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WHEN CAN ONE DETECT OVERDOMINANT SELECTION
IN THE INFINITE-ALLELES MODEL?

BY PAUL JOYCE,1 STEPHEN M. KRONE1 AND THOMAS G. KURTZ2

University of Idaho, University of Idaho and University of Wisconsin

One of the goals of this paper is to show that the infinite-alleles model
with overdominant selection “looks like” the neutral infinite-alleles model
when the selection intensity and mutation rate get large together. This rather
surprising behavior was noticed by Gillespie (1999) in simulations. To make
rigorous and refine Gillespie’s observations, we analyze the limiting behavior
of the likelihood ratio of the stationary distributions for the model under
selection and neutrality, as the mutation rate and selection intensity go to ∞
together in a specified manner. In particular, we show that the likelihood
ratio tends to 1 as the mutation rate goes to ∞, provided the selection
intensity is a multiple of the mutation rate raised to a power less than 3/2.
(Gillespie’s simulations correspond to the power 1.) This implies that we
cannot distinguish between the two models in this setting. Conversely, if the
selection intensity grows like a multiple of the mutation rate raised to a power
greater than 3/2, selection can be detected; that is, the likelihood ratio tends
to 0 under neutrality and ∞ under selection. We also determine the nontrivial
limit distributions in the case of the critical exponent 3/2. We further analyze
the limiting behavior when the exponent is less than 3/2 by determining the
rate at which the likelihood ratio converges to 1 and by developing results for
the distributions of finite samples.

1. Preliminaries and main results. In this paper we attempt to explain and
refine some observations of Gillespie (1999), which were based on simulations of
an infinite-alleles model with selective overdominance (as well as other models).
Gillespie made the surprising observation that, if the selection intensity and
mutation rate get large together, the behavior looks like that of a neutral model.
Gillespie argued that, for a K allele model, high mutation rate and high selection
intensity tend to push the population toward equal frequencies, implying that
the population frequencies will tend to (1/K, . . . ,1/K) under both selection
and neutrality. This argument does not extend to the infinite-alleles model, so
simulations were used. His simulations show that various measures of gene
diversity look increasingly similar as the mutation rate and selection intensity
are increased. By analyzing the infinite-alleles diffusion, we are able to justify
Gillespie’s claims and, in fact, to go quite a bit farther.
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Our approach is based on likelihood ratios for the stationary measures under
selection and neutrality. We begin with a description of the diploid infinite-
alleles model with selective overdominance (i.e., heterozygote advantage). This
is a diffusion process obtained via a large-population limit as follows. Consider a
diploid population of M individuals in which each of the 2M genes is assigned
a type x ∈ [0,1]. Suppose the genes in the current generation are labeled
x1, . . . , x2M . To determine the genotype of a new individual in the next generation,
a pair of parental genes is selected at random from the population. The probability
that the ith and j th genes are selected is

w
M

(xi, xj )∑
1≤l,m≤2M w

M
(xl, xm)

,

where wM (x, y) ≥ 0 is a symmetric function specifying the fitness of an individual
with genotype (x, y). To model selective overdominance, we give homozygotes a
fitness disadvantage by setting

w
M

(x, y) = 1 − σ

4M
δx,y,

where σ > 0 is a constant (the selection intensity) and δx,y is the Kronecker delta.
With probability u

M
= θ/(4M), one of the genes in the new individual will be

selected at random to mutate, and the new mutant type will be chosen according
to a uniform distribution on [0,1]; with probability 1, it will be different from all
previous types. With probability 1 − uM , there is no mutation and the genotype
of the new individual is determined by the parental genes. Letting M → ∞ and
keeping track of the proportions of the different types of genes, one obtains
a (measure-valued) diffusion process known as the infinite-alleles model with
overdominant selection [cf. Ethier and Kurtz (1994) for more details on the above
construction and process]. Our interest here is in the stationary distribution of this
process.

Consider the ordered infinite simplex

∇ ≡
{
(x1, x2, . . .) :x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}
.

Here, we think of xi as representing the relative frequency of the ith most
frequent allele. When these frequencies are considered to be random, we will
write X = (X1,X2, . . .) ∈ ∇ for the random vector of allele relative frequencies
in the population, in descending order. Let µσ be the stationary distribution
for X in the infinite-alleles model with selection intensity σ , and Eσ the
corresponding expectation. In particular, µ0 and E0 give the stationary distribution
and expectation in the neutral case, σ = 0.

In the neutral case, if we keep track of the proportions of the alleles in
descending order, the stationary distribution, µ0, is given by the Poisson–Dirichlet
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distribution with parameter θ [cf. Kingman (1977)]. This is a probability measure
on ∇ and, to make explicit the dependence on θ , we write Xθ ∼ µ0 when Xθ ∈ ∇
has this distribution.

The form of the stationary distribution µσ , in the case of overdominant selection
with intensity σ , follows as a special case of Theorem 4.4 in Ethier and Kurtz
(1994): for integrable f ,

∫
∇

f (x)µσ (dx) =
∫
∇

f (x)
e−σH(x)

Z(σ, θ)
µ0(dx),(1)

where

H(x) = H(x1, x2, . . .) ≡
∞∑
i=1

x2
i(2)

is the population homozygosity when the allele frequencies are given by x =
(x1, x2, . . .) ∈ ∇ , and

Z(σ, θ) =
∫
∇

e−σH(x)µ0(dx)(3)

is a normalizing constant. Thus,

dµσ

dµ0
(x) = e−σH(x)

Z(σ, θ)

is the Radon–Nikodym derivative (or likelihood ratio) for the stationary measure
under selection with respect to the stationary measure under neutrality.

We are interested in the situation where the selection intensity σ goes to ∞
like a power of θ . As we will see, the exponent 3/2 plays a very special role.
Thus, we write σ = cθ3/2+γ , where c is a positive constant and γ ∈ (−∞,∞) is
also held constant. We will write Y(γ )

θ ∼ µσ when Y(γ )
θ ∈ ∇ has this distribution.

Sometimes, when dealing with the case γ < 0, we will instead write Y(−α)
θ ∼ µσ ,

σ = cθ3/2−α , and so forth, where α > 0. Our first results concern the asymptotic
behavior of the above likelihood ratio. Here and throughout the paper, we denote
weak convergence by ⇒.

THEOREM 1. Suppose Xθ = (X1,θ ,X2,θ , . . .) ∼ µ0 and σ = cθ3/2+γ , where
c > 0 is a constant. Then, as θ → ∞,

dµσ

dµ0
(Xθ ) = exp{−σH(Xθ )}

E0(exp{−σH(Xθ )}) ⇒



1, if γ < 0,

exp(cZ2 − c2), if γ = 0,

0, if γ > 0,

where Z2 ∼ N(0,2).
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THEOREM 2. Suppose Xθ = (X1,θ ,X2,θ , . . .) ∼ µ0, Y(γ )
θ = (Y

(γ )
1,θ , Y

(γ )
2,θ , . . .)

∼ µσ , where σ = cθ3/2+γ and c > 0 is a constant. Then, as θ → ∞,

dµσ

dµ0
(Y(γ )

θ ) = exp{−σH(Y(γ )
θ )}

E0(exp{−σH(Xθ )}) ⇒



1, if γ < 0,

exp(cZ∗
2 − c2), if γ = 0,

∞, if γ > 0,

where Z∗
2 ∼ N(2c,2).

