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ON OVERLOAD IN A STORAGE MODEL, WITH A SELF-SIMILAR
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Chalmers University of Technology and Cornell University

Let {X(1)};>0 be a locally bounded and infinitely divisible stochastic
process, with no Gaussian component, that is self-similar with idlexO.
Pick constantyy > H andc¢ > 0. Let v be the Lévy measure oR!0-°°)
of X, and suppose that(u) = v({y € RI%%) :sup_qy(t)/(1+ ct?) > u})
is suitably “heavy tailed” ast — oo (e.g., subexponential with positive
decrease). For the “storage proceBg!) = sup>, (X (s) =X (1) —c(s —1)"),
we show thatP{supcio (Y (s) > u} ~ P{Y(i(w)) > u} asu — oo,
when 0< 7(u) < ¢ (u) do not grow too fast with [e.g.,7 (1) = oul/?)].

1. Introduction. Let X = {X(¢)};>0 be an infinitely divisible (i.d.) stochastic
process, with no Gaussian component, that is self-similar with index 0

(H-s.s.).
Given constants > 0 andy > H, we consider thetorage process
(1.1) Y(1) =supX(s) — X (1) —c(s —1)7) fort > 0.

s>t

Intuitively, an H-s.s. process grows a§ with time ¢, and soy > H should
makeY finite valued. Nevertheless, this is not so in general (see Example 2). The
assumptions in our theorems will, however, ensure such finiten@ssidfe reason
for the name “storage process” comes from the gasel, with X (r) denoting the
total inflow into a storage facility by time andc the (demand) rate at which stock
at the facility is depleted; theXi(r) tells how much extra storage capacity one will
need in the future over what is being used at timEor an input procesX with
stationary increments (s.i.), the storage prodéssstationary (if finite).

The processY has been used in financial applications under the name of
“drawdown” [e.g., Dacorogna, Gengay, Miiller and Pictet (2001)], and is important
in gueueing applications; for example, to model teletraffic, wieis Gaussian
H-s.s.s.i. (i.e., fractional Brownian motion), wiith > % and linear servicey =1
[e.g., Norros (1994) and Piterbarg (2001)]. In this case, building on Hisler and
Piterbarg (1999), Piterbarg [(2001), Theorem 5] gave a version of the remarkable
property (1.2), that was a triggering influence for us. Recognizing this, we name
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that property after him. However, the Gaussian problem Piterbarg studied is very
different from ours with i.d. processes, and his proof, by Gaussian field theory,
does not relate to non-Gaussian settings.

In Section 3 we study the probability for overload during a time interval,

P{ sup Y(s) > u} asu — 0.
s€[0,z]
If for each choice of a constant- 0, it holds that

P{sup Y ”
{SUBc0.n Y (s) > u} =1 whenever 6< 7(u) <t,

(1.2a) lim ~
u=oo  P{Y(t(u)) > u}

then we say that the proceEshas thePiterbarg property. The similar statement,

for which the lengthr = 7 (1) of the interval may depend on the level

(12b) fim DSBeloren O 2 1)
U—00 P{Y(t(u)) > u}

will be referred to as thgeneralized Piterbarg property.
One indication of the unusual behavior¥fis that (1.2) implies, ag — oo,

P[ﬂ{Y(f,-) > u}| sup Y(s) > u}

i=1 s€[0,1]

21—Z<1 P{Y (&;) > u} )_) L
i=1

a P{suR¢(o, Y (s) > u}

1 whenever & 7 (u) < t(u),

Thus overload periods withif0, ] are long enough to include any, ..., 1, €
[0, £].

This last conclusion leads us naturally to the question whether one can replace
the minimum/\;?zlY(f,-) taken over a finite collection of points ii®, 7] by the
infimum over the entire interval. That is, we would like to know if

P{Suge[o’,] Y(s) > u} B
w00 Plinfycion Y (s) > u)

(1.2¢c)

This we call thestrong Piterbarg property, whether or not is a function ofu.
With v being the Lévy measure &%) of X (see Section 2.3), denote

y()
(1.3) R(u)zlAv({yeR(o’oo)mQ: sup
te(0,00nQ 1+t

>u}) foru e R.

We will make assumptions about “heavy tails” for the funct®ife.g., subex-
ponentiality together with positive decrease; see Section 2.1). Under additional
technical assumptions on, we establish the generalized Piterbarg property, when
t (u) does not grow too fast with [e.g.,7 (1) = o(u!/7)]. Under the same assump-
tions we will show that the strong Piterbarg property holds as well. Under certain
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weaker assumptions, we prove a weaker so-callegersion of (1.2), that is, that
the probability ratios in (1.2) afeounded away from zero and infinity.

Our main “external tool” in proofs is Theorem 2.1 on subexponential function-
als of i.d. processes by Raski and Samorodnitsky (1993); see Section 2.3.

The Piterbarg properties are quite unusual. For example, only a degenerate
a-stable or Gaussian proceBan have them; see Example 7.

In Section 4, we give a discussion, with examples of application, and
counterexamples, for i.dd-s.s. processeX given as stochastic integrals with
respect to heavy-tailed i.d. random measures (see Section 2.3). This includes
a-stable processes.

2. Classes of functions and stochastic processes. It will be convenient to
devote a separate section to describe classes of functions and stochastic processes,
that feature in the rest of the article. In addition, some basic relations between these
classes, and some important representation properties, are listed for easy reference.

2.1. Classes of functions. In this section,f :R — (0, c0) denotes a nonin-
creasing function with linp, o, f () =0, andg : R — (0, co) a measurable func-
tion.

