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CONVERGENT MULTIPLE-TIMESCALES REINFORCEMENT
LEARNING ALGORITHMS IN NORMAL FORM GAMES

BY DAVID S. LESLIE1 AND E. J. COLLINS

University of Bristol

We consider reinforcement learning algorithms in normal form games.
Using two-timescales stochastic approximation, we introduce a model-
free algorithm which is asymptotically equivalent to the smooth fictitious
play algorithm, in that both result in asymptotic pseudotrajectories to
the flow defined by the smooth best response dynamics. Both of these
algorithms are shown to converge almost surely to Nash distribution in two-
player zero-sum games and N-player partnership games. However, there
are simple games for which these, and most other adaptive processes, fail
to converge—in particular, we consider the N-player matching pennies
game and Shapley’s variant of the rock–scissors–paper game. By extending
stochastic approximation results to multiple timescales we can allow each
player to learn at a different rate. We show that this extension will converge
for two-player zero-sum games and two-player partnership games, as well as
for the two special cases we consider.

1. Introduction. Current work in the theory of multiagent reinforcement
learning has provided renewed impetus for the study of adaptive processes
which evolve to equilibrium in general classes of normal form games. Recent
developments in this area have used the theory of stochastic approximation to study
the long term behavior of adaptive processes in which players repeatedly play a
normal form game and adjust their mixed strategies in response to the observed
outcomes. This theory uses results from the theory of deterministic dynamical
systems to gain information about the asymptotic behavior of the stochastically
evolving adaptive process.

One of the most generally applicable recent schemes for adaptive learning
in games is smooth fictitious play, introduced by Fudenberg and Kreps [7] and
studied in greater generality by Benaïm and Hirsch [2]. Players observe the actions
played by their opponents and, by (incorrectly) assuming that opponent mixed
strategies are not changing, estimate the current value of each of their actions
based upon knowledge of the game; a mixed strategy based upon these estimates
(a smooth best response) is then played. Benaïm and Hirsch used the theory of
stochastic approximation to show that the asymptotic behavior of this process
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is characterized by the smooth best response dynamics studied by Hopkins [11]
and Hofbauer and Hopkins [10]. However, the smooth fictitious play algorithm
assumes that all players observe the actions of all other players and also know the
structure of the game (how many players are playing and the reward function).
In Section 2 we present a model-free multiagent reinforcement learning algorithm
which also approximates the smooth best response dynamics, and so has the same
convergence properties as smooth fictitious play. For this new algorithm it is not
necessary for players to know anything about the game being played, to observe
the opposition or even to know that they are playing a game at all. All that is
required is for each player to observe the reward they obtain at each play of the
game.

However, the convergence properties of both algorithms are only as good
as the convergence properties of the smooth best response dynamics. While
Hofbauer and Hopkins [10] proved convergence to Nash distribution in rescaled
two-player zero-sum and rescaled two-player partnership games, there are two
difficult games for which there are nonconvergent trajectories of the smooth best
response dynamics. Indeed most (if not all) proposed adaptive dynamics in games
have nonconvergent trajectories for these two games: Jordan’s matching pennies
game [13] and Shapley’s variant of rock–scissors–paper [19]. Section 3 generalizes
a result of Borkar [4], allowing us to show, in Section 4, that a modification of our
reinforcement learning algorithm approximates a singularly perturbed [12] variant
of the smooth best response dynamics. Consequently we see in Sections 5 and 6
that this modified algorithm must converge in the two classes of games for which
the standard smooth best response dynamics converge (two-player zero-sum and
two-player partnership games) as well as converging for our two difficult special
cases.

1.1. Preliminaries. We consider a game of N players, labelled 1, . . . ,N . Each
player i ∈ 1, . . . ,N has a set Ai of available actions, one of which must be chosen
each time the game is played. Together these action sets form the joint action
set A = A1 × · · · × AN . When the game is played, each player chooses an action
ai ∈ Ai , resulting in a joint action a ∈ A. Each player receives a subsequent reward
ri(a), where ri :A → R is the reward function of player i.

As is standard in game theory, we consider mixed strategies πi for each player i,
where πi ∈ �(Ai), the set of probability distributions over the set Ai ; in abuse
of notation we write πi(ai) for the probability that action ai is played in mixed
strategy πi . This gives rise to a joint mixed strategy π = (π1, . . . , πN) ∈ �(A1)×
· · · × �(AN). There are unique multilinear extensions of the payoff functions to
the mixed strategy space, and in standard abuse of notation we write

ri(π) = E
(
ri(a)|aj ∼ πj , j = 1, . . . ,N

) = ∑
a∈A

(
N∏

j=1

πj (aj )

)
ri(a).
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Given a joint mixed strategy π = (π1, . . . , πN), we define the opponent joint
strategy π−i = (π1, . . . , πi−1, πi+1, . . . , πN) and identify the pair (πi,π−i )

with the joint mixed strategy (π1, . . . , πi−1, πi,πi+1, . . . , πN). Also, in further
standard abuse of notation, we identify ai with the mixed strategy πi for which
πi(ai) = 1; this allows us to write (ai,π−i ) for the joint mixed strategy where all
players other than i play as if joint mixed strategy π is played, and player i uses
the pure strategy ai .

Using this notation we see that ri(ai, π−i ) is the expected reward to player i

if action ai is played against the opponent joint strategy arising from joint mixed
strategy π . The standard solution concept of noncooperative game theory is the
Nash equilibrium [17]—joint strategies π̃ , where each player plays a best response
to the opponent strategies, so that

ri(π̃) = max
ai∈Ai

ri(ai, π̃−i ) for each i.

