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PARTIAL IMMUNIZATION PROCESSES

BY ALAN STACEY

University of Cambridge

Partial immunization processes are generalizations of the contact process
in which the susceptibility of a site to infection depends on whether or not
it has been previously infected. Such processes can exhibit a phase of weak
survival, in which the process survives but drifts off to infinity, even on graphs
such as Z

d , where no such phase exists for the contact process. We establish
that whether or not strong survival occurs depends only on the rate at which
sites are reinfected and not on the rate at which sites are infected for the
first time. This confirms a prediction by Grassberger, Chaté and Rousseau.
We then study the processes on homogeneous trees, where the behaviour is
also related to that of the contact process whose infection rate is equal to
the reinfection rate of the partial immunization process. However, the phase
diagram turns out to be substantially richer than that of either the contact
process on a tree or partial immunization processes on Z

d .

1. Introduction. In this paper we shall be concerned with a family of
processes, which we shall call partial immunization processes, and which
generalize the widely studied contact process. We begin by defining the partial
immunization process with parameters (λn, λo) (short for λnew and λold) on a graph
G = (V,E); all graphs are assumed to be connected and of bounded degree and
throughout most of this paper we shall be interested in the case when G is either
Z

d or the infinite homogeneous tree in which each vertex has d neighbours, Td .
A partial immunization process is a continuous-time Markov process with state

space {−1,0,1}V , so each vertex can be in state −1, 0 or 1. We shall denote the
state of the process at time t by ηt , so the state of a vertex v is ηt (v). The state of
each vertex v flips according to the following rules:

−1 → 1 at rate λn.#
{
w : w ∼ v and ηt (w) = 1

}
,

0 → 1 at rate λo.#
{
w : w ∼ v and ηt (w) = 1

}
,

1 → 0 at rate 1,

where w ∼ v means that w is joined to v by an edge (which we will denote
wv). For general information about interacting particle systems, such as the fact
that the above rates do indeed define a unique process (subject to some basic
constraints, such as right-continuity of sample paths), see Liggett [14]. For basic
graph-theoretic terminology see Bollobás [4].
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We shall think of the process as modelling the spread of a disease. If η(v) = 1,
we call v infected; if ηt (v) = 0, we call v previously infected; and if ηt (v) = −1,
we call v never infected. We shall usually start the process at time 0 with a certain
subset, A, of vertices (often just a single distinguished vertex O, the root or origin)
in state 1 and all the other vertices in state −1. Note then that any vertex ever in
state 0 (“previously infected”) will indeed, at some previous time, have been in
state 1. We shall use ηA

t to denote the process with this starting set and we will
abbreviate η

{O}
t by ηO

t .
In the case λo = λn, where the states −1 and 0 are essentially equivalent, this

process reduces to the very widely studied contact process introduced by Harris [9]
in 1974; see [16] for a recent detailed account. States of the contact process will
be identified with subsets of V , corresponding to sets of infected vertices. In
the contact process an infected vertex recovers at rate 1; an uninfected vertex
becomes infected at a rate proportional to the number of infected neighbours.
Partial immunization processes differ in that the constant of proportionality may
be different according to whether or not the uninfected vertex in question has
been previously infected. If λo > λn, then a previously infected vertex is more
susceptible to future infections. If λo < λn, then previously infected vertices have
been partially immunized.

We shall say that a partial immunization process survives if

P
(∀ t, ηO

t (v) = 1 for some v
)
> 0

and that it survives strongly if

P
(∀T,∃ t > T with ηO

t (O) = 1
)
> 0.

If the process survives, but does not survive strongly, we say that it survives weakly.
These definitions agree with standard definitions for the contact process and we
now summarize the most fundamental facts which are known in that case. For the
contact process on an infinite connected graph of bounded degree, G, it is well
known that there exist critical values 0 < λ1(G) ≤ λ2(G) < ∞ with the following
property. Denoting by λ the common value of λo and λn, then the process does
not survive if λ < λ1, it survives weakly if λ1 < λ < λ2 and it survives strongly
if λ > λ2. On Z

d (for any d ≥ 1) it is known—but far from straightforward to
prove—that λ1 = λ2, so there is no phase of weak survival [2]. In contrast, on Td ,
one has λ1 < λ2 (for d ≥ 3, note that T2 = Z) [18, 15, 22]. See also [16] for an
overview (and for proofs).

Partial immunization processes on Z
d have been studied by Durrett and

Schinazi [7], and independently by Grassberger, Chaté and Rousseau [8]. The
special case when λo = 0 is known, for obvious reasons, as the forest fire model
and had been studied earlier by Kulasmaa [11]. In this special case, it is not hard
to see that there exists a critical λf = λf(G) ∈ (0,∞] such that if λn > λf, then one
has weak survival and if λn < λf, one has no survival. It is clear that strong survival
cannot occur in this case. Furthermore, λf(Z

d) is finite if and only if d ≥ 2.
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In [8], simulations were reported which suggested that whether or not the partial
immunization process on Z

d survives strongly depends only on the value of λo
(provided λn > 0). In other words, letting λc denote (as usual) the common value
of λ1 and λ2 on Z

d , the process survives strongly if and only if λo > λc. In
independent work, Durrett and Schinazi [7] proved that λo > λc is equivalent
to a different notion, which they called persistence. The process ηt is said to be
persistent if

lim inf
t→∞ P

(
ηO

t (O) = 1
)
> 0.

The question of strong survival was not explicitly addressed in [7]. It is trivial
that persistence implies strong survival. The reverse implication is known to hold
for the contact process on Z

d and trees Td ; it is a consequence of the complete
convergence theorem (see [16] for an explanation and references) which is far
from easy. There are, however, graphs for which the reverse implication does not
hold; see [20].

The first principal result of this paper is that strong survival cannot occur on Z
d

for λo < λc, whatever the value of λn. Combined with the reverse implication (up
to behaviour at the critical value) in [7] this will establish the following theorem,
suggested by [8].

THEOREM 1.1. Let ηt be the partial immunization process on Z
d with

parameters (λn, λo). Let λc be the contact process critical value on the same
graph. Then if λo > λc and λn > 0, ηt survives strongly. If λo < λc, then ηt does
not survive strongly.

In recent years, questions traditionally asked about processes on Z
d have been

considered on more general graphs, particularly homogeneous trees. The main
interest in studying the contact process on trees is that different behaviour from that
on Z

d can occur: λ1 < λ2 so there is a phase of weak survival. We shall consider
partial immunization processes on trees. It turns out that the phase diagram is
significantly richer than is the case either for the process on Z

d or for contact
processes on trees. We prove the following theorem.

