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SURVIVAL AND EXTINCTION IN A LOCALLY
REGULATED POPULATION

BY A. M. ETHERIDGE1

University of Oxford

Bolker and Pacala recently introduced a model of an evolving population
in which an individual’s fecundity is reduced in proportion to the “local
population density.” We consider two versions of this model and prove
complementary extinction/persistence results, one for each version. Roughly,
if individuals in the population disperse sufficiently quickly relative to
the range of the interaction induced by the density dependent regulation,
then the population has positive chance of survival, whereas, if they do
not, then the population will die out.

1. Introduction. For over a century, branching processes have been used
to model the evolution of biological populations. The classical Galton–Watson
process models the total population size, and if, in addition, during their lifetime
individuals are assumed to follow independent Brownian motions (or random
walks) then we arrive at branching Brownian motion (or branching random
walk). This process can then be used to model the evolution of a population
that is dispersed in space. For large populations, Feller (1951) observed that, in
suitable units, one can approximate the evolution of the population size by a one-
dimensional diffusion. This idea can be extended to the spatial setting, leading to
the Dawson–Watanabe superprocess (also known as superBrownian motion).

However, all such models have long been known to be deficient. The most
obvious problem is that for finite populations, branching processes do not predict
a stable population size: either the population will die out or it will grow
without bound. In the spatial setting, one attempt to combat this is to consider
infinite populations, evolving in the whole of d-dimensional Euclidean space.
Although in at least three spatial dimensions, the branching Brownian motion and
superBrownian motion models both have a nontrivial equilibrium, most biological
populations live in two spatial dimensions and in (one and) two dimensions, the
branching Brownian motion and superprocess models do not have an equilibrium
distribution. Worse, if not extinct, at large times, the process will form “clumps”
of arbitrarily large density and extent [Felsenstein (1975)].

A drastic solution to the first of these shortcomings is to condition the total
population to be constant (or otherwise exogenously specified). This leads to
the Wright–Fisher and Moran models or, in the superprocess setting, to the
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Fleming–Viot process. Unfortunately, for large populations, this does not combat
the problem of clumping and, moreover, we still require a satisfactory model
for the population size. An alternative and popular, approach is to restrict the
population to live in discrete “demes,” each of which is of a fixed size. This is
the so-called stepping-stone model [Kimura (1953)]. However, for populations
evolving in continua, this restriction to discrete demes is unnatural and the fixed
size of the demes may disguise important effects arising from random fluctuations
in the local population density [see Barton, Depaulis and Etheridge (2002) for a
discussion of this issue]. In particular, although the stepping stone model may give
good predictions, the parameters of the model should be replaced by “effective
parameters” whose values are determined by detailed local structure.

Rather than having an exogenously specified (global) population size, one
expects that a real population should be regulated by local rules. It is natural, for
example, to suppose that an individual living in a crowded region will have fewer
offspring reach maturity than one living in a sparsely populated region. In one
spatial dimension, Mueller and Tribe (1994) study a stochastic partial differential
equation that can be used to model the population density, defined as a positive
function on R, for such a population. In this model, the reproductive success of
an individual decreases linearly with the local population density. More precisely,
they study the following equation:

ut = 1
6uxx + u(θ − u) + u1/2Ẇ , t > 0, x ∈ R, θ > 0,(1)

where Ẇ is space–time white noise and u(0, x) is a positive function, of compact
support. (The constant 1/6 in front of the dispersal term arises from their
construction of the solution as a limit of rescaled contact processes and is of
no greater significance.) They say that the process survives if, for all t > 0,
u(t,0) �≡ 0. Mueller and Tribe proved the following result.

THEOREM 1.1 [Mueller and Tribe (1994)]. There exists a constant θc > 0, not
depending on u(0, ·), such that:

(i) if θ < θc , then P[u(t, x) survives ] = 0,
(ii) if θ > θc , then P[u(t, x) survives ] > 0.

This model cannot be extended to higher spatial dimensions, for then,
if a solution to equation (1) were to exist, it would be distribution valued
[Walsh (1986)] which renders the nonlinear term meaningless. Moreover, for the
analogous rescaling of the contact process in dimensions bigger than one, the limit
process degenerates to superBrownian motion [Durrett and Perkins (1999)].

In Bolker and Pacala (1997) a model is proposed, based upon branching random
walk, in which the mean number of offspring of an individual at x is again
governed by the “local population density,” but this is now defined as a weighted
sum of the entire population, with weights depending only on distance from x.
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For example, an individual’s fecundity could be reduced according to the size of
the population in an open neighborhood around her. The model makes sense in
any spatial dimension and is easily adapted to the branching Brownian motion,
stepping stone and superprocess settings.

Our results are concerned with extinction and persistence of models of the
Bolker–Pacala type. We shall prove an extinction result for a superprocess version
of the model and a survival result for a stepping stone version. Although we
have shamelessly chosen the simplest cases, we believe that the key ideas for
proving the corresponding results for all versions of the Bolker–Pacala model
are contained in these examples. Our decision to present an incomplete result
followed the realization that not only was the paper becoming repetitive, but also
the notation and technicalities were spiralling out of control and obscuring the
essentially simple structure of the proofs.

Before stating our result, we must be more precise about the model. First we
describe the superprocess version of the Bolker–Pacala model. From now on, angle
brackets are used to denote integration, thus for a function φ and a measure µ,

〈φ,µ〉 ≡
∫

Rd
φ(x)µ(dx).

The state of the population at time t is described by a measure, Xt . Writing P for
the distribution of the process {Xt }t≥0, for suitable test functions φ,

Mt(φ) � 〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0

〈1
2�φ,Xs

〉
ds

−
∫ t

0

〈
α

(
M − 〈h(‖x − y‖),Xs(dy)〉)φ(x),Xs(dx)

〉
ds

(2)

is a P-martingale with quadratic variation

[M(φ)]t =
∫ t

0
γ 〈φ2,Xs〉ds.

This differs from the Dawson–Watanabe superprocess martingale problem only in
the local regulation term involving α, M and h. Here α, γ and M are positive
constants that determine, respectively, the rate of reproduction in the population
(in the branching random walk model this corresponds to the inverse of the mean
inter-generation time), the variance of the number of offspring of individuals in
the population and the carrying capacity of the neighborhood of an individual.
The “neighborhood” is determined by the function h : R+ → R+, that we shall
refer to as the interaction kernel. If h is an indicator function, χ[0,R] say, then
the neighborhood of an individual is simply the ball of radius R centred on that
individual. More generally, one might expect that the impact on the reproductive
success of an individual at x of an individual at y should decrease with ‖x−y‖ (the
physical separation of the individuals), and so we shall take h to be a monotone
decreasing function on R+. (Although we shall take h to be bounded, one can also
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allow singular interaction kernels, see Remark 3.4.) One cannot expect to construct
the process (nontrivially) for arbitrary initial measures, there has to be some control
over the rate at which they “grow” at infinity. We shall give a formal definition of
the process in Section 2 (Definitions 2.1–2.3) where, in particular, an appropriate
state space for the process, tempered measures, will be described in detail. This
class includes Lebesgue measure. In the case of infinite initial measures, we
impose two additional assumptions. First we require a decay condition on h to
prevent instant catastrophe for the population [equation (3) below]. Second, since
we have not proved uniqueness of the solution to the martingale problem for
infinite initial measures, we restrict ourselves to those solutions that are obtained
as rescalings of branching particle systems as described in Definition 2.3.

