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ASYMPTOTIC RUIN PROBABILITIES
AND OPTIMAL INVESTMENT1

BY J. GAIER, P. GRANDITS AND W. SCHACHERMAYER

Vienna University of Technology

We study the infinite time ruin probability for an insurance company
in the classical Cramér–Lundberg model with finite exponential moments.
The additional nonclassical feature is that the company is also allowed to
invest in some stock market, modeled by geometric Brownian motion. We
obtain an exact analogue of the classical estimate for the ruin probability
without investment, that is, an exponential inequality. The exponent is larger
than the one obtained without investment, the classical Lundberg adjustment
coefficient, and thus one gets a sharper bound on the ruin probability.

A surprising result is that the trading strategy yielding the optimal
asymptotic decay of the ruin probability simply consists in holding a fixed
quantity (which can be explicitly calculated) in the risky asset, independent
of the current reserve. This result is in apparent contradiction to the
common believe that “rich” companies should invest more in risky assets
than “poor” ones. The reason for this seemingly paradoxical result is
that the minimization of the ruin probability is an extremely conservative
optimization criterion, especially for “rich” companies.

1. Introduction. Since 1903, when Lundberg [14] introduced a collective risk
model based on a homogeneous Poisson claims process, the estimation of ruin
probabilities has been a central topic in risk theory. It is known that, if the claim
sizes have exponential moments, the ruin probability decreases exponentially with
the initial surplus; see, for instance, the books by Gerber [8] and Asmussen [1]. If
the claim sizes have heavier tails, there also exist numerous results in the literature
(e.g., Embrechts and Veraverbeke [4]). In these models it is assumed that the
insurance company may invest the reserve in a riskless bond yielding zero interest.

It has only been recently that a more general question has been asked: If an
insurer additionally has the opportunity to invest in a risky asset (modeled, e.g., by
geometric Brownian motion), what is the minimal ruin probability she can obtain?
In particular, can she do better than keeping the funds in the bond? And if yes, how
much can she do better?

Browne [2] investigated this problem, but under the assumption that the risk
process follows a Brownian motion (the so-called “diffusion approximation”). In
this simpler setting, the investment strategy which minimizes the ruin probability
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consists in holding a constant amount of wealth in the risky asset, and the
corresponding minimal ruin probability is given by an exponential function.

Paulsen and Gjessing [16] and Paulsen [15] have investigated the question,
but under the additional assumption that all of the surplus is invested in the
risky asset; likewise did Kalashnikov and Norberg in [13]. Frovola, Kabanov and
Pergamenshchikov [5] looked at the case where a constant fraction of wealth is
invested in the stock described by geometric Brownian motion. In all of these
cases it was shown that, even if the claim size has exponential moments, the ruin
probability decreases only with some negative power of the initial reserve.

In [10] and [11], Hipp and Plum consider the general case and analyze the trad-
ing strategy which is optimal with respect to the criterion of minimizing the ruin
probability. They derive the Hamilton–Jacobi–Bellman equation corresponding to
the problem, prove the existence of a solution and a verification theorem. Then
they give explicit solutions for cases with exponential claim size distribution and
special parameter values (namely c = λ + a2/2b2, where c is the premium rate,
λ the intensity of the Poisson process underlying the number of claims, a the drift
and b the volatility of the geometric Brownian motion underlying the investment
possibility). It turns out that for these explicit solutions with exponentially distrib-
uted claims the minimal ruin probability decreases exponentially.

In this paper we will consider the framework of a classical risk process, where
the claims have exponential moments. We investigate whether there are constants
r̂ and C such that the probability of ruin �(x), obtained by starting from an initial
reserve x and subsequently investing in an appropriate way, satisfies

�(x) ≤ Ce−r̂x .(1)

Of course, there always is the possibility not to invest at all, resulting in an
exponential bound for the ruin probability �(x) (with the so-called Lundberg
adjustment coefficient), under the assumption of a positive safety loading. We
calculate the optimal (i.e., largest) coefficient r̂ such that (1) holds true; it turns out
that r̂ is determined by a similar equation as the Lundberg adjustment coefficient
[see (28) below]. The trading strategy that corresponds to this optimal r̂ consists
in holding a—properly chosen—constant amount of wealth in the risky asset,
independent of the current level of the reserve. We will show in Theorem 7 that this
constant strategy is asymptotically optimal, respectively asymptotically unique,
in the sense that every “asymptotically different” Markovian strategy yields an
exponentially worse decay of the ruin probability.

What is the message of our results from an actuarial point of view? After some
discussions with H. Bühlmann, which are gratefully acknowledged, we attempt
to make the following economic interpretation: minimizing the ruin probability is
an extremely conservative approach to the insurance business. This is reflected by
the—at least asymptotically—very conservative investment strategy of holding a
constant amount of money in the risky asset. A more proper way to deal with the
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probability of ruin in the presence of control variables (such as the investment
in a risky asset) apparently consists in imposing a certain threshold level on
this probability while optimizing with respect to other criteria, for example, the
expected value of discounted dividends. This topic is left for future research.

Here is another remarkable fact, which follows from our analysis and bears
practical relevance: by adding some additional risk (namely the investment in the
risky stock) to the basis risk of the insurance business, it is possible to decrease
the probability of ruin. In fact, this decrease is quite substantial and leads to a
different order of the exponential decay in terms of the initial surplus. This stresses
once more the importance of a proper asset-liability management of an insurance
company.

A complementary result about the asymptotic ruin probabilities for large claims
can be found in [6].

2. The model. We model the risk process of an insurance company in the
classical way (see, e.g., [7] and [1]): the surplus process R is given by a Poisson
process N = (N(t))t≥0 with intensity λ > 0, and by a positive random variable X,
independent of the process N , with distribution function F in the following way:

R(t, x) = x + ct −
N(t)∑
i=1

Xi,(2)

where x ≥ 0 is the initial reserve of the insurance company, c ∈ R is the (constant)
premium rate over time and Xi is an i.i.d. sequence of copies of X, modeling the
size of ith claim incurred by the insurer.

The classical model does not account for interest on the reserve: in modern
terms this may be expressed by saying that the insurance company may only invest
in a bond with zero interest rate. Now we deviate from the classical setting and
assume that the company may also invest in a stock or market index, described by
geometric Brownian motion

dS(t) = S(t)
(
a dt + b dW(t)

)
,(3)

where a, b ∈ R are fixed constants and W is a standard Brownian motion
independent of the process R.