THEOREM 1.2. Let ηt be the partial immunization process on Td (d ≥ 3) with
parameters (λn, λo), where λn is assumed to be nonzero. Let λ1 < λ2 be the critical
values for the contact process on the same graph.

(i) If λo < λ1, then for sufficiently large λn one has weak survival and for
sufficiently small λn one has no survival. Strong survival cannot occur.

(ii) If λ1 < λo < λ2, then for sufficiently large λn (dependent on λo) one has
strong survival. For sufficiently small λn one has no survival. There is an open
interval of values of λn for which weak survival occurs; indeed, this conclusion
holds if λ1 < λn < λ2.

(iii) If λo > λ2, then strong survival occurs.
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In the next section of this paper, we explain the graphical representation of
processes and state some background results which are needed. In Section 3 we
prove Theorem 1.1 and in Section 4 we prove the results for trees. In the final
section we discuss further questions, particularly the issue of monotonicity of the
process as the parameters vary.

2. Preliminaries. The graphical representation is an important tool in the
study of certain interacting particle systems and was first introduced by Harris
[10] for the contact process. Here we describe a graphical representation for partial
immunization processes. Some familiarity with the representation for the contact
process is advisable (see [5] or [16]).

Given a graph G = (V,E), parameters λn and λo and η0 : V → {−1,0,1},
we give a construction of the partial immunization process on G with parameters
(λn, λo) and starting state η0. Let us suppose that λn > λo (the other case is
similar). We begin with the set V × [0,∞), thinking of each {v} × [0,∞) as a
timeline. To each vertex v ∈ V we associate an independent Poisson process of
rate 1, and for the arrival times t of this process we place a recovery mark at
(v, t). To each edge e = {v,w} of the graph we associate four independent Poisson
processes. At the arrival times, t , of a Poisson process of rate λo we place a stable
infection arrow, (−→vw, t), which points from (v, t) to (w, t). At the arrival times of
a Poisson process of rate λn − λo we place similar virgin infection arrows. The
other two Poisson processes associated with e are much the same, but the infection
arrows go from w to v.

One constructs the process ηt by setting ηt (v) = 1 (so v is infected at time t) if
there is an infection trail (which we are about to define) from (w,0) to (v, t) for
some w with η0(w) = 1. We will set ηt (v) = 0 if there is no such infection trail
and either there is some time s ∈ [0, t) with ηs(v) = 1, or η0(v) = 0. Otherwise
we set ηt (v) = −1. An infection trail from (w, s) to (v, t), (for s ≤ t) is, as for the
contact process, a path that goes along the timelines of V ×[0,∞) in the direction
of increasing time and along infection arrows in the direction of the arrows, without
passing through any recovery marks; additionally, we require that it only uses
virgin infection arrows—(−→vw, t), say—if w is in the state −1 immediately prior to
time t . In other words, virgin infection arrows may not be used to infect previously
infected vertices.

There is some danger of circularity in the above definition. The process ηt is
defined in terms of infection trails, but to define an infection trail one needs to
know which vertices have been previously infected. It is clear that on a finite
graph there are no problems: there are almost surely, in any finite time period,
only finitely many arrows and recovery marks, and the effect of each can be
considered in chronological order. For an infinite graph one can, however, reduce
to the finite case, in the following way. To any given time period, one associates
the spanning subgraph of G whose edge set consists precisely of those edges along
which there is some infection arrow (in either direction) during that time. It is not
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too hard to show that there is some (deterministic) δ > 0 with the property that
in any time period of length δ, the associated subgraph almost surely contains
only finite connected components. One can therefore increment time in steps of
length δ and thereby consider only finite graphs at each step. The details of this
general argument can be found in [6].

In the case when λn < λo the graphical representation will contain stable
infection arrows and reinfection arrows. Reinfection arrows can only be used to
infect vertices which are in state 0. In either case, the term stable infection trail
will refer to an infection trail all arrows of which are stable.

We shall make considerable use of the graphical representation in our proofs.
One very useful property, which we explore a little here, is that it gives an easy
way to couple slightly different processes. Processes with the same parameters
and different starting states on the same graph are immediately coupled by
the representation. With a little more work, other couplings are possible. In
particular, if we consider only the stable infection arrows, we obtain the graphical
representation for the contact process with parameter min(λn, λo). Any infection
trail in this contact process is automatically a valid infection trail in the partial
immunization process. On the other hand, if we treat all the arrows in the partial
immunization process as stable, we obtain the graphical representation of the
contact process with parameter max(λn, λo). In this case we have the converse
implication, that a valid trail in the partial immunization process is necessarily a
trail in this contact process. We thereby obtain the following result.

PROPOSITION 2.1. Let η0 : V → {−1,0,1} be a starting state for a partial
immunization on a graph G = (V,E) of bounded degree and let A = η−1

0 ({1}). Let
λn, λo ≥ 0. Then one can construct, on a common probability space, the following
processes:

• ηt , the partial immunization process with parameters (λn, λo) and starting
state η0;

• ξA
t , the contact process with parameter min(λn, λo) and initial set of infected

sites A;
• �A

t , the contact process with parameter max(λn, λo) and initial set of infected
sites A;

in such a way that, for all t and for all v ∈ V ,

ξA
t (v) = 1 ⇒ ηt (v) = 1

and

ηt (v) = 1 ⇒ �A
t (v) = 1.

Proposition 2.1 says that �t stochastically dominates ηt and ηt dominates ξt (if
we consider states 0 and −1 to be the same for this purpose). For more information
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about this concept see, for example, [14]. Certain questions about stochastic
domination are not as straightforward for partial immunization processes as they
are for the contact process. For example, if λo < λ1

n < λ2
n, then it is not clear that

the process with parameters (λo, λ
2
n) dominates that with parameters (λo, λ

1
n). See

Section 5 for a more detailed discussion.
We now collect together a miscellany of results about the contact process which

we shall need to use. For reasons of brevity, we state the results tersely and give
references for further information.

It is not too hard to show that, starting from a finite number of infected sites,
the contact process with any parameter on any graph of bounded degree does not
explode: at any time there are only finitely many infected sites and the process
can be regarded as a Markov chain on the set of finite subsets of the vertex set;
see [16], I(1.19).

The contact process is self-dual. If (ξA
t ) and (ξB

t ) are contact processes with the
same parameter on the same graph with starting sets A and B , respectively, then
for all t ,

P(ξA
t ∩ B �= ∅) = P(ξB

t ∩ A �= ∅).(2.1)

This duality relation is easily seen by reversing the arrows and the direction of time
in the graphical representation. We will use it most often in the case when B is a
singleton. For more information about duality, see [14].