As discussed in Chapter 4 of [8], the discontinuities inherent in this maximization
present difficulties for adaptive processes. Instead, as in [10], we follow Fudenberg
and Levine in assuming that players choose a strategy πi to maximize

ri(πi,π−i) + τvi(πi),

where τ > 0 is a temperature parameter and vi :�(Ai) → R is a player-dependent
smoothing function, which is a smooth, strictly differentiable concave function
such that as πi approaches the boundary of �(Ai), the slope of vi becomes infinite.
The conditions on vi mean that, for each π−i , there is a unique maximizing πi , so
we can define the smooth best response function

βi(π−i ) = arg max
πi

{
ri(πi,π−i ) + τvi(πi)

}

= arg max
πi

{ ∑
ai∈Ai

πi(ai)ri(ai, π−i ) + τvi(πi)

}
.

The only use of the opponent joint strategy π−i is in the assessment of the action
values ri(ai, π−i ), so if we have a vector Q of estimates of the action values, we
will often write

βi(Q) = arg max
πi

{ ∑
ai∈Ai

πi(ai)Q(ai) + τvi(πi)

}
.(1)

It is clear that βi will approximate the absolute best response as τ → 0 and will
approximate arg max πi v

i(πi) as τ → ∞.
Since absolute best responses are no longer relevant, the equilibria of a game

under the assumption that players make smooth best responses are joint mixed
strategies π̃ such that

π̃ i = βi(π̃−i ).
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Such points are called Nash distributions. Henceforth, convergence of an algorithm
is taken to mean convergence to Nash distribution under a fixed temperature
parameter τ .

Harsanyi [9] showed that the equilibria of a game are limit points of sequences
of Nash distributions as the temperature parameter τ → 0. So when trying to learn
the equilibria of a game it makes sense to consider smooth best responses with
a small temperature parameter. This is the approach used by Benaïm and Hirsch
when considering smooth fictitious play [2].

However, the introduction of mixed strategies necessitates use of stochastic
approximation theory. The approach we follow is that of Benaïm [1] (this is a
development of the ordinary differential equation (ODE) approach to stochastic
approximation originally proposed by Kushner and Clark [15]). This general
theory considers equations of the form

θn+1 = θn + λn(F (θn) + Un+1),(2)

where θn,Un+1 ∈ R
m, F : Rm → R

m and λn ∈ R+. We make the following generic
assumptions throughout this paper:

ASSUMPTION G1. F is a globally Lipschitz continuous vector field.

ASSUMPTION G2. The iterates θn are bounded, that is, supn ‖θn‖ < ∞.

ASSUMPTION G3. The learning parameters decrease at a suitable rate:∑
n≥0

λn = ∞,
∑
n≥0

λn
2 < ∞.

These assumptions naturally hold true in all of our applications and are fre-
quently necessary for the stochastic approximation theory to be valid. Benaïm [1]
related the asymptotic behavior of such processes to that of deterministic dynami-
cal systems and, in particular, to asymptotic pseudotrajectories:

DEFINITION 1. Let ϕ : R×M → M be a flow on the metric space (M, d). An
asymptotic pseudotrajectory to ϕ is a continuous function X : R → M such that

lim
t→∞ sup

0≤h≤T

d
(
X(t + h),ϕh(X(t))

) = 0

for any T > 0.

That is, the function X moves like ϕ, but is allowed an asymptotically vanishing
amount of correction every T units of time. The following result, Proposition 4.1
of Benaïm [1], provides the main link between stochastic processes (2) and
deterministic dynamical systems:
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PROPOSITION 2 (Benaïm). Consider a stochastic approximation process (2).
Let tn = ∑n−1

k=0 λk and define the interpolated process � : R+ → R
m by

�(tn + s) = θn + s

tn+1 − tn
(θn+1 − θn) for 0 ≤ s < λn.

Assume that for all T > 0,

lim
n→∞ sup

{∥∥∥∥∥
k−1∑
l=n

λlUl+1

∥∥∥∥∥ :k = n + 1, . . . ,m(tn + T )

}
= 0,(3)

where m(t) = sup{κ ≥ 0 : tκ ≤ t}. Then � is an asymptotic pseudotrajectory of the
flow ϕ induced by F .

Benaïm gave easily verified sufficient conditions for (3) to be satisfied. Under
these conditions, any limit set of the stochastic process (2) will be contained in the
limit set of the asymptotic pseudotrajectory defined in the proposition. We use the
following concepts from the theory of dynamical systems:

DEFINITION 3. Let ϕ : R × M → M be a flow on the metric space (M, d).

1. A fixed point x
 of ϕ is globally attracting if ϕt (x) → x
 as t → ∞ for all x.
2. A continuous function V :M → R is a strict Lyapunov function for the flow ϕ

if V (ϕt (x)) is strictly increasing in t whenever x is not a fixed point of ϕ.

Corollaries 5.4 and 6.6 of [1] give two situations under which the limit sets
of asymptotic pseudotractories to a flow, and hence the limit sets of stochastic
approximation processes, will coincide with the set of fixed points. We restate
these results here:

PROPOSITION 4 (Benaïm). Let ϕ be a flow with set of fixed points L and
let X be an asymptotic pseudotrajectory of ϕ. Let � denote the limit set of the
asymptotic pseudotrajectory X.

1. If L = {x
} and x
 is a globally attracting fixed point, then � = {x
}.
2. If the set L of fixed points of ϕ is countable and there exists a strict Lyapunov

function for the flow, then � ∈ L.