These two results combine to say that, if the selection intensity grows like θ to a
power greater than 3/2, then, under neutrality, the likelihood ratio (dµσ/dµ0)(Xθ )

goes to 0, while, under selection, (dµσ/dµ0)(Yθ ) goes to ∞. This says that,
for large θ , one can distinguish between a neutral population and a population
with selection intensity very large relative to the mutation rate. If the selection
intensity grows like θ to a power less than 3/2, one cannot distinguish between the
neutral and selective models when θ is large; that is, one cannot detect selective
overdominance. Loosely speaking, the model with σ = cθβ undergoes a phase
transition as the exponent β crosses 3/2. Notice that, in the critical case, σ = cθ3/2,
the limiting likelihood ratio has a lognormal distribution under both neutrality and
selection. Notice also that Z∗

2 is larger, on average, than Z2. As expected, in the
limit, the likelihood ratio tends to be smaller under neutrality than under selection.

When σ = cθ3/2+γ , with γ < 0, selection is masked by a high mutation rate.
In the limit, one cannot distinguish between neutrality and selection and the
likelihood ratio tends to 1, regardless of whether the population frequencies were
generated from neutral or selective models. The next theorem gives the rate at
which the likelihood ratio tends to 1 in this case.

THEOREM 3. Suppose Xθ = (X1,θ ,X2,θ , . . .) ∼ µ0, Y(−α)
θ = (Y

(−α)
1,θ ,

Y
(−α)
2,θ , . . .) ∼ µσ , where σ = cθ3/2−α and α > 0 and c > 0 are constants. Then,

as θ → ∞,

θα

(
dµσ

dµ0
(Xθ ) − 1

)
⇒ cZ2(4)

and

θα

(
dµσ

dµ0
(Y(−α)

θ ) − 1
)

⇒ cZ2,(5)

where Z2 ∼ N(0,2).

The case in which σ grows like cθ = cθ3/2−1/2 in the above theorems
corresponds to the simulations in Gillespie (1999). To make clear the connection
between this paper and Gillespie (1999), recall that θ = 4Mu, where u is the
probability of mutation per individual, and w = 1 − σ/(4M) is the fitness for
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homozygotes. Therefore, as M → ∞, both θ and σ = (1 − w)4M tend to ∞;
moreover,

σ = 1 − w

u
θ.

In Gillespie’s simulations, u and w were fixed as M → ∞. This implies that σ

increases linearly in θ , with c = (1 − w)/u. The above results make the point
that, even if the entire population were observable, the neutral model would be
indistinguishable from the selective overdominance model when the selection
intensity is not sufficiently larger than θ .

In practice, one cannot observe the entire population. Instead, one must make
inferences based on information in a finite sample. In the next two theorems,
we see that, if we restrict attention to a finite sample when σ = cθ3/2+γ and
γ < 0, then the likelihood ratio converges to 1 faster than in the case in which
the entire population is observed. To consider a finite sample of genes drawn from
a population that has evolved under the infinite-alleles model, it is convenient to
use the notion of a partition structure.

Let a = (a1, a2, . . . , an) denote an allelic partition of a sample of n genes;
that is, ai (i = 1, . . . , n) gives the number of distinct alleles, each of which is
represented exactly i times in the sample. Clearly, ai ≥ 0,

∑n
i=1 iai = n and∑n

i=1 ai ≡ k gives the number of distinct alleles in the sample. We write An =
(A1,A2, . . . ,An) for the random partition obtained by independently sampling
n genes according to the relative frequencies of the different alleles in the
population. If the allele proportions are given by x = (x1, x2, . . .) ∈ ∇ , then the
conditional sampling probability P(An = a|X = x) is given by the multinomial
sampling function [cf. Kingman (1977)]:

P(An = a|X = x) = φa(x) ≡ n!∏n
i=1(i!)ai

∑
ν∈Aa

x
ν1
1 x

ν2
2 · · · ,(6)

where Aa ≡ {ν = (ν1, ν2, . . .) ∈ Z+ × Z+ × · · · : #(i :νi = j) = aj } represents the
set of allele counts that are consistent with the partition a. In the neutral infinite-
alleles model, the stationary probability of observing the allelic partition a in a
sample of size n,

P0(An = a) =
∫
∇

φa(x)µ0(dx) = E0
(
φa(Xθ )

)
,(7)

is given by the Ewens sampling formula

P0(An = a) = ESF(θ,a) ≡ n!
θ(n)

n∏
j=1

(
θ

j

)aj 1

aj ! ,(8)

where θ(n) = θ(θ + 1) · · · (θ + n − 1). In the selective case, σ > 0, the stationary
sampling distribution is given by

Pσ (An = a) =
∫
∇

φa(x)µσ (dx) = E0

(
φa(Xθ )

dµσ

dµ0
(Xθ )

)
.(9)
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THEOREM 4. Let c > 0 and α ≥ 0 be constants and suppose σ = cθ3/2−α . If
a = (a1, a2, . . . , an) is an allelic partition for a sample of size n with a1 �= n, then

lim
θ→∞ θα+1/2

∣∣∣∣Pσ (An = a)

P0(An = a)
− 1
∣∣∣∣= 2c

n∑
i=2

ai

(
i

2

)
.(10)

REMARKS. Note that the sum
∑n

i=2 ai

(i
2

)
appearing in the limit gives the

number of homozygous pairs that can be formed from the n alleles in the sample.
The above theorem says that, if we restrict attention to a finite sample, the
convergence is of order

√
θ faster than that given in Theorem 3. It also says that,

unlike the situation in Theorem 3, the likelihood ratio converges to one in the case
of the critical exponent 3/2.

Again, the case with α = 1/2 covers the Gillespie conjecture in the context
of random samples. Returning to Gillespie’s notation, let θ = 4Mu and σ =
4M(1 −w). As the effective population size M becomes large, the likelihood ratio
of a sample under selection relative to a sample under neutrality converges to 1 at
a rate proportional to 1/M .

The case a = (n,0, . . . ,0), not covered by Theorem 4, corresponds to all alleles
in the sample being distinct. This is the sample configuration with the lowest
possible homozygosity. Since large values of θ and σ in both the neutral and
selective models give increasingly higher probability to samples for which a1 = n,
it is natural to expect that the two models will look even more similar at this most
probable sample configuration; cf. (8). This suggests that the rate of convergence
of Pσ (An = a)/P0(An = a) to 1 is even faster in this case. This is the content of
the next theorem.

THEOREM 5. Let α > 0 and c > 0 be constants. Suppose σ = cθ3/2−α and let
a1 = (n,0, . . . ,0) be the allelic partition corresponding to a sample of n distinct
alleles. Then

lim
θ→∞ θα+3/2

∣∣∣∣Pσ (An = a1)

P0(An = a1)
− 1
∣∣∣∣= 2c.(11)

2. Some normal limits. Most of the results in this paper depend on normal
limit theorems for population homozygosities and sampling functions. In this
section, we recall some such results from Joyce, Krone and Kurtz (2001) and prove
some needed extensions.