On a graph with a distinguished vertex, O, the distance of another vertex v

from O (i.e., the number of edges in the shortest path from O to v) will be
denoted |v|. The ball of radius n about O is

Bn = {
v ∈ V : |v| ≤ n

}
.

The boundary, ∂W , of a set of vertices W ⊂ V , shall mean the internal boundary,
{w ∈ W : ∃v ∈ V \ W with vw ∈ E}.

In the subcritical phase of the contact process on a reasonable graph, it is
expected that a number of quantities decay exponentially as a function of time
or distance. For the process on Z

d these results were established by Bezuidenhout
and Grimmett [3] (see also [16]). The one result of this kind we shall need is the
following.

THEOREM 2.2. Let ξO
t denote the contact process on Z

d , with parameter
λ < λc, starting from a single infection at the origin. Then there exists γ > 0 such
that for all v ∈ Z

d ,

P(v ∈ ξO
t for some t) ≤ e−γ |v|.

The remainder of our preliminary results concern the contact process on trees.
Letting ξO

t denote the process on Td starting from a single infection at the root, as
usual, let vn be some vertex at distance n from O and define

un = P(vn ∈ ξO
t for some t).(2.2)
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It is not hard to show [16] that

β(λ) = lim
n→∞(un)

1/n(2.3)

exists and satisfies un ≤ βn. We shall need the following properties of β , which
were established in several stages [13, 21, 12] (see also [16]).

THEOREM 2.3. For the contact process on Td (d ≥ 3) the β function, defined
by (2.3), is continuous and strictly increasing on [0, λ2] with:

(i) β(λ1) = 1/(d − 1);
(ii) β(λ2) = 1/

√
d − 1;

(iii) β(λ) = 1 for λ > λ2.

Note that our Td is denoted Td−1 by some authors.
We often regard Td as being arranged in levels, indexed by Z, in such a way

that every vertex in level n has one neighbour in level n − 1 (its parent) and d − 1
neighbours in level n + 1 (its children). The root is in level 0. As usual for rooted
trees, the transitive closure of the children relation is the descendant relation. The
induced subtree whose vertex set consists precisely of O and its descendants [so
that level n contains (d − 1)n vertices for n ≥ 0] will be denoted T

′
d . It is not too

surprising that the behaviour of the contact process does not change very much if
we restrict our attention to T

′
d . The following lemma is a particular case of this fact

combined with the fact (more important for us) that we lose essentially nothing
by replacing P(vn ∈ ξO

t for some t) in the definition of un by supt P(vn ∈ ξO
t ),

effectively enabling us to fix a specific choice of t . We assume that the vn of (2.2)
was chosen so as to lie in T

′
d .

LEMMA 2.4. Let β be as defined in (2.3) for the contact process on Td and
let ξ ′

t be the contact process with the same parameter on the subtree T
′
d . Then

β = lim
n→∞

[
sup

t
P (vn ∈ ξ ′

t )

]1/n

.

Lemma 2.4 is (a trivial variant of) Lemma I.4.53 of [16], owing to Salzano and
Schonmann [19].

Finally, we quote some results about the contact process on finite trees. We
shall use T

h
d to denote the finite subtree whose vertex set consists of the root, O,

and its descendants down to level h. The contact process on T
h
d is a finite state-

space Markov chain with an absorbing state to which all other states lead, namely
the state with no vertex infected. Therefore the contact process will almost surely
reach this state eventually. The time it takes to reach this state when h is large
is closely related to the behaviour of the process on the infinite tree Td . We will
use the following two instances of this principle which say, roughly, that in the
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intermediate phase the process on T
h
d survives for time linear in h and in the strong

survival phase it survives for a time which is almost exponential in the number of
vertices of T

h
d . For further information, see [23].

THEOREM 2.5. Suppose d ≥ 3 and let λ1(Td) < λ < λ2(Td). Then there exist
constants c,C > 0 with the following property. Let ξh

t be the contact process with
parameter λ on T

h
d starting with all sites infected and let τh

h = inf{t > 0 : ξh
t = ∅}

be the time until the absorbing state is hit. Then

P(ch < τh
h < Ch) → 1 as h → ∞.

THEOREM 2.6. Let d ≥ 3, a < 1, λ > λ2(Td) and let τO
h be the extinction

time for the contact process with parameter λ on T
h
d starting from a single infection

at the root. Then there exist p > 0, c > 0 and α > 1 such that for all h,

P(τO
h ≥ cα(a(d−1))h) ≥ p.

Note that this last theorem is vacuous if a ≤ 1/(d − 1) and strongest for a close
to 1. It is not too hard to see that it cannot be improved to a > 1, but it remains
open whether it holds with a = 1.

3. Processes on Z
d . The purpose of this section is to prove that, for a partial

immunization process with parameters (λn, λo) on Z
d , if λo is less than the contact

process critical value λc, then strong survival does not occur. This will establish
Theorem 1.1.

Throughout this section we consider such a process on Z
d starting from a single

infection at O, ηO
t , with all other vertices initially “never infected.” We assume

that λo < λc(Z
d). If λn < λc, then, by Proposition 2.1, the process is stochastically

dominated by the contact process with parameter max(λn, λo), so does not survive.
Therefore we may assume that λn ≥ λc > λo and we wish to show that strong
survival does not occur.

We will make use of the graphical representation described in detail in Section 2.
As λn > λo we have stable arrows from each vertex to each neighbouring vertex
at the arrival times of a Poisson process of rate λo and virgin arrows between such
vertices at rate λn − λo. A stable infection trail from (v, t) to (w, s) (for vertices
v,w and times t, s) is an infection trail which does not contain any virgin arrows.

For our process ηO
t and for each vertex v ∈ Z

d , we let Av denote the event that
there is a stable infection trail from (v, τ (v)) to (O, t) for some time t , where

τ (v) = inf
{
s : ηs(v) = 1

};
if there is no time at which v is infected, then the event Av does not occur. Now,
conditional on the finiteness of τ (v), the probability of Av is exactly equal to the
probability that v is ever infected, starting from a single infection at the origin, in a
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contact process with parameter λo. By Theorem 2.2, there exists a constant γ > 0
so that

P(Av) ≤ e−γ |v|.(3.1)

Therefore, letting

N = inf

{
n : the event

⋂
v:|v|>n

Ac
v occurs

}
,(3.2)

by the first Borel–Cantelli lemma, N is almost surely finite. Let S be the event that
strong survival occurs, that is, S = {∀T, ∃ t > T with ηO

t (O) = 1}. Let us suppose
that P(S) > 0, with view to a contradiction. Then it is easily seen via a conditional
form of the second Borel–Cantelli lemma, that conditional on S, the quantity