Further results exist in the literature, which are relevant when the behavior
of the flow ϕ arising from a stochastic approximation process (2) is more
complex. Define a nonempty, compact, invariant set A to be an attractor if it
has a neighborhood N such that limt→∞ d(ϕt (x),A) = 0 for x ∈ N ; Benaïm [1]
showed (under mild conditions) that, for an attractor A, P(limn→∞ d(θn,A) =
0) > 0. Conversely, Pemantle [18] showed (under more severe conditions) that
for a linearly unstable fixed point θ
 of the flow, P(θn → θ
) = 0. Benaïm and
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Hirsch [2] used these results to study smooth fictitious play. They showed that the
appropriate deterministic dynamical system is the smooth best response dynamics,
given by

π̇ i = βi(π−i ) − πi.

Thus the asymptotic behavior of (stochastic) smooth fictitious play is closely
related to the asymptotic behavior of the (deterministic) smooth best response
dynamics: attractors for these dynamics contain the limit set of the learning
process with positive probability, and linearly unstable points contain the limit
set with probability 0. It follows that smooth fictitious play will not converge
for certain combinations of temperature parameter and smoothing function—those
combinations for which the unique Nash distribution is linearly unstable (as shown
by Cowan [6] for Shapley’s game and Benaïm and Hirsch [2] for Jordan’s pennies
game).

We are now in a position to extend these ideas to stochastic approximation
algorithms with multiple timescales and apply these extensions to develop model-
free algorithms for learning in games.

2. A two-timescales learning algorithm. The motivation for this work is our
observation that the only reason players need to know the structure of the game and
observe opponent behavior is so they can estimate the expected value of each of
their actions and thus calculate the smooth best response. Reinforcement learning
is a model-free alternative for estimating expected values of a set of actions,
although it relies on the fact that these expected values do not change with time.

Assume we have a stationary random environment where at each stage player i

must choose an action ai from a finite set Ai , and associated with each action
ai ∈ Ai there is a random reward R(ai) which has a fixed distribution and bounded
variation. Consider the learning scheme

Qn+1(a
i) = Qn(a

i) + λnI{ai
n=ai}

(
Ri

n − Qn(a
i)

)
,

where ai
n is the action chosen at stage n, Rn is the subsequent reward and {λn}n≥0

is a deterministic sequence satisfying∑
n≥0

λn = ∞,
∑
n≥0

λn
2 < ∞.

It is well known in reinforcement learning [3, 20], that, provided each action is
chosen infinitely often, the Q values in this algorithm will converge almost surely
to the expected action values, that is,

Qn(a
i) → E[R(ai)] as n → ∞ a.s.

However, when we move to multiagent learning the players’ strategies are all
changing simultaneously as each player learns and, consequently, the sampled
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rewards, Ri
n, do not come from a stationary distribution. So when learning

ri(ai, π−i ), the standard results no longer apply. A solution is to be found in
Borkar’s two-timescales stochastic approximation [4], and its use by Konda and
Borkar [14] and Borkar [5]. We state a slight generalization of Borkar’s results
which he obtained in the course of proving his main theorem.

THEOREM 5 (Borkar). Consider two coupled stochastic approximation pro-
cesses

θ
(1)
n+1 = θ(1)

n + λ(1)
n

{
F (1)(θ(1)

n , θ(2)
n

) + M
(1)
n+1

}
,

θ
(2)
n+1 = θ(2)

n + λ(2)
n

{
F (2)

(
θ(1)
n , θ(2)

n

) + M
(2)
n+1

}
,

where, for each i, F (i), θ
(i)
n and λ

(i)
n satisfy the generic assumptions G1–G3 and

the sequence {∑k
n=0 λ

(i)
n M

(i)
n+1}k converges almost surely. And where, the λ

(i)
n are

chosen so that

λ
(1)
n

λ
(2)
n

→ 0 as n → ∞.

Suppose that for each θ(1) the ODE

Ẏ = F (2)(θ(1), Y
)

(4)

has a unique globally asymptotically stable equilibrium point ξ(θ(1)) such that ξ is
Lipschitz. Then, almost surely,∥∥θ(2)

n − ξ(θ(1)
n )

∥∥ → 0 as n → ∞
and a suitable continuous time interpolation of the process {θ(1)

n }n≥0 is an
asymptotic pseudotrajectory of the flow defined by the ODE

Ẋ = F (1)
(
X,ξ(X)

)
.(5)

This theorem says that if the fast process, {θ(2)
n }n≥0, converges to a unique limit

point for any particular fixed value, θ(1), of the slow process, we can analyze
the asymptotic behavior of the algorithm as if the fast process is always fully
calibrated to the current value of the slow process. The suitable continuous time
interpolation is given in the proof of the generalization of this result in Section 3,
but for application of this theorem it suffices to note that Proposition 4 identifies
conditions under which the limit set of the stochastic approximation process θ

(1)
n

is contained within the set of fixed points of the flow defined by (5).
Theorem 5 becomes very useful when we consider learning in games—provided

the strategies change on a slower timescale than the timescale on which action
values are learned, then we can examine the asymptotic behavior of the algorithm
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as if the action estimates are accurate. This is a technique which would, if required,
allow us to approximate any of the standard dynamical systems of game theory
which use estimates of action values. Our algorithm is as follows:

TWO-TIMESCALES ALGORITHM. For each player i = 1, . . . ,N ,

πi
n+1 = (1 − λn)π

i
n + λnβ

i(Qi
n),

(6)
Qi

n+1(a
i) = Qi

n(a
i) + µnI{ai

n=ai}
{
Ri

n − Qi
n(a

i)
}
.