We will denote by F = (Ft )t≥0 the filtration generated by the processes R and S

and use Et [·] as a shorthand notation for the conditional expectation E[·|Ft ].
If at time t the insurer has wealth Y (t), and invests an amount K(t) of money in

the stock and the remaining reserve Y (t) − K(t) in the bond (which in the present
model yields no interest), her wealth process Y can be written as

Y (t, x,K) = x + ct −
N(t)∑
i=1

Xi +
(

K

S
· S

)
(t)

= R(t, x) + (K · Wa,b)(t),

(4)
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where Wa,b(t) denotes the generalized Wiener process Wa,b(t) = at + bW(t)

with drift a and volatility b and (K · Wa,b) denotes the stochastic integral of the
process K with respect to the process Wa,b (see, e.g., Protter [17]).

We are interested in the infinite time ruin probability of the insurance company,
defined by

�(x,K) := P[Y (t, x,K) < 0 for some t ≥ 0],(5)

depending on the initial wealth x and the investment strategy K of the insurer. We
further define the time of ruin

τ (x,K) := inf{t :Y (t, x,K) < 0}.(6)

The set K of admissible strategies K is defined as

K :=
{
K = (K(t))t≥0 :K is predictable and adapted to F and

P

[∫ t

0
K(s)2 ds < ∞

]
= 1 for all t ∈ [0,∞)

}
.

(7)

Note that K ∈ K is necessary and sufficient for the stochastic integral (K · Wa,b)

w.r.t. the generalized Wiener process appearing in (4) to exist.
Furthermore we define

�∗(x) := inf
K∈K

�(x,K).(8)

If this infimum is attained for a certain strategy K∗, we will call this strategy an
optimal strategy with respect to the initial reserve x.

Denoting by h : R+ → R+ the moment generating function of the claim size X,
shifted such that h(0) = 0,

h(r) := E[erX] − 1,(9)

we will make the classical assumption that there exists r∞ ∈ (0,∞] such that
h(r) < ∞ for r < r∞ and such that h(r) → ∞ for r ↑ r∞. The function h is
increasing, convex, and continuous on [0, r∞) (cf. Grandell [9]).

3. An asymptotic inequality. The classical Cramér–Lundberg model without
investment possibility is, of course, a special case of the model described in
Section 2, namely letting a = b = 0. There, one usually assumes that c >

λE[X], because otherwise the ruin probability is simply equal to one. Under this
assumption, the ruin probability—defined by (5), which then is independent of
the investment strategy K—can be bounded from above by e−νx , where ν is the
positive solution of the equation

λh(r) = cr.(10)

This is the famous Lundberg inequality, the exponent ν is called Lundberg or
adjustment coefficient [1, 8, 9].

The main result of this paper is summarized in the following theorem. It will be
a consequence of Theorem 3.
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THEOREM 1 (Main theorem). For the model described in Section 2, assume
that b �= 0. Then the minimal ruin probability �∗(x) of an insurer, investing in a
stock market, can be bounded from above by

�∗(x) ≤ e−r̂x ,(11)

where 0 < r̂ < r∞ is the positive solution of the equation (compare Figure 1)

λh(r) = cr + a2

2b2 .(12)

If E[X] < c/λ, that is, if the Lundberg coefficient ν > 0 exists, we have that r̂ > ν,
if a �= 0, so that one obtains a sharper bound for �∗(x). Dropping the assumption
E[X] < c/λ, for a �= 0, we still obtain r̂ > 0, that is, an exponential decay of the
minimal ruin probability.

For later use, we introduce the following process, for fixed numbers x, r ∈ R+,
and a fixed admissible strategy K ∈ K ,

M(t, x,K, r) := e−rY (t,x,K).(13)

This process is already familiar from Gerber’s approach to risk theory via
martingale inequalities [7].

LEMMA 2. Let x ≥ 0, and a �= 0, b �= 0. There exists a unique 0 < r̂ < r∞
satisfying the equation

λh(r̂) = a2

2b2 + cr̂.(14)

For this r̂ and the constant process K̂(t) ≡ a/r̂b2, the process M(t, x, K̂, r̂) is a
martingale w.r.t. the filtration F.

FIG. 1. h(r), c
λ r and c

λ r + a2

2λb2 for exponentially distributed claims and parameter values θ = 10,

c = 15, λ = 1, a = 0.06 and b = 0.15. In this case we obtain ν = 1/30 = 0.03̇ and r̂ = 0.041.
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PROOF. The existence and uniqueness of r̂ are easy consequences of the
properties of h (cf. Figure 1).

If we define f : R × [0, r∞) → R,

f (K, r) := λh(r) − (Ka + c)r + 1
2K2b2r2,(15)

then it can be easily checked that f (K̂, r̂) = 0. Now, in order to show that the
process M(t, x, K̂, r̂) is a martingale w.r.t. F, we proceed as follows (see, e.g., the
book by Asmussen [1]): for arbitrary t ≥ 0,

E
[
M(t,0, K̂, r̂)

] = E

[
exp

{
−r̂

(
ct −

N(t)∑
i=1

Xi + K̂Wa,b(t)

)}]

= e−r̂(c+K̂a)t
E

[
exp

{
r̂

N(t)∑
i=1

Xi

}]
E
[
e−r̂K̂bW(t)]

= e−r̂(c+K̂a)t eh(r̂)λte(r̂2K̂2b2/2)t

= ef (K̂,r̂)t

= 1.

(16)

Since Y (t, x, K̂) has stationary independent increments, we obtain, for 0 ≤ t ≤ T ,

Et

[
M(T,x, K̂, r̂)

] = Et

[
e−r̂Y (T ,x,K̂)

]
= e−r̂Y (t,x,K̂)

Et

[
e−r̂(Y (T ,x,K̂)−Y (t,x,K̂))]

= e−r̂Y (t,x,K̂)
E
[
e−r̂(Y (T−t,x,K̂)−Y (0,x,K̂))

]
= e−r̂Y (t,x,K̂)

E
[
e−r̂Y (T −t,0,K̂)]

= e−r̂Y (t,x,K̂)

= M(t, x, K̂, r̂)

(17)

and therefore M(t, x, K̂, r̂) is a martingale w.r.t. the filtration F. �

REMARK. The above argument also shows that for each r ∈ [0, r̂), there exist
two constant processes K1,2(r) ∈ K such that the process M(t, x,K1,2(r), r) is a
martingale. The values K1,2(r) are given in the following way:

K1,2(r) = a

b2r
± √

�(r),(18)

where

�(r) := 2

b2r2

(
a2

2b2
+ cr − λh(r)

)
≥ 0 for r ≤ r̂ .(19)
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Note that for r = r̂ , we obtain �(r̂) = 0, and therefore K1(r̂) = K2(r̂) = K̂ .