T0(n) = inf
{
t > 0 : ηO

t (v) �= −1,∀v ∈ Bn

}
(3.3)

is almost surely finite for any n; in particular, T0 = T0(N), for the random
integer N defined by (3.2), is finite. Then let I = (ηO

T0
)−1({1}) be the set of infected

sites at time T0. For each v ∈ I , let

T1(v) = sup
{
t ≥ T0 : ∃ a stable infection trail from (v, T0) to (O, t)

}
,

where the supremum of the empty set is taken to be T0 in this case.
Now, letting ξt be the set of vertices w such that there is a stable infection trail

from (v, T0) to (w, t), then (ξt )t≥T0 is a realization of the contact process with
parameter λo starting from a single infection at v at time T0. Since λo < λc(Z

d),
this contact process does not survive. Therefore, for each v ∈ I , one has that T1(v)

is almost surely finite. Since I is itself almost surely finite, then

T1 = max
v∈I

T1(v)

is finite a.s. Note that if t ≥ T1, then there is no stable infection trail from (v, T0) to
(O, t) for any v ∈ I . We claim that, in fact, ηO

t (O) = 0 for all t ≥ T1, contradicting
strong survival. To see this, suppose not. Then, since I is the set of infected sites
at time T0 (≤ T1) there must be, for some v ∈ I , an infection trail from (v0, T0) to
(O, t0) for some t0 ≥ T1. By the definition of T1 (and the right-continuity of the
process) this cannot be a stable infection trail, so it contains some virgin arrows.
Let (e, s) be the last virgin arrow on the infection trail, where e is directed from
vertex v1 to vertex v2. Then s = τ (v2) is the time of first infection of v2, so, by
the definition of T0, v2 /∈ BN . However, then, by (3.2), Av2 does not occur, that is,
there is no stable infection trail from (v2, s) to the origin. However, the remainder
of the infection trail beyond (e, s) leading to (O, t0) constitutes precisely such a
trail, since (e, s) was the last virgin arrow on the trail from (v0, T0) to (O, t0). This
gives the desired contradiction, completing the proof of Theorem 1.1.
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4. Processes on trees. In this section we establish Theorem 1.2 as a series of
separate propositions. Some parts follow very easily from known results, whereas
others require considerable work. We start with part (i) which deals with the case
λo < λ1.

PROPOSITION 4.1. Let d ≥ 3 and λo < λ1(Td). Then for λn < λ1(Td) the
partial immunization process on Td with parameters (λn, λo) does not survive.
There exists λk = λk(λo) such that if λn > λk, then the partial immunization
process survives weakly. For no values of λn does it survive strongly.

PROOF. The first conclusion follows immediately from Proposition 2.1, since
if λo, λn < λ1, then the partial immunization process is dominated by the contact
process with parameter max(λn, λo) which does not survive.

The fact that strong survival cannot occur, however large λn is, follows from the
same argument used to prove Theorem 1.1. To see this, suppose λn ≥ λ1 > λo and,
for each vertex v, let the event Av be as defined in the proof of Theorem 1.1. Then
if v is at distance n from O,

P(Av) = un(λo) ≤ (
β(λo)

)n
,

where un is defined by (2.2). Since λo < λ1, Theorem 2.3 implies that β(λo) <

1/(d − 1). Therefore, ∑
v∈Td

P(Av) < ∞.(4.1)

The fact that (4.1) holds is precisely what enables the remainder of the proof of
Theorem 1.1 to apply unchanged to this case, showing that strong survival cannot
occur.

We now show how a branching process comparison establishes that if λn(d −
1)/(λn + 1) > 1, then weak survival occurs and that, furthermore, this bound is
tight if λo = 0. Let Zn, a random subset of ∂Bn, be defined recursively as follows.
Let Z0 = {O}. A vertex v in ∂Bn (n ≥ 1) lies in Zn if its parent, w (i.e., unique
neighbour in ∂Bn−1), lies in Zn−1 and there is an infection arrow from w to v

between the time of first infection of w and the time of the first recovery at w after
that time. It is then easily seen that all the vertices in Zn are infected at some time
(and that when λo = 0, Zn consists of all the vertices of ∂Bn that are ever infected).
Furthermore, (|Zn|)n≥0 is a simple branching process, the offspring distribution of
which has mean (d − 1)λn/(λn + 1) (other than for the first generation). Therefore
if dλn/(λn + 1) > 1, this branching process has a positive probability of non-
extinction, which implies survival of the underlying partial immunization process.
So we may take λk = 1/(d − 2). �

We now turn to the intermediate case when λ1(Td) < λo < λ2(Td). To
demonstrate what happens when λn is large, we shall need a lemma, and to state
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this lemma, we shall need some further notation. Recall that T
′
d is the subtree of

Td obtained by deleting the edge connecting the root to its parent and then taking
the connected component containing the root in the resulting graph. Therefore T

′
d

contains (d − 1)n vertices at level n for each n ≥ 0. Let vn be a vertex at level n in
this tree and let v0e1v1e2 · · · envn be the path from O (= v0) to vn. In the graphical
representation of a partial immunization process on Td or on T

′
d , an immediate

infection trail (or i.i.t.) from (O, s) to (vn, S) is a sequence of infection arrows
(e1, t1), . . . , (en, tn) with the following properties, where, for convenience, we set
t0 = s and tn+1 = S:

1. There is no recovery mark at any vi (0 ≤ i ≤ n) between time ti and time ti+1.
2. For 1 ≤ i ≤ n, there is no infection arrow (ei, t) for any t with ti−1 ≤ t < ti .
3. There is no infection arrow (e, t) for any edge e leading from vn to any vertex

at level n + 1 for any time t with tn ≤ t ≤ S.

Immediate infection trails are the fastest possible infection trails in a sense we now
make precise. We consider a partial immunization process on Td in the case when
λn ≥ λo, starting from an initial configuration in which O is infected and all the
other vertices of T

′
d are in the “never infected” state. Vertices of Td outside T

′
d

may begin in any state. Then, if there is an immediate infection trail from (O,0)

to (vn, T ), then vn is infected at time T and, using the above notation, tn is the
time of first infection of vn; this is true regardless of activity on other parts of the
tree.

Similarly, given a descendant vp of vn, at level p (p > n) we may define
an immediate infection trail from (vn, S) to (vp, T ). Property 3 of immediate
infection trails enables us to piece together such a trail with a trail from (O, s)

to (vn, S) (where s < S < T ) to obtain an immediate infection trail from (O, s) to
(vp, T ).

We shall need to know that when λn is large, many of the vertices at a given
level can be reached by immediate infection trails lasting a particular time. Let V n

t

be those vertices v of T
′
d at level n for which there is an immediate infection trail

from (O,0) to (v, t). Then we need the following.