The functionf is subexponential, f € 4, if there exist independent identically
distributed random variablésandn, such that

fw)~P{E>u} and P&+ n>u}l~ 2P > u} asu — oo.
The functionf is O-regularly varying, f € OR, if

liminf JOu) >0 for somei > 1.
The functionf haspositive decrease, f € PD, if
A
lim supf( “) <1 for somei > 1.
u—00 bt)
The functionf is extended regularly varying, f € ER, if
liminf M > Ab for A > 1, for some constarit > 0.
U— 00 f(u)

NoTE. The definitions ofOR, PD andER are more complicated than those
given above for a general nonmonotofie
The functiong is regularly varyingwithindex p € R, g € RV(p), if
gu)

lim =% for A > 1 (or, equivalently, fon > 0).
u— o0 g(u)

Here the convergence must, in fact, be locally uniform.
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Notice that the functior o log belongs tdRV (0), which we denotg € L, if
im gu—+2x)
u—o0 g(u)
We haveERN PD € ORNPD N 4, and a monotong € |J,oRV(p) belongs
to all these classes. Furth@RN L C S C L.

The classes of functions above, and the listed relations between them, are well
known from the literature. See, for examgngham, Goldie and Teugels (1987).

=1 for A > 0 (or, equivalently, fon. € R).

2.2. Classes of stochastic processes. In the remainder of this articleX =
{X (1)};>0 denotes a separable stochastic process, that is continuous in probability
and locally bounded (bounded on any given compact interval) a.s., and is defined
on a complete probability spad&, §, P). We refer to these requirements as
Condition X. Depending on the context, further requirementXonill be imposed
later.

We write {X(t)},zo 2 x when the finite-dimensional distributions (f.d.d.’s) of
the processeX and X agree. For exampleX is stationary, ifX (- + h) < X for
h>0.

The procesX hasstationary increments, if

X(+h)—XhZLXx-x@©0  foreachi > 0.
The proces is self-similar withindex H > 0 (H-s.S.), if

aBX@)Lx  foreacha > 0.

The processX is infinitely divisible (i.d.), if for eachn € N, there exist
independent processg®¥i(t)};>o0, - - ., { X, (?)};>0, Such that

%4 L%, and Xt X,Lx.

The proces< is a-stable, o € (0, 2], if for eachn € N, there exists a constant
proces<C,, such that, taking independent cop{é& };_, of X,

n VX 4+ X))+ C L X

In particular, it turns out, the proce&sis Gaussian if and only if it is two-stable.
The proces¥ is strictly a-stable if, taking independent copigs(};2 ; of X,

n—l/a()~(1+...+}~(n)iX forn e N.

A processX is H-s.s. if and only if the Lamperti transformed process
e H-X(e) is stationary [Lamperti (1962)].

a-stable processes are i.d. Clearly,castable procesX is strictly a-stable if
it is symmetrica-stable(SaS) («-stable withX 4 _x ).

Of course, the classes of processes mentioned above are all quite basic, as are the
indicated relations between. See, for example, Samorodnitsky and Taqqu (1994)
for further information, and for an extensive bibliography.
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2.3. 1.d. stochastic processes. The f.d.d.’s of an i.d. proceSX (¢)};er, T =
[0, 00), with no Gaussian component, can be described by meanslLafna
measure v on the cylindricalo-algebraB on R”, and alocalization parameter
weRT,

Let 77, be the projection oR” onR?, and let8B; be the Borel sets iiR?, for
T €T ={tr CT:1<#r < oo}. According to Maruyama (1970), a measure
on B is a Lévy measure foX, if vo n;l is a Lévy measure o; [i.e,
if 1A|-|2eLYR?,von 1) for eachr € 7, and there exists @ € R” such
that

E{ei<9’x>} — exp{i<9’ M) + /RT (ei<9,x) —-1- l(@, K(X))) a’v(x)}

(2.1)
foro e R,
Here we use the notation
RD = (x e RT :#{t € T : x(1) # 0} < o0},
(x,y) =Y _x()y() for x e R andy e R”,

teT
kX)) =xOl_1(x@®)])  forx eRT andreT.
[A general i.d. X can be represented a)éin + X, with X1 and X»

independentX; i.d. with no Gaussian component as in (2.1), &idzero-mean
Gaussian

E{e'?:X2)} = exp{—% > 0(s)0()E{X2(s) X2(1)}
5.1€T.0(5).0(1)#0
foro e RM) ]

We now turn to the task of constructing and representing i.d. processes.
Let (S, &, 1) be ao-finite measure space, and gy = {A € G:A(A) < oo}.
An (independently scattered) i.idandom measure (with no Gaussian component),

with control measurg, is a mapM : Sg — Lo, %) such that, ford € &y,

E{el/M ) =exp{/ (i@m—i—/R(eie" _1—i0K(X)),0(',dx)) dk}
A
for 0 e R.

(2.2)

Here the localizatiom: € 1.9(S) satisfies{1am}acs, € L1(S, 1), while p(s, -) is
a Lévy measure oRt for s € S, such thato(-, B) € LO(S) for Borel setsB C R,
and

(2.3) F(Ax-) E/ o (s, )A(ds) is a Lévy measure oR for eachA € Sg.
A
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The stochastic integraly f dM is well defined (in aP-sense), forf e LO(S)
with

/S fR @A xf 2o dx) di
(2.4)
dl < 00

v [t + [t = feeyoc.dn

[Rajput and Rosiski (1989), Section 2]. In that cask, f d M is i.d., with

{exp(i@/sfdM)}
=exp{/s<i0mf+/R(ei9xf—1—i0/c(x)f),o(-,dx)> dk}.