From now on we shall always consider the processes M and Y , stopped at the
time of ruin, so we define

M̃(t, x,K, r) := M
(
t ∧ τ (x,K), x,K, r

)
(20)

and

Ỹ (t, x,K) := Y
(
t ∧ τ (x,K), x,K

)
,(21)

where we use the standard notation t ∧ τ (x,K) := min(t, τ (x,K)).

THEOREM 3. Let a �= 0, b �= 0. For the constant investment strategy K̂(t) ≡
a/r̂b2, the ruin probability can be bounded from above by ( for all x ∈ R+)

�(x, K̂) ≤ e−r̂x .(22)

PROOF. From Lemma 2 we know that M(t, x, K̂, r̂) is a martingale w.r.t.
the filtration F. Therefore, also the stopped process M̃(t, x, K̂, r̂) is a martingale
w.r.t. F (Theorem II.77.5 in [18]; note that M is nonnegative). Using this, we obtain
similarly as in [7], for t ≥ 0,

e−r̂x = M̃(0, x, K̂, r̂)

= E
[
M̃(t, x, K̂, r̂)

]
= E

[
M̃

(
τ (x, K̂), x, K̂, r̂

)
χ{τ(x,K̂)<t}

]
+ E

[
M̃

(
t, x, K̂, r̂

)
χ{t≤τ(x,K̂)}

]
≥ E

[
M̃

(
τ (x, K̂), x, K̂, r̂

)
χ{τ(x,K̂)<t}

]
,

(23)

where χA is the indicator function of the set A, and where we used the fact that the
process M̃ is nonnegative.

Monotone convergence yields that

lim
t→∞ E

[
M̃

(
τ (x, K̂), x, K̂, r̂

)
χ{τ(x,K̂)<t}

]
= E

[
M̃

(
τ (x, K̂), x, K̂, r̂

)
χ{τ(x,K̂)<∞}

]
.

(24)

Hence

e−r̂x ≥ E
[
M̃

(
τ (x, K̂), x, K̂, r̂

)|τ (x, K̂) < ∞]
P
[
τ (x, K̂) < ∞]

.(25)

Thus we arrive at

�(x, K̂) = P
[
τ (x, K̂) < ∞]

≤ e−r̂x

E[M̃(τ (x, K̂), x, K̂, r̂)|τ (x, K̂) < ∞] .
(26)
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FIG. 2. h(r) and c
λ r + a2

2λb2 for exponentially distributed claims, parameter values θ = 10, λ = 1,

a = 0.06, b = 0.15 and different values of c.

Since the random variable M̃(τ (x, K̂), x, K̂, r̂) is greater than or equal to 1 a.s. on
the set {τ (x, K̂) < ∞}, the result follows. �

The main theorem now is an immediate consequence of Theorem 3, observing
that r̂ > ν (assuming that b �= 0 and a �= 0).

As we have mentioned before, the classical Lundberg exponent ν is the positive
solution to

h(r) = c

λ
r.(27)

If now, in addition, the insurance company has the opportunity to invest in the
market, the corresponding exponent r̂ is the positive solution of

h(r) = c

λ
r + a2

2λb2 .(28)

The right-hand side of (28) is just the right-hand side of (27), but shifted by the
positive constant a2/2λb2. From the properties of h it is obvious that r̂ > ν if a �= 0
and that r̂ = ν for a = 0 (see also Figure 1).

What about the assumption c > λE[X]? In the classical setting without
investment, this condition is equivalent to h′(0) = E[X] < c/λ and guarantees
that h and the line with slope c/λ through 0 have a strictly positive intersection. In
the present model with investment the picture changes (see Figure 2): it is easily
seen that for a �= 0, equation (28) always possesses a strictly positive solution r̂ .

Thus we have completed the proof of the main theorem and now pass on to an
illustrative example.

EXAMPLE. Consider the situation for the classical Poisson–exponential model
when claim sizes are exponentially distributed with parameter θ , that is, dF (x) =
(e−x/θ/θ) dx. In this case h(r) = θr/(1 − θr), r ∈ [0,1/θ). A plot of this function
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is shown in Figure 1 for θ = 10. Equation (27) has two solutions, namely 0 and
ν = ρ/(ρ +1)θ , where the relative safety loading ρ equals as c/λθ −1. Note that ν

is only positive if c > λθ . An elementary calculation reveals that on the other hand
the coefficient r̂ equals

ν +
(√(

ν + a2/2b2c

2

)2

+ a2

2b2c

(
1

θ
− ν

)
− ν + a2/2b2c

2

)
.(29)

REMARKS.

1. At first sight it seems very amazing that one obtains an exponential bound on
the ruin probability � for arbitrary values of the parameters c,λ and E[X]. The
premium rate c might even be negative!

This stunning fact can be explained as follows: remember that the process K̂

is given by K̂(t) ≡ a/r̂b2. For “unfavorable” parameters of the risk process,
r̂ is small and therefore K̂ is large. This leads to an arbitrarily large drift
of the wealth process from the investment. This way, the very large constant
investment K̂ leads eventually to an exponential decay of the ruin probability.

This result also gives some theoretical justification for the technique of “cash
flow underwriting” which, at least from time to time, enjoys some popularity
among re-insurers: according to this technique the re-insurer sometimes accepts
contracts which will probably result in a technical loss, hoping that the financial
gains obtained from a “good” (i.e., a risky) investment of the premiums will
outweigh this loss.

2. Note that r̂ depends on the drift a of the risky investment via |a|! This can be
explained as follows: If a < 0, then K̂ = a/r̂b2 is also less than 0, that is, the
investment strategy K̂ prescribes to go short in the risky asset. This produces
an arbitrarily large, positive drift K̂ · a of the wealth process Y (see item 1),
which in turn leads to an exponential decay of the ruin probability at rate r̂ .