LEMMA 4.2. Let λo, d ≥ 3 and a < 1 be fixed. Then for λn sufficiently large
we can find n0 > 0 and t0 > 0 such that

P
(|V jn0

j t0
| ≥ (

(d − 1)a
)jn0) ≥ ε(4.2)

for all sufficiently large j .

PROOF. We may restrict our attention to the case λn > λo. Given any two
neighbouring vertices v and w, and starting from any time, the probability that
there is an infection arrow from v to w before there is a recovery mark at v

is exactly λn/(λn + 1). Let us choose λn so that λn/(λn + 1) = b for some b
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chosen strictly between a and 1. Let vn be some fixed vertex at level n in T
′
d .

Then the probability that there is some immediate infection trail from (O,0)

to vn is exactly bn. Conditional on the existence of such a (necessarily unique)
i.i.t., (e1, t1), . . . , (en, tn), the times ti+1 − ti are independent, each having the
distribution of the random variable Tλ conditional on Tλ < T1, where Tλ and T1 are
independent exponentially distributed random variables with parameters λ and 1,
respectively. Since this (conditional) distribution has some finite mean, µ and
variance σ 2, we may apply the central limit theorem (more elementary methods
will also suffice) to approximate the distribution of tn. In particular, the probability
that tn satisfies µn/2 < tn < 3µn/2 (conditional on the existence of the i.i.t.) tends
to 1 as n → ∞. Therefore for n sufficiently large we may find some fixed time
t = t (n) ∈ (µn/2 + 1,3µn/2) (dependent on n, but nonrandom) such that with
probability at least bn/2µn there is an i.i.t. as above with tn ∈ (t − 1, t). In an
interval of length 1 (or less) the probability of seeing no recovery mark at vn or
infection arrow leading from vn to one of its children is (at least) e−(1+(d−1)λ).
Therefore with probability at least bne−(1+(d−1)λ)/2µn there is an immediate
infection trail from (O,0) to (vn, t (n)). Now fix n0 to be a value of n so that
this probability is at least 2an. Let t0 = t (n0).

Since there are (d − 1)n0 vertices in T
′
d at level n0 and each has the

same probability to lie in V
n0
t0

, the above calculation shows that E(|V n0
t0

|) ≥ 2
((d − 1)a)n0 . Now let Aj consist of those vertices, v, at level jn0, with the
property that there is an i.i.t. from (O,0) to (v, j t0) that can be obtained by piecing
together j distinct i.i.t.s, from (O,0) to (vn0, t0), from (vn0, t0) to (v2n0,2t0) and
so forth, where each vin0 is at level in0. Note that A1 is exactly equal to V

n0
t0

and, more generally, Aj is a subset of V
jn0
j t0

. We can use Aj to obtain information

about V
jn0
j t0

: letting Zj = |Aj |, it is clear that (Zj ) is precisely a branching process

whose offspring distribution is equal to the distribution of |V n0
t0

|; since Aj ⊆ V
jn0
j t0

we see that (|V jn0
j t0

|)∞j=0 stochastically dominates (Zj ). Let m = EZ1, so m ≥
2((d −1)a)n0 , and let Wj = Zj/mj . It is well known (see, e.g., [1]) that (Wj ) is an
L2-bounded martingale and converges almost surely to some random variable W

with EW = 1. For some ε > 0 we have that P(W ≥ 1) = 2ε. It follows that
for j sufficiently large, P(Wj ≥ 1/2) ≥ ε and hence P(|V jn0

j t0
| ≥ mj/2) ≥ ε. Since

mj/2 ≥ ((d − 1)a)jn0 (with some room to spare), the desired conclusion (4.2)
follows. �

The preceding lemma is required in the proof of the final part of the following
proposition, which deals with the intermediate case.

PROPOSITION 4.3. Suppose that λ1(Td) < λo < λ2(Td). Then there exist
positive λα and λβ such that if λn < λα , then the partial immunization process
with parameters (λn, λo) does not survive and if λn > λβ , then it survives strongly.
If λ1 < λn < λ2, then the partial immunization process survives weakly.
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PROOF. The final part follows immediately from Proposition 2.1: if λn, λo ∈
(λ1, λ2), then the partial immunization process in question dominates the contact
process with parameter min(λn, λo) and is dominated by the contact process with
parameter max(λn, λo); both of these contact processes survive weakly, so the
partial immunization process does also.

We now show that for λn sufficiently small, the partial immunization process
does not survive, and we begin by outlining the idea of the proof. We assume
throughout that λn < λo; indeed we know from the previous paragraph that it is
futile to consider any λn > λ1. Consider Bh, a ball of radius h centered on the root
O of Td . The contact process with parameter λo, restricted to Bh, loosely speaking
survives only for a time Ch, where C is a constant depending on λo; the same
holds for the partial immunization process in question since it is stochastically
dominated by this contact process. The partial immunization process ηO

t on the
whole of Td is, trivially, equivalent to the process restricted to the ball Bh until
it reaches the boundary of Bh. Therefore if this unrestricted process is to survive
(forever) it must reach the boundary of Bh by time Ch. However, the chance that
it does so tends to zero as h → ∞ provided we choose a sufficiently small λn.

Consider ηO
t , the partial immunization process with parameters (λn, λo),

constructed using a graphical representation. Let ζ h
t be the same process

with infections outside Bh forbidden, constructed from the same graphical
representation after deleting infection arrows which go outside Bh. Let C be as
in Theorem 2.5 with λ = λo, so for the contact process with parameter λo one has
P(τ 2h

2h > 2Ch) → 0 as h → ∞. Since Bh is isomorphic to a subgraph of T
2h
d and

the partial immunization process is dominated by this contact process,

P
(
ζ h

2Ch(v) = 1 for some v
) → 0 as h → ∞.(4.3)

Note that C depends on λo, but not λn (provided λn < λo). In what follows we
shall consider a fixed value of λo.

We now construct a pure birth process ξt which dominates ηO
t in the sense that

ηO
t (v) = 1 ⇒ ξt (v) = 1. At each time t and for each vertex v in Td , the state ξt (v)

is either 0 or 1. For v ∈ Td let e1, . . . , en be the sequence of distinct edges on the
unique path from O to v. Set ξt (v) to be 1 if there is a sequence of stable infection
arrows (e1, t1), . . . , (en, tn) with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t . Note that by the
assumptions λn ≤ λ1 < λo, the graphical representation contains stable arrows and
reinfection arrows. Note also that recovery marks in the graphical representation
have no significance for this pure birth process. The required domination property
needs only to be checked at the time a vertex first becomes infected in the partial
immunization process; this is easily done by induction on the total number of
vertices that have been infected (in the partial immunization process) at any time
prior to that point.