Here Ri
n is the reward obtained by player i at step n and βi(Qi

n) is the
smooth best response (1) given the value estimates Qi

n. The sequences {λn}n≥0 and
{µn}n≥0 are each chosen to satisfy Assumption G3 and the additional condition

λn

µn

→ 0 as n → ∞.

Defining

F (1)(π,Q) = E
(
(Qn+1 − Qn)/µn

∣∣πn = π,Qn = Q
)
,

F (2)(π,Q) = E
(
(πn+1 − πn)/λn

∣∣πn = π,Qn = Q
)

= β(Qn) − πn,

we apply Theorem 5. The implicitly defined M
(i)
n of that theorem are bounded mar-

tingale difference sequences, and so the convergence of the sequence
{∑k

n=0 λ
(i)
n M

(i)
n+1}k follows immediately. We have already observed that the Qi

n(a
i)

processes will converge to the true values of ri(ai, π−i ) if the strategies π−i are
fixed; indeed the ODE corresponding to (4) is simply

Q̇i(ai) = πi(ai)
(
ri(ai, π−i ) − Qi(ai)

)
,

which clearly has a globally asymptotically stable fixed point for fixed π so long
as no strategy ai has zero probability of being played. The other conditions of
Theorem 5 are clearly met and so we get the following:

THEOREM 6. For the two-timescales algorithm (6),

‖Qi
n(a

i) − ri(ai, π−i
n )‖ → 0 as n → ∞ a.s.

and a suitable interpolation of the πi
n processes will almost surely be an asymptotic

pseudotrajectory of the flow defined by the smooth best response dynamics

π̇ i = βi(π−i ) − πi.
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So the asymptotic behavior of the two-timescales algorithm (6) is characterized
by the same dynamical system as characterizes smooth fictitious play. Hofbauer
and Hopkins [10] have studied these dynamics; they gave a Lyapunov function for
two-player zero-sum games and also for two-player partnership games. Indeed, the
Lyapunov function they gave for partnership games is easily extended to N -player
partnership games—in this case the function is r(π)+τ

∑N
i=1 vi(πi). Hence, using

Proposition 4, we have shown the following:

THEOREM 7. Assume there are only finitely or countably many Nash
distributions in a game which is either of the following:

1. A two-player zero-sum game.
2. An N -player partnership game.

Then the two-timescales algorithm (6) applied in that game will converge with
probability 1 to a Nash distribution.

On the other hand, Benaïm and Hirsch [2] showed that for the three-player
matching pennies game [13] and certain values of the smoothing parameter τ , the
unique equilibrium is linearly unstable and there exists a periodic orbit which is an
attractor. Similarly, Cowan [6] showed that for the Shapley game [19] the smooth
best response dynamics with Boltzmann smoothing admit a Hopf bifurcation as
the parameter τ goes to 0, so that for small values of τ , a limit cycle is again
asymptotically stable and the unique equilibrium is unstable. It seems reasonable
that a nonconvergence result analogous to Pemantle’s [18] should hold in this
case, since there is noise present in the system. However, the noise is present
only on the fast timescale, so is of vanishing size with respect to the slow process
where the instability of the equilibrium exists, and so the probabilistic estimates
used by Pemantle are not valid in this case. The presence of an attracting orbit,
however, means that, by a simple extension of Benaïm’s results [1], the probability
of convergence to the equilibrium is less than 1.

Despite these nonconvergence results, the following is true:

THEOREM 8. If the two-timescales algorithm (6) converges to a fixed point

(Qn,πn) → (Q,π) as n → ∞,

then Qi(ai) = ri(ai, π−i ) and π is a Nash distribution.

PROOF. A basic result of stochastic approximation theory is that if conver-
gence occurs, then the limit point must be a fixed point of the associated ODE.
It follows immediately that Qi(ai) = ri(ai, π−i ) and βi(Qi) = πi . Therefore,
πi = βi(π−i ). �
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3. Borkar’s result extended to multiple timescales. The nonconvergence of
the two-timescales algorithm (6) in certain games motivates a further extension.
Littman and Stone’s work [16] suggests consideration of players that learn at
different rates. To consider this possibility we must extend Borkar’s result [4]
beyond two timescales.

Consider N interdependent stochastic approximation processes θ
(1)
n , . . . , θ

(N)
n ,

which are updated according to the rules

θ
(i)
n+1 = θ(i)

n + λ(i)
n

{
F (i)

(
θ(1)
n , . . . , θ(N)

n

) + M
(i)
n+1

}
,(7)

where, for each i, F (i), θ
(i)
n and λ

(i)
n satisfy the generic Assumptions G1–G3 and

the sequence {∑k
n=0 λ

(i)
n M

(i)
n+1}k converges almost surely. In addition, we assume

that

λ
(i)
n

λ
(j)
n

→ 0 as n → ∞ whenever i < j.

This final assumption is what makes the algorithm multiple timescale. Write
θn = (θ

(1)
n , . . . , θ

(N)
n ); in the sequel it will also be convenient to write θ

(<i)
n for

the vector (θ(1), . . . , θ(i−1)).
As before, we define a timescale on which to interpolate the approximation

processes. However, we now follow Borkar [4] and establish a different timescale
to correspond to each process. For i, j ∈ 1, . . . ,N , let

t(j )
n =

n−1∑
k=0

λ
(j)
k ,

let �(i,j)(t) be the interpolation of the process θ
(i)
n on the j th timescale, that is,

�(i,j)
(
t(j )
n + s

) = θ(i)
n + s

t
(j)
n+1 − t

(j )
n

(
θ

(i)
n+1 − θ(i)

n

)
for 0 ≤ s ≤ λ(j)

n ,

and let

m(j)(t) = sup
{
κ ≥ 0 : t(j )

κ ≤ t
}
.