NOTATION 1.2. An interaction kernel is a bounded, monotone decreasing
function h : R+ → R+. In the context of the superprocess version of the Bolker–
Pacala model with an infinite initial measure, h is assumed to satisfy the additional
condition ∫ ∞

0
h(r)rd−1 dr < ∞.(3)

Now suppose that we are working with a subdivided population, restricted to
live on the lattice Z

d . We denote the size of the population in deme i ∈ Z
d at time t

by Xt(i). As above, α and M will be positive constants, but now the Laplacian
will be replaced by a migration matrix (mij )i,j∈Zd , and the interaction kernel, h, is
replaced by an interaction matrix, (λij )i,j∈Zd . Both the migration and interaction
matrices have only nonnegative entries and are assumed to be nondiagonal. We
shall also take mij and λij to be functions of j − i alone and assume that∑

j

mij ,
∑
j

λij < ∞.(4)

Notice that this second condition reflects equation (3).

DEFINITION 1.3. We shall say that the population follows the stepping stone
version of the Bolker–Pacala model if its evolution is described by the following
system of stochastic differential equations:

dXt(i) = ∑
j∈Zd

mij

(
Xt(j) − Xt(i)

)
dt

+ α

(
M − ∑

j∈Zd

λijXt (j)

)
Xt(i) dt +

√
γXt(i) dB

(i)
t ,

(5)

where {{B(i)
t }t≥0}i∈Zd is a collection of independent Brownian motions.
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Much of the elegant mathematics that arises in the study of branching process
models stems from the branching property: the distribution of the process started
from µ1 + µ2 is the same as that of the sum of two independent copies of the
process started from µ1 and µ2, respectively. The interaction (local regulation)
in (2) and (5) destroys this convenient property as it is no longer the case that,
once born, individuals in the population evolve independently of one another.
As a result, the distribution can no longer be characterized in terms of a partial
differential equation. The form of the nonlinearity destroys monotone dependence
on the initial condition (at least for nonconstant h) and ensures that the moment
equations are not closed (the equation for the first moment involves the second and
so on). Consequently, analytic results are hard to obtain and our knowledge of the
process is heavily dependent upon computer simulations.

In addition to simulations, Bolker and Pacala (1997, 1999) use moment closure
to study the process. The idea is that one should ignore the higher order moments
(i.e., set them equal to zero) and thus “close off” the moment equations. In fact,
they set the third moment to be zero. In their model, after forty generations
or so, they remark that their simulations appear to have arrived at a “statistical
equilibrium” for the process and they use the moment equations to discuss this
supposed stationary distribution. There are of course reasons to be wary. The
process is a spatial analogue of the following Feller diffusion with logistic growth,

dxt = αxt(M − λxt) dt + √
γ xt dBt ,(6)

where Bt is Brownian motion and λ is yet another positive constant. This
diffusion will, with probability one, hit zero in finite time. (This is, of course,
in stark contrast to the corresponding deterministic equation.) For equation (6),
this moment closure does not predict a stationary distribution, but neither does it
correctly predict the long time behavior of the process.

DEFINITION 1.4. 1. We shall say that the superprocess (resp. stepping stone)
version of the model suffers local extinction if for each ε > 0, P[〈χB(0,1),Xt 〉 >

ε] → 0 (resp. P[Xt(0) > ε] → 0) as t → ∞, where B(0,1) is the ball of radius
one centered on the origin.

2. We shall say that the superprocess (resp. stepping stone) version of the
model survives if there exist ε, δ > 0 such that lim inft→∞ P[〈χB(0,1),Xt 〉 > ε] > δ

(resp. lim inft→∞ P [Xt(0) > ε] > δ).

If the population is evolving in a compact space, then we expect that it should
die out in finite time, but for infinite environments, by analogy with equation (1),
one might hope that for some choices of parameter the process will survive. In this
setting, the form of the interaction kernel will play a critical rôle. If the interaction
is too “long range” (measured from the perspective of the rate of dispersal of
individuals in the population), then the population will die out. This is true even
for infinite initial measures. Roughly, for the population to survive, families must
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disperse fast enough (in relation to the interaction kernel) that they colonize new
sites before being killed by overcrowding. Law, Murrell and Dieckmann (2003)
independently arrived at this conclusion using simulations of the population.
Although our primary interest is in two dimensions, our results remain valid for
all dimensions. More precisely, we prove the following theorem.

THEOREM 1.5. 1. For each fixed interaction kernel h and γ,K > 0 there
exists α0 = α0(K,γ,h) such that for α > α0, the superprocess version of the
Bolker–Pacala model with parameters (h,K/α,α, γ ) started from any finite initial
measure dies out in finite time. If h also satisfies (3), then when started from any
tempered initial measure (with p > d) the process with these parameters suffers
local extinction.
2. Let α > 0 be fixed.

(a) If the interaction kernel h is such that r2−δh(r) is unbounded for
some δ > 0, then for each fixed γ > 0, there is an M0 > 0 such that for
M < M0 the superprocess version of the Bolker–Pacala model with parameters
(h,M,α,γ ) started from any finite initial measure dies out in finite time. If
h also satisfies (3), so that in particular d = 1, then when started from any
tempered initial measure (with p > 1) the process with these parameters suffers
local extinction.

(b) Suppose that the population {{Xt(i)}i∈Zd }t≥0 evolves according to the
stepping stone version of the Bolker–Pacala model, then if mij > cλij , for some
c > 0, then there exists M1 > 0 such that for M > M1 the process survives for
all time with (strictly) positive probability (started from any nontrivial initial
condition).

REMARK 1.6. 1. For infinite initial measures, because we have not proved
uniqueness of the solution to the martingale problem, we define the superprocess
version of the model to be the limit of rescaled branching particle systems (see
Definition 2.3).

2. The results in (2) in some sense complement one another. Suppose that
we approximate our continuous (superprocess) version of the model by a stepping
stone model in which demes are separated by distance r . The coefficients in the
migration matrix represent the rates at which individuals migrate between demes
and will scale therefore (in the case of Brownian spatial motion) with r−2. Roughly
then, the condition mij > cλij is equivalent to r−2 > ch(r). In other words r2h(r)

is bounded. [In two spatial dimensions, the integrability condition (3) ensures this.]
If the spatial motion of individuals were a stable process of index β ∈ (0,2) rather
than Brownian motion, then this condition would be replaced by the condition that
rβh(r) be bounded.

3. The integrability condition (3) is included specifically to allow us to
construct the process from a translation invariant initial state such as the Lebesgue



194 A. M. ETHERIDGE

measure. If the process is to survive then (at least in two dimensions) one might
hope for a translation invariant stationary distribution (see Section 3). If r2−δh(r)

is unbounded, then there is a problem even constructing the process started from
such a distribution which suggests that we should be able to set M0 = ∞ in 2(a).
Our methods do not seem to be sufficiently powerful to capture this.

To prove extinction, we shall dominate the population by a process of “clusters,”
with the number of clusters evolving according to a subcritical branching process.
This is rather similar to the proof of the corresponding part of Theorem 1.1,
although the fact that our process involves interactions between individuals at
different spatial locations means that we cannot crib directly from Mueller and
Tribe (1994). It is also this “nonlocal” nature of the interaction that invalidates
the comparison results that are combined with a comparison with an oriented
percolation process in Mueller and Tribe (1994) to prove the second half of
Theorem 1.1, necessitating a somewhat different approach to the comparison here.
(It is because the case of diagonal interaction matrices is essentially covered by
the Mueller and Tribe result that we exclude it here.) Nevertheless, to prove the
second half of Theorem 1.5 we do compare the process to an oriented percolation
process, that is, to a discrete time version of the contact process. The reader is
refered to Durrett (1995) for very general comparison techniques for interacting
particle systems.