If the decreasing allele frequencies in the population are given by x =
(x1, x2, . . .), define, for m ≥ 2, the mth-order population homozygosity by

Hm(x) ≡
∞∑
i=1

xm
i .(12)
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This can be thought of as the probability that all individuals in a sample of size m

are of the same type, given that the vector of population allele frequencies is x.
Thus, (12) is a special case of (6). Of course, H2(x) = H(x) is the usual population
homozygosity.

Next, define, for m ≥ 2, the following scaled versions of the mth-order popu-
lation homozygosities when the ordered allele frequencies are distributed accord-
ing to the stationary distributions under neutrality and selection, respectively. If
Xθ ∼ µ0, put

Zm,θ ≡ √
θ

(
θm−1Hm(Xθ ) − (m − 1)!

(m − 1)!
)
,(13)

and if Y(γ )
θ ∼ µσ , where σ = cθ3/2+γ , put

Z
(γ )
m,θ ≡ √

θ

(
θm−1Hm(Y(γ )

θ ) − (m − 1)!
(m − 1)!

)
.(14)

Note that, instead of centering by the means and dividing by the standard
deviations in the definitions of Zm,θ and Z

(γ )
m,θ , we scale by quantities that are

asymptotically the same (when θ is large), but easier to work with.
It is easy to see that, for any γ ∈ (−∞,∞) and σ = cθ3/2+γ ,

dµσ

dµ0
(Xθ ) = exp{−σH(Xθ )}

E0(exp{−σH(Xθ )}) = exp{−cθγ Z2,θ }
E0(exp{−cθγ Z2,θ })(15)

and

dµσ

dµ0
(Y(γ )

θ ) = exp{−σH(Y(γ )
θ )}

E0(exp{−σH(Xθ )}) = exp{−cθγ Z
(γ )
2,θ }

E0(exp{−cθγ Z2,θ }) .(16)

In the next lemma, we show that Zm,θ and Z
(γ )
m,θ have normal limit laws as θ → ∞.

These weak limits will play a crucial role in the proofs of the theorems described
above.

LEMMA 1. Let (Z2,Z3, . . . ,Zn) be multivariate normal with mean 0 and

Cov(Zi,Zj ) = (i + j − 1)! − i!j !
(i − 1)!(j − 1)! , i, j ∈ {2,3, . . . , n},(17)

and let Zm,θ and Z
(γ )
m,θ be defined as in (13) and (14). Then, as θ → ∞, we have

the following limits:

(i) If Xθ ∼ µ0, then

(Z2,θ ,Z3,θ , . . . ,Zn,θ ) ⇒ (Z2,Z3, . . . ,Zn).(18)
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(ii) If Y(−α)
θ ∼ µσ , with σ = cθ3/2−α, then

(Z
(−α)
2,θ ,Z

(−α)
3,θ , . . . ,Z

(−α)
n,θ ) ⇒

{
(Z∗

2 ,Z∗
3 , . . . ,Z∗

n), if α = 0,

(Z2,Z3, . . . ,Zn), if α > 0,
(19)

where Z∗ = Z − cb and b = (2,3 · 2, . . . , n(n − 1)).

PROOF. The neutral case, given by (18), is proved in Joyce, Krone and Kurtz
(2001). To establish (19) in the selective case with σ = cθ3/2, we can use (18)
together with (15), with γ = 0, to conclude for any z∗ ∈ R

n−1 that

Pσ (Z(0)
θ ≤ z∗) = E0

(
dµσ

dµ0
(Xθ )1{Zθ ≤ z∗}

)

= E0

(
exp{−cZ2,θ }

E0(exp{−cZ2,θ })1{Zθ ≤ z∗}
)

→ E

(
exp{−cZ2}

E0(exp{−cZ2})1{Z ≤ z∗}
)

as θ → ∞. To get convergence inthe last step, it is not enough that Zθ ⇒ Z as
θ → ∞. In addition, we need to show that

E0(exp{−cZ2,θ }) ⇒ E(exp{−cZ2}).(20)

This requires a uniform integrability argument, which will be given in Lemma 9 in
Section 4.

Assuming this to hold, the rest of the proof in the case α = 0 follows
from standard algebraic manipulations involving multivariate normal distributions.
Indeed, let 	 be the covariance matrix for Z and write c′ = (c,0, . . . ,0), the prime
denoting transpose. Then

E

(
exp{−cZ2}

E0(exp{−cZ2})1{Z ≤ z∗}
)

= exp{−c2}
(2π)n/2

√
det	

∫
z≤z∗

exp{−cz2} exp
{−z′	−1z

2

}
dz

= exp{−c2}
(2π)n/2

√
det	

∫
z≤z∗

exp{−c′z} exp
{−z′	−1z

2

}
dz

= 1

(2π)n/2
√

det	

∫
z≤z∗

exp
{
−1

2
(2c′z + z′	−1z + c′	c)

}
dz

= 1

(2π)n/2
√

det	

∫
z≤z∗

exp
{
−1

2
(z′ + c′	)	−1(z + 	c)

}
dz

= P(Z∗ ≤ z∗).
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The remaining case is much simpler. Use γ = −α < 0 in (15) and compute the
limit as above with the change

dµσ

dµ0
(Xθ ) = exp{−cθ−αZ2,θ }

E0(exp{−cθ−αZ2,θ }) ⇒ e0

Ee0
= 1(21)

as θ → ∞. �

The next lemma is a restatement of Theorem 2 in Joyce, Krone and Kurtz
(2001). It is essentially the analogue of (18) for finite sampling distributions.

LEMMA 2. Suppose Xθ ∼ µ0 and (Z2, . . . ,Zn) is as in Lemma 1 and let
a be a partition corresponding to a sample of size n drawn from a population
with ordered frequencies Xθ .

(i) If a �= (n,0, . . . ,0), then, as θ → ∞,

√
θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
⇒

n∑
i=2

aiZi.(22)

(ii) If a1 = (n,0, . . . ,0) and a2 = (n − 2,1,0, . . . ,0) are the allelic partitions
with n singletons and n − 2 singletons, respectively, then, as θ → ∞,

√
θ

(
φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a2)

)
⇒ −Z2.(23)

3. Two basic lemmas. The following lemmas, which may apply in a variety
of settings, will be used to prove Theorems 1 and 2. More specifically, Lemma 3
is used to prove the last part of Lemma 4, and the latter provides the form of the
limits in Theorems 1 and 2.