3. The investment strategy K̂ consists in always holding a fixed amount of money
in the risky asset: If Y (t, x, K̂) < K̂ , that is, if the wealth of the insurance
company is less then the constant K̂ , it is still possible to hold the amount K̂ ,
since we have not imposed any short selling constraints on the set of admissible
strategies.

4. If we drop the assumption that the bond yields zero interest rate, it turns out
that the case of zero real interest force i, when the interest force on the bond is
equal to the inflation force (cf. Delbaen and Haezendonck [3]), can be treated
with essentially the same methods as the ones described above. The stochastic
differential equation for the wealth process Y (i) with interest i > 0 is

dY (i)(t) =
(
ceit + (

i
(
Y (i)(t−) − K(t)

) + aK(t)
))

dt

+ bK(t) dW(t) − eitXN(t) dN(t).

(30)
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If we introduce the present value process Y
(i)

(t) := e−it Y (i)(t), we obtain

dY
(i)

(t) = e−it
((

ceit + (a − i)K(t)
)
dt

+ bK(t) dW(t) − eitXN(t) dN(t)
)
.

(31)

Defining the process M
(i)

(t) := e−rY
(i)

(t) for r ∈ R+, it follows the same way

as with zero interest rate that M
(i)

(t ∧τ, x, K̂(i), r̂ (i)) is a martingale, where r̂ (i)

is the solution to

λh(r) = cr + (a − i)2

2b2 ,(32)

and the process K̂(i) ∈ K is given by

K̂(i)(t) = a − i

r̂ (i)b2 eit .(33)

Then by the same line of argument as in the case of zero interest it can be shown
that the ruin probability �(x, K̂(i)) for the strategy K̂(i) can be bounded from
above by

�
(
x, K̂(i)

) ≤ e−r̂ (i)x .(34)

5. Actually, we need not assume that h(r) → ∞ for r ↑ r∞. If h were to jump to
infinity at r∞ [with limr↑r∞ h(r) = h(r∞) < ∞], we still get an exponential
bound on the ruin probability �(x): If there exists 0 < r̂ < r∞ such that
λh(r̂) = cr̂ + a2/2b2, then the bound is e−r̂x , otherwise it is simply e−r∞x .

4. Asymptotic optimality and asymptotic uniqueness of the constant
investment strategy. In this section we want to show an asymptotic optimality,
respectively, asymptotic uniqueness result for the constant investment strategy K̂

and the exponent r̂ . We will need the following assumption on the exponential tail
distribution of the claim sizes:

DEFINITION. Let 0 < r < r∞ be given. We say that X has a uniform
exponential moment in the tail distribution for r , if the following condition holds
true:

sup
y≥0

E
[
e−r(y−X)|X > y

]
< ∞.(35)

REMARK. From now on we shall assume that the random variable X, which
models the claim size, has a uniform exponential moment in the tail distribution
for r̂ . Partly we do so for the ease of exposition, partly because we need the
assumption: First, to go from a local submartingale to a true submartingale in
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the proof of Theorem 4, and second, in order to obtain a positive constant C in
Theorem 6. In Appendix B we present several of the results, that are proved in
this section, without the assumption of a uniform exponential moment in the tail
distribution.

Under assumption (35) (for r̂), we can prove the following theorem:

THEOREM 4. Assume that X has a uniform exponential moment in the tail
distribution for r̂ . Then for each K ∈ K , the process M̃(t, x,K, r̂) is a uniformly
integrable submartingale.

PROOF. Application of Itô’s lemma to the process M yields, for arbitrary
K ∈ K and r ∈ R+,

dM(t, x,K, r)

M(t−, x,K, r)
=

(
−(

c + K(t)a
)
r + 1

2
r2b2K(t)2

)
dt

− rbK(t) dW(t) + (
erXN(t) − 1

)
dN(t).

(36)

This can be rewritten as

dM(t, x,K, r)

M(t−, x,K, r)
=

(
−(

c + K(t)a
)
r + 1

2
r2b2K(t)2 + λh(r)

)
dt

− rbK(t) dW(t)

+ (
erXN(t) − 1

)
dN(t) − λE

[
erXN(t) − 1

]
dt

= f (K(t), r) dt − rbK(t) dW(t)

+ (
erXN(t) − 1

)
dN(t) − λE

[
erXN(t) − 1

]
dt.

(37)

Therefore the stopped process M̃(t, x,K, r̂) can be expressed in terms of
stochastic integrals as

M̃(t, x,K, r̂) − M̃(0, x,K, r̂)

=
∫ t∧τ

0
M(s−, x,K, r̂)f (K(s), r̂) ds

− rb

∫ t∧τ

0
M(s−, x,K, r̂)K(s) dW(s)

+
∫ t∧τ

0
M(s−, x,K, r̂)

(
er̂XN(s) − 1

)
dN(s)

− E[er̂X − 1]
∫ t∧τ

0
M(s−, x,K, r̂)λ ds.

(38)

Since, by assumption, the process K ∈ K is integrable with respect to the
Brownian motion and since 0 ≤ M(s−, x, K̂, r̂) ≤ 1 for 0 ≤ s ≤ τ , the stochastic
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integral w.r.t. the Brownian motion in (38) gives a local martingale. Furthermore,
it is shown in Appendix A that the difference of the two processes∫ t∧τ

0
M̃(s−, x, K̂, r̂)

(
erXN(s) − 1

)
dN(s)(39)

and

λE[er̂X − 1]
∫ t∧τ

0
M̃(s−, x, K̂, r̂) ds(40)

is a martingale.
Finally, with the help of the defining equation (14) for r̂ , it is easy to show that

for all K ∈ R,

f (K, r̂) = 1
2 r̂2b2(K − K̂)2

≥ 0.
(41)

Therefore, for all 0 ≤ t ≤ T ,∫ T ∧τ

t∧τ
M̃(s−, x,K, r̂)f (K(s), r̂) ds ≥ 0.(42)

Putting the pieces together, it is an easy consequence that M̃(t, x,K, r̂) is a local
submartingale.