We start by considering the N th timescale and the interpolations on this
timescale �(i,N)(t). Rewrite the stochastic approximation processes (7) in the form

θ
(i)
n+1 = θ(i)

n + λ(N)
n U

(i,N)
n+1 for i < N,

θ
(N)
n+1 = θ(N)

n + λ(N)
n

{
F (N)(θn) + M

(N)
n+1

}
,

where for i < N we have implicitly defined

U
(i,N)
n+1 = λ

(i)
n

λ
(N)
n

{
F (i)(θn) + M

(i)
n+1

}
.
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For any n,

sup

{∥∥∥∥∥
k−1∑
l=n

λ
(N)
l U

(i,N)
l+1

∥∥∥∥∥ :k = n + 1, . . . ,m(N)
(
t(N)
n + T

)}

(8)

≤ sup
k

{(
m(N)(t

(N)
n +T )∑

l=n+1

λ
(N)
l−1

)(
λ

(i)
k

λ
(N)
k

)
F (i)(θk) +

∥∥∥∥∥
k−1∑
l=n

λ
(i)
l M

(i)
l+1

∥∥∥∥∥
}
.

As n → ∞, the second term converges to 0, by assumption. Also λ
(i)
k /λ

(N)
k → 0

while the F (i)(θk) are bounded and, from the definitions of t
(N)
n and m(N), it should

be clear that

m(N)(t
(N)
n +T )∑

l=n+1

λ
(N)
l−1 ≈ T .

Therefore, the limit of the quantity (8) as n → ∞ must be 0.
Taking U

(N,N)
n = M

(N)
n we see that the equivalent limit in this case is also zero,

and so we can use Proposition 2 to show that on this timescale the interpolated
processes �(·,N)(t) are asymptotic pseudotrajectories for the flow defined by the
differential equations

Ẋ(i) = 0 for i < N,(9)

Ẋ(N) = F (N)(X).(10)

At this point we need to make the following assumption:

ASSUMPTION A(N ). There exists a Lipschitz continuous function ξ (N)(θ(<N))

such that, for any θ(N), solutions of the differential equations (9) and (10) converge
to the point (θ(<N), ξ (N)(θ(<N))) given initial conditions (θ(<N), θ(N)).

It therefore follows from Proposition 4 that the possible limit points of an
asymptotic pseudotrajectory to the flow defined by (9) and (10) are the set of all
points (

θ(<N), ξ (N)(θ(<N))
)
,

where θ(<N) can take any value. In other words,∥∥θn − (
θ(<N)
n , ξ (N)(θ(<N)

n )
)∥∥ → 0 as n → ∞ a.s.

Now consider the timescale t(N−1) and the interpolations �(i,N−1)(t) for i < N .
Rewrite the stochastic approximation processes (7) in the form

θ
(i)
n+1 = θ(i)

n + λ
(N−1)
n+1 U

(i,N−1)
n+1 for i < N − 1,

θ
(N−1)
n+1 = θ(N−1)

n + λ
(N−1)
n+1

{
F (N−1)

(
θ(<N)
n , ξ (N)(θ(<N))

) + U
(N−1,N−1)
n+1

}
.
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The implicit definition of U
(i,N−1)
n+1 for i < N − 1 is equivalent to that of U

(i,N)
n+1 ,

and so we can proceed as before. On the other hand, we have implicitly defined

U
(N−1,N−1)
n+1 = F (N−1)(θn) − F (N−1)

(
θ(<N)
n , ξ (N)(θ(<N))

) + M
(N−1)
n+1 .

However, we have already shown that as n → ∞,∥∥θn − (
θ(<N)
n , ξ (N)(θ(<N)

n )
)∥∥ → 0,

and we have assumed that F (N−1) is continuous, so∥∥F (N−1)(θn) − F (N−1)
(
θ(<N)
n , ξ (N)(θ(<N)

n )
)∥∥ → 0.

Therefore, when we take the sums
∑

l λ
(N−1)
l U

(N−1,N−1)
l+1 , these terms will vanish

as n → ∞, as will the term
∑

l λ
(N−1)
l M

(N−1)
l+1 , and so we see that on the

t(N−1) timescale the interpolated processes �(<N,N−1)(t) are an asymptotic
pseudotrajectory of the flow defined by the differential equations

Ẋ(i) = 0 for i < N − 1,(11)

Ẋ(N−1) = F (N−1)(X(<N), ξ (N)(X(<N))
)
.(12)

We need to make an assumption analogous to A(N) above:

ASSUMPTION A(N−1). There exists a Lipschitz continuous function
ξ (N−1)(θ(<N−1)) such that, for any θ(≥N−1), solutions of the differential equa-
tions (11) and (12) converge to the point (θ(<N−1), ξ (N−1)(θ(<N−1))) given initial
conditions (θ(<N−1), θ(≥N−1)).

Defining


(≥N−1)(θ(<N−1)) = (
ξ (N−1)(θ(<N−1)), ξ (N)(θ(<N−1), ξ (N−1)(θ(<N−1))

))
,

it follows that∥∥θn − (
θ(<N−1)
n ,
(≥N−1)(θ(<N−1)

n )
)∥∥→ 0 as n → ∞ a.s.