LEMMA 3. Suppose (Yn) is a sequence of random variables satisfying
Yn ⇒ Y , where Y is a continuous random variable whose density is strictly positive
on all of (−∞,∞). Suppose farther that E(e−sYn) < ∞ for all s ∈ (0,∞). Then,
for any α > 0,

lim
n→∞

E(
√

e−nαYn)√
E(e−nαYn)

= 0.(24)

PROOF. We begin by noting that the exponential moment condition in the
hypotheses is simply to ensure that all the expected values in (24) are finite. Let
Fn(x) = P(Yn ≤ x) and define F−1

n (y) = min{x :Fn(x) ≥ y} for y ∈ [0,1]. It is
easy to see that P(Yn ≤ F−1

n (y)) ≥ y. Defining −yn = F−1
n (1/n), it is clear that
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−yn → −∞ as n → ∞ and that P(Yn ≤ −yn) ≥ 1/n. Therefore, by the Cauchy–
Schwarz inequality,

E(exp{−nαYn/2})√
E(exp{−nαYn})

= E(exp{−nαYn/2}1{|Yn| ≤ √
yn})√

E(exp{−nαYn}) + E(exp{−nαYn/2}1{|Yn| > √
yn})√

E(exp{−nαYn})
≤ exp(nα√

yn/2)√
E(exp(−nαYn))

+
√

P(|Yn| > √
yn )

≤ exp(nα√
yn/2)√

E(exp(−nαYn)1{Yn ≤ −yn}) +
√

P(|Yn| > √
yn )

≤ exp(nα√
yn/2)√

exp(nαyn)P(Yn ≤ −yn)
+
√

P(|Yn| > √
yn )

≤ exp(nα√
yn/2)

exp(nαyn/2)
√

(1/n)
+
√

P(|Yn| > √
yn )

≤ √
n exp(−nα√

yn/2) +
√

P(|Yn| > √
yn ) → 0

as n → ∞. �

LEMMA 4. Suppose (Yn) is a sequence of random variables satisfying
Yn ⇒ Y , where Y is a continuous random variable whose density is strictly positive
on all of (−∞,∞). Suppose further that E(e−sYn) < ∞ for all s ∈ (0,∞) and that
supn E(e−tYn) < ∞ for some t > 1. Then, as n → ∞,

e−nγ Yn

E(e−nγ Yn)
⇒




1, if γ < 0,

e−Y

E(e−Y )
, if γ = 0,

0, if γ > 0.

(25)

PROOF. Starting with the case γ = 0, note that e−Yn ⇒ e−Y by the con-
tinuous mapping theorem. The hypothesis, supn E(e−tYn) < ∞ for some t > 1,
implies uniform integrability of {e−Yn}, and this implies limn→∞ E(e−Yn) =
E(e−Y ). If γ < 0, then nγ → 0, and hence nγ Yn ⇒ 0. The continuous map-
ping theorem implies exp(−nγ Yn) ⇒ 1. In addition, γ < 0 implies exp(−nγ Yn) ≤
max{exp(−Yn),1}. So, E[exp(−nγ Yn)] → 1 follows from the dominated conver-
gence theorem. Finally, in the case γ > 0, set Un = e−nγ Yn/E(e−nγ Yn). An ap-
peal to Lemma 3 yields E(

√
Un) → 0 as n → ∞. Therefore,

√
Un ⇒ 0, implying

Un ⇒ 0. �
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4. Uniform integrability. This section contains uniform integrability results
that are essential for proving the main theorems in Section 1. Since this is a long
and technical section, it is probably a good idea for the reader to simply look at
the statements of Lemmas 5 and 9 and then move on to the rest of the paper to see
how they are used before coming back to digest the proofs.

To help motivate this section, we begin by alerting the reader that the condition,
supn E(e−tYn) < ∞ for some t > 1, in Lemma 4, is an important one. To illustrate
this point for the case γ = 0, consider the following example for which this
condition does not hold. Let Yn be defined via its density

fn(y) =
(

1 − 1

n

)
e−y2/2
√

2π
+ 1

n

e−(y+logn)2/2
√

2π
, y ∈ (−∞,∞).

Then Yn converges in distribution to the standard normal Z, and hence e−Yn

converges to the lognormal e−Z. Now, using moment generating functions of
normal random variables, we can see that

E(e−tYn) =
(

1 − 1

n

)
et2/2 + 1

n
et log n+t2/2 =

(
1 − 1

n

)
et2/2 + nt−1et2/2.

So, even though E(Y r
n ) → E(Zr) for all r ≥ 1, we have E(e−Yn) → 2e1/2 �=

E(e−Z). The missing ingredient, which would have allowed for the interchange
of limit with expectation, is uniform integrability of the family {e−Yn}; this
would have followed if supn E(e−tYn) < ∞ for some t > 1. However, the above
calculation shows that E(e−tYn) → ∞, as n → ∞, for all t > 1.

Thus motivated, we seek to establish uniform integrability for certain functions
of the Zm,θ ’s, the uniformity being in θ . First, we show supθ>1 E(Zr

m,θ ) < ∞ for
all r ≥ 1 (Lemma 5) and then use this to prove supθ>θ0

E(exp(−tZm,θ )) < ∞
for some θ0 = θ0(t), when t > 1 is fixed (Lemma 9). This will allow us to apply
Lemma 4 in the proofs of Theorems 1 and 2. Note that Lemma 9 was also needed
in the proof of Lemma 1. In the next section, we will use these results to prove
uniform integrability for the conditional sampling function φa(Xθ ) (Lemma 11).
This will be used, together with Lemma 2, to prove Theorems 4 and 5.

It is well known that, if V1,V2, . . . are i.i.d. Beta(1, θ) random variables with
density given by

f (v) = θ(1 − v)θ−11(0,1)(v),

then a “size-biased” version of the Poisson–Dirichlet distribution with parameter θ

is given by

W1,θ = V1,

Wk,θ = (1 − V1)(1 − V2) · · · (1 − Vk−1)Vk for k ≥ 2.
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The Wk,θ ’s are just a relabeling of the Xk,θ ’s, and so Hm ≡ Hm(Xθ ) =∑k Xm
k,θ =∑

k Wm
k,θ . It is easy to see, and was established by Griffiths (1988), that one can

write

Hm
L= V m + (1 − V )mH̃m,

where V ∼ Beta(1, θ) and H̃m is a random variable that is independent of V and
has the same distribution as Hm. A version of this recursion for Zm,θ is

(m − 1)!Zm,θ = √
θ
(
θm−1Hm − (m − 1)!)

L= √
θ
(
θm−1[V m + (1 − V )mH̃m

]− (m − 1)!)
= √

θ
(
θm−1V m + (m − 1)!(1 − V )m − (m − 1)!)(26)

+ (1 − V )m
√

θ
(
θm−1H̃m − (m − 1)!)

= am(V ) + (1 − V )m(m − 1)!Z̃m,θ ,

where

am(V ) ≡ √
θ
(
θm−1V m − (m − 1)![1 − (1 − V )m

])
,(27)

V ∼ Beta(1, θ) and Z̃m,θ is a random variable that is independent of V and has the
same distribution as Zm,θ .

We record here a simple moment formula that will be used a number of times
in the paper. If V ∼ Beta(1, θ), then, for any nonnegative integers m and n,

E
[
V m(1 − V )n

]= θ
�(m + 1)�(n + θ)

�(m + n + θ + 1)
(28)

= m!θ
(n + θ)(n + θ + 1) · · · (n + θ + m)

.