Extinction in the superprocess setting is associated with clumping of the
process. The density dependent regulation term in the Bolker–Pacala model is
introduced to overcome the clumping and we shall see in Section 3, via an heuristic
argument, that survival of the process is a reflection of successful eradication of
clumping.

The rest of this article is laid out as follows. In Section 2 we introduce
notation and give a precise description of the superprocess version of the model.
In Section 3 we present an heuristic argument to show why we should expect
Theorem 1.5 to hold. In passing we also record some facts about the Dawson–
Watanabe superprocess that dictate the restriction on the possible forms of singular
interaction kernels alluded to above. We recall these facts without proof. The
reader seeking an introduction to superprocesses (with and without interactions) is
referred to Dawson (1993), Etheridge (2000), Le Gall (1999) and Perkins (2000).
In Section 4, we illustrate the method of proof of extinction by applying it to the
diffusion (6). This will also be useful in explaining why our extinction proof breaks
down if the parameter M is too large. In Section 5 we prove the extinction result
via a comparison with a subcritical (age-dependent) branching process. A sketch of
the proof of survival for subdivided populations is provided in Section 6. Finally,
Section 7 is a brief discussion of the result and some avenues for future research.

2. Notation and description of the process. In this section we fix our
notation and give a precise description of the superprocess version of the Bolker–
Pacala model.
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First some notation. We write MF (Rd) for the space of finite measures on R
d ,

assumed to be endowed with the weak topology. The space of p-tempered
measures on R

d , that is, the space of locally finite measures, µ, such that∫
Rd

φp(x)µ(dx) �
∫

Rd

1

(1 + ‖x‖2)p/2 µ(dx) < ∞,(7)

will be denoted Mp(Rd). It is endowed with a natural coarsening of the weak
topology that we shall call the Cp(Rd)-topology. Cp(Rd) is our notation for the
space of functions of the form f + βφp, where f is a continuous function with
compact support on R

d , φp is the function implicitly defined in (7) and β ∈ R.
A sequence of measures {µn}n≥1 in Mp(Rd) converges in the Cp(Rd)-topology
to the limit µ if

〈φ,µn〉 n→∞−→ 〈φ,µ〉 ∀φ ∈ Cp(Rd).

The space of càdlàg (right continuous with left limits) mappings from R+
to Mp(Rd) will be denoted by D(R+,Mp(Rd)), or more concisely by �, as
(for p > d) this will provide a state space for the process started from infinite
initial measures. We abuse notation and use the same notation for the space
D([0,∞),MF (Rd)), which is the state space for the process started from a finite
initial measure. We always assume that � is endowed with the natural filtration,
{Ft}t≥0.

We shall denote our process by {Xt }t≥0, and characterize its distribution as the
solution to a martingale problem.

First suppose that we are interested in finite populations. The model is specified
in terms of a bounded positive function h : R+ → R+ and three positive constants,
M , α and γ . We use � to denote the Laplacian on R

d and D(�) for its domain.

DEFINITION 2.1. For µ ∈ MF (Rd), the measure Pµ solves the BP-martingale
problem with parameters (h,M,α,γ ) if Pµ[X0 = µ] = 1 and for positive,
bounded functions φ ∈ D(�) of compact support,

Mt(φ) � 〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0

〈1
2�φ,Xs

〉
ds

−
∫ t

0

〈
α

(
M − 〈h(‖x − y‖),Xs(dy)〉)φ(x),Xs(dx)

〉
ds

(8)

is a Pµ (F·-) martingale with quadratic variation

[M(φ)]t =
∫ t

0
γ 〈φ2,Xs〉ds.(9)

In this case of a finite population, a process with the required distribution can
be obtained from the superBrownian motion using Dawson’s Girsanov transform,
and, indeed, precisely this model is used as an example of the use of the transform
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in Dawson (1993). Uniqueness of the solution to the martingale problem follows
from the version of Dawson’s Girsanov transform provided in Evans and Perkins
(1994). This in turn guarantees that, when started from a finite initial measure, the
process has the strong Markov property, a fact that we shall need in our proof of
extinction.

In order to construct the process from an infinite initial measure, we require a
decay condition on h, that ensures that the population does not suffer an instant
catastrophe.

DEFINITION 2.2. Suppose that the function h satisfies the additional condi-
tion ∫ ∞

0
h(r)rd−1 dr < ∞.(10)

For µ ∈ Mp(Rd) and p > d , the measure Pµ solves the BP-martingale problem
with parameters (h,M,α,γ ) if Pµ[X0 = µ] = 1 and for positive, functions
φ ∈ D(�) ∩ Cp(Rd), the expression (8) is a Pµ (F·-) martingale with quadratic
variation given by (9).

For infinite populations the Girsanov transform is no longer applicable, but
one can construct the process as a weak limit of rescaled (interacting) branching
particle systems by obvious analogy with the corresponding construction for the
classical superprocess. Our proof of the first part of Theorem 1.5 will exploit the
approximating branching particle system. For technical reasons, we always assume
that the initial measures for the approximating systems are finite, even if their limit
is infinite. Since we have not proved uniqueness of the solution to the martingale
problem in the case of an infinite initial measure, we must introduce the caveat
that our result only applies to solutions constructed in this way (see, however,
Section 7). We therefore make the following definition.

DEFINITION 2.3. We shall say that the population {Xt }t≥0 evolves accord-
ing to the superprocess version of the Bolker–Pacala model with parameters
(h,M,α,γ ) if either:

1. X0 ∈ MF (Rd) (with probability one) and the distribution of {Xt }t≥0 is the
unique solution of the BP-martingale problem with parameters (h,M,α,γ ),
or

2. X0 ∈ Mp(Rd) for some p > d and the distribution of {Xt }t≥0 is the solution to
the BP-martingale problem obtained by the limiting procedure described below.

We now, very briefly, describe the construction of the process as a limit of
branching particle systems. We pave the way for Sections 4 and 5 by constructing
a pair of processes {Xt ,Yt}t≥0, in such a way that {Yt}t≥0 is a supercritical
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superprocess and {Xt }t≥0 is a “subpopulation” of {Yt}t≥0 whose distribution solves
the BP-martingale problem.

The process {Yt }t≥0 is obtained as the limit of a sequence of purely atomic
measure valued processes {Yn

t }t≥0. We think of Yn
t as a population in which each

individual is represented by an atom of mass 1/n. The evolution of {Yn
t }t≥0 is

as follows. Each individual has an independent exponentially distributed lifetime,
with parameter γ n/σ 2, during which she moves around in space according to a
Brownian motion and at the end of which she leaves behind, at the location where
she dies, a random number of offspring with mean 1 + αM/n + O(1/n2) and
variance σ 2 + O(1/n). We augment this process by assigning an independent
uniform [0,1] random variable to each individual of {Yn

t }t≥0.
The process {Xn

t }t≥0 is a subpopulation of {Yn
t }t≥0. To describe the process, let

us assign the label 1 or 0 to each individual in the Yn· -population, according to
whether or not she is a member of the Xn· -population. At time zero all individuals
have label 1. If an individual has label 0, then so do all her descendants. If an
individual with label 1 dies at the spatial position x at time τ , then each of her
descendants has label 0 or 1 according as their uniform random variable, U ,
satisfies U < α

n
〈h(x − y),Xn

τ−(dy)〉 or U > α
n
〈h(x − y),Xn

τ−(dy)〉.
Notice that the net effect of this is that if an individual of the X-population

dies at time τ and spatial position x, her mean number of descendants (in the
X-population) is

1 + α

n

(
M − 〈h(x − y),Xn

τ−(dy)〉) + O

(
1

n2

)

and the variance of the number of offspring is σ 2 + O(1/n).
Provided that

Xn
0

w→ X0 as n → ∞,

the càdlàg measure-valued processes {Xn
t }t≥0 converge (weakly) to a solution

to the BP-martingale problem as n → ∞. Notice that the processes {Yn
t }t≥0

converge to a supercritical superprocess. This construction therefore guarantees
that, provided X0 ∈ Mp(Rd), we will have Xt ∈ Mp(Rd) for all t > 0.