In the language of (2.1), the (process consisting of a) single i.d. random variable
[s fdM has Lévy measureonR, and localization paramet@re R, given by

E
(2.5)

v(B) = F({(s,x) € S x R:xf(s) € B}),
p= [ (mf + [[cter) =k f)pC.dn) ) i

In particular, for example, by Feller [(1971), page 57/],f d M is nonnegative,
if and only if

xf(s)>0 a.e.(F),

(2.6) /S(Mf - /RK(x)f,O(',dx)) 43 >0,
/S/R(lA IxfD)p (-, dx)dxr < oo,

Pick f, € LO(S) satisfying (2.4) for > 0. The following process is i.d.:

2.7) x< {/Sfth}tzo

with Lévy measure in (2.1) given by = F o T-1, whereS x R 5 (s, x) —

Tr(s,x) = xfy(s) € RIO®) With QF = (0, 00) N Q, the functionr in (1.3) thus
satisfies

—u
R(u)=1/\/S,0<S,R\[SuQEQ+ ROSIEYTIas

u
SUReg- i)/t er7) D SaE

(2.8)
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By (2.5), the proces¥X in (2.7) isH-s.s., if and only if

n
/S<ima_H Zel'f“’j
j=1
(2.9) . .
+fR(exp(ixa—H Zejfa,j> —1—ik(x)a™ " Zefa,j>,0(-,dx)) dx
j=1 j=1
does not depend om > O for any choice ofn € N, 11,...,¢, > 0 and

61, ...,6, € R. Similarly, X is H-s.s.s.i., ifand only ifX (0) = 0, and, with obvious
notation,

/ (ima—H<9, Faren = fa)

+ /R<eixa_H(97far+h—fh) —_1— iK(X)a_H<9, Sfat+h — fh)>p(-, a'x)) dxr

does not depend om, k2 > 0 for any choice ofn € N, r1,...,1, > 0 and
01,...,0, eR.
Notice thatX (0) = 0, if and only ifmfy = 0 a.e.()) andx fo(s) =0 a.e.(F).

ExampLE 1. Define a Lévy measurg on R with f_ll |x]du(x) < oo,
by u((—o0, —x)) = r(—x) and u((x, 00)) = r(x) for x > 0 [ ({0}) = 0], for a
nonnegative < LO(R) NLY([—1, 1)) that is monotone and vanishes at infinity on
both half-lines.

Pick anH > 0. Let M be an i.d. random measure @ co) (equipped with the
Borel o -algebra), with Lebesgue control measure, and with

o(s,B) = Hs_l,u(s_HB) and m(s) = /Ric(x),o(s, dx).
Pick 1 € L9((0, 00)) satisfying (2.4). Consider the i.d. procéésn (2.7), where
(2.10) fi(s) = { fls/n, Hr=0, g o

if t =0,
This processX is H-s.s., since the integral (2.9) evaluates to

% on< Hu(s~Hd
/0 /R(exp(lxa H;ij(s/(atj))> —1)%)6)615
H
_/ /(exp(zxZQ FG/1) )—1) H“(S 49 4

Moreover, we get thakX is P-continuous, from the fact that
E{eie(x(z+h)—x(t))}

H
_exp{ / / (10X /G =F (/1) _ )H“(S 4 4 }
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If f =10y thenX has independent increments, so tRatontinuity and
separability give local boundedness [e.g., Sato (1999), Theorem 11.5].

We conclude this section by stating a special case offRsand Samorodnitsky
[(1993), Theorem 2.1], that is sufficient for our needs, for easy reference.

THEOREMA. Let {X(¢)};er be ani.d. stochastic process with no Gaussian
component, and with Lévy measure v given by (2.1). Assume that the parameter
gpace T is countable, and that

P{suplZ(t)l < oo} =1
teT
If the function
Hu)=1A v({y eRT Jsupy(t) > u})
teT

is subexponential, then we have

_ 1
ull_)moO Ha P{supZ(t) > u} =1

teT

2.4. Representation of H-s.s. «-stable processes. Let X be strictly «-stable
H-s.s., witha € (0, 2). In the caser = 1, assume in addition that is SaS.

Let wg € LO(S) be positive, and pick a constagite [—1, 1] (8 =0 if « = 1).
Let M be an i.d. random measure (see Section 2.3), with control measarel
with

d
p(s.dx) = wo(s) (1~ B)L—s0,0) () + (1 + )L(0,00) OC”W;CWH’
/Ric(x),o(s,dx), ifa <1,
m(s) =10, if o =1,

/R[K(X) —x)]p(s, dx), if o>1.

We say thatM is a strictlya-stable random measure. [It is an exercise to deduce
from (2.2) thatM (A) is strictly ¢-stable oS if « = 1), for A € Go.]

There exist] f;};>0 S L*(S, wor) [which is what (2.4) reduces to here], such
that X satisfies (2.7), for somg € [—1, 1] (e.g.,8 = =1 works ifa # 1).

Now a process given by (2.7) is strictystable. Denoting ) = |x|* sign(x),
(2.5) shows thatX is H-s.s., if and only if fo = 0 a.e. {), and the following
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integrals do not depend am > O for any choice ofn € N, #1,...,t, > 0 and
01,...,0, eR:

n o n (o)
/k;1 a_H X;L@/fat/ wod)\. al’ld ﬂ/;(a_H X;L@/fat/> wod)»
J= j=

Further,X is H-s.s.s.i., if and only iffo = 0 a.e. {), and the following integrals do
not depend om, & > O for any choice ok € N, 11, ...,1, > 0 andfy,...,6, € R:

J

n ()
ﬂ/:g(a_HZQj(fazj-&-h - fh)) wodA.
j:l

o

wodA

a= Z 0; (flll‘j“rh - fh)
=1

and

REMARK. Much is known about the class @f-s.s.s.i.a-stable processes,
that is very rich fora < 2, unlike the Gaussian case. See, for example,
Samorodnitsky and Taqqu (1994), Surgailis, Rosinski, Mandrekar and Cambanis
(1998), Burnecki, Rosiski and Weron (1998) and Pipiras and Tagqu (2002a, b).

ForH € (1/a, 1] with @ > 1, and forH = 1/« > 1, itis known that (separable)
H-s.s.s.i.a-stable processes are locally bounded. For other valués ahd«,
local boundedness is not determined Hyand «, and there exist both locally
bounded and unbounded processes. Precise conditions for local boundedness are
known fora < 1. See Kéno and Maejima (1991) and Samorodnitsky and Tagqu
(1990, 1994).