We will also need the following bounds for am(V ):

1√
θ
(θmV m − m!2mθV ) ≤ am(V ) ≤ 1√

θ
(θmV m + m!2mθV ).(29)

The second inequality follows from the fact that 0 < V < 1 with probability 1, and
hence

0 < 1 − (1 − V )m ≤ 2mV.(30)

The first inequality follows similarly. Also, (29) implies

|am(V )| ≤ 1√
θ
(θmV m + m!2mθV )(31)
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and so, for k ≥ 1,

E|am(V )|k ≤ θ−k/2
E(θmV m + m!2mθV )k

≤ θ−k/22k
[
E(θV )mk + (m!2m)kE(θV )k

]
≤ (2/

√
θ
)k[

(mk)! + (m!2m)kk!]
∼ O(θ−k/2),

(32)

where the last inequality follows from

0 ≤ E(θV )j = j !θj

(θ + 1) · · · (θ + j)
≤ j !, j ≥ 1.(33)

It is worth noting that one of the reasons for writing the bounds in (29) and (31)
the way we did is that θV converges in distribution to an Exp(1) random variable
as θ → ∞. Note also that we are suppressing the dependence on θ in the notation
for V ∼ Beta(1, θ).

LEMMA 5. Let Zm,θ be defined by (13). Then, for all integers r ≥ 1 and
m ≥ 2,

sup
θ>1

E0(|Zm,θ |r ) < ∞.(34)

PROOF. Since E(|Zm,θ |r ) ≤
√

E0(Z
2r
m,θ ), the lemma will follow if we prove

sup
θ>1

E0(Z
r
m,θ ) < ∞(35)

for all integers r ≥ 1. It is easy to see, using the Ewens sampling formula, that

E0(Zm,θ ) = √
θ

[
θm−1

(θ + 1) · · · (θ + m − 1)
− 1
]

∼ O

(
1√
θ

)(36)

and hence (35) holds when r = 1. In the last step, we used the fact that one can
express

θm−1

(θ + 1) · · · (θ + m − 1)
= 1 − φm(θ),(37)

where |φm(θ)| <
(m+1

2

)
θ−1 + O(θ−2).
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We now proceed by induction on r (with m fixed), assuming that
supθ>1 E0(Z

k
m,θ ) < ∞ holds for 1 ≤ k ≤ r − 1. Using (26), we can write[

(m − 1)!Zm,θ

]r L= (am(V ) + (1 − V )m(m − 1)!Z̃m,θ

)r
=

r∑
k=0

(
r

k

)
ak
m(V )(1 − V )m(r−k)

[
(m − 1)!Z̃m,θ

]r−k

= (1 − V )mr
[
(m − 1)!Z̃m,θ

]r
+

r∑
k=1

(
r

k

)
ak
m(V )(1 − V )m(r−k)

[
(m − 1)!Z̃m,θ

]r−k
.

Taking expectation on both sides, using the independence of V and Z̃m,θ and
setting

µr,θ ≡ ((m − 1)!)rE0(Z
r
m,θ ),(38)

we get

µr,θ = E
(
(1 − V )mr

)
µr,θ +

r∑
k=1

(
r

k

)
E
(
ak
m(V )(1 − V )m(r−k)

)
µr−k,θ .

This implies

µr,θ

(
1 − θ

mr + θ

)
=

r∑
k=1

(
r

k

)
E
(
ak
m(V )(1 − V )m(r−k)

)
µr−k,θ ,

and therefore we have the recursion

µr,θ = mr + θ

mr

r∑
k=1

(
r

k

)
E
(
ak
m(V )(1 − V )m(r−k))µr−k,θ .(39)

So the lemma will follow if we can establish

sup
θ>1

θ
∣∣E(ak

m(V )(1 − V )m(r−k)
)∣∣< ∞(40)

for k = 1, . . . , r , where V ∼ Beta(1, θ). The cases k = 1 and k ≥ 2 must be treated
separately.

We begin with k = 1:

θ
∣∣E(am(V )(1 − V )m(r−1))∣∣

= √
θ
∣∣E{θmV m(1 − V )m(r−1) − (m − 1)!θ [1 − (1 − V )m

]
(1 − V )m(r−1)

}∣∣
= √

θ

∣∣∣∣ m!θm+1

(θ + m(r − 1)) · · · (θ + m(r − 1) + m)

− (m − 1)!θ
(

θ

θ + m(r − 1)
− θ

θ + mr

)∣∣∣∣
= √

θ
∣∣m!(1 − φ(θ)

)− m!(1 − ψ(θ)
)∣∣,



DETECTING SELECTIVE OVERDOMINANCE 195

where |φ(θ)| ∼ O(θ−1) and |ψ(θ)| ∼ O(θ−1). Thus,

θ
∣∣E(am(V )(1 − V )m(r−1))∣∣≤ √

θm!(|φ(θ)| + |ψ(θ)|)∼ O
(
1/

√
θ
)

(41)

and (40) is verified for k = 1.
To handle the case 2 ≤ k ≤ r , use (32) to see

sup
θ>1

θ
∣∣E(ak

m(V )(1 − V )m(r−k)
)∣∣

≤ sup
θ>1

θE|am(V )|k ≤ sup
θ>1

2kθ1−k/2[(mk)! + (m!2m)kk!]< ∞.

Thus, (40) is satisfied when k ≥ 2, and this completes the proof. �

The next three lemmas provide estimates that are used in the proof of the
crucial uniform integrability result in Lemma 9. To obtain the desired uniform
integrability, we will need to bound (uniformly in θ ) an alternating series related
to exp{−tZm,θ }. The following three lemmas (essentially calculus exercises that
were not so obvious that we could omit the proofs) will aid us in the calculations
involving the aforementioned series.

LEMMA 6. Let
∑

j Ajx
j and

∑
j Bjx

j be two absolutely convergent series.
Then, for any 1 ≤ k ≤ l,∣∣∣∣∣

∞∑
i=l

i∑
j=k

AjBi−j x
i

∣∣∣∣∣≤
∣∣∣∣∣

∞∑
j=k

Ajx
j

∞∑
i=0

Bix
i

∣∣∣∣∣+ |x|kCkl(|x|),

where

Ckl(u) ≡
l−1∑
j=k

|Aj |uj−k
l−j−1∑
i=0

|Bi|ui(42)

is an increasing function of u ∈ [0,∞).

PROOF. Because each series is absolutely convergent, Fubini’s theorem
implies, for k ≤ l,

∞∑
i=l

i∑
j=k

AjBi−j x
i =

l−1∑
j=k

∞∑
i=l

Ajx
jBi−j x

i−j +
∞∑
j=l

∞∑
i=j

Ajx
jBi−j x

i−j

=
l−1∑
j=k

Ajx
j

∞∑
q=l−j

Bqxq +
∞∑
j=l

Ajx
j

∞∑
q=0

Bqx
q(43)

=
∞∑

j=k

Ajx
j

∞∑
q=0

Bqx
q −

l−1∑
j=k

Ajx
j

l−j−1∑
q=0

Bqxq.

An application of the triangle inequality now yields the desired result. �
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LEMMA 7. For k = 1,2 and positive integers l > k, define hl,k : R → R by

hl,k(z) ≡
∞∑

r=l−k

(−z)r

(r + k)r! .

Then, for l > k + 1:

(i) h′
l,k(z) = −hl,k+1(z);

Furthermore, if x lies between z and 0, then
(ii) |hl,k(x)| ≤ e−z/ l + 2

∑l−1
r=0

|z|r
r ! ; and

(iii) |z||hl,k(x)| ≤ e−z + 2
∑l−1

r=0
|z|r
r ! .

PROOF. The equality in (i) follows immediately from an interchange of
summation and differentiation. The conditions that justify this interchange are
easily verified in this case.