We omit the details of the construction as they are completely standard, but let us
remark that one has to work directly with particle systems that evolve in Mp(Rd),
rather than follow the usual route of partitioning the infinite initial measure into
a countable number of finite pieces and summing independent copies of the
superprocess started from these finite measures. This is once again because the
branching property is destroyed by our interaction. Details of particle system based
constructions of superprocesses can be found in our references on superprocesses.
General results on convergence of stochastic processes can be found in Ethier and
Kurtz (1986).
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3. Rescaling and heuristics. In this section we rescale the model according
to a rescaling under which the classical (critical) Dawson–Watanabe superprocess
is invariant (up to a change in initial condition). We discuss the (heuristic) implica-
tions of the rescaling at the end of the section. Not only will it explain the critical
rôle of the asymptotic behavior of θ2h(θ) in determining extinction/survival of the
population, but we will also see that, in two spatial dimensions, survival of the
process reflects eradication of clumping.

To this end, we define a new process Xθ by

〈φ,Xθ
t 〉 �

〈
1

θ2 φ

(
x

θ

)
,Xθ2t (dx)

〉
,(11)

for all φ ∈ D(�) for which the integral is defined.

REMARK 3.1. In order for our initial condition to be invariant under this
rescaling one typically chooses X0 to be Lebesgue measure in two dimensions
or, more generally, to have density |x|2−d with respect to Lebesgue measure
in dimension d . Notice that for this choice of X0, if h(r) ≥ 1/r2 as r → ∞
then 〈h(x, y),X0(dy)〉 is infinite and there are problems even constructing the
superprocess version of our model.

LEMMA 3.2. The distribution of the process {Xθ
t }t≥0 solves the BP-martinga-

le problem (with initial condition Xθ
0 and) with parameters (hθ ,M, θ2α,γ ), where

hθ (r) = θ2h(θr).

PROOF. It is convenient to write

φθ(x) = 1

θ2 φ

(
x

θ

)
.

The proof is an elementary manipulation of the martingale characterization of the
distribution of Xt : substituting into (8) we see that

〈φ,Xθ
t 〉 − 〈φ,Xθ

0〉 −
∫ θ2t

0

〈 1
2�φθ,Xs

〉
ds

−
∫ θ2t

0

〈
α

(
M − 〈h(‖x − y‖),Xs(dy)〉)φθ(x),Xs(dx)

〉
ds

(12)

is a Pµ (F·-) martingale with quadratic variation

∫ θ2t

0
γ

〈
(φθ)2,Xs

〉
ds.
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First observe that∫ θ2t

0

〈
α

(
M − 〈h(‖x − y‖),Xs(dy)〉)φθ(x),Xs(dx)

〉
ds

=
∫ t

0

〈
αθ2

(
M −

〈
1

θ2
hθ

(∥∥∥∥x

θ
− y

θ

∥∥∥∥
)
,Xθ2s(dy)

〉)
1

θ2
φ

(
x

θ

)
,Xθ2s(dx)

〉
ds

=
∫ t

0

〈
αθ2(

M − 〈hθ(‖x − y‖),Xθ
s (dy)〉)φ,Xθ

s (dx)
〉
ds.

Now change variable in the other integrals in (12) and use that

�φθ(x) = 1

θ4
�φ

(
x

θ

)
,

to see that

〈φ,Xθ
t 〉 − 〈φ,Xθ

0〉 −
∫ t

0

〈 1
2�φ,Xθ

s

〉
ds

−
∫ t

0

〈
θ2α

(
M − 〈hθ(‖x − y‖),Xθ

s (dy)〉)φ(x),Xθ
s (dx)

〉
ds

(13)

is a Pµ (F·-) martingale with quadratic variation∫ t

0
γ 〈φ2,Xθ

s 〉ds,

as required. �

Notice now that if r2h(r) → ∞ as r → ∞, then hθ grows without bound as
θ → ∞. This suggests that the negative part of the drift in (13) will eventually
dominate and the process will die out.

REMARK 3.3. If the spatial motion were a stable process of index β , then the
rescaling

〈φ,Xθ
t 〉 �

〈
1

θβ
φ

(
x

θ

)
,Xθβt (dx)

〉
,

would lead to a solution to the martingale problem with parameters (hθ ,M,

θβα, γ ) where

hθ (r) = θβh(θr).

For interaction kernels that decay more quickly, this rescaling also leads to an
heuristic argument that the process will survive (at least for some choices of the
other parameters) provided we are not working in the delicate case of dimension
two. To see this, and also to explain the restriction on the possible forms of singular
interaction kernel, we recall some well-known facts about the Dawson–Watanabe
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superprocess. Recall that for a finite random measure X on R
d , the associated

Campbell measure, Q, on MF (Rd) × R
d is defined by

Q(A × B) = E[χA(X)X(B)].
If the mean measure, I , is now defined by

I (B) = E[〈χB,X〉],
then the Palm distributions, P

(x), are characterized by∫
Rd

∫
MF (Rd )

g(x,µ)P(x)(dµ)I (dx) =
∫
MF (Rd )

g(x,µ)µ(dx)P(dµ).

The intuitive idea is that if (X,Y ) denote the coordinate variables in
MF (Rd) × R

d , then under the Campbell measure, Y is a point chosen at random
according to X and P

(x) is the conditional distribution of X given that Y = x. For
example,

P
(x)[〈χB(x,r),X〉],

tells us the expected amount of mass in a ball of radius r about the point x,
conditional on x being a point in the support of X.

We define ψd(r) by

ψd(r) ∼



r, d = 1,
r2 log(1/r), d = 2,
r2, d ≥ 3.

In the case of the (critical) Dawson–Watanabe superprocess [corresponding to
α = 0 in (8)] denoted by Zt , it is an easy calculation to check that

lim
r↓0

P
(x)

[ 〈χB(x,r),Zt 〉
ψd(r)

]
= kd,(14)

where the constant kd is universal if d ≥ 2, but may depend on x, t and Z0 if d = 1
[see, e.g., Proposition 6.20 of Etheridge (2000)]. In other words, for “typical”
r and x sampled from the support of the superprocess, the amount of mass in a
ball of radius r about x is ∼ ψd(r) as r ↓ 0.