3. Overload and the Piterbarg properties. Here we first study the probabil-
ity for overloadP{Y (¢) > u}, and then the Piterbarg properties (1.2).
The next assumptions limit the effect of the left tailXfon the right tail ofY:

P{X(D < —S(I(u)u_l/?’)—Hul—H/V} -

(3.2) IiLn%solgp R 00 forall e > 0,
P{X (1 _ -1/y\—H 1-H/y
(3.2) lim XD < —et@u G ) =0 for somes > 0.
U—>00 Rul-H/7v)

Here (3.1) is used together with the growth condition indicated in the Introduction
. t(u)
3.3 limsup—— .
( ) Iueogpul/y =00
In (3.2), v:iR — (0,00) is a suitably selected function, with the following
properties:
v(u)

3.4) limsup™ <o and  lim £(u)

L u=00 g ¥ (p(ul=H/v) [y 3= Hy)I/(HAD ~ 0.
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In the hypothesis of Theorem 1, (3.1) follows from (3.3) [by (3.11) and

R € OR], while (3.2) follows from (3.4) [by (3.20) an&t € PD], provided that

(3.5) limsup

P{X(1) < —u}
u—00 P{SuRe[O,l] X(s) > u}

Notice that (3.5) holds if, for examplé& (1) is symmetric or nonnegative.

THEOREM1. LetX be H-s.s.andi.d. with no Gaussian component, satisfying

Condition X. Consider the process Y, given by (1.1), with ¢ >0 and y > H
constants. Suppose that the function R, given by (1.3) [with v given by (2.1)],
belongsto § NPD. Then Y (¢) < oo a.s. for eacht > 0, and

(3.6)

(3.7) lim

(3.9) lim

P{Y (0) > u}
oo R Ay

() If X issi.,thenfor t(u) >0,

P(Y (t () > u)
u— 00 R(ul—H/V) o

(i) If Re ORand (1) > 0 satisfies (3.1) and (3.3), then we have

. PIYew) > up P{Y (t(w)) > u}
(3.8) 0< |IurT_1)I(I)’]of W < Ilbrt\lsogpw

(iii) If there exists a function v satisfying (3.4), such that

R(u—v(u))

17
u—>00 R(M)

and such that (3.2) holds, then (3.7) holds.

PROOFE Let R € § N PD, and denote& = 2¥ /c. For everyr > 0, we have,

foru > 0,

PIY (1) > u) < P{X(t) < —%}

+P{ sup X(s) > %} +P{sup(X(s) —s7/¢) > %}

1<s<2t §>2t
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SinceX is locally bounded, the first two terms on the right go to zera as oco.
Furthermore, we can bound from above the third term by

P{ sup X(s)>z}+ZP{ sup X(s)>2yju}
j=0 ¢

O<s<ullr 2 2l <s<2i+Lylly

Ml—H/y
= P{ sup X(s) > }
5€[0.1] 2
(3.10) o0 2(y—H)j,1=H/y
+ P{ sup X(s) > —}
=0 \sel1/2,1] ¢

<2) P} sup

& b X(s) oy—H)j,1=H/y
> — (-
- =0 {SE[0’1]1+CSV (14+c)2vVve) }

HereR € 4§, together with Theorem A, gives

lim supR( )
Uu— 00 u

P{ sup X(s) > (1+c)u}
s€[0,1]

{ X(s) }
P sup >up <1
sefo,11 L+ cs?

(3.11)

<limsup
U— 00 R(l/t)

Here and in future applications of Theorem A, we use that the process under
consideration is separable amdcontinuous. Hence it is enough to consider
suprema over any countable dense subset of the parameter space of that process
[e.g., Samorodnitsky and Tagqu (1994), Exercise 9.3], which we take to be the
rational numbers in the interior of the parameter space (when that parameter space
is an interval).

Our R € PD has a so-called upper Matuszewska index O [e.g., Bingham,
Goldie and Teugel (1987), page 71] such that, givene (a, 0) andig > 0,

R(A
() <Ccr ¢ for » > Ag andu large enough
R(u)

for someC > 0. Hence the right-hand side of (3.10) is at most
0 oy—H)j,1=H/y

2y 2R ————
Z ( 1+4+c)2ve) )

Jj=0

o0
<4C(1+o0)*2v o) (Z z—a(y—H)j) R H/7y
j=0

for u large enough. This proves the fact thigt) < oo a.s. O
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Further, by self-similarity and Theorem A [cf. (3.11)],

PIY(0) > u} = P{supﬂ - ul—H/y}

(3.12) 520 L4cs?

~ Rt H/7y asu — o0o.

PROOF OF (i). For X s.i., Y is stationary, and so (3.7) is the same thing
as (3.6). O

PrRoOOF OF(ii). By (3.3), we have, for some € (0, 1), for all u large enough,

1 —tu—VYryr 1 —tu—VYryr
(3.13) 0< inf +c(s—tu ) < sup +c(s—tu ) -

1
s>tu—1r 1+ cs? s>tu-17 1+ cs?

[wherer = ¢ (1)]. Using self-similarity, we therefore obtain, farlarge enough,

X(s) — X(tu~Vv
P{Y(t)>u} =Py sup ) — X 1 ) > ul_H/V}
s>tu—Yv 1+C(S —ftu— /)/))/

_ -1/y
(3.14) >P| sup X(s) = X(u )>u1‘H/V},
s>tu=1y 1+csy
X(s) — X (tu™ Y7
<plsup () — XQ@u7")
5>0 1+ cs?

Gul_H/y}.

Notice that, denoting
() = (tu” ") (L4 c(Ku™ 7)),
n2@u) = (tu™ ")~ (Lv (Keu= 7)),
for a constank > 1, we obtain

-1
P{ sup Xs) = XGw /y) > ul_H/y}
s>tu=1r 1 +cs?

_ -1/y
. P{ sup X(s) = X@u™V7) ul—H/V}
s>Ktu=v 1+ csy

X
> P{ sup ©) 2u1—H/V}
=Kty L cs?