To prove (ii), begin by defining, for k = 1,2, the continuous functions

hk(z) ≡




∞∑
r=0

(−z)r

(r + k)r! , if z �= 0,

1

k
, if z = 0.

(44)

It is easy to see that, when z �= 0,

h1(z) = 1 − e−z

z
and h2(z) = − d

dz
h1(z) = 1 − e−z − ze−z

z2
.

It is also easy to check that h1(z) and h2(z) are nonnegative, decreasing functions
of z ∈ R. We now proceed to prove (ii) by considering separately the cases
0 ≤ x ≤ z and z ≤ x ≤ 0.

In the first case, hk(z) ≤ hk(0) and so, for k = 1,2 and l > k,

|hl,k(x)| =
∣∣∣∣∣hk(x) −

l−k−1∑
r=0

(−x)r

(r + k)r!
∣∣∣∣∣

(45)

≤ hk(x) +
l−2∑
r=0

|x|r
(r + 1)! ≤ hk(0) +

l−2∑
r=0

|z|r
(r + 1)! ≤ 2

l−1∑
r=0

|z|r
r! .

Now suppose z ≤ x ≤ 0. Then 0 ≤ −x ≤ −z, and hence

|hl,k(x)| =
∞∑

r=l−k

(−x)r

(r + k)r! ≤
∞∑

r=l−k

(−z)r

(r + k)r! <
1

l

∞∑
r=l−k

(−z)r

r! ≤ e−z

l
.(46)

So (ii) follows from (45) and (46).
To prove (iii), we begin by assuming 0 ≤ x ≤ z as before. Arguing as in (45),

we obtain

|z||hl,k(x)| ≤ |z|hk(0) +
l−2∑
r=0

|z|r+1

(r + 1)! ≤ 2
l−1∑
r=0

|z|r
r! .(47)
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In the case z ≤ x ≤ 0, we have

|z||hl,k(x)| = −z

∞∑
r=l−k

(−x)r

(r + k)r! ≤
∞∑

r=l−k

(−z)r+1

(r + 1)r! <

∞∑
r=0

(−z)r

r! = e−z.(48)

Therefore, (iii) follows from (47) and (48). �

LEMMA 8. For m ≥ 2, let am(V ) be defined as in (27), with V ∼ Beta(1, θ)

and θ > 1. Then, for each j ≥ 1, there is a positive, increasing, deterministic
function γm,j (t) such that, for all t > 0,∣∣∣∣∣

∞∑
k=j

(−tam(V ))k

k!
∣∣∣∣∣≤ tj γm,j (t)|am(V )|j .(49)

PROOF. First, note that∣∣∣∣∣
∞∑

k=j

(−tam(V ))k

k!
∣∣∣∣∣= |tam(V )|j

∣∣∣∣∣
∞∑

k=j

1

k!
(−tam(V )

)k−j

∣∣∣∣∣= tj |am(V )|j gj

(
tam(V )

)
,

where

0 < gj (x) ≡
∞∑

k=j

(−x)k−j

k! =




e−x −∑j−1
k=0(−x)k/k!

(−x)j
, x �= 0,

1

j ! , x = 0.

To prove the desired inequality, it suffices to show that gj (tam(V )) is a.s. bounded
above as a function of θ > 1. A simple calculus exercise shows that gj (x) is a
decreasing function of x ∈ (−∞,∞). Now define f (u) = um − m!2mu. Note that
f is bounded below on [0,∞) and let u∗ = ((m − 1)!2m)1/(m−1) be the point in
[0,∞) at which f achieves this minimum. Using (29) and the fact that θV > 0,
we have

am(V ) ≥ f (θV )√
θ

≥ f (u∗)√
θ

.

Also, it is easy to see that f (u∗) < 0, and hence f (u∗)/
√

θ > f (u∗) for θ > 1.
Therefore, for all t > 0,

gj

(
tam(V )

)≤ gj

(
tf (u∗)√

θ

)
≤ gj

(
tf (u∗)

)≡ γm,j (t) < ∞.

This complete the proof. �

LEMMA 9. Let Zm,θ be defined by (13) and suppose m ≥ 2 and t > 0 are
fixed. Then there exists θ0 = θ0(t) < ∞ such that

sup
θ>θ0

E0(e
−tZm,θ ) < ∞.
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PROOF. Since m is fixed throughout, to simplify notation, we will write

Z̄θ ≡ (m − 1)!Z̃m,θ ,(50)

where Z̄θ is independent of V as in (26). As before, let µr,θ = ((m − 1)!)r ×
E0(Z

r
m,θ ) = E0(Z̄

r
θ ). By (34), it is enough to show, for t > 0, that there are finite

values l = l(t) and θ0 = θ0(l, t) such that

sup
θ>θ0

∣∣∣∣∣
∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣< ∞.(51)

(This is not true if −t is replaced with t , and it is this reliance on the alternating
nature of the sum that makes the following argument rather delicate.)

First, use (39) to write∣∣∣∣∣
∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣
(52)

=
∣∣∣∣∣

∞∑
r=l

mr + θ

mr

(−t)r

r!
r∑

k=1

(
r

k

)
µr−k,θE

(
ak
m(V )(1 − V )m(r−k)

)∣∣∣∣∣,
where am(V ) is defined in (27). Motivated by Lemma 6, we define the following
random variables:

Ak ≡ (am(V ))k

k! , Bq ≡ (Z̄θ (1 − V )m)q

q! .(53)

Next, rewrite (52) as∣∣∣∣∣
∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣=
∣∣∣∣∣

∞∑
r=l

r∑
k=1

(
1 + θ

mr

)
E(AkBr−k)(−t)r

∣∣∣∣∣
=
∣∣∣∣∣E
( ∞∑

r=l

r∑
k=1

(
1 + θ

mr

)
AkBr−k (−t)r

)∣∣∣∣∣
≤
∣∣∣∣∣E
( ∞∑

r=l

r∑
k=1

AkBr−k(−t)r

)∣∣∣∣∣(54)

+
∣∣∣∣∣E
( ∞∑

r=l

r∑
k=1

θ

mr
AkBr−k(−t)r

)∣∣∣∣∣
≡ |E(I1)| + |E(I2)|.

Note that, for fixed θ , the random variables V , am(V ) and Z̄θ are bounded. Thus,
there are positive constants, cθ and dθ , such that |Ak| ≤ ck

θ /k! and |Bq | ≤ d
q
θ /q!

hold almost surely. Therefore, the interchange of expectation with summation
in (54) is justified by the dominated convergence theorem.
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Our strategy is now to bound each of the two terms in the last line of (54).
Indeed, we will demonstrate that, for θ0 and l chosen sufficiently large and all
θ > θ0,

|E(I1)| ≤ 1

4

∞∑
r=0

(−t)r

r! µr,θ + α1(t),(55)

|E(I2)| ≤ 1

4

∞∑
r=0

(−t)r

r! µr,θ + α2(t),(56)

where α1(t) and α2(t) are suitably chosen deterministic functions of t . Once the
bounds in (55) and (56) have been established, we will have∣∣∣∣∣

∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣≤ 1

2

∞∑
r=0

(−t)r

r! µr,θ + α1(t) + α2(t).