In dimensions at least three, if x is a typical point of the support of the
superprocess, then 〈hθ(‖x − y‖),Zt (dy)〉 will be O(1) as θ → ∞. In fact, the
same is true in one dimension once one has chased through the dependence of k1
on Z0. This gives us hope that, at least for some parameters, our interacting process
will survive. In two dimensions, however, the same quantity will grow like log θ

as θ ↑ ∞ and thus, in particular, dominate M . This suggests that for large θ ,
provided that the estimate (14) holds good, the process {Xθ

t }t≥0 can be compared
to a subcritical superprocess (corresponding to h = 0, α < 0) and, in particular,
we cannot expect a nontrivial long-time limit. However, after our rescaling, in
two dimensions, the estimate (14) is really a reflection of the large scale clumps
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in the superprocess model that our density dependent regulation is specifically
designed to banish. Survival of the population will reflect successful eradication of
clumping.

REMARK 3.4. As we remarked in the Introduction, it is possible to construct
the process even for certain singular interaction kernels. The equation (14)
determines the restrictions that we require on the singularity: 〈h(‖x −y‖),Zt (dy)〉
should be finite for almost all x from the support of the superprocess Z. This
requires

∫
0+ h(r)ψ ′

d(r) dr to be finite.

4. Applying the extinction proof to equation (6). In this section we illustrate
the proof of the first part of Theorem 1.5 by applying it to prove the following
lemma.

LEMMA 4.1. For any choice of (strictly) positive constants α, M , λ and γ ,
the solution xt to equation (6) will hit zero in finite time.

Our method is by no means the easiest way to prove this result, but it is useful
in explaining the idea, and the limitations, of our method of proof of extinction.

The idea is simple. We think of {xt}t≥0 as being partitioned into distinct
families. We then compare the evolution of the process to one in which fecundity
is reduced, not in proportion to the whole population, but instead according to the
size of an individual’s own (extended) family. That we can make this comparison
is a consequence of the following lemma.

LEMMA 4.2. Suppose that x0 = x1
0 + x2

0 for some x1
0 , x2

0 ≥ 0. Then we
can construct a triple {xt , x

1
t , x2

t }t≥0 such that the marginal processes, {xt }t≥0,
{x1

t }t≥0, {x2
t }t≥0, are (weak) solutions to equation (6) with initial conditions x0,

x1
0 , x2

0 , respectively, and such that

xt ≤ x1
t + x2

t ∀ t ≥ 0.

PROOF. In order to mimic our construction in the spatial setting as closely as
possible, we proceed by constructing a (tight) sequence of processes, {{xn

t , x
1,n
t ,

x
2,n
t }t≥0}n≥1, in such a way that

xn
t ≤ x

1,n
t + x

2,n
t ∀ t ≥ 0, n ≥ 1,

and any limit point of the sequence has the desired marginal distributions.
First we choose a sequence of initial conditions in such a way that

(xn
0 , x

1,n
0 , x

2,n
0 ) → (x0, x

1
0 , x2

0) as n → ∞
and nxn

0 , nx
1,n
0 , nx

2,n
0 ∈ N for all n ∈ N.
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Exactly as for our construction of the process in Section 2, we start with a
sequence of auxiliary processes, denoted {{yn

t }t≥0}n≥1. Since there is no spatial
component, yn

t can be taken to be the size of the Yn
t population described in

Section 2, measured in units of size n. The limit as n → ∞ will solve equation (6)
with λ = 0 and y0 = x0. In other words the limit is a supercritical continuous state
branching process, started from x0. Once again we augment the process {yn

t }t≥0
by equipping each individual with an independent uniform [0,1] random variable
and a label.

Only the label will be more complex. It will take the form {i, j, k}, where
i ∈ {1,2} and j, k ∈ {0,1}. It is natural to choose yn

0 = xn
0 for all n. We then assign

the label i so that nx
i,n
0 individuals of the yn

0 -population have label i. This label
will be passed down from mother to child and so simply refers to the type of the
ancestor at time zero. The label j is 1 or 0 according to whether the individual
forms part of {xn

t } or not, and k is 1 or 0 according to whether the individual is
in {xi,n

t } or not. Note that all individuals in x1,n (resp. x2,n) have i = 1 (resp.
i = 2).

The assignment of the labels j and k is determined as follows. For all
individuals j = 1 = k at time zero. If a parent has j = 0, so do her descendants. If
an individual with label j = 1 dies at time τ , then each of her descendants (in the
tree determined by the yn-population) has label j = 0 or j = 1 according as their
uniform random variable U satisfies

U <
αλxn

τ−
n

or U >
αλxn

τ−
n

.

Finally we turn to the label k. If a parent has k = 0, so do her descendants. If a
parent has label (i,0,1) her descendants have label (i,0,0) or (i,0,1) according
as

U <
αλx

i,n
τ−

n
or U >

αλx
i,n
τ−

n
.

The only slightly tricky case is if the parent has type (i,1,1). We wish to arrange
that no individual will ever have label (i,1,0). The label of each descendant
of a type (i,1,1) individual is therefore determined by the following rules: if
U > αλx

i,n
τ−/n, then k = 1 and j is determined as above. If U < αλx

i,n
τ−/n, then

we consider two cases separately. If U < αλxn
τ−/n, then the offspring is of type

(i,0,0). If

αλxn
τ−

n
< U <

αλx
i,n
τ−

n
,

then the offspring is of type (i,1,1), but another individual, sampled at random
from those of type (i,0,1) has her type changed to (i,0,0). [Note that we can
always do this since if there does not exist an individual of type (i,0,1), then
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all individuals from x
i,n
τ− have label j = 1 and so belong to xn

τ−, which implies

xn
τ− ≥ x

i,n
τ−.]

Since the xi,n-population is exchangeable, this process of removing an individ-
ual of type (i,0,1) from the xi,n-population to avoid the creation of an (i,1,0)

individual, retains the distribution of x
i,n
t as that of continuous time branching in

which a death at time τ leaves mean number of offspring(
1 + α(M − λx

i,n
τ−)

n

)

and the variance of the number of offspring is σ 2 + O(1/n).
With these definitions,

xn
t ≤ x

1,n
t + x

2,n
t .

Tightness is a triviality and evidently any limit point has the right marginal
distribution and so the proof is complete. �

PROOF OF LEMMA 4.1. First recall [e.g., from Knight (1981)], that the
natural scale of the diffusion governed by (6) is given by

s(x) =
∫ x

1
exp

(
−

∫ y

1

2α

γ
(M − λz) dz

)
dy.

Now for a given constant A and 0 < x < A, the probability that the process hits A

before it hits zero, given that it starts from x, is given by

s(x) − s(0)

s(A) − s(0)
=

∫ x
0 exp(− ∫ y

0 (2α/γ )(M − λz) dz) dy∫ A
0 exp(− ∫ y

0 (2α/γ )(M − λz) dz) dy
.(15)

We now apply Lemma 4.2 iteratively. Suppose that x0 = η. Then, for any N ∈ N,
the solution to equation (6) is dominated (in law) by the sum of N independent
copies of the solution to (6) with initial value η/N . We shall refer to these solutions
as clusters.

Each cluster is allowed to evolve until it hits either zero or A (with the
constant A to be chosen). The expected time before it does one or the other is
finite. If it hits A, then it is subdivided into N new clusters that form the next
“generation.” Evidently, the mean number of “offspring” of each cluster is

N
s(η/N) − s(0)

s(A) − s(0)
,

and using equation (15), provided N is sufficiently large that ηλ/N < 2M this is
bounded above by

µ(η,M,α) = η∫ A
0 exp(− ∫ y

0 (2α/γ )(M − λz) dz) dy
.(16)
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Using the strong Markov property, we now go through the same process for each
offspring cluster. Thus each cluster has either zero or N offspring and provided that
Aλ/N < 2M , the expected number of offspring of a cluster is at most µ(A,M,α).

