
j=1

2θ

2j + 2θ
− θ.

Notice that the termA(θ) of order 1 is not constant but depends onθ ∈ [0,1). The
expansion (5.3) is obviously uniform inθ .
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Similarly, by (5.3),

logϕJ (λ) =
∞∑

j=1

log{(2j − 1)/(2j − 1+ λ)}

=
∞∑

j=1

log{2j /(2j + λ)} +
∞∑

j=1

log(1− 2−j )

+
∞∑

j=1

log{1+ 1/(2j − 1+ λ)}

=
∞∑

j=1

log{2j /(2j + 2k+θ )} +
∞∑

j=1

log(1− 2−j )

+ O(λ−1 logλ).

Furthermore,

∞∑
j=1

log{2j /(2j + 2k+θ )}

=
k∑

j=1

log{21−θ/(2j + 21−θ )} +
∞∑

j=1

log{2j /(2j + 2θ )}

= k(1− θ) log 2− (1/2)k(k + 1) log2

−
k∑

j=1

log(1+ 21−θ−j ) −
∞∑

j=1

log(1+ 2θ−j ).

Substitutingk = (logλ)/ log2− θ and using

∞∑
j=k+1

log(1+ 21−θ−j ) ≤
∞∑

j=k+1

21−θ−j = O(λ−1),

we finally find

logϕJ (λ) = −(logλ)2

2 log2
+ logλ

2
+ B(θ) + O(λ−1 logλ),(5.4)

where

B(θ) =
∞∑

j=1

log
{
(1− 2−j )/[(1+ 2θ−j )(1+ 21−θ−j )]}

− (1/2)θ(1− θ) log2.

(5.5)
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Again the termB(θ) of order 1 depends onθ and the expansion is uniform
in θ ∈ [0,1).

Substituting (5.3), (5.4) and (5.2) in (5.1), we obtain, forλ → ∞,

P (mλ) ∼
√

log 2

2π logλ
exp

{
− 1

2 log2
(logλ)2

+
(

1

2
+ 1

log 2

)
logλ + A(θ) + B(θ)

}
.

(5.6)

It remains to find approximations of logλ and(logλ)2 as functions of

t = mλ = (logλ)/(λ log2) + A(θ)/λ + O(λ−2 logλ).

We find

log(1/t) = logλ − log logλ + log log 2− A(θ)(log 2)/ logλ

+ O
(
(logλ)−2),

log log(1/t) = log logλ − (log logλ)/ logλ + (log log2)/ logλ

+ O
(
(log logλ)2/(logλ)2)

and, hence,

logλ = log(1/t) + log log(1/t) − log log2+ (
log log(1/t)

)
/ log(1/t)

− (log log2)/ log(1/t) + A(θ)(log 2)/ log(1/t)

+ O
((

log log(1/t)
)2

/
(
log(1/t)

)2)
,

(logλ)2 = [log(1/t) + log log(1/t) − log log 2]2 + 2 log log(1/t)

− 2 log log2+ 2A(θ) log2

+ O
((

log log(1/t)
)2

/ log(1/t)
)
.

Together with (5.5) and (5.6), this yields that, fort → 0,

P (t) ∼ C(θ)exp
{−(2 log2)−1[log(1/t) + log log(1/t) − log log 2]2}

× t−(1/2+1/log2)

with

C(θ) = 2−θ(1−θ)/2 1√
2π

∞∏
j=1

1− 2−j

(1+ 2θ−j )(1+ 21−θ−j )
.(5.7)

The factorC(θ) depends onθ = frac((logλ)/ log2).
It remains to expressθ in terms oft . Define

ψ(t) = (log2)−1[log(1/t) + log log(1/t) − log log2].
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We havek + θ = (logλ)/ log2= ψ(t) + o(1), and asC is positive and bounded,
the derivative ofC is positive and bounded andC(θ) = C(1−θ). This implies that
C(frac{ψ(t)}) = C(θ)(1+ o(1)). It follows that, ast → +0,

P (t) ∼ C
(
frac{ψ(t)}) exp

{
− log 2

2
[ψ(t)]2

}
t−(1/2+1/log2),(5.8)

with C defined in (5.7). This is an exact asymptotic expression forP (t) ast → +0.
The dependence on frac(ψ(t)) in (5.8) is a most unusual feature. In fact,

preliminary numerical calculations make one wonder whether there is any
dependence at all, since one finds thatC(θ) equals a constant (≈ 0.01013)
throughout the interval 0≤ θ < 1 to any reasonable degree of accuracy. Thus,
in order to properly understand the asymptotic expression (5.8), we have to
analyzeC(θ) in more detail. Proposition 5.1 states thatC(θ) does indeed depend
on θ , but in a very peculiar way. In fact, for any realθ ,