_ P{X(tu—l/y) > (1+c([{tu—l/)/)}’)ul—H/y}

X (s) e }
=Pjsu 2Ktu= Y /y
{s>1p1+C(Ktu_1/V)Vsy > 2(Ktu )

(3.15) —P{X(1) > ni)u*"H/7)
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>P

su >
szlpl—i-csy KH

{ X(s) _ 2na(yutHY }

sup
s>0 1+ cs” 1+c¢

_P{ X(s) >n1(u)u1‘H/V}.

Here we have, picking a constaht> 1,

P{sup X() > u}

s>0 1+ cs”
X X
<Pj sup (s) >u}+P{ sup s) >u}
s>1-1 1+ csY O<s<L-1 1+ cs”
X(s/L X(s/L 1 14
=P SUL>M}+P{ sup (/L) e >u}
=1 1+c(s/LyY 0=s=1 1+ cs? 1+c(s/L)Y
X (s) u } { X (s) LHu}
<P{su Pisu .
- Szf1+cs7’>L7’_H + Szg}l+cs3’>1+c

It follows from (3.12) and the fact thak € PD that, if L is large enough, then

. X (s) LHu} { X (s) } 1
| P P -
msupP{sups P > 1 fp{sups T ) <

Fixing L such that this relation holds, we get immediately

X 1 X
P{sup (s) > } > —P{sup s) > u}
s>11+csy ~ Lv—H 2 lys0l+cs?

for u large enough. Therefore, by (3.12),

> _

1
(3.16) liminf 7P{su

X(s) } 1
p > u
U— 00 R(LV—HI,{) s>1 14+ cs?

Since R € PD, and limsup_ . n2(u)/n1(u) < oo, we get from (3.12)
and (3.16),

X 2 1-H/y
liminf P{sup () > 120U }
u—o0 |51 1+ cs? KH
X 1-H/y -1
" P{sup (s) - ni(u)u }
(3.17) s>0 L+ cs” 1+c¢
1. 2LY ~H o uyul=H/Y n()ut=Hy
= fR R ———
=2 ( KT )/ ( 1+c )

>2
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for all K large enough [wherg; (u)ul=H/Y — oo fori = 1, 2]. Fixing K > 1 such
that (3.17) holds, we may apply (3.16) and (3.17) on the last row of (3.15), to get

. 1 X(s) — X (tu=Y7
liminf ——=——P} sup () = X@u"77) _ a-npy
u—>00 R(u H/)/) s>ty 1+ cs”

1. . X (s) 2n2(u)u1_H/V}
> —|liminf —————P3isu
— 2 u—oco R(ul-H/y) {S>1 1+ csv g KH
1 RQRKHpr—H 1-H/y
> Liimint £¢ n2u” 77
4 u—>00 R(ul-H/v)
>0,

usingR € ORfor the last inequality. By (3.14), this gives the lower bound in (3.8).
The corresponding upper bound in (3.8) follows from (3.14). This is so because

X(s) — X (tu=Y
lim supiP{su () = XQ@u ") eul—H/V}
U—>00 R(ul_H/V) s>0 1+ csY

. X(s) 0 gy }
<limsu Pisu — Y
- u—)oopR(ul_H/y) {S>(§}1+CSV - 2M

: P{—X (tu=7) > (6 /2ut~H/7}
R T T
which is finite, by (3.1) and (3.12), together with self-similarity ahd OR. [

PROOF OF(iii). We have
1+ c(s —tu=Yryr

1—O0((tu™Y7yr ") < inf

T s>tu~ Yy 1+ csY
. 1 —tu~Yryy
(3.18) < sup +c(s —tu )
s>tu=1v 14 cs7
<1

asu — oo. Here (3.4) shows that, with obvious notation,
0((1‘14_1/}/)}/“') < 0((v(ul—H/y)/ul—H/y)(y/\l)/(H/\l)>

<ot /vy ut=H11r),
This gives us the following version of (3.14), that iotarge enough:

- -1/y
> P{ sup X) = X 77) | ul‘H/V},
s>tu=y 1+ecsy

_ -1/y
<P SupX(S) X (tu ) >yt Y — gyt HIvy L
1 14
s>0 +cs

(3.19) P{Y(r) > u)
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To bound the ratio in (3.7) from below, use self-similarity, (3.4) and (3.12),
to get

P{ sup X(s)>sv(u1—H/V)}

sel0,ru=1/7]

1-H/
SP{Sup X(s) ev(u 7) }

>
(3.20) s=0 L+cs? ~ (L+co)(tu=Yr)H

X
SP{Sup s) >Ku1_H/7’}
szol‘i‘CSV

~R(Ku'™H)  asu — oo,
for any constank > 1. Hence (3.19), together with (3.9) and (3.12), give that

.. PlY(®) > u}
ILnl'Qof R(ul-H/7v)

1 X
> [iminf 7P{sup ()
u=>o0 Rul=H/v)" |Zg 1+ cs?

>ytHlY _ 2£v(ul_H/7’)}

P{X(tu=V7) > sv@lH/7))

—limsu
u—>oop R(ul_H/V)
—lim supiP{ sup  X(s) > ev(ul—H/V)}
U—00 R(Ml_H/y) se[0,fu—1/7)
. R(Kul—H/y
zl—2hmsupy—>l asK — oo,

U—00 R(ul_H/V)
sinceR € PD. Of course, this establishes that

.. PY() > u}

On the other hand, since (3.9) and monotonicitRdajive R (u — Av(u)) ~ R(u)
foranya € R, (3.19) together with (3.2), (3.9) and (3.12), show that

. P{Y (¢) > u}
“zl;n—igp Rul=H/v)

<limsu ! P{su X()
=PRI a0 T e
_ P(—X (1 tu=Vy=Hy@i=-Hly
+limsup {=X(1) > e(tu ) Tu(u )}
U— 00 R(ul_H/V)
=1+0. O

> yt=Hlv _ 28v(u1_H/7’)}
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To establish the Piterbarg property, we make use of the following assumptions:
pP{infse[o,l] X(s) < —e(t(w)u=Yry=Hyl-H/ry

limsu
(3.21) U—>00 Rul-H/v) =0
forall e > 0,
im Plnfseio.n X () < —e(@u M)~ Mo@! 1))
(322) u— 00 R(ul—H/V) o

for somee > 0.