Now we choose A sufficiently large that µ(A,M,α) is less than one and N

sufficiently large that Aλ/N < 2M . The cluster process is then a subcritical (age
dependent) branching process and so dies out in finite time. �

Evidently the key to this proof is that we can choose A to be as large as we
please. The point is that if we consider our process as being made up of “family
trees,” then we are estimating the whole process from above by one in which
individuals are not killed according to the whole population, but instead only
according to their close relatives. If A is large, then the time until a cluster hits A

is long, by when the number of surviving clusters is small. This means that killing
according to close relatives at least constitutes killing according to a significant
proportion of the population. For small A, the estimate is poor as killing only by
close relatives is ignoring the bulk of the population.

5. Proof of Theorem 1.5 I: extinction. We now adapt the proof of the last
section to the spatial setting. Again the basic idea is that we kill an individual
in the population only according to its close relatives. However, the analogue of
Lemma 4.2 requires an extra twist as a naive approach fails. In order to justify
the relabelling of the individuals in xi,n· , we exploited exchangeability. If h is
nonconstant, then we lose that property. We therefore fix constants ρ,λ > 0 such
that λ = h(3ρ) [so h(r) > λ for r < 3ρ] and dominate the size of each family tree
by that of one in which local regulation is governed not by h, but by the constant λ

times the family size. In other words, until the diameter of a “cluster” of the process
is at least 6ρ, we dominate its mass by a solution to equation (6).

Again to formally construct the coupling, we work with a sequence of
approximating particle systems. Suppose then that {Xn

0 }n≥1 is a sequence of (finite)
purely atomic measures, all of whose atoms have mass 1/n, such that Xn

0 → X0
as n → ∞. The first step is to subdivide the initial measure in such a way that
each portion is contained in a ball of radius ρ. These portions play the rôle of
x1

0 and x2
0 of Lemma 4.2 in providing “ancestors” of clusters. Suppose then that

we are constructing the cluster descended from mass contained in the ball of
radius ρ centred on some point x0, denoted B(x0, ρ). Again we construct both
the process {Xn

t }t≥0 and the dominating process, that we now denote {X̃n
t }t≥0, as

subpopulations of a (supercritical) branching process, {Yn
t }t≥0. The evolution of

the Yn-process is precisely that described in Section 2. We also exploit precisely
the same device of attaching an independent uniform [0,1] random variable to
each individual in the Y -population.

An individual of Yn born of a parent in Xn at time τ and position x, will herself
form part of Xn if her uniform random variable satisfies

U >
α

n
〈h(x, y),Xn

τ−(dy)〉.
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We define X̃n exactly as before, by dictating that a descendant of an individual
in X̃n is also in X̃n if

U >
α

n
〈λ, X̃n

τ−〉
and moreover, as in Lemma 4.2, if necessary we perform a relabelling when a death
occurs so that it is always an individual that is not a part of Xn that dies. Note that
this relabelling does not alter the distribution of |X̃n|. The cluster is stopped when
either |X̃n| = A or 0 or Yn hits the boundary, ∂B(x0,3ρ), of the ball B(x0,3ρ),
but note that the Y and X̃-processes can be defined for all time.

Again we omit the proof of tightness of the approximating processes and
passage to the limit and move straight on to using the coupled (limit) processes
to prove our result.

We begin by proving part 1 of Theorem 1.5. Our second extinction result,
part 2(a), will require more work.

In the same way as in Section 4, we must estimate the number of clusters for
which |X̃| = A or Y hits ∂B(x0,3ρ) before |X̃| = 0. Evidently this is bounded by
the sum of the number of clusters of the Y -process that ever hit ∂B(x0,3ρ), plus
the number of clusters of the X̃-process that reach mass A before they hit zero.
(This is where we require that the Y and X̃ processes exist for all time.)

Consider first a single cluster that starts from mass η, contained in the ball
B(x0, ρ) at time zero. We assess the probability that the corresponding cluster
of the Y -process ever hits ∂B(x0,3ρ). Now the supercritical superprocess started
from η can itself be thought of as a Poisson number of independent clusters, with a
parameter that depends on time, but which is finite at any positive time. Moreover,
its support propagates at finite speed, so there exists p(ρ,αM) > 0 such that the
probability that the support ever hits ∂B(x0,3ρ) is

1 − exp
(−p(ρ,αM)η

)
.

Evidently p(ρ,αM) is monotone increasing in αM . [These standard results can
be found in our references on superprocesses. In order to prove 2(a) we will be
much more precise about the rate of spread of the Y -clusters.]

We now proceed as before, partitioning each surviving cluster and estimating
the number of these new clusters that survive to contribute to the next generation.
We are implicitly using the strong Markov property. This is valid as our
construction of the process enables us to compare the process to the sum of a
countable number of copies corresponding to a partition of the initial condition
into finite pieces. After such a partition, we are considering the process started
only from finite initial conditions and for that process uniqueness of the solution
to the martingale problem guarantees the strong Markov property.

Suppose then that a cluster contributes to the next generation, that is, either the
Y -process hits ∂B(x0,3ρ) or |X̃| = A before |X̃| = 0. When one of these events
happens, the total mass of the cluster is at most A and its diameter is at most 6ρ and
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so we can partition it into at most dd/2 ·3dN pieces (offspring), each contained in a
ball of radius ρ and each of mass at most A/N . The expected number of offspring
clusters is then at most

dd/2 · 3dN
(
1 − exp

(−p(ρ,αM)A/N
)) + dd/2 · 3dµ(A,M,α),

where µ is defined in (16). We wish to be able to choose this to be less than one. We
can no longer choose A to be arbitrarily large as that increases the first term which,
for large N , is about dd/2 · 3dAp(ρ,αM). Instead, we choose A small enough that
dd/2 ·3dAp(ρ,αM) < 1/2 and then, with A fixed, we choose α0 large enough that
for α > α0, dd/2 ·3dµ(A,K/α,α) < 1/2. By comparison with a subcritical spatial
branching process, the proof of extinction for α > α0 is complete.

To justify 2(a) we must work a little harder. We now fix α > 0. As before
we consider clusters of the process initially contained in a ball of radius ρ and
follow their evolution until (at the very latest) the time when they first hit the
exterior of a concentric ball of radius 3ρ. We will later take ρ to be large. The
process |X̃| is governed by equation (6) with λ = h(3ρ). We may assume without
loss of generality that h(3ρ) < 1 as by assumption (see Notation 1.2) h(θ) → 0
as θ → ∞. [For the case of finite initial measures, if h(θ) � 0 as θ → ∞, we can
compare the whole process to the solution to equation (6).] We also choose A such
that

1

A

∫ A

0
exp

(
−

∫ y

0

2α

γ
(1 − z) dz

)
dy > 2 · dd/2 · 3d .

Notice then that for λ,M < 1,

λ

A

∫ A/λ

0
exp

(
−

∫ y

0

2α

γ
(M − λz) dz

)
dy

= 1

A

∫ A

0
exp

(
−

∫ y

0

2α

λγ
(M − z) dz

)
dy ≥ 21/λ · dd/2λ · 3d/λ.

(17)

This guarantees that the probability that |X̃|, started from η/λ hits A/λ before it
hits zero is at most η/(2 · dd/2 · 3d)1/λ.