C(θ) =
[√

log2

21/82π

∞∏
j=1

(1− 2−j )2

]
(ϑ̃3(θ))−1 ≈ 0.01013(ϑ̃3(θ))−1,

where

ϑ̃3(θ) = 1+ 2
∞∑

k=1

exp{−2k2π2/ log2}cos{2kπ(1/2− θ)}

= ϑ3
(
π(1/2− θ),exp{−2π2/ log2}).

(5.9)

Hereϑ3 is a theta function

ϑ3(z, q) = 1+ 2
∞∑

k=1

qk2
cos(2kz).

Note that for allθ ,

|ϑ̃3(θ) − 1| < 10−12

is a quantity which is difficult to reveal numerically!

PROPOSITION5.1. For any real θ ,

∞∏
j=1

(1+ 2θ−j )(1+ 21−θ−j )

= 2−θ(1−θ)/2 ϑ̃3(θ)
21/8

√
2π√

log2

∞∏
j=1

(1− 2−j )−1,

(5.10)

where ϑ̃3(θ) is given by (5.9).
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PROOF. We first apply Jacobi’s triple product identity [see, e.g., Askey (1980)
and Gasper and Rahman (1990)]. For anyq ∈ (0,1),

∞∏
j=0

(1− xqj )(1− x−1qj+1)(1− qj+1) =
∞∑

n=−∞
(−1)nq(n

2)xn.(5.11)

Takex = −2−θ , q = 1/2. Then (5.11) becomes

∞∏
j=1

(1+ 2θ−j )(1+ 21−θ−j )(1− 2−j ) =
∞∑

n=−∞
2−n(n−1)/22−θn.(5.12)

The right-hand side of (5.12) is of the form

c(θ)

∞∑
n=−∞

g(n),

where

c(θ) = 21/8
√

2π√
log2

2−θ(1−θ)/2,

and

g(x) =
√

log 2√
2π

exp{−(1/2)(log2)(x − 1/2+ θ)2}

is a normal density with meanµ = 1/2− θ and standard deviationσ = 1/
√

log 2.
The characteristic function ofg is given by

γ (t) = exp{−t2/(2 log2) + it (1/2− θ)},
wherei is the imaginary unit. For each fixedλ and for each realξ , the Poisson
summation formula [see Feller (1970)] gives

+∞∑
k=−∞

γ (ξ + 2kλ) = π

λ

+∞∑
n=−∞

g(nπ/λ)exp{in(π/λ)ξ }.(5.13)

Putλ = π , ξ = 0. Then the right-hand side of (5.13) becomes
∑∞

n=−∞ g(n) and
on the left-hand side we have

∞∑
k=−∞

γ (2kπ) = γ (0) +
∞∑

k=−∞
k �=0

exp{−2k2π2/ log2}exp{i(1/2− θ)2kπ}

= 1+ 2
∞∑

k=1

exp{−2k2π2/ log2}cos{2kπ(1/2− θ)}

= ϑ̃3(θ).
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Hence, (5.13) reduces to

+∞∑
n=−∞

g(n) = ϑ̃3(θ),

implying that the right-hand side of (5.12) equalsc(θ)ϑ̃3(θ). This immediately
yields (5.10). The proposition is proved.�

We summarize our findings in the following theorem.

THEOREM 5.2. Let X1,X2, . . . be independent exponential random variables
with mean 1, and let

J =
∞∑

j=1

(2j − 1)−1Xj .

Then

P(J ≤ t) ∼
√

log2
∏∞

j=1(1− 2−j )2

21/82πϑ̃3(frac{ψ(t)})
× exp

{
− log 2

2
[ψ(t)]2

}
t−(1/2+1/log2) as t → +0,

where

ψ(t) = (log2)−1[log(1/t) + log log(1/t) − log log2]
and ϑ̃3 is defined in (5.9).

6. Related results. In a similar fashion we can also analyze more general
linear combinations of i.i.d. exponential random variables thanJ . For any
q ∈ (0,1), define

J (q) = (q−1 − 1)

∞∑
j=1

(q−j − 1)−1Xj .