To proceed from this to the conclusion that M̃(t, x,K, r̂) indeed is a true
submartingale, and even uniformly integrable, we use assumption (35). Using the
standard notation M̃∗ := supt≥0 |M̃(t)|, it follows that

E[M̃∗] ≤ E
[
M̃(τ, x,K, r̂)|τ < ∞]

≤ E
[
M̃(τ, x,K, r̂)|τ < ∞, Y (τ−) > 0

]
,

(43)

since M(τ,x,K, r̂) is equal to 1 on {τ < ∞, Y (τ−) = 0}, where ruin occurs a.s.
through the Brownian motion, and M(τ,x,K, r̂) ≥ 1 on {τ < ∞, Y (τ−) > 0},
where ruin occurs through a jump.

Now we proceed similarly as in [1], page 77. Let H(dt, dy) denote the joint
probability distribution of τ and Y (τ−) conditional on the event that ruin occurs,
and that it occurs through a jump. Then, given τ = t and Y (τ−) = y > 0, a claim
has distribution function dF (z)/

∫∞
y dF (u) (for z > y). Therefore

E[M̃∗] ≤ E
[
M̃(τ (x,K), x,K, r̂)|τ < ∞, Y (τ−) > 0

]
=

∫ ∞
0

∫ ∞
0

H(dt, dy)

∫ ∞
y

e−r̂(y−z) dF (z)∫ ∞
y dF (u)

≤
(

sup
y≥0

∫ ∞
y

e−r̂(y−z) dF (z)∫ ∞
y dF (u)

)∫ ∞
0

∫ ∞
0

H(dt, dy)

= sup
y≥0

∫ ∞
y

e−r̂(y−z) dF (z)∫ ∞
y dF (u)

< ∞

(44)
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by assumption (35).
A standard argument, using dominated convergence, shows that (44) implies

that M̃ indeed is a uniformly integrable submartingale (see, e.g., [17], Theo-
rem I.47). �

The following lemma will be useful in the sequel (compare also the more
general Proposition B.2 in Appendix B).

LEMMA 5. If X has a uniform exponential moment in the tail distribution
for r̂ , then for arbitrary K ∈ K and x ∈ R+, the stopped wealth process
(Ỹ (t, x,K))t≥0 converges almost surely on {τ = ∞} to ∞, for t → ∞. In other
words, either ruin occurs, or the insurer becomes infinitely rich.

PROOF. From Lemma 4, we know that M̃(t, x,K, r̂) is a uniformly inte-
grable submartingale. Applying Doob’s supermartingale convergence theorem
([18], Theorem II.69.1) to −M̃ , it follows that limt→∞ M̃(t, x,K, r̂) exists a.s.
Therefore, also the stopped wealth process Ỹ (t, x,K) converges a.s for t → ∞.

There must exist d > 0 such that P[X > d] > 0. If we define the events En :=
{Xn > d}, then P[Ec

n] < 1, and the events {Ej }∞j=1 are mutually independent.
Therefore,

P

[ ∞⋃
k=1

⋂
n≥k

Ec
n

]
= lim

k→∞ P

[ ⋂
n≥k

Ec
n

]
= lim

k→∞
∏
n≥k

P[Ec
n] = 0.(45)

Hence, P[⋂∞
k=1

⋃
n≥k En] = 1. In other words, with probability 1, a jump of size

greater than d occurs infinitely often.
On the other hand, the stochastic integral K · Wa,b is a.s. continuous, and

therefore the jumps of the compound Poisson process underlying the liabilities,
greater than d , which will occur infinitely often a.s., cannot be compensated for
by the a.s. continuous stochastic integral K · Wa,b. As a result, the wealth process,
stopped at time of ruin, cannot converge to a nonzero finite value with positive
probability. �

With the help of the two preceding lemmas we get the following result:

THEOREM 6. Assume that X has a uniform exponential moment in the tail
distribution for r̂ . Then the ruin probability satisfies, for every admissible process
K ∈ K ,

�(x,K) ≥ C e−r̂x ,(46)

where

C = inf
y≥0

∫ ∞
y dF (u)∫∞

y e−r̂(y−z) dF (z)

= 1

supy≥0 E[e−r̂(y−X)|X > y] > 0.

(47)
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PROOF. As M̃(t, x,K, r̂) is a uniformly integrable submartingale, it follows
from Doob’s optional sampling theorem that [using τ as a shorthand notation
for τ (x,K)]

M̃(0, x,K, r̂) = e−r̂x

≤ E
[
M̃(τ, x,K, r̂)

]
.

(48)

Now we proceed similarly as in the proof of Theorem 3, but use Lemma 5:

E
[
M̃(τ, x,K, r̂)

]
= E

[
M̃(τ, x,K, r̂)|τ < ∞]

P[τ < ∞]
+ E

[
lim

t→∞ M̃(t, x,K, r̂)|τ = ∞
]
P[τ = ∞]

= E
[
M̃(τ, x,K, r̂)|τ < ∞]

P[τ < ∞].

(49)

Plugging this into (48), and using (43) and (44) we obtain

�(x,K) ≥ e−r̂x 1

E[M̃(τ, x,K, r̂)|τ < ∞] ≥ Ce−r̂x .(50)

This completes the proof. �

REMARKS. In the classical Poisson–exponential model, that is, for claims
with an exponential distribution (with parameter θ ), one obtains the value C =
1/(h(r̂) + 1) = 1 − θ r̂ .

For K ≡ 0, inequality (50) is the well-known lower bound for the ruin
probability without investment, given, for example, in [1], Theorem 6.3.

We now pass over to the asymptotic uniqueness of the constant investment
strategy K̂ .