We now consider the probability that the Y -cluster has reached the boundary of
the ball of radius 3ρ by time t . First observe that by a trivial modification of the
work of Iscoe (1986), for any positive test function, ψ ,

E

[
exp

(
−

∫ t

0
〈ψ,Ys〉ds

)]
= exp

(−〈u(t, x),X0(dx)〉),(18)

where
∂u

∂t
(t, x) = 1

2
�u(t, x) + αMu(t, x) − γ

2
u2(t, x) + ψ(x), u(0, x) = 0.

In order to estimate the probability that the Y -cluster has not reached the boundary
of the ball of radius 3ρ by time t , we take ψ in equation (18) to be k times the
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indicator function of the complement of that ball and let k → ∞. The resulting
sequence of functions uk(t, x) is monotone increasing in k to a finite limit. This
can be proved exactly as in Dawson, Iscoe and Perkins (1989). Indeed using
Lemma 3.5 of that paper we can say much more. They are concerned with the
case αM = 0, but a simple comparison shows that

lim
k→∞uk(t, x) ≤ eαMt lim

k→∞u0(t, x).(19)

Dawson, Iscoe and Perkins estimate, in the case αM = 0, the probability that a
Y -cluster centered on a point distance R from the origin at time zero charges
a unit ball about the origin by time t

1 − exp
(
− C

R2
P (t,R)〈1, Y0〉

)
,

where P (t,R) is the probability that a Brownian motion started from a point at
distance R from the origin at time zero has hit the unit ball centered at the origin
by time t . The constant C depends only on γ . Exploiting the observation (19) and
by covering the boundary of the ball of radius 3ρ by O(ρd−1) unit balls we see that
the probability that a cluster of our Y -process of initial mass η/h(3ρ) contained in
a ball of radius ρ has hit the boundary of the concentric ball of radius 3ρ by time t

is certainly at most

C′ρd−1
(

1 − exp
(
− Cη

ρ2h(3ρ)

1

(2πt)d/2 eαMt−ρ2/2t

))
,

for a constant C′ independent of the parameters of our model.
Finally we consider the probability that a cluster of X̃, started from mass

η/h(3ρ) hits zero before it hits mass A/h(3ρ), but not by time t . This is evidently
bounded by the probability that the total mass of a cluster of the Y process (with no
conditioning) started from initial mass η/h(3ρ) has not hit zero by time t which
in turn is easily calculated to be

1 − exp
(
− αMη

h(3ρ)(1 − e−αMt)

)
.

We now combine these estimates. We subdivide our initial population into
clusters of mass at most η/h(3ρ) (where η = A/N ) and each contained in a ball
of radius ρ. For one such cluster, we allow the cluster to evolve until either the
Y -process hits the boundary of the concentric ball of radius 3ρ or the |X̃|-process
hits 0 or A/h(3ρ) or time t , whichever happens first. When such an event happens,
the total mass of the cluster will be at most A/h(3ρ) and it will be subdivided into
at most 3dN = 3dA/η “offspring” clusters, each with initial mass at most η/h(3ρ)

and contained in a ball of radius ρ. The probability that a cluster has descendants
in the next generation is at most the probability that |X̃| started from η/h(3ρ)

hits A/h(3ρ) before zero, plus the probability that a cluster of the Y -process with
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initial mass η/h(3ρ) has not hit zero by time t , plus the probability that a cluster of
the Y -process hits the boundary of the ball of radius 3ρ by time t . Combining (17)
with λ = h(3ρ), with our calculations above, under the assumption that M < 1 and
h(3ρ) < 1, the expected number of offspring clusters is therefore bounded above
by

dd/2 · 3dµ(A,M,α) + dd/2 · 3dA

η

(
1 − exp

(
− αMη

h(3ρ)(1 − e−αMt)

))

+ dd/2 · 3dAC′ρd−1

η

(
1 − exp

(
− Cη

ρ2h(3ρ)

1

(2πt)d/2 eαMt−ρ2/2t

))

≈ dd/2 · 3dµ(A,M,α) + dd/2 · 3dAαM

h(3ρ)(1 − e−αMt)

+ dd/2 · 3dACC′ρd−1

ρ2h(3ρ)

1

(2πt)d/2 eαMt−ρ2/2t .

Now set M = h(3ρ)/(4αA) and t = 1/(αM). Then the mean number of offspring
is at most

dd/2 · 3dµ(A,M,α) + 1

4
+ dd/2 · 3dACC′ρd−3

h(3ρ)

h(3ρ)d/2

(8πA)d/2
e1−ρ2h(3ρ)/(8A).

Now since ρ2h(ρ) > ερδ for sufficiently large ρ, we can choose ρ so that the last
term is at most 1

4 and M0 � h(3ρ)/(4αA) < 1. We now see that the mean number
of “offspring” of each cluster is then less than one and, once again comparing with
a subcritical branching process, the result now follows.

REMARK 5.1. We can considerably improve the bounds in the proof above.
For example we can estimate the rate of growth of a cluster of the X-process
directly, rather than via that of a cluster of the Y -process. The key quantity is
the total mass of the cluster up to time t . However, even with this extra work the
method does not appear to be powerful enough to prove the result that we believe
to be true, namely that M0 = ∞ in the statement of Theorem 1.5.2(a).

6. Proof of Theorem 1.5 II: survival. In this section we sketch another
comparison that shows that for certain parameters the process actually survives.
Not surprisingly, in view of the work of Mueller and Tribe (1994), we compare our
process to an oriented percolation process on Z+ × Z

d . The points (n1, x1) and
(n2, x2) are neighbors in this lattice if n2 = n1 + 1 and x1 and x2 are neighbors
in Z

d . We think of the first component as encoding time and this determines the
directions on the bonds in the lattice. Since we are thinking of this as a discrete
time version of the contact process, we shall use the terms “infected” and “vacant”
to indicate whether the population in a site is above or below a certain threshold.
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Although the proof can be (somewhat messily) adapted, it is simplest to describe
in the case of an already subdivided population. The idea is that we shall declare a
deme to be infected (or occupied) if the population there has mass more than M/K ,
where

αM

K
= c

2
.

Otherwise it is vacant. In order to make a comparison with an oriented percolation
process, we wish to obtain a lower bound on the probability that a vacant site
in Z

d becomes infected in the next discrete time interval and an upper bound on
the probability that an infected site recovers. If for some parameters the probability
of infection is high enough and the probability of recovery is low enough then we
have percolation and the population persists.

Let us think for a moment in terms of the continuous time process. Infection
arises from mass migrating from neighboring sites. (The notion of neighbor here
is determined by the migration matrix.) Of course for the site to actually become
infected, we have to wait until the total mass there is at least M/K . Now

dXt(i) = ∑
j

mij

(
Xt(j) − Xt(i)

)
dt

+ α

(
M − ∑

j

λijXt (j)

)
Xt(i) dt +

√
γXt(i) dB

(i)
t .

If the site i is not infected, then Xt(i) < M/K and so (after some rearrangement)
we see that

dXt(i) ≥ ∑
j

(mij − αλijM/K)Xt(j) dt

+
(
αM − ∑

j

mij

)
Xt(i) dt +

√
γXt(i) dB

(i)
t .

Note that if a site j is infected, then Xt(j) ≥ M/K . Thus, choosing K (e.g., as
above) in such a way that mij > 2αλijM/K and M large enough that Mα >

�jmij , we see that mass immigrates into the uninfected deme at a rate that
is bounded below by a constant multiple of the number of infected neighbors,
and once there it evolves according to a supercritical continuous state branching
process. Evidently by choosing M large, we can make the time to infection
arbitrarily small.