Now collect all terms involving the common infinite series and put them on the
left-hand side to get∣∣∣∣∣

∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣− 1

2

∞∑
r=l

(−t)r

r! µr,θ ≤ 1

2

l−1∑
r=0

tr

r! |µr,θ | + α1(t) + α2(t).

Considering separately the cases where
∑∞

r=l(−t)rµr,θ/r! is positive and negative,
it is easy to see that

1

2

∣∣∣∣∣
∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣≤ 1

2

l−1∑
r=0

tr

r! |µr,θ | + α1(t) + α2(t).

Since the right-hand side is a sum of a finite number of terms, Lemma 5 can be
used to conclude that

sup
θ>θ0

∣∣∣∣∣
∞∑
r=l

(−t)r

r! µr,θ

∣∣∣∣∣< ∞.

Thus, the proof of Lemma 9 reduces to establishing the inequalities in (55)
and (56).

(I1). Recall that Ak and Bk , defined by (53), are bounded random variables.
Therefore, we can apply Lemma 6 to I1, with k = 1 and x = −t , to get

|I1| ≤
∣∣∣∣∣

∞∑
j=1

(−t)jAj

∞∑
q=0

(−t)qBq

∣∣∣∣∣+ tC1l(t).(57)

By Lemma 8, we have∣∣∣∣∣
∞∑

j=1

(−t)jAj

∣∣∣∣∣=
∣∣∣∣∣

∞∑
j=1

(−tam(V )
)j

j !
∣∣∣∣∣≤ tγm,1(t)|am(V )|.
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In addition, ∣∣∣∣∣
∞∑

q=0

Bq(−t)q

∣∣∣∣∣= exp
{−tZ̄θ (1 − V )m

}
≤ max

{
1, exp{−tZ̄θ }}

≤ 1 + exp{−tZ̄θ },

(58)

and so

|I1| ≤ tγm,1(t)|am(V )|(1 + e−tZ̄θ ) + tC1l(t).(59)

Therefore,

|E(I1)| ≤ E|I1|
≤ tγm,1(t)E|am(V )|E(e−tZ̄θ ) + tγm,1(t)E|am(V )| + tE(C1l(t)).

Since C1l(t) is a sum of a finite number of random variables with means uniformly
bounded in θ , it follows that supθ>1 E(C1l(t)) < ∞. Since E|am(V )| ∼ O(θ−1/2),
there exists θ0 = θ0(t) < ∞ such that tγm,1(t)E|am(V )| < 1/4 for all θ > θ0(t).
Define α1(t) ≡ supθ>1 E(C1l(t)) + 1/4. Then, for θ > θ0(t),

|E(I1)| ≤ 1

4
E(e−tZ̄θ ) + α1(t) = 1

4

∞∑
r=0

(−t)r

r! µr,θ + α1(t),

and this completes the proof of (55).

(I2). Note that the factor θ/(mr) in I2 does not appear in I1. Because of this,
the proof of (56) requires a more delicate argument. We will need to consider
separately the cases k = 1, k = 2 and k ≥ 3. Begin by writing

I2 =
∞∑
r=l

r∑
k=1

θ

mr
AkBr−k(−t)r

=
∞∑
r=l

θ

mr
A1Br−1(−t)r +

∞∑
r=l

θ

mr
A2Br−2(−t)r +

∞∑
r=l

r∑
k=3

θ

mr
AkBr−k(−t)r

≡ J1 + J2 + J3.

To prove (56), we now proceed to bound the means of the last three terms.

(J1). Defining X̄θ ≡ (1 − V )mZ̄θ and using the notation in Lemma 7, we can
rewrite J1 as

J1 = − tθ

m
am(V )

∞∑
r=l

(−tX̄θ )
r−1

r! = − tθ

m
am(V )hl,1(tX̄θ ).
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Now recall from Lemma 7 that h′
l,1 = −hl,2 and apply the mean value theorem

to hl,1 to get

J1 = − tθ

m
am(V )

[
hl,1(tZ̄θ ) + t (X̄θ − Z̄θ )h

′
l,1(ξ)

]
(60)

= − tθ

m
am(V )

[
hl,1(tZ̄θ ) + t (Z̄θ − X̄θ )hl,2(ξ)

]
,

where ξ lies between tX̄θ and tZ̄θ . Since Z̄θ − X̄θ = [1 − (1 −V )m]Z̄θ , it follows
from (30) that

|Z̄θ − X̄θ | ≤ 2mV |Z̄θ |.(61)

Also, X̄θ and Z̄θ have the same sign, so we can apply Lemma 7 to get

|tZ̄θ | |hl,2(ξ)| ≤ e−tZ̄θ + 2
l−1∑
r=0

|tZ̄θ |r
r! ,

(62)

|hl,1(tZ̄θ )| ≤ e−tZ̄θ + 2
l−1∑
r=0

|tZ̄θ |r
r! .

Taking expectations in (60) and applying the bounds in (61) and (62), we get

|E(J1)| ≤ tθ

m

∣∣E(am(V )
)∣∣E|hl,1(tZ̄θ )| + t2θ

m
E|am(V )(Z̄θ − X̄θ )hl,2(ξ)|

≤
(

tθ

m

∣∣E(am(V )
)∣∣+ 2mt2θ

m
E|V am(V )|

)(
E(e−tZ̄θ ) + 2

l∑
r=0

E|tZ̄θ |r
r!

)

for each t > 0. It follows from (27), (28) and (37) that θ |E(am(V ))| ∼
m!O(1/

√
θ), and from (31) and (33) we have θE|V am(V )| ∼ O(1/

√
θ). There-

fore, we can choose θ large enough so that

|E(J1)| ≤ 1

12
E(e−tZ̄θ ) + β1(t) = 1

12

∞∑
r=0

(−t)rµr,θ

r! + β1(t),(63)

where β1(t) = (1/6) supθ>1
∑l

r=0 E|tZ̄θ |r/r!.

(J2). Start with

|J2| =
∣∣∣∣∣

∞∑
r=l

θ

mr
A2Br−2(−t)r

∣∣∣∣∣
= θa2

m(V )
t2

2m

∣∣∣∣∣
∞∑
r=l

(−tX̄θ )
r−2

r(r − 2)!
∣∣∣∣∣= θa2

m(V )
t2

2m
|hl,2(tX̄θ )|.
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Then, from part (ii) of Lemma 7,

|J2| ≤ θt2

2m
a2
m(V )

(
e−tZ̄θ

l
+ 2

l∑
r=0

|tZ̄θ |r
r!
)
.

Define

λ(t) ≡ sup
θ>1

θt2

2m
E
(
a2
m(V )

)
.

It follows from (32) that λ(t) < ∞, so choosing l > 12λ(t) leads to

E|J2| ≤ 1

12
E(e−tZ̄θ ) + 12λ(t)β1(t) = 1

12

∞∑
r=0

(−t)r

r! µr,θ + β2(t),(64)

where β2(t) ≡ 12λ(t)β1(t).