Hipp and Plum showed in [10] that, for the case of locally bounded density of
the jump size, the problem of minimizing the ruin probability over all admissible
trading strategies possesses a solution that is Markovian. That is to say that
the trading strategy at time t depends on Ft only through the current level of
wealth Y (t−, x,K). Therefore from now on we shall restrict our attention to such
strategies. We will write k : R+ → R for the function that describes the dependency
on wealth of a certain strategy K ∈ K . Then the corresponding investment at time t

equals K(t) = k(Y (t−, x,K)). We will show that, if the optimal strategy—as a
function of wealth—converges to a constant as wealth tends to infinity, then the
limiting constant must be K̂ = a/b2r̂ (Corollary 1). We will even show the stronger
result that a Markovian strategy, which is asymptotically bounded away from this
constant strategy, leads to an exponentially worse (i.e., larger) ruin probability than
the one obtained by using the constant strategy K̂ .
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THEOREM 7. Let X have a uniform exponential moment in the tail distribu-
tion for r̂ . Suppose further that K ∈ K is a Markovian strategy and let k : R+ → R

be its defining function. If there exist α > 0 and xα ≥ 0 such that

|k(x) − K̂| ≥ α for x ≥ xα,(51)

then there are rα < r̂ and Aα > 0 such that

�(x,K) ≥ Aαe−rαx.(52)

PROOF. We split the proof into several steps.
Step 1. For α and xα as in the theorem, we define the stopping time

τα := inf{t :Y (t, x,K) ≤ xα},(53)

which is only nontrivial for x > xα .
Step 2. We show that, for x > xα , there exists rα < r̂ such that M̃(t ∧

τα, x,K, rα) is a uniformly integrable submartingale: we know that f (K̂, r̂) = 0,
that f (k, r̂) = r̂2b2(k − K̂)2/2 > 0 for k �= K̂ , and that limk→∞ f (k, r) = ∞ for
all r ∈ (0, r̂). Using these facts and the continuity of f , it is straightforward to
show that, for α as before, there exists some 0 < rα < r̂ such that, for |k − K̂| > α,
we have f (k, rα) ≥ 0. Now one proceeds the same way as in Section 4 to prove
that M̃(t ∧ τα, x,K, rα) is a uniformly integrable submartingale, using that τα ≤ τ

a.s., for x > xα , and Lemma A.1. Another consequence of τα ≤ τ a.s. is that
M̃(t ∧ τα, x,K, rα) = M(t ∧ τα, x,K, rα) a.s.

Step 3. Using that the process M(t ∧ τα, x,K, rα) is a uniformly integrable
submartingale and Lemma 5, we obtain

e−rαx ≤ E[M(τα, x,K, rα)]
= E

[
lim

t→∞M(t, x,K, rα)|τα = ∞
]
P[τα = ∞]

+ E[M(τα, x,K, rα)|τα < ∞]P[τα < ∞]
≤ 0 · P[τα = ∞] + 1

Cα

e−rαxαP[τα < ∞],

(54)

where the constant Cα is defined by

1

Cα

:= sup
y≥0

∫ ∞
y e−rα(y−z) dF (z)∫ ∞

y dF (u)
= sup

y≥0
E
[
e−rα(y−X)

∣∣X > y
]
.(55)

Hence

P[τα < ∞] ≥ Cαe−rα(x−xα).(56)

Since rα < r̂ , the constant Cα satisfies Cα > C [see (47)] and therefore Cα > 0 by
assumption.
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Step 4. The ruin probability then can be estimated as

P[τ (x,K) < ∞] ≥ P[τ (x,K) < ∞|τα < ∞]P[τα < ∞]
≥ P[τ (xα,K) < ∞]P[τα < ∞]
≥ �∗(xα)Cαe−rα(x−xα),

(57)

where for the second inequality we have used that our setting is Markovian. Note
that we only obtain the inequality P[τ (xα,K) < ∞] ≤ P[τ (x,K) < ∞|τα < ∞]
since one can also fall below xα after a jump and therefore arrive at a level strictly
smaller than xα .

Step 5. We use that �∗(xα) ≥ Ce−r̂xα (Theorem 6) to show that �∗(xα) > 0
and to finally obtain

�(x,K) ≥ Dαe−rαx,(58)

for a constant Dα > 0 and for all x > xα .
Step 6. It is obvious that for x ≤ xα , we can bound �(x,K) from below by

some constant Bα > 0.
Step 7. Finally taking Aα as the minimum of Bα and Dα , we obtain the desired

result. �

COROLLARY 8. Assume that X has a uniform exponential moment in the
tail distribution for r̂ . Let k∗ : R+ → R be the defining function of the optimal
investment strategy K∗. If this function possesses a limit for x → ∞, then this
limit is given by

lim
x→∞k∗(x) = K̂.(59)

PROOF. Assume that limx→∞ k∗(x) �= K̂ . Then there exist α,xα > 0 such that

|k∗(x) − K̂| > α for x ≥ xα.(60)

Therefore, using Theorem 7, one obtains that

�∗(x) ≥ Aαe−rαx(61)

for some rα < r̂ , which together with the main theorem yields the apparent
contradiction to the optimality of K∗:

lim
x→∞

�∗(x)

e−r̂x
= ∞.(62) �

REMARK. It has been shown recently (after the submission of this paper) by
Hipp and Schmidli [12] that the function k∗(x) possesses a limit, for x → ∞.
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APPENDIX A

In this appendix we present the proof for the following lemma, which was
used in the proof of Theorem 4, Section 4, in order to show that the process
M̃(t, x,K, r̂) is a local submartingale for all admissible trading strategies K ∈ K .

LEMMA A.1. Let 0 ≤ r < r∞, and K ∈ K . The difference of the processes

λE[erX − 1]
∫ t∧τ

0
M(s−, x,K, r) ds(A.1)

and ∫ t∧τ

0
M(s−, x,K, r)

(
erXN(s) − 1

)
dN(s)(A.2)

is a martingale w.r.t. the filtration F.

PROOF. Note that N = (N(t))t≥0 is a finite variation process. Therefore the
stochastic integral w.r.t. N in (A.2) makes sense (a.s.) as a pathwise Lebesgue–
Stieltjes integral (see, e.g., [17]). Let {Tn}∞n=1 denote the arrival times of N . Then∫ t∧τ

0
M(s−, x,K, r)

(
erXN(s) − 1

)
dN(s)

=
∞∑

n=1

M(Tn−, x,K, r)
(
erXn − 1

)
χ{t∧τ≥Tn}.