Assumption (3.21) will be used together with the growth condition (3.3), while in
assumption (3.22), is a suitably selected function that satisfies (3.4).

In the hypothesis of Theorem 2, (3.21) follows from (3.3) [by (3.11) and
R € OR], while (3.22) follows from (3.4) [by (3.20) and monotonicity Bf, when

P{inf; X _
(3.23) lim sup {infsepo,1 X (s) < —u}
u—oco P{SUR(0,1y X (s) > u}

Clearly, (3.23) holds forX symmetric or nonnegative. Otherwise, (3.21)
and (3.22) could possibly be verified by Theorem A, fomnfc0,1) X (s) subex-
ponential, or by Albin [(1998), Theorem 3 and Sections 8 and 9].

THEOREM2. Let X be H-s.s.andi.d. with no Gaussian component, satisfying
Condition X. Consider the process Y, given by (1.1),together with the function R,
given by (1.3),wherec > 0 and y > H are constants.

() Let R € SNORNPD. If (3.3)and (3.21)hold, we have, for 0 < 7(u) < 7 (u),
1 < liminf P{SURE[O»j(m Y(s) > u}
umoe PY (i) > u)
<lim supp{suge[of(u)] Y(s) > u} _
U— 00 P{Y(t(u)) > u}

(i) Let R € $NPD. Taket(u) and v suchthat (3.4), (3.9)and (3.22)hold. The
process Y hasthe strong Piterbarg property (1.2c).

PrRoOOF OF(i). Itis enough to show the upper bound. Using (3.13) and (3.14),
we get

P{ sup Y(s) > u}
s€[0,7]

X(s)—X(r) 1-H }
=P Su sup———— > v
(3.24) {O<r<tuel/y Ser1+C(S "

X(@s)  OQuiHlY oul-H/v
< P{sup > } + P{ sup —X(r) > }
520 1+ Csy 2 OSrStu*l/V 2
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for somed € (0, 1). Therefore, self-similarity, (3.12), (3.21) ale OR, give
; P{suR¢[o, Y (s) > u}
limsu .
u—)oop R(ul_H/y)

Now the upper bound desired follows from (3.8) [notice that (3.21) implies (3.1)].
O

PrRoOOF OF(ii). Using (3.18) together with (3.4), as in the last paragraph of
the proof of part (iii) of Theorem 1, we may readily modify the estimate (3.24) to
obtain

P{ sup Y(s) > u}
s€[0,z]
X (s)

<pleup XS a-Hpy _ gy AH }
< ng)l—i—cs}’ >u ev(u )

+ P{ sup  —X(r) > ev(ul—H/V)}.
O<r<tu=1/v
By application of (3.9) together with (3.12) and (3.22), this shows that
. P{SUR'G[O,I] Y(S) > u}
Ilzn%sogp Rul-H/r) =L
On the other hand,

P{seIPOf,t] Y(s) > u}

X(s)—X
=P| inf supi(s) @ ul_H/y}
O<r<tu=Yv s>r 1+ C(S — r))/

X (s)

>P |nf Su 7_){ 1—H/)/}
= o<r<tu=Ur <szrp1+ c(s —r) (l’)+) >u

>P! inf sup X6) sup X(r)+>u1‘H/”}

O<r<tu=Yv s>r 1+ cs? O<r<tu=1/v

=P{ sup X6 _ sup X(r)+>u1_H/V},

SZtufl/y 1+CSV OSrStu,]_/y

and, as was established in the proof of Theorem 1, this gives us

iming PiNfeon Y©) >} )
U—> 00 Rul-H/7v)

Hence the strong Piterbarg property.

Here are two easy corollaries to Theorems 1 and 2, that make use of (3.23):
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COROLLARY 1. Let X be H-ss. and i.d. with no Gaussian component,
satisfying Condition X. Let the function R belong to § N PD, and assume
that (3.23)holds.

(i) The Piterbarg property holdsfor y < H + (H A 1).

(i) 1f (3.9)holdsfor v(u) = (1 Vv u)?, for some 8 € (0, 1), then the Piterbarg
property holds for y < H + (H A 1)/(1 — B). Hence, if (3.9) holds for v(u) =
(1v u)?, for each B € (0, 1), then the Piterbarg property holdsfor any y > H.

PROOF OF (i). By part (i) of Theorem 2, together with an inspection
of (3.4), it is enough to exhibit a positive functienwith lim,,_, ., v(x) = oo and
limsup,_, o, v(u)/u < oo, that satisfies (3.9). This is easy: Lgt=0, b1 =1 and

R 1
biz1= inf{u > maxb;, 2i): inf R (x),) >1- —_} fori > 1.
xX>u X —1 l

SinceR € 8 C L (see Section 2.1), this is an increasing to infinity sequence of
finite nonnegative numbers, and we may now choose

v(u) =i if uelb;,bjy1)fori>1 and v(u)=1foru <1 O

PrROOF OF(ii). Once again, the result follows from part (ii) of Theorem 2,
by means of checking that (3.4) holds fer< H + (H A 1)/(1 — B), when
viw)=wv1DFf O

In Part Il of Example 5, below we see that the Piterbarg property may be absent,
when, in the notation of part (ii) of Corollary ,> H +1/(1 — B).

COROLLARY 2. Let X be H-ss. and i.d. with no Gaussian component,
satisfying Condition X. Let the function R belong to § N PD, and assume
that (3.23)holds.

(i) The strong Piterbarg property holds for ¢ (z) > 0 such that
t(u)

imSup- A <
(i) If (3.9) holds for v(u) = (1 Vv u)?, for some 8 € (0, 1), then the strong
Piterbarg property holds for # (1) > 0 such that

_ t(u)
(3.25) u“_>moo ul/y—QA—B)A—-H/y)/(HAD)

(i) If (3.9) holds for every v(u) = o(u), then the strong Piterbarg property
holds for each 7 (1) = o(ul/?).