Clearly,J ≡ J (1/2). One can show that

(m + 1)(q−1 − 1)

m+1∑
j=1

1

q−j − 1
Dj,m

d→ J (q) asm → ∞,

where the expression on the left occurs in the right-hand side of (1.5) forn = m.
The random variableJ (q) can be written in the following way. LetN(t) be a
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standard Poisson process. Then

(q−1 − 1)−1J (q) =
∫ ∞

0
qN(t)+1(1− qN(t)+1)−1

dt

=
∞∑

j=1

qj
∫ ∞

0
qjN(t) dt

=
∞∑

j=1

qj I (qj ),

where

I (q) =
∫ ∞

0
qN(t) dt =

∞∑
j=1

qj−1Xj

is an exponential functional associated with a Poisson process. The functionalI (q)

has been intensively studied in recent literature. Its density was obtained indepen-
dently by Dumas, Guillemin and Robert (2002), Bertoin, Biane and Yor (2002)
and Litvak and Adan (2001), forq = 1/2. Carmona, Petit and Yor (1997) derived
a density of

∫ ∞
0 h(N(t)) dt for a large class of functionsh :N → R+, in particu-

lar, for h(n) = qn. Bertoin, Biane and Yor (2002) found the fractional moments
of I (q). If i(q)(t) is a density ofI (q), theni(q)(t) and all its derivatives equal 0
at the pointt = 0. This implies, by the way, that all moments of 1/I (q) are finite.
However, forq = 1/e, it was proved by Bertoin and Yor (2002a) that 1/I (1/e) is
not determined by its moments.

The functionalI (q) appears in a number of applications. LetT NI
n be the travel

time needed to collectn items independently and uniformly distributed on a circle
of length 1 operating under the nearest item heuristic (the picker always travels to
the nearest item to be retrieved). Then it was shown by Litvak and Adan (2001)
that (n + 1)(1 − T NI

n ) converges in distribution toI (1/2). Dumas, Guillemin and
Robert (2002) showed that the distribution ofI (q) plays a key role in the analysis
of limiting behavior of a Transmission Control Protocol connection. These results
were extended by Guillemin, Robert and Zwart (2002), who foundthe distribution
and the fractional moments of the exponential functional

I (ξ) =
∫ ∞

0
e−ξ(t) dt,(6.1)

where (ξ(t), t ≥ 0) is a compound Poisson process. An exponential func-
tional (6.1) associated with a Levy processξ(t) appears in mathematical finance
and many other fields. It has been studied recently by Bertoin and Yor (2001,
2002a, b), Bertoin, Biane and Yor (2002), Carmona, Petit and Yor (1997) and Yor
(2001).
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Along the same lines as in Section 5, one can prove theorems similar to
Theorem 5.2 forI (q) and J (q). In fact, it is straightforward to repeat the
calculations for

qI (q) =
∞∑

j=1

qjXj and
q

1− q
J (q) =

∞∑
j=1

1

q−j − 1
Xj .

We obtain, forq ∈ (0,1) ast → +0,

P
(
qI (q) ≤ t

) ∼ 1

2π
q1/8

√
log(1/q)

[ ∞∏
j=1

(1− qj )

]
t−(1/2+1/log(1/q))

× exp
{
− log(1/q)

2

[
ψ(q)(t)

]2
}[

ϑ̃
(q)
3

(
frac

{
ψ(q)(t)

})]−1
,

P

(
q

1− q
J (q) ≤ t

)
∼ P

(
qI (q) ≤ t

) ∞∏
j=1

(1− qj ),

where

ψ(q)(t) = (
log(1/q)

)−1[log(1/t) + log log(1/t) − log
(
log(1/q)

)]
,

ϑ̃
(q)
3 (θ) = 1+ 2

∞∑
k=1

exp{−2k2π2/ log(1/q)}cos{2kπ(1/2− θ)}.

This agrees with the result of Bertoin and Yor (2002a) that

logi(t) ∼ −1
2

(
log(1/t)

)2 ast → +0,

wherei(t) is a density of

I =
∫ ∞

0
e−N(t) dt =

∞∑
j=1

e−jXj .

For the functionalI (1/2), which describes the limiting behavior of the travel time
under the nearest item heuristic, we find

P
(
I (1/2) ≤ 2t

) ∼ P(J ≤ t)

∞∏
j=1

(1− 2−j )−1, t → +0.
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