Let us fix a vertex v at distance n from O and estimate the probability that
v ∈ ξt . The process ξt has infection rate λn, so one has

P(v ∈ ξt ) = P(X1 + X2 + · · · + Xn ≤ t),(4.4)
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where X1, . . . ,Xn are independent random variables that are distributed exponen-
tially with parameter λn. It is easily seen (and well known) that the sum of these
random variables has the gamma distribution with parameters λn and n, that is,
X1 + · · · + Xn has probability density function

e−λnsλn
ns

n−1

(n − 1)! , s ≥ 0.(4.5)

Discarding the exponential factor in (4.5), integrating from 0 to t and using (4.4),
one obtains

P(v ∈ ξt ) ≤ (λnt)
n

n! .(4.6)

Now in the case when v lies on the boundary of Bh, so n = h, and taking t = 2Ch

in (4.6), we obtain P(v ∈ ξ2Ch) ≤ (2λnCh)h/h!. Since there are d(d − 1)h−1

vertices at distance h from O, summing over these vertices gives

P(∀v ∈ ∂Bh, v /∈ ξ2Ch) ≥ 1 − cd(2λn(d − 1)Ch)h

h! ,(4.7)

where cd = d/(d − 1). By Stirling’s formula, h! ∼ √
2πhhhe−h, so if λn <

1/2C(d − 1)e the right-hand side of (4.7) tends to 1 as h → ∞.
Now, if ∀v ∈ ∂Bh, v /∈ ξ2Ch, then no site outside Bh has been infected up to time

2Ch, so ηO
2Ch = ζ h

2Ch. Combining (4.7) and (4.3) gives, for λn < 1/2C(d − 1)e,

P
(
ηO

2Ch(v) = 1 for some v
) = o(h) as h → ∞.

Setting λα = 1/2C(d − 1)e, this implies for λn < λα that the partial immunization
process does not survive, as required.

Finally, we must show that strong survival occurs for λn sufficiently large. Since
λo > λ1, by Theorem 2.3 we have that β = β(λo) > 1/(d − 1). Choose γ with
β > γ > 1/(d − 1). Then, letting ξO

t be the contact process with parameter λo on
T

′
d and letting vn be a vertex of T

′
d at distance n from O, we have by Lemma 2.4

that for n sufficiently large there exists s0 with

P(vn ∈ ξO
s0

) ≥ γ n.(4.8)

Now choose a < 1 with (d − 1)aγ > 1. We shall show that if λn is large enough
for the conclusion of Lemma 4.2 to hold (with this value of a), then the partial
immunization process on Td with parameters (λn, λo) survives strongly. Pick such
a λn and let ε, n0 and t0 be as Lemma 4.2. Now let j and s0 be chosen such
that (4.8) holds with n = jn0, such that (4.2) holds, and finally (for reasons which
will become clear) such that

(
1 − εγ jn0

2

)((d−1)a)jn0

≤ 1

2
.(4.9)
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Note that (4.9) holds for j sufficiently large because

(
1 − εγ jn0

2

)((d−1)a)jn0

≤
[
exp

(
−εγ jn0

2

)]((d−1)a)jn0

= exp
(
−ε((d − 1)aγ )jn0

2

)

→ 0 as j → ∞ since (d − 1)aγ > 1.

Now consider the partial immunization process with parameters (λn, λo) on Td

constructed via a graphical representation. We say that an initial configuration on
Td is virgin if O is infected and the other vertices of the subtree T

′
d are in the

“never infected” state. We claim that for each k ∈ N, we can find an event Ak ,
which depends only on the graphical representation within the tree T

′
d (i.e., on

infection arrows corresponding to edges of T
′
d and recovery marks at vertices

of T
′
d ) between time 0 and k(s0 + j t0) with P(Ak) ≥ εγ jn0/2 and such that

if Ak occurs and the starting configuration is virgin, then O is infected at time
k(s0 + j t0). Since this probability is bounded away from 0, independent of k, and
since, in particular, it holds for the standard starting configuration with 0 infected
and all other vertices never infected, the claim implies strong survival.

We establish the claim by induction. It is trivial for k = 0, so we now show
it for a particular value of k, assuming it holds for k − 1. Let E be the event
that |V jn0

j t0
| ≥ ((d − 1)a)jn0 . By (4.2), P(E) ≥ ε. Now for each v ∈ V

jn0
j t0

we
consider the subtree whose vertices are precisely v and all its descendants, which
we denote by T

v
d . We note that if the initial configuration is virgin and v ∈ V

jn0
j t0

,
then the configuration at time j t0 must be virgin for v in the sense that v is
infected and all the other vertices of T

v
d are in the “never infected” state. In

this case, for each v ∈ V
jn0
j t0

, there is, by the induction hypothesis—translated by
time j t0 and so that v is the root—some event Av

k−1, which depends only on the
graphical representation on T

v
d between times j t0 and j t0 + (k −1)(s0 +j t0), with

P(Av
k−1) ≥ εγ jn0/2 and such that the occurrence of Av

k−1 implies that v is infected
at time j t0 + (k − 1)(s0 + j t0). By independence of the Av

k−1 for different v, we
have that, conditional on E,

P

( ⋃
v∈V

jn0
j t0

Av
k−1

)
≥ 1 −

(
1 − εγ jn0

2

)((d−1)a)jn0

≥ 1

2
by (4.9).

(4.10)

Now if
⋃

v∈V
jn0
j t0

Av
k−1 occurs, let v be the first vertex (in some arbitrary ordering)

in V
jn0
j t0

for which Av
k−1 occurs. Then let C be the event that there is a stable
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infection trail lying inside T
′
d from (v, j t0 + (k −1)(s0 + j t0)) to (O, k(s0 + j t0)).

The probability of C (conditional on the existence of such a v) is—by the duality
of the contact process (2.1)—exactly the probability on the left-hand side of (4.8),
so is at least γ jn0 by choice of j . Now, setting

Ak = E ∩
( ⋃

v∈V
jn0
j t0

Av
k−1

)
∩ C,

P(Ak) ≥ εγ jn0/2 by the fact that P(E) ≥ ε, P(C) ≥ γ jn0 and (4.10). The
event Ak has the other required properties by construction and the induction step
is complete. �

We now complete the proof of Theorem 1.2 by dealing with the case when
λo > λ2.

PROPOSITION 4.4. Let λo > λ2(Td) and λn > 0. Then the partial immuniza-
tion process on Td with parameters (λn, λo) survives strongly.