(A.3)

Taking expectations, we obtain, for 0 ≤ t ≤ T ,

Et∧τ

[∫ T ∧τ

t∧τ
M(s−, x,K, r)

(
erXN(s) − 1

)
dN(s)

]

= Et∧τ

[ ∞∑
n=1

M(Tn−, x,K, r)
(
erXn − 1

)
χ{T ∧τ≥Tn>t∧τ }

]

= Et∧τ

[ ∞∑
n=1

ETn−
[
M(Tn−, x,K, r)

(
erXn − 1

)
χ{T ∧τ≥Tn>t∧τ }

]]

= Et∧τ

[ ∞∑
n=1

ETn−
[
er̂Xn − 1

]
M(Tn−, x,K, r)χ{T ∧τ≥Tn>t∧τ }

]

= Et∧τ

[ ∞∑
n=1

E
[
er̂X − 1

]
M(Tn−, x,K, r)χ{T∧τ≥Tn>t∧τ }

]

= E[erX − 1]Et∧τ

[∫ T ∧τ

t∧τ
M(s−, x,K, r) dN(s)

]

= E[erX − 1]Et∧τ

[∫ T ∧τ

t∧τ
M(s−, x,K, r)λds

]
,

(A.4)
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where from the fourth to the fifth line we have used that Xn and FTn− are
independent and from the sixth to the seventh line we have used that N(t) − λt

is a martingale (see, e.g., Protter [17], page 39). Thus the difference between
(A.1) and (A.2) is a martingale w.r.t. the stopped filtration (Ft∧τ )t≥0. A standard
argument ([17], page 11) shows that then the difference between (A.1) and (A.2)
also is a martingale w.r.t. the filtration F. �

APPENDIX B

In this appendix we shall examine, to which extent the results of Section 4 can
be generalized, when the assumption of a uniform exponential moment in the tail
distribution [see (35)] is dropped. In particular, we will show that the statement
of Lemma 5 also holds true without this assumption, that is, for every admissible
trading strategy K ∈ K , the insurer a.s. either gets infinitely rich or ruined (see
Proposition B.2).

PROPOSITION B.1. (i) Let x > 0, and let r̂ be defined as in (14). For z ∈ R+,
we define the stopping time

τz := inf
{
t ≤ τ (x,K) : Ỹ (t, x,K) ≥ z

}
,

which is only nontrivial, if x < z. For every z ∈ R+ and every admissible trading
strategy K ∈ K , the stopped process M̃τz(t, x,K, r̂) = M̃(t ∧ τz, x,K, r̂) is a
uniformly integrable submartingale.

Furthermore, P[τz ∧ τ (x,K) < ∞] = 1, for all z ∈ R+, that is, with probabil-
ity 1, either the insurer gets ruined or she reaches the level z.

(ii) For all K ∈ K , the process M̃(t, x,K, r̂) satisfies the submartingale
inequality ( for 0 ≤ s ≤ t)

M̃(s, x,K, r̂) ≤ Es

[
M̃(t, x,K, r̂)

]
,

however, we also allow for the possibility that the above expressions may equal ∞.

PROOF. (i) We have already shown in the proof of Theorem 4 that, for all
K ∈ K , the process M̃(t, x,K, r̂) is a local submartingale. Therefore, the stopped
process M̃τz(t, x,K, r̂) is also a local submartingale, for all K ∈ K . Observe
that, for the stopped process M̃τz(t, x,K, r̂), we have a uniform estimate for the
exponential tail moments, namely

sup
0≤y≤z

E
[
e−r(y−X)|X > y

]
< ∞, r ∈ [0, r∞).(B.1)

Hence [cf. (44)]

E

[
sup

0≤t<∞
∣∣M̃τz(t, x,K, r̂)

∣∣] < ∞,(B.2)
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and therefore M̃τz(t, x,K, r̂) is a uniformly integrable submartingale ([17],
page 35). Exactly the same way as in the proof of Lemma 5, we apply Doob’s
supermartingale convergence theorem to show that limt→∞ Mτz exists a.s. Then,
we deduce that, for t → ∞, the insurer a.s. either gets ruined or reaches the level z

from the fact that, with probability 1, infinitely many jumps of size greater than d

occur, which cannot be compensated for by the a.s. continuous stochastic integral
w.r.t. the Brownian motion or the a.s. continuous drift term.

(ii) We know from (i) that, for n ∈ N, τn := inf{t : Ỹ (t, x,K) ≥ n} and 0 ≤ s ≤ t ,

M̃(s ∧ τn, x,K, r̂) ≤ Es

[
M̃(t ∧ τn, x,K, r̂)

]
.(B.3)

The left-hand side of (B.3) converges a.s. to M̃(s, x,K, r̂). The right-hand side
of (B.3) can be rewritten as

Es

[
M̃(t ∧ τn, x,K, r̂)

] = Es

[
M̃(t ∧ τn, x,K, r̂)χ{t∧τn<τ(x,K)}

]
+ Es

[
M̃

(
τ (x,K), x,K, r̂

)
χ{τ(x,K)≤t∧τn}

]
.

(B.4)

Letting n → ∞, we can apply the conditional version of the reverse Fatou lemma
to the first term in (B.4) and (conditional) monotone convergence to the second
term to obtain

lim
n→∞ Es

[
M̃(t ∧ τn, x,K, r̂)χ{t∧τn<τ(x,K)}

]
≤ Es

[
M̃(t, x,K, r̂)χ{t<τ(x,K)}

](B.5)

and

lim
n→∞Es

[
M̃

(
τ (x,K), x,K, r̂

)
χ{τ(x,K)≤t∧τn}

]
= Es

[
M̃

(
τ (x,K), x,K, r̂

)
χ{τ(x,K)≤t}

]
.

(B.6)

To sum it up, we obtain

M̃(s, x,K, r̂) ≤ Es

[
M̃(t, x,K, r̂)

]
a.s.(B.7) �

PROPOSITION B.2. Let x > 0 and K ∈ K be given. On the set {τ (x,K) =
∞}, the process Y (t, x,K) converges a.s. to ∞, for t → ∞: either the insurer gets
ruined or infinitely rich.

PROOF. Assume that limt→∞ Ỹ (t, x,K) is not a.s. equal to ∞ on the set
{τ (x,K) = ∞}, for some process K ∈ K and some initial reserve x ∈ R+. Let
us work toward a contradiction.