=0.

Corollary 2 is proved in the same way as Corollary 1.
Notice that the intervals with length(u) as in (3.25), for which the strong
Piterbarg property holds, do in fact shrink withunlessy < H+(H A1)/(1— B).



838 J. M. P. ALBIN AND G. SAMORODNITSKY

4. Discussion and examples. Here we present points of view on the results
of Section 3. Examples are given, where the input pro&essrepresented in the
form of a stochastic integral, with respect to an i.d. random measure.

We first exemplify that the storage process does not have to be finite valued, in
general. (Obviously, this does not happen under the assumptions of our results.)

EXAMPLE 2. For standard BrowniafB()};>0 motion, and a nondecreasing
function £ : (0, co) — (0, o0), by the Kolmogorov—Petrowski integral test,

[B(r) <~/2t f(t) fort > T, for someT = T (w) < oo}
iS a zero-one event, or in other words,
P{B(1) < /2t f (1) ultimately as — oo} =0 or 1
with the probability being 1 if and only if

@ exp—f(n?}dt <oo  for somer =0
fo

[e.g., Bingham (1986), page 436]. From this we get that

(4.1)

B(1)? 3inininr .
P{ ;t) <Inlnz+ — ultimately ag — oo} =0.

Consider the following? -s.s. procesX:

B 2
4.2) X@t) =1 exp{exp[%“ fort > 0.
From (4.1) it follows readily that
X
Iimsupﬁ =00 w.p.1 fory e R.
t—00 14

Hence, the storage proceB§) in (1.1), with inputX given by (4.2), is not finite

valued for anyr > 0. [Incidentally, using the fact thdtB(1/7)};>0 < {B()};>0
together with (4.1), it can be seen that the procéss not bounded at zero.]

4.1.1.d. H-s.s. processes. In this section, X denotes the i.dH-s.s. process
given in Example 1, which is assumed to satisfy CondifioiNotice that, by (2.6),
X is nonnegative, iff is nonnegative (nonpositive) andis zero on(—oo, 0]
([0, 00)).

Denoting, fors > 0,

Ht 1)~
i gy Fs/0) and o_(s)"t=s" sup Fs/0) ,
reQ+ 1+ct? reQ+ 1+ct?

oi(s)t=s
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we have, by (2.8), for large enough,

R(u)_H/ w(R\ [—o_(s)u, O’+(S)M])
(4.3)

N

_H/ r(ox(s)u) +r(— cr_(s)u))ﬁ

EXAMPLE 3. Letr be symmetric, with- € RV(—p) for somep > 0. By (2.2),
it follows that X is symmetric. Assume that for some- 0,

(4.4) /OO(G+(S)_(,;+5) 4 G_(s)—(/ﬂrs)) é < 00.
0 N
Then by (4.3), we have
(4.5) R(u)~H /()oo(cr+(s)_p +o_(s)"") ﬁr(u) asu — oo.
s

Thus part (ii) of Corollary 1 shows that the Piterbarg property holds/for H,
and part (iii) of Corollary 2 gives the strong Piterbarg property fap = o(ul/?).

In Example 3, symmetry gives us (3.23), for free. Without symmetry, we may
still establish the Piterbarg properties, by direct verification of (3.23) [or (3.22)].

EXAMPLE 4. Takef nonnegative, and not identically zero. Assume that

reRV(—p) and r(—)eRV(—p) with lim supr(_u)

u—00 r\u

< 00,

for some constang > 0. Under the condition (4.4), we see that (4.5) holds with
o_(s) =0. Further, as in (4.5) by Theorem A, the limitin (3.23) is

</OOOSHP sup f(r)p%//ooosp sup  f(r)? — )

re(s,00)NQ re(s,00)NQ

x lim supr((_b;)
u—oo ru

< Q.
Hence the Piterbarg properties hold in the same way as in Example 3.

ExAamMPLE 5—Part|l. Pick constantd > 0 andx < (0, 1), and consider
4.6) rx)= g(x)e_Axa forx>0 and r(x)=0 forx <0,

whereg € RV(p) with p € R. Take f nonnegative, so thaf is nonnegative.
Let o4 (s) take its minimal value at a unigue> 0, whereo is two times
continuously differentiable &t with o} (§) > 0. By Taylor expansion in (4.3), we
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have
R(u) — Hu—ot/Z/OO g(0'+(§ + s/ua/z)u)e—A(U+(§+s/u°‘/2))°‘u°‘ ds
—§ue/2 s+ s/uoc/Z
H $)P 1 o
(4.7) ~ cu;(s) g(u)u—a/Z/Rexp{—A(o+(§) + 501(§)s2/ua) u“}a’s

N V2rHoy (5)”
§\/ Al (§) /o (51

Hence, part (i) of Corollaries 1 and 2 applies, ok 1 — «, to give the Piterbarg
property fory < H + (H A 1)/«, and the strong Piterbarg property for 0 with

i t(u) .
W Ty —a@—H/)HAD —

g(u)u~/2e=Ao+® Ut asu — oo.

0 for somen > «.

ExAmMPLE 5—Part1l. Here we continue the study of the case whegiven
by (4.6), in the particular case wheh= 1(0,1; (so thatX has independent incre-
ments). We show that, in this case, the Piterbarg property is absgnt, f# +1/c.

By Theorem 1 and (3.24), the Piterbarg property is absent when
1 P{ X(s)—X(r)

sup  sup—F———~- > u} > 1.

(4-8) lim sup
O<r<t/ul/(v—=H) szr 1+c(s—r)

U— 00 R(u)

Theorem A does not apply here, since suprema are taken over regions that depend
on u. However, the arguments for that theorem in Reki and Samorodnitsky
(1993) produce an asymptotic lower bound, for the probability in (4.8), which
implies the following sufficient condition for (4.8):

limsup
Uu— 00 R(u)
(4.9) x v{y e RONQ. sup sup YO =y u}
re(O,t/ul/r-HNAQse(ronQ L+ cls —r)Y
> 1.