PROOF. We may assume that λn ≤ λ2 since the partial immunization process
otherwise dominates the contact process with parameter min(λn, λo) which
survives strongly. In particular, we have λo > λn so the graphical representation
of the process contains stable arrows and reinfection arrows. In this situation, the
graphical representation enables us to couple two processes and preserve a great
deal of monotonicity. To be precise, suppose that H is a subgraph of G and suppose
that η0 : V (G) → {−1,0,1} and ξ0 : V (H) → {−1,0,1} are states for the partial
immunization process on G and H , respectively. Then the graphical representation
gives us a natural coupling of the partial immunization processes, ηt and ξt , with
these starting states [with the same parameters, (λn, λo)]. In the case when λo ≥ λn,
this coupling will preserve monotonicity: if ηt (v) ≥ ξt (v) for all v ∈ V (H) when
t = 0, then this relation will hold for all t . Loosely speaking, the process cannot do
better if we forget about certain infections or certain parts of the graph. We shall
make extensive use of this fact, most heavily in the induction step toward the end
of this proof.

We shall show that local survival occurs for the process on T
′
d , the rooted tree

in which all vertices have d − 1 children and the root has no parent. Recall that the
subgraph of T

′
d spanned by the vertices within distance n of the root is denoted T

n
d .

Throughout what follows, we shall consider the process on T
′
d starting from a state

in which the root, O, is infected, the other vertices of T
n
d (for some n to be fixed)

are in the previously infected state, 0, and the other vertices of T
′
d are in the never

infected state. It is clear that it is sufficient to prove local survival starting from this
state.

Our proof will proceed very roughly as follows. Starting from the above
state, the process restricted to T

n
d would be identical to the contact process with
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parameter λo so, by Theorem 2.6, has a reasonable probability of surviving for
an extremely long time. Therefore the same is true for the unrestricted partial
immunization process. If it does survive for a long time, then it is very likely
that other nearby copies of T

n
d will reach a state equivalent to (or better than) the

starting state of the first copy. These, in turn, may infect nearby copies and so forth.
A branching process argument then enables us to show that this implies that there
is a positive probability that the root is infected at arbitrarily large times.

We shall need to make careful use of some conditional probabilities and
independence. In what follows, Ft denotes the σ -field generated by the process
up to time t .

Fix a < 1 chosen so that a(d − 1) > 1 and take constants p > 0, c > 0 and
α > 1 so that the conclusion of Theorem 2.6 holds (with λ = λo and h = n).
Now choose further constants as follows. Choose N such that (1 −p2/8)N < 1/2.
Let δ = e−1(1 − e−λn); note that if a vertex v is infected at time t and w is a
neighbouring vertex, then the probability (conditional on Ft ) that w is infected at
time t + 1 is at least δ. We will also need the (more trivial) fact that δ is a lower
bound on the conditional probability that v is still infected at time t + 1. We now
choose n satisfying three conditions, all of which hold for n sufficiently large. The
first such condition is that

(d − 1)2n(1 − δ3n)�cα(a(d−1))n /(6n)� ≤ p

4
.(4.11)

Note that (4.11) holds for n sufficiently large since the left-hand side is at most
exp(2n log(d − 1) − δ3n�cα(a(d−1))n/6n�), which tends to 0 as n → ∞. We shall
similarly require that

(1 − δ3Nn)�cα(a(d−1))n /(6n)� ≤ p

4
.(4.12)

The final condition which n must satisfy is rather simpler:

(d − 1)n ≥ N.(4.13)

We shall show the following for the partial immunization process on T
′
d with

the starting state defined above (in which the root is infected and the other vertices
of T

n
d are “previously infected”): for any j ≥ 0, starting from a single infection at

the root, with probability ρ = p2/8 the origin is infected at some time after 8jn.
This will establish that on T

′
d , and hence on Td , the process survives strongly.

We proceed by induction on j . The result trivially holds for j = 0. Now let us
fix some j > 0 and suppose the result holds for smaller values.

Let El be the event that at time 3nl some vertex between generation 0 and n

(inclusive) is infected, and let E = ⋂2L
l=0 El , where L = �cα(a(d−1))n/6n�. By

Theorem 2.6, P(E) ≥ p, since if the process restricted to a certain subgraph
survives for a certain time, then throughout that time period there is always some
vertex of that graph which is infected. Note that here we are making use of
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the natural coupling, referred to in the first paragraph of this proof, between the
process on (G =) T

′
d and the process on the subgraph (H =) T

n
d .

Now let v1, . . . , vN be N distinct vertices at generation n, chosen arbitrarily in
advance; note that N such exist by (4.13). For each such vi , let Tvi

denote the tree
spanned by vi and its descendants within distance n, so Tvi

is isomorphic to T
n
d .

Let V = V (Tv1)∪· · ·∪V (Tvn). Our first step will be to show that if E happens,
then it is likely that all the vertices of V have been infected by time 3nL. Suppose
that v ∈ V and w is a vertex of T

n
d . Then the distance from w to v is at most 3n.

Then, for any t , the probability that there is a stable infection trail from (w, t) to
(v, t + 3n) is at least δ3n. Now for each such v and t , let I t

v be the event that v is
infected at time t and let

Iv =
L−1⋃
l=0

I 3nl+3n
v .

Note that I t
v ∈ Ft and that on the event E defined above, one has for all l < L

(in fact, for all l ≤ 2L), P(I 3nl+3n
v | F3nl) ≥ δ3n. A (careful) manipulation of

conditional expectations yields

P

(
L−1⋂
l=0

(I 3nl+3n
v )c ∩ E

)
≤ (1 − δ3n)L

≤ p

4(d − 1)2n
by (4.11)

(where Ac denotes the complement of an event A). Since V contains fewer than
(d − 1)2n vertices, it follows that

P

( ⋃
v∈V

L−1⋂
l=0

(I 3nl+3n
v )c ∩ E

)
≤ p

4
.(4.14)

Let I be the event
⋂

v∈V Iv . It follows from (4.14) that

P(E ∩ I ) ≥ P(E) − p/4.(4.15)

Note that if I happens, then at time 3nL (and all subsequent times) all the vertices
of V are in state 0 or 1.

Our next step is to show that, on E, there is a high probability of finding some
time between 3nL and 6nL at which all the vertices v1, . . . , vN are simultaneously
infected.

Let v, as before, be any vertex of T
n
d . Given some time t , let Gi be the event

that there is an infection trail from (v, t) to (vi, t + 3n); we have already seen that
P(Gi) ≥ δ3n. The events {Gi}Ni=1 are monotone increasing and hence positively
correlated (see [14]). Therefore if v is infected at time t , then, with probability
(conditional on Ft ) at least δ3Nn, v1, . . . , vN are all infected [via infection trails
from (v, t)] at time t + 3n.
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Let Al be the event that v1, . . . , vN are all infected at time 3ln. Then Al ∈ F3ln

and P(Al+1 | F3ln) ≥ δ3Nn on E for L ≤ l < 2L. This implies (much as before)
that

P

(2L−1⋃
l=L

Al+1 ∩ E

)
≥ P(E) − (1 − δ3Nn)L

≥ P(E) − p/4 by (4.12).