(J3). We now rewrite J3 and again apply Lemma 6 to get

|J3| =
∣∣∣∣∣
∫ t

0

1

s

∞∑
r=l

r∑
k=3

θ

m
AkBr−k(−s)r ds

∣∣∣∣∣
≤
∫ t

0

(
1

s

∣∣∣∣∣
∞∑

k=3

θ

m
Ak(−s)k

∞∑
q=0

Bq(−s)q

∣∣∣∣∣+ s3C3l(s)

)
ds

≤
∫ t

0

1

s

∣∣∣∣∣
∞∑

k=3

θ

m
Ak(−s)k

∣∣∣∣∣
( ∞∑

q=0

Bq(−s)q

)
ds + t2C3l(t).

It follows from Lemma 8 that∣∣∣∣∣
∞∑

k=3

Ak(−s)k

∣∣∣∣∣=
∣∣∣∣∣

∞∑
k=3

(−sam(V ))k

k!
∣∣∣∣∣≤ s3γm,3(t)|am(V )|3

for 0 ≤ s ≤ t , and by the same argument used in (58), we have 0 <∑∞
q=0 Bq(−s)q ≤ 1 + exp{−tZ̄θ }. Therefore,

|J3| ≤ (1 + e−tZ̄θ )
γm,3(t)

m
θ |am(V )|3

∫ t

0
s2 ds + t2C3l(t),

and this implies, by independence of V and Z̄θ ,

E|J3| ≤ t3 γm,3(t)

m
θE|am(V )|3E(e−tZ̄θ ) + t3 γm,3(t)

m
θE|am(V )|3 + t2

E
(
C3l(t)

)
.

By (32), we can choose θ so large that

t3 γm,3(t)

m
θE|am(V )|3 <

1

12
.
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Therefore, setting β3(t) ≡ 1/12 + t2 supθ>1 E(C3l(t)), we arrive at

E|J3| ≤ 1

12
E(e−tZ̄θ ) + β3(t) = 1

12

∞∑
r=0

(−t)rµr,θ

r! + β3(t),(65)

when θ is sufficiently large. So (56) now follows from (63)–(65), with α2(t) =
β1(t) + β2(t) + β3(t). �

5. Rescaled likelihood ratios and sampling distributions. In this section
we extend our uniform integrability and limit results to rescaled versions of the
likelihood ratios and sampling distributions. These results will be used in the
proofs of Theorems 3, 4 and 5.

LEMMA 10. Suppose σ = cθ3/2−α , where α > 0 and c > 0 are constants.

(i) If Xθ = (X1,θ ,X2,θ , . . .) ∼ µ0, then

θα

(
dµσ

dµ0
(Xθ ) − 1

)
= −cZ2,θ + L(Z2,θ ),

where limθ→∞ E0|L(Z2,θ )|r = 0 for all r > 0.
(ii) If r > 0, then

sup
θ>1

E0

∣∣∣∣θα

(
dµσ

dµ0
(Xθ ) − 1

)∣∣∣∣
r

< ∞.

(iii) If Y(−α)
θ = (Y

(−α)
1,θ , Y

(−α)
2,θ , . . .) ∼ µσ , then

θα

(
dµσ

dµ0
(Y(−α)

θ ) − 1
)

= −cZ
(−α)
2,θ + Lα(Z

(−α)
2,θ ),

where limθ→∞ Eσ |Lα(Z
(−α)
2,θ )|r = 0 for all r > 0.

REMARK. Lemma 10, when combined with Lemma 1, will provide a quick
proof of Theorem 3. Part (ii) yields a uniform integrability condition that will be
needed in the proofs of Theorems 4 and 5.

PROOF OF LEMMA 10. Beginning with (i), recall that, for σ = cθ3/2−α,

dµσ

dµ0
(Xθ ) = e−cθ−αZ2,θ

E0(e
−cθ−αZ2,θ )

.

Using the Taylor decomposition, e−x = 1 − x + R(x), with 0 < R(x) <

max{x2/2, e−xx2/2} ≤ (x2/2)(1 + e−x), we can write

e−cθ−αZ2,θ = 1 − cθ−αZ2,θ + R(cθ−αZ2,θ ).
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For notational convenience let us denote R(cθ−αZ2,θ ) by Rθ .
As a consequence of the classical result E0(H(Xθ )) = 1/(1 + θ), we have

E0(e
−cθ−αZ2,θ ) = 1 − E0(cθ

−αZ2,θ ) + E0(Rθ )

= 1 + cθ1/2−α 1

1 + θ
+ E0(Rθ ).

Hence, the quantity of interest can be written as

θα

(
e−cθ−αZ2,θ

E0(e
−cθ−αZ2,θ )

− 1
)

= θα

E0(e
−cθ−αZ2,θ )

(
1 − cθ−αZ2,θ + Rθ − E0(e

−cθ−αZ2,θ )
)

= θα

E0(e
−cθ−αZ2,θ )

(
−cθ−αZ2,θ + Rθ − c

θ1/2−α

1 + θ
− E0(Rθ )

)

= 1

E0(e
−cθ−αZ2,θ )

(
−cZ2,θ − c

√
θ

1 + θ
+ θαRθ − E0(θ

αRθ)

)

= −cZ2,θ + L(Z2,θ ),

where we define

L(Z2,θ ) ≡ 1

E0(e
−cθ−αZ2,θ )

(
−c

√
θ

1 + θ
+ θαRθ − θα

E0(Rθ )

)

− cZ2,θ

(
1

E0(e
−cθ−αZ2,θ )

− 1
)
.

Since Lemma 9 implies, for any constant δ > 1,

sup
θ>θ0(δ)

E0(e
−δθ−αZ2,θ ) ≤ 1 + sup

θ>θ0(δ)

E0(e
−δZ2,θ ) < ∞,(66)

we see that E0(e
−cθ−αZ2,θ ) → 1. Furthermore, using the Cauchy–Schwarz inequal-

ity, it is clear that

0 < θrα
E0|Rr

θ | < θrα
E0
(
(cθ−αZ2,θ )

2r
(
1 + exp

{−cθ−αZ2,θ

})r )
< c2rθ−rα

√
E0(Z

4r
2,θ )E0

(
1 + exp

{−cθ−αZ2,θ

})2r

holds for all r > 0. Thus, we can use Lemmas 5 and 9 to get θrα
E0|Rr

θ | → 0 as
θ → ∞. A simple argument, together with Lemmas 5 and 9, now produces

lim
θ→∞E0|L(Z2,θ )|r = 0,

completing the proof of (i).
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Part (ii) follows immediately from part (i) and Lemma 5.
To prove part (iii), one argues as in the proof of (i), making the obvious changes.

Replacing L(Z2,θ ) will be

Lα(Z
(−α)
2,θ ) ≡ 1

E0(e
−cθ−αZ2,θ )

(
−c

√
θ

1 + θ
+ θαR

(−α)
θ − θα

E0(Rθ )

)

− cZ
(−α)
2,θ

(
1

E(e−cθ−αZ2,θ )
− 1
)
,

where R
(−α)
θ ≡ R(cθ−αZ

(−α)
2,θ ). The last part of (iii) requires uniform integrability

of Z
(−α)
2,θ and e

−Z
(−α)
2,θ . These follow from Lemmas 5 and 9 together with part (ii)

above. �

Sampling distributions and homozygosities. Recall that Theorems 4 and 5
involve limits for sampling distributions. Our next goal is to establish moment
bounds for certain scalings of the conditional sampling functions, φa