We proceed recursively for each j ≥ 2, noting that the interpolated processes
�(≤j,j ) are asymptotic pseudotrajectories of the flow defined by

Ẋ(i) = 0 for i < j,(13)

Ẋ(j) = F (j)(X(≤j),
(≥j+1)(X(≤j))
)
.(14)

For each j ≥ 2 we need to make the following assumption:

ASSUMPTION A(j ). There exists a Lipschitz continuous function ξ (j)(θ(<j))

such that, for any θ(≥j), solutions of the differential equations (13) and (14)
converge to the point (θ(<j), ξ (j)(θ(<j))) given initial conditions (θ(<j), θ(≥j)).
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Then defining


(≥j)(θ(<j)) = (
ξ (j)(θ(<j)),
(≥j+1)

(
θ(<j), ξ (j)(θ(<j))

))
,

it follows that for 2 ≤ j ≤ N ,∥∥θn − (
θ(<j)
n ,
(≥j)(θ(<j)

n )
)∥∥ → 0 as n → ∞ a.s.

Finally, it follows that on the slowest timescale the interpolated process
�(1,1)(t) is an asymptotic pseudotrajectory to the flow defined by

Ẋ(1) = F (1)
(
X(1),
(≥2)(X(1))

)
.

We have therefore proved the following theorem:

THEOREM 9. Consider a multiple-timescales stochastic approximation pro-
cess (7). If Assumptions A(2)–A(N ) hold, then almost surely∥∥θ(>1)

n − 
(≥2)(θ(1)
n )

∥∥ → 0 as n → ∞
and a suitable continuous time interpolation of the process {θ(1)

n }n≥0 is an
asymptotic pseudotrajectory of the flow defined by the ODE

Ẋ = F (1)
(
X,
(≥2)(X)

)
.

4. A multiple-timescales learning algorithm. Theorem 9 allows us to
consider a learning algorithm where the players learn at different rates. In fact, we
assume that all players update their strategies on strictly different timescales and
all of these timescales are slower than the rate at which the Q values are learned.
The algorithm is as follows:

MULTIPLE-TIMESCALES ALGORITHM. For each player i = 1, . . . ,N ,

πi
n+1 = (1 − λi

n)π
i
n + λi

nβ
i(Qi

n),
(15)

Qi
n+1(a

i) = Qi
n(a

i) + µnI{ai
n=ai}

(
Ri

n − Qi
n(a

i)
)
.

As before, Ri
n is the reward obtained by player i at step n and βi(Qi

n) is the
smooth best response given the value estimates Qi

n. The sequences {λi
n}n≥0 and

{µn}n≥0 are each chosen to satisfy Assumption G3 and the additional conditions

λi
n/µn → 0 as n → ∞,

λi
n/λ

j
n → 0 as n → ∞ for i < j.

This last condition says that each player is adapting his or her strategy on a
different timescale (although all players still learn the Q values at the same fast
timescale).

The first thing to note about this algorithm is that the same argument as for the
two-timescales algorithm will suffice to show the following.
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THEOREM 10. If the multiple-timescales algorithm (15) converges to a fixed
point

(Qn,πn) → (Q,π),

then Qi(ai) = ri(ai, π−i ) and π is a Nash distribution.

However, to use Theorem 9 we need to check that Assumptions A(2)–A(N ) are
satisfied. We start by noting that the ODE

π̇N = βN(π1, . . . , πN−1) − πN

for fixed (π1, . . . , πN−1) has a globally attracting point, βN(π<N), so these
assumptions may fail only for intermediate players who are not the fastest or
slowest (no assumption need be made about the slowest timescale). We must make
the following assumption about the behavior of the ODEs for these intermediate
timescales:

ASSUMPTION C. For each i = 2, . . . ,N − 1, there exists a Lipschitz func-
tion bi such that bi(π1, . . . , πi−1) is the globally asymptotically stable equilibrium
point of the ODE

π̇ i = βi(π<i,B>i(π≤i )
) − πi,

where we recursively define

B>(N−1)(π≤(N−1)) = βN(π≤(N−1)),

B>i(π≤i ) = (
bi+1(π≤i ),B>(i+1)(π≤i , bi+1(π≤i )

))
.

Effectively this says that, for any i, if we fix the strategies for players 1, . . . , i,

then almost surely

π>i
n → B>i(π≤i ).

This convergence assumption is fairly restrictive, although it does not prevent the
application of this algorithm to several different games (see Sections 5 and 6).
It allows us to use Theorem 9 to characterize the asymptotic behavior of the
algorithm (15).

THEOREM 11. For the multiple-timescales algorithm (15) under Assump-
tion C, ∥∥(π2

n, . . . , πN
n ) − B>1(π1

n)
∥∥ → 0 as n → ∞ a.s.

and a suitable continuous interpolation of the π1
n is an asymptotic pseudotrajec-

tory of the flow defined by the ODE

π̇1 = β1(B>1(π1)
) − π1.
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PROOF. Since the Qi
n(a

i) → ri(ai, π−i) whenever π is fixed, the proof
is immediate from our extension of Borkar’s result to multiple timescales and
Assumption C. �

This result means that to analyze the multiple-timescales algorithm in a
particular game or class of games it suffices to show that Assumption C is satisfied
and to analyze the behavior of the slowest player under the assumption that all
other players play the strategy dictated by the function B>1.

5. Two-player games. It is easy to see that for two-player games Assump-
tion C is vacuous, since there are no intermediate players (each player is either the
fastest or the slowest). Thus it is sufficient to analyze the ODE

π̇1 = β1(
β2(π1)

) − π1.(16)

We have a positive convergence theorem for two major classes of two-player
games: zero-sum games and partnership games.

THEOREM 12. For both two-player zero-sum games and two-player partner-
ship games the ODE (16) admits a strict Lyapunov function. Fixed points of the
ODE (16) are Nash distributions of the game.

PROOF. For zero-sum games the function

U = r1(
π1, β2(π1)

) + τv1(π1) − τv2(
β2(π1)

)
is a Lyapunov function for the ODE (16). For partnership games the function

V = r
(
π1, β2(π1)

) + τv1(π1) + τv2(β2(π1)
)

is a Lyapunov function. �

This gives rise to the following immediate corollary.

COROLLARY 13. Assume there are only finitely or countably many Nash
distributions in a game which is either of the following:

1. A two-player zero-sum game.
2. A two-player partnership game.

Then the multiple-timescales algorithm (15) applied in that game will converge
with probability 1 to a Nash distribution.

So we have asymptotic convergence results which are comparable to those for
smooth fictitious play and for our two-timescales algorithm (6). However, a proof
of convergence for general N -player partnership games is not available, since in
this framework it is likely that for a fixed strategy of the slow players there will
be several equilibria to which the fast players may converge, and so Assumption C
will not be satisfied.
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6. Some difficult games. There are some games which have consistently
confounded attempts to learn the equilibrium. The two classic examples are
the Shapley game [19], introduced in 1964 to show that classical fictitious
play need not always converge, and the three-player matching pennies game,
a remarkably simple game introduced by Jordan [13] to show that, even with
heavy prior assumptions focusing on the equilibrium point, a limit cycle could
occur using simple learning. We start by proving convergence of our algorithm in
a generalization of the latter game, then show convergence of our algorithm for the
Shapley game.

6.1. N -player matching pennies. Our generalization of Jordan’s game [13] is
the N -player matching pennies game, in which each player can choose to play
heads (H) or tails (T) and the reward to player i depends only on the actions ai and
ai+1, where i + 1 is calculated modulo N . The reward structure is

ri(a) = I{ai=ai+1} for i = 1, . . . ,N − 1,

rN(a) = I{aN 	=a1}.

The cyclical nature of this game allows easy verification of Assumption C.
As long as player 1’s strategy is fixed, then player N ’s strategy will converge to
βN(π−N) since this depends only on π1. Similarly, under the assumption that
player 1 is fixed and player N has calibrated, it is clear that player (N − 1)’s
strategy will converge to βN−1(π−(N−1)), since this depends only on πN =
βN(π−N), which is fixed. This is repeated, so that whenever player 1’s strategy is
fixed the strategies of the faster players must converge to the unique best responses.
By Theorem 11 it suffices to consider the ODE

π̇1 = β1(
β2(· · · (βN(π1)

) · · ·)) − π1.

We assume that the smooth best responses are monotonic in the payoffs, that is,
ri(ai) > ri(bi) ⇒ βi(ri)(ai) > βi(ri)(bi). A sufficient condition for this to be the
case is for each smoothing function vi to be invariant under permutations of the
actions. Thus if π1(H) > 1/2, we must have βN(π1)(H) < 1/2 and so, in turn,

βi
(
βi+1(· · · (βN(π1)

) · · ·))(H) < 1/2

for each i = 1, . . . ,N . So for π1(H) > 1/2, it is the case that π̇1(H) < 0. Similarly
if π1(H) < 1/2, then π̇1(H) > 0, and so it follows that the Nash distribution
πi(H) = 1/2 is a globally attracting fixed point.

We have shown that the multiple-timescales algorithm (15) will converge almost
surely to the Nash distribution of the matching pennies game provided that the
players are ordered in the same way for the game as for the learning rates. In fact,
it is not difficult to see that this specific ordering is unnecessary and any ordering
of the players will suffice.
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6.2. The Shapley game. This game is a variant of the traditional rock–
scissors–paper game. It is a two-player game with three actions available to each
player; the payoff matrix is

 (0,0) (1,0) (0,1)

(0,1) (0,0) (1,0)

(1,0) (0,1) (0,0)


 .

Thus each player gets a point if their opponent plays an action 1 greater (modulo 3)
and gets no point otherwise. Without loss of generality (due to the symmetry of
the game), we assume that player 1 is the slower, and since it is a two-player game
Assumption C is irrelevant (as observed previously). So we simply need to analyze
the ODE

π̇1 = β1(
β2(π1)

) − π1.(17)

Note π1(3) = 1 − π1(1) − π2(2), so that this defines a planar flow. Therefore, we
calculate the divergence of the flow in (π1(1),π1(2)) space—if this is negative,
then the solutions of the ODE must converge to equilibrium.

For simplicity we assume that both smooth best responses are defined by the
Boltzmann distribution, where we take as our smoothing function

vi(πi) = −∑
ai

πi(ai) logπi(ai).

Consequently,

βi(ri)(ai) = eri(ai )/τ∑
bi∈Ai eri(bi )/τ

.

For this game, dropping the superscripts on actions, ri(a) = π−i (a + 1) and so
for any opponent distribution π−i it follows that

βi(π−i )(a) = eπ−i(a+1)/τ∑
a′∈A eπ−i(a′)/τ .

We can assume that π2 = β2(π1), so defining ρ(a) = (π1(a) − π1(3))/τ for
a = 1,2 it is clear that

π2 = 1

1 + eρ(1) + eρ(2)

(
eρ(2),1, eρ(1)

)
.(18)

By the chain rule applied to (17),

Div =
2∑

a=1

∂π̇1(a)

∂π1(a)
=

2∑
a=1

3∑
a′=1

2∑
b=1

∂β1(π2)(a)

∂π2(a′)
∂π2(a′)
∂ρ(b)

∂ρ(b)

∂π1(a)
− 2,
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so to calculate the value of this sum we first calculate the component partial
derivatives

∂β1(π2)(a)

∂π2(a′)
= eπ2(a′)/τ (I{a′=a+1}

∑
b′∈A eπ2(b′)/τ − 1)

τ (
∑

b′∈A eπ2(b′)/τ )2
,

∂π2

∂ρ(1)
= eρ(1)

(1 + eρ(1) + eρ(2))2

(−eρ(2),−1,1 + eρ(2)
)
,

∂π2

∂ρ(2)
= eρ(2)

(1 + eρ(1) + eρ(2))2

(
1 + eρ(1),−1,−eρ(1)

)
,

∂ρ(b)

∂π1(a)
= (1 + I{a=b})

τ
,

where the last derives from the fact that π1(3) = 1 − π1(1) − π1(2) and so

ρ(1) = (
2π1(1) + π1(2) − 1

)
/τ, ρ(2) = (

π1(1) + 2π1(2) − 1
)
/τ.

Substituting all of these into the expression for the divergence, we get that

τ 2

( 3∑
a=1

eπ2(a)/τ

)2(
1 + eρ(1) + eρ(2)

)2 × (Div + 2)

= eπ2(1)/τ eπ2(2)/τ
(
eρ(1)eρ(2) − 2eρ(1) − 2eρ(2)

)
+ eπ2(2)/τ eπ2(3)/τ (

eρ(2) − 2eρ(1) − 2eρ(1)eρ(2))
+ eπ2(1)/τ eπ2(3)/τ

(
eρ(1) − 2eρ(2) − 2eρ(1)eρ(2)

)
.

Recalling the expression (18) for π2, this shows that

τ 2

( 3∑
a=1

eπ2(a)/τ

)2

× (Div + 2)

= eπ2(1)/τ eπ2(2)/τ {
π2(1)π2(3) − 2π2(2)π2(3) − 2π2(1)π2(2)

}
+ eπ2(2)/τ eπ2(3)/τ

{
π2(1)π2(2) − 2π2(2)π2(3) − 2π2(1)π2(3)

}
+ eπ2(1)/τ eπ2(3)/τ

{
π2(2)π2(3) − 2π2(1)π2(2) − 2π2(1)π2(3)

}
.

(19)

This expression is invariant under the permutation of actions (1,2,3) →
(3,1,2), so without loss of generality we can assume π2(1) ≤ π2(3) and π2(2) ≤
π2(3). Initially we assume further that π2(1) ≤ π2(2) ≤ π2(3), so that

π2(1)π2(3) − 2π2(2)π2(3) − 2π2(1)π2(2) < 0,

π2(1)π2(2) − 2π2(2)π2(3) − 2π2(1)π2(3) < 0.
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If π2(2)π2(3) − 2π2(1)π2(2) − 2π2(1)π2(3) < 0, we are done. Otherwise

eπ2(1)/τ eπ2(3)/τ
{
π2(2)π2(3) − 2π2(1)π2(2) − 2π2(1)π2(3)

}
≤ eπ2(2)/τ eπ2(3)/τ {

π2(2)π2(3) − 2π2(1)π2(2) − 2π2(1)π2(3)
}
,

and the expression in (19) is bounded above by

eπ2(1)/τ eπ2(2)/τ {
π2(1)π2(3) − 2π2(2)π2(3) − 2π2(1)π2(2)

}
+ eπ2(2)/τ eπ2(3)/τ

{−π2(1)π2(2) − π2(2)π2(3) − 4π2(1)π2(3)
}
,

which is clearly negative. A similar argument works with the assumption π2(2) ≤
π2(1) ≤ π2(3), and so the expression in (19) is always negative. This shows that

Div =
2∑

a=1

∂π̇1(a)

∂π1(a)
≤ −2.

Since we have a planar flow with negative divergence, the system must converge
to a fixed point; there is a unique fixed point, at the Nash distribution [6], so this
point must be globally attracting. Therefore, from Theorem 11 it follows that the
learning algorithm (15) will converge with probability 1 to the Nash distribution
of the Shapley game.

7. Conclusion. Using Borkar’s theory of two-timescales stochastic approx-
imation, we have demonstrated a model-free multiagent reinforcement learning
algorithm which will converge with probability 1 in repeated normal form games
whenever the same claim can be made of smooth fictitious play [2], since the as-
ymptotic behavior of both algorithms can be shown to be characterized by the
asymptotic behavior of the flow induced by the smooth best response dynamics.
In particular, both algorithms will converge with probability 1 for two-player zero-
sum games and for N -player partnership games, since there exists a strict Lya-
punov function in these cases.

By extending Borkar’s stochastic approximation result to multiple timescales,
we have presented a new learning algorithm in which all players learn at a different
rate. Although we showed that if the algorithm converges in any game, then it must
have converged to a Nash distribution, further theoretical convergence results rely
on Assumption C, that faster players will converge to a unique fixed point for
any fixed strategy of the slower players. This assumption is true for all two-player
games and for cyclical games such as the N -player matching pennies game, but
fails when we consider N -player partnership games.

The multiple-timescales algorithm has been proven to converge to Nash
distribution with probability 1 for two-player zero-sum games and two-player
partnership games, as well as for the Shapley game [19] and the N -player matching
pennies game—these latter two games having caused problems for all algorithms
previously known to us.
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In fact, it is easy to see that a further extension of our algorithm is asymptotically
equivalent to the original. In this extension we additionally allow each player to
learn their Qi values at a different rate. All that is required is that no player
is reckless, in that each must learn the values Qi on a faster timescale than
they adjust toward the smooth best response βi(Qi) to these values. Since each
player’s values Qi only directly affect their own strategy, πi , the assumptions of
Theorem 11 continue to hold in the same cases as when all players learn their
values at the same rate, and the algorithm will behave exactly as before.
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