(4.16)

Let A = ⋃2L−1
l=L Al+1. Combining (4.15) and (4.16) together with the fact that

P(E) ≥ p yields

P(A ∩ I ) ≥ p/2.(4.17)

If A ∩ I occurs, then there is some time, at least 6n (since L ≥ 1), at which
v1, . . . , vN are all infected and at which none of the vertices in V is in the state −1.
Let T be the least such time.

Now let T
′
vi

be the subtree spanned by vi and all its descendants; so the first
n generations of T

′
vi

form Tvi
. We apply the induction hypothesis to each of

the trees T
′
vi

(using the fact that the state of each Tvi
at time T dominates the

chosen starting state of T
n
d and using the observation made in the first paragraph

of this proof with G = T
′
d and H = T

′
vi

): there is some event—Bi, say—with
probability at least ρ, which depends only on the graphical representation within
the tree T

′
vi

beyond time T , such that if Bi holds, then vi is infected at a time
beyond T + 8(j − 1)n. So, conditional on the existence of T , the probability that
some vi is infected at time beyond T + 8(j − 1)n is at least 1 − (1 − ρ)N , which
exceeds 1/2 by choice of N . Let the least such time be S. Then we have that
S ≥ 6n + 8(j − 1)n and, using (4.17), the nonconditional probability that S exists
satisfies

P(S exists) ≥ p/4.(4.18)

If S exists, let i0 be the least i such that vi is infected at time S. Theorem 2.6
again gives that (conditional on the existence of S), with probability at least p,
Tvi0

remains infected until time at least S + cα(a(d−1))n . Letting this event play
much the same role as E in the first stages of this proof, one can see that if this
happens one has essentially �cα(a(d−1))n/2n� independent opportunities to reinfect
the origin, each with probability δ2n of success (since any vertex of Tvi0

is within
distance 2n of O). The probability (again conditional on the existence of S) that
O is reinfected at some time exceeding S + 2n is therefore at least

p − (1 − δ2n)�cα(a(d−1))n /(2n)� ≥ p

2
,(4.19)

where the inequality follows from a greatly weakened (4.11). Combining (4.18)
and (4.19), we see that the (nonconditional) probability that O is infected at some
time exceeding 8jn is at least p2/8 (= ρ), as required to complete the induction
step. �
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5. Other questions. The graphical representation for the contact process
enables one to easily answer the most basic questions of stochastic monotonicity.
If ξA

t is the contact process with a parameter λ on a graph G with starting set A,
and if �B

t is the contact process with parameter µ on a graph H with starting
set B , and if λ ≤ µ, G ⊆ H and A ⊆ B , then �B

t stochastically dominates ξ t
A: the

two processes can be coupled so that ξA
t ⊆ �B

t for all t . The coupling is immediate
from the graphical representation, noting that a process with parameter µ is
obtained from a process with parameter λ by the addition of arrows according
to Poisson processes of rate µ − λ.

The picture is not so straightforward for partial immunization processes, since
if a vertex is infected at some time, it may be less likely to be infected at later
times due, indeed, to partial immunization. Indeed, if one considers the forest fire
model (the case λo = 0) on the connected graph with two vertices starting with one
infected vertex, a straightforward calculation shows that stochastic monotonicity,
as λn varies, fails.

Here we make a few simple observations about when monotonicity (of various
kinds) can be deduced. In the region λo ≥ λn one has all the monotonicity one
might hope for: increasing λn or λo corresponds to the addition of reinfection
arrows or the conversion of reinfection arrows into stable infection arrows; neither
of these processes can cause an infected site (at some particular time) to be
uninfected. Likewise, an increase in the set of initially infected sites (or the
replacement of initial −1 states by initial 0 states) can only result in extra
infections at later times. Every previously valid infection trail remains a valid
infection trail.

Proposition 2.1 leads to essentially the only other situation in which we are
able to deduce that a partial immunization process with parameters (λn, λo)

dominates one with parameters (λ′
n, λ

′
o) (on the same graph and with the same

initial configuration). If min(λn, λo) ≥ max(λ′
n, λ

′
o), then we can find a contact

process which lies between the two partial immunization processes.
There are instances where weaker forms of monotonicity can be seen to hold.

Suppose that ηt is a forest fire process (λo = 0) with parameter λn and some fixed
starting state, and let Et be the forest fire process with parameter �n > λn and the
same starting state. Let

A = ⋃
t≥0

{
v : ηt (v) = 1

}; B = ⋃
t≥0

{
v : Et(v) = 1

}
.(5.1)

An easy argument, which replaces the forest fire model with a locally dependent
percolation model [11], shows that B stochastically dominates A. The coupling
implied by this argument is quite different from the graphical representation
coupling (which shows that the same result holds for the contact process). This
suggests the following question.
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QUESTION 5.1. Let ηt be the partial immunization process with parameters
(λn, λo) on a given graph with a fixed starting state. Let Et be the process with
parameters (�n,�o) on the same graph and with the same starting state. Let A

and B be as defined by (5.1). Suppose that �n ≥ λn and �o ≥ λo. Is it necessarily
the case that B stochastically dominates A?

Perhaps the simplest question to state, of this general kind, is whether or not
increasing the parameters λo and λn can actually decrease the survival probability
of the process? We have not been able to answer this question, but we tentatively
conjecture the following.

CONJECTURE 5.2. Let θ(λ,µ) [respectively, �(λ,µ)] be the probability of
survival (respectively, strong survival) of the partial immunization process with
parameter (λ,µ) and the standard starting state on some (connected, locally finite)
vertex transitive graph G. Suppose that �n ≥ λn and �o ≥ λo. Then:

(i) θ(�n,�o) ≥ θ(λn, λo);
(ii) �(�n,�o) ≥ �(λn, λo).

Finally, we remark that our results in this paper apply only to the specific
graphs Z

d and Td . It is natural to try to extend the result for Z
d to a more

general class of amenable graphs and the results for Td to a general class of
nonamenable graphs. (See, e.g., [17].) However, this is not essentially a problem
about partial immunization processes, since (except for a rather limited class of
treelike graphs [22]) it remains open even for the contact process. As we have seen
in this paper, if we know a great deal about the contact process, then we are able to
use this information to prove fundamental results for more complicated processes.
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