Now consider the recovery rate. Recovery arises because of crowding of a
region or because of fluctuations caused by the Feller noise. However, in a crowded
region, the negative effect on fecundity may be offset by increased immigration
from crowded neighbors. Suppose then that we are at an occupied site. We consider
the recovery rate only when the total mass is less than 2M/K . Since the total mass
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process is continuous, it will be enough to bound this rate above (or equivalently
the growth rate below) as excursions above level 2M/K simply add to the total
time to recovery. Then at the infected site,

dXt(i) ≥ ∑
j

(
mij − 2αλij

M

K

)
Xt(j) dt

+
(
αM − ∑

j

mij

)
Xt(i) dt +

√
γXt(i) dB

(i)
t .

Since by our choice of K , mij > αλij 2M/K , provided that, as above, αM >∑
j mij , we see that this is a supercritical continuous state branching process (with

growth rate αM − ∑
j mij ) with an additional positive drift.

We should like to use these estimates to compare the process with a contact
process, but since neither infection nor recovery rates are exponentially distributed,
and since the infection of a site is subject to a “delay” (while the supercritical
branching increases immigrated mass to M/K), it is simplest to make a
comparison with a discrete time version of the contact process, namely oriented
percolation. There are two difficulties. One is that infected sites may not remain
infected during the whole discrete time period. The other is that the probability
of being vacant or infected at different sites is not independent. This dependence
forces comparison with 3-dependent oriented percolation. For full details of this
process and how to make comparisons of this type, we refer to Durrett (1995).

The population certainly survives if the set of infected sites percolates. We
now use our observations above for the continuous time process to make the
necessary estimates for comparison with the oriented percolation. This final step
is elementary. The probability that an infected site has recovered by time 1 is
bounded above by the probability that a supercritical continuous state branching
process with growth rate αM − ∑

j mij and a reflecting boundary at c/α has mass
less than c/(2α) at time one, given that its initial mass is c/(2α). This quantity
decreases monotonically to zero as M ↑ ∞. On the other hand, the probability that
a vacant site becomes infected is at least that resulting from all infected neighbors
trying to produce an infection. In particular, if it has at least one infected neighbor
(and these are the only sites we care about), the probability of successful infection
is in turn bounded below by the probability that the supercritical branching process
corresponding to that infected neighbor (with growth rate αM − �jmij and
reflection at c/α), started from mass (at least) c/(2α) at time zero, never has mass
less than c/(4α) in the time interval [0,1] times the probability that a supercritical
continuous state branching process with reflection at c/α, immigration at constant
rate

c

4α

(
mij − λij

c

2

)
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and growth rate

αM − ∑
j

mij

is at least c/(2α) at time 1. This is monotone increasing as M ↑ ∞ to limit one.
(Notice that this is where the dependence comes in. Whether or not this site is
infected in the next generation is dependent on whether the “infecting” site remains
infected or not.) Combining these observations, we see that for sufficiently large M

the set of infected sites percolates, and so in particular our population survives for
all time, with strictly positive probability.

REMARK 6.1. Formally, we should have constructed a coupling of the
stepping-stone version of the Bolker–Pacala model and the oriented percolation
process. We hope that the reader is convinced by our work in previous sections
that this is possible via a passage to the limit.

7. Conclusions and discussion. Our result is incomplete in a number of
ways, but combined with our heuristics it does highlight the essential rôle of
the spatial structure of the population in its longtime survival. We require the
population to spread sufficiently quickly that families are able to colonize vacant
neighboring sites before they are killed by overcrowding (caused by their own
relatives). If the spatial spread is too slow, then the process behaves essentially as
one divided into independent colonies.

As well as restricting our proof to special cases of the model, we introduced the
caveat that for infinite initial measures our proof of extinction of the superprocess
version of the model is valid only for solutions to the martingale problem obtained
by the limiting procedure described in Section 2. Of course, we can argue that
this is not really a restriction, since our motivation for studying the model
is precisely as an approximation to such discrete branching particle systems.
However, mathematically, the obstruction is that we have not proved uniqueness
of the solution to the BP-martingale problem for processes taking values among
tempered measures. It is almost certainly an adaptation of the ideas of Evans and
Perkins (1998) to prove uniqueness of the martingale problem and also to construct
the processes {X̃t }t≥0 that we use in our comparison lemma of Section 5 directly,
without reversion to a passage to the limit.

The Bolker–Pacala models represent a very special class of density dependent
population models. A natural extension to the model replaces the “linear”
interaction term

a(x,µ) = (
M − 〈h(x, y),µ(dy)〉),

by a nonlinear interaction

ã(x,µ) = f
(
a(x,µ)

)
,
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for a suitably chosen function f : R → R. In order to apply Dawson’s Girsanov
theorem to construct the process, we require some conditions on f . For example,
it suffices that

sup
{
f

(
a(x,µ)

)
:µ ∈ MF (Rd)

}
< ∞

and

sup
{∣∣f (

a(x,µ)
)∣∣ :µ ∈ MF (Rd), 〈1,µ〉 ≤ n

}
< ∞ ∀n ∈ N.

Our extinction proof will go through with only minor changes. Our proof of the
survival of the corresponding stepping-stone model did exploit linearity, but could
certainly be adapted if, for example, −f were sublinear.

When one observes a biological population, one is necessarily looking at a
conditional distribution. The very fact that the population is there means that in
effect we are conditioning on nonextinction. It is not unnatural then to condition
our stochastic model on nonextinction. In the branching process setting, the model
is still inadequate as it predicts that surviving populations should grow without
bound (linearly in time for critical branching processes and exponentially in time
for noncritical processes). For equation (6) one can condition on nonextinction and
the conditioned process has finite moments of all orders (for all time). In the spatial
setting, however, it is far from clear how to proceed with such a conditioning.
This highlights one of the problems with the Bolker–Pacala model. It seems to be
extremely difficult to find analytic expressions even for the simplest quantities.

Our original motivation for studying the Bolker–Pacala models was an interest
in population genetics. Before modelling the genetic evolution of a spatially
structured population, one needs an ecological model. Armed with this one then
hopes to find expressions for observable quantities such as correlations in allele
frequencies that might then allow us to actually measure forces such as selection.
The fact that, at least for some choices of parameter, the Bolker–Pacala model is
governed by local rules and yet predicts stable population dynamics is undoubtedly
appealing. However, there are some difficulties with implementing it. As we
remarked in Section 2, one of the attractions of the Feller diffusion is that it
approximates a wide variety of local structures by a model that is characterized
by just two parameters. Moreover, these parameters can be expressed in terms of
measurable characteristics of the population (the mean and variance of the number
of offspring of an individual plus the mean inter-generation time). The Dawson–
Watanabe superprocess retains this feature, requiring just one extra parameter
(a measure of dispersal) in its specification. Unfortunately, unless one postulates
that h belongs to a parametrized class of functions, in the Bolker–Pacala setting we
lose this property. Nonetheless, we hope that over sufficiently large spatial scales,
the detailed structure of h should not be important. It would certainly be interesting
to know the implications of using this model in place of, say, a stepping stone
model in population genetics. Such calculations appear to be highly nontrivial.
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In summary, although the Bolker–Pacala model has some appealing features,
what we should like is a class of models that approximate a wide variety of
local structures (including those implied by the Bolker–Pacala model) and are
parametrized in terms of a small number of measurable parameters. We shall return
to this issue in future work.
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