Denoting the numerator in (4.9) b®,(#), we have, by the inequalitieg >
H+ 1/a and (1 — x)? <1 — (H A Lx for x € [0,1], together with (4.7)
[cf. (4.3)],

0
Ru:H/ ({x>0: Hy su su
@ 0 a Y Osrst/uli/)(V*H)Ser 1+c(s—1)Y

t/ul/(V—H) d
- [ ro My <
0 y

/OO <1+c(y—f/u1/(V‘H))V )dy
H r u
t

Jul/(y—H) yH 7

Lo.5(7) — Lo.1(y) }) dy
>U
y
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o0 YRR VR N BN
r(a@_,/uw—m)(L) e

t/ul/(y—H) y y
> H ~ r(a(y—t/ul/(V_H))< t/u” ) )—
- t/ult/ v—H) y y

AT 2

/exp{ (a(s)—i— Zo”(§)s? Ju® ) (u“—(H/\l)%)}ds

~ R(u) exp{Aa(f)“(H A 1);} asuy — oo.
S

This gives (4.9). [If nervous about this calculation, shrink the domain of integration
from [t /ul =) 00) to § + K /u®/2, and senK 1 oo at the end.]

4.2. a-stable processes. First we consider a storage proceEs with an
a-stableH -s.s. input procesk.

EXAMPLE 6. Let X be a strictly «-stable H-s.s. process, that satisfies
ConditionX, and is given by (2.7), wher# is a strictlyx-stable random measure
(SaS if @ =1). By calculations similar to those in Examples 3 and 4, we have

ol (1B (i)
Ru)=1Au ﬂ(7?}$961555

1+8 (fi(s)F)™
T2 25? (L+ctr)e ) W) dA ().

We assume that the above integral is nonzero, soRhsmot identically zero.

Provided thatX satisfies (3.23), Corollary 1 now gives the Piterbarg property
for any y > H, for the storage process, while Corollary 2 gives the strong
Piterbarg property for(x) = o(u/?). However, by Samorodnitsky (1988) [see
also Samorodnitsky and Tagqu (1994), Theorem 10.5.1], the limitin (3.23) is

1+ R .
</ (—ﬂ sup (f) +—lg sup (1) )wodk>
S\ 2 1c0,)nQ 2 c0.1)NQ
1— w1+ " -1
x </<—}8 sup (f) +—lg sup (£ )wodk) )
S\ 2 1c0,)NQ 2 c0.1)NQ

This ratio is finite, by the local boundednessXfand the assumption tha& is
nonzero.

Next we consider the Piterbarg properties (1.2), in the case when the pibcess
itself is a-stable. NowY is no longer a storage process, and the example simply is
to illustrate how unusual the Piterbarg property is for “usual processes.”
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EXAMPLE 7. ForY ={Y(s)}s>0 ana-stable processg, € (0, 2], we may write
Y =Y1— Y2+ pn, wherew : [0, 00) — R is a suitable function, whil¢Y1(s)}s>0
and {Y2(s)}s>0 are independent-stable processes, such that (for= 1,2

ands > 0)
exp{ —o . l01 (1 _ itan(ﬂ) sign(@)) } if a1,
E{eieyj(s)} _ J ) 2
exp{—ayj(s)|0|<l+i—sign(0)In(|9|))}, ifa=1,
T
for 6 e R.

Hereoy, (s is the scale parameter of tlaestable random variablg; (s). In the
Gaussian cage= 2, we may take’; = 0. We assume that satisfies Conditiotk,
from which it follows thatY1, Y> andu can be taken to satisfy Conditicf

We are going to investigate when the Piterbarg property (1.2a) holds.

d

CAasel. If Y1 # 0, then (1.2a) holds if and only if the f.d.d.’s &{ coincide
with those of a single:-stable random variable [Samorodnitsky and Tagqu (1994),
Theorem 10.5.1].

Case2. Ifyp < 0 anda > 1, then (1.2a) holds if and only if the f.d.d.'s &$
coincide with those of a single-stable random variable, andis constant.

To see this, notice thaty, and x must be constants di, 1] [Samorodnitsky
and Taqqu (1994), equation 1.2.11]. Given these properties, we have

P{ sup Y(s) > u}
s€[0,1]

(4.10) >P{{Y(r) > ulU{Y(s) > u}}

> 2P{Y (r) > u) — P{3(Y(r) + Y (5)) > u}
for r,s € [0,7]. If « > 1, then the second probability on the right-hand side is
o(P{Y (r) > u}), unlessoyy+y(s) = oy + ov(s)- By Minkowski’s inequality,
this happens if and only if (r) = Y (s) a.s. Ifa = 1, then the spectral measure
of (Y(r), Y(s)) [Samorodnitsky and Taqqu (1994), Section 2.3] is supported on
Sy = {(s1,52) € R?:52 4+ 52 = 1,51, 50 < 0}, and [Samorodnitsky and Taqgqu
(1994), Example 2.3.4]
Y@)+Y(s)
2

2
iY(r)——(/ Sl+s2|n]s1+s2]dr(s)—f slln|51|dF(s)).
w \Js; 2 2 Sy
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By a convexity argument, unles&r) = Y (s) a.s., the term%(- -+) on the right-

hand side is strictly positive, so that the second probability on the right-hand side
in (4.10) iso(P{Y (r) > u}) [Samorodnitsky and Tagqu (1994), equation 1.2.12].
See Talagrand (1988) and Albin (1999) for more information related to Case 2.

CAsSE3. IfY: 2 0 anda < 1, then (1.2a) holds (in the sense gbG= 1) since
Y> is nonnegative.

SPECIAL CASE  If Y is Sa S, then (1.2a) holds if and only if the f.d.d.'s &f
coincide with those of a singke-stable random variable.

Turning to (1.2b), withv = f(u) — oo asu — oo, the above characterizations
remain valid [with (1.2b) replacing (1.2a)], if appropriate global boundedness
properties are imposed df? andu in Case 1, and op in Case 3.
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