We know from Proposition B.1(i) that, for all admissible trading strategies
K ∈ K and all n ∈ N,

lim
t→∞ Ỹ τn(t, x,K) = n a.s. on {τ (x,K) = ∞},(B.8)
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where Ỹ τn denotes the process Ỹ , stopped at time τn := inf{t : Ỹ (t, x,K) ≥ n}.
Therefore for x and K as above, there have to exist numbers d > 0, δ > 0, and a
subsequence (nk)

∞
k=1 of the natural numbers such that

P

[ ∞⋂
k=1

{∃ t : τnk
≤ t < τnk+1, Y (t, x,K) ≤ d

} ∩ {τ (x,K) = ∞}
]

> δ.(B.9)

This means that on the set {τ (x,K) = ∞}, where ruin a.s. never occurs, the insurer
has to reach each level n ∈ N—a consequence of Proposition B.1(i)—but on the
other hand she has to fall below the level d in each of the stochastic intervals
�τnk

, τnk+1� with positive probability.
The idea of the subsequent argument is the following: If the insurer falls below

the level d too often, she will get ruined with too high probability. For this purpose
we define the following stopping times:

σk := inf
{
t : τnk

≤ t < τnk+1, Ỹ (t, x,K) ≤ d
}∧ τ (x,K) ∧ τnk+1,(B.10)

for k ∈ N. Note that, for all k ∈ N, the stopping times σk are finite a.s.
Next, we define another sequence of stopping times

ρk := inf
{
t : t > σk, Ỹ (t, x,K) ≥ 2d

}
, k ∈ N.(B.11)

As a consequence of Proposition B.1(i), for all k ∈ N, the stopping times ρk ∧
τ (x,K) are finite a.s. Furthermore, there exists k1 ∈ N such that, for k ≥ k1,
ρk ∧ τ (x,K) ≤ τnk+1 a.s.

We know from Proposition B.1(i) that, for each k ∈ N, the stopped process
M̃

τnk+1 (t, x,K, r̂) is a uniformly integrable submartingale, so we can apply Doob’s
optional sampling theorem [17] to the process M̃

τnk+1 (t, x,K, r̂) and the two
stopping times σk and ρk ∧ τ (x,K), σk ≤ ρk ∧ τ (x,K) ≤ τnk+1 , to obtain

M(σk) ≤ Eσk

[
M

(
ρk ∧ τ (x,K), x,K, r

)]
, k ≥ k1.(B.12)

Now, we define the following events:

Aj := {
σj < τ ;σj < τnj+1

}
, j ∈ N(B.13)

and

Ak :=
k⋂

j=1

Aj, k ∈ N.(B.14)

For all k ∈ N, the event Ak lies in Fσk
.

We multiply inequality (B.12), for each k ≥ k1, with the indicator function χAk

and take expectations to obtain

E
[
M(σk, x,K, r)χAk

] ≤ E

[
Eσk

[
M

(
ρk ∧ τ (x,K), x,K, r

)]
χAk

]
.(B.15)
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The left-hand side of (B.15) can be bounded by

e−rd
P[Ak] ≤ E

[
M(σk, x,K, r)χAk

]
, k ≥ k1,(B.16)

since M(σk, x,K, r) ≥ e−rd on the set Ak .
Our aim is to show that the probability, conditional on the event Ak , to get ruined

before reaching 2d is strictly greater than 0, independent of k. In order to get this
estimate, we proceed as follows with the right-hand side of (B.15). By definition
of the conditional expectation,

E

[
Eσk

[
M

(
ρk ∧ τ (x,K), x,K, r

)]
χAk

]
= E

[
M

(
ρk ∧ τ (x,K), x,K, r

)
χAk

]
.

(B.17)

Now we argue in a similar fashion as in the proof of Theorem 6:

E
[
M

(
ρk ∧ τ (x,K), x,K, r

)
χAk

]
= E

[
M

(
τ (x,K), x,K, r

)
χAkχ{τ(x,K)<ρk}

]
+ E

[
M(ρk, x,K, r)χAkχ{τ(x,K)≥ρk}

]
≤ E

[
M

(
τ (x,K), x,K, r

)
χAkχ{τ(x,K)<ρk}

] + e−2rd
P[Ak], k ≥ k1,

(B.18)

using that, for k ≥ k1, on the set Ak ∩ {ρk ≤ τ (x,K)}, the random variable
M(ρk, x,K, r) equals exp(−2rd). Moreover,

E
[
M

(
τ (x,K), x,K, r

)
χAkχ{τ(x,K)<ρk}

]
= E

[
M

(
τ (x,K), x,K, r

)|Ak ∩ {τ (x,K) < ρk}]
× P

[
Ak ∩ {τ (x,K) < ρk}].

(B.19)

Finally, we need the following inequality:

E
[
M

(
τ (x,K), x,K, r

)|Ak ∩ {τ (x,K) < ρk}]
≤ sup

0≤y≤2d

E
[
e−r(y−X)|y > X

]
,

(B.20)

which holds true, because the insurer’s wealth is below the level 2d on the set
Ak ∩{τ (x,K) < ρk}. Putting (B.12), (B.16), (B.18) and (B.20) together, we obtain

P
[
τ (x,K) < ρk|Ak

] ≥ e−rd − e−2rd

sup0≤y≤2d E[e−r(y−X)|y > X]
≥ β, k ≥ k1,

(B.21)

for some constant β > 0, that just depends on d and not on k.
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Now, the proof of Proposition B.2 is almost complete. In order to see that (B.9)
cannot hold true for δ > 0, just use

P

[ ⋂
k1≤k≤n

{∃ t : τnk
≤ t < τnk+1, Y (t, x,K) ≤ d

}∩ {τ (x,K) = ∞}
]

≤ P

[ ⋂
k1≤k≤n

{∃ t : τnk
≤ t < τnk+1, Y (t, x,K) ≤ d

}]

= P[An]
= P[An|An−1]P[An−1].

(B.22)

Since the event {τ (x,K) < ρn−1} excludes the event An, the following holds:

P[An|An−1]P[An−1] ≤ (
1 − P[τ (x,K) < ρn−1|An−1])P[An−1]

≤ (1 − β)P[An−1].
(B.23)

The bottom line is that limn→∞ P[An] = 0, and therefore

lim
n→∞ P

[ ⋂
k1≤k≤n

{∃ t : τnk
≤ t < τnk+1, Y (t, x,K) ≤ d

} ∩ {τ (x,K) = ∞}
]

= P

[ ⋂
k1≤k

{∃ t : τnk
≤ t < τnk+1, Y (t, x,K) ≤ d

} ∩ {τ (x,K) = ∞}
]

= 0,

(B.24)

which is an apparent contradiction to (B.9). Thus we have completed the proof of
Proposition B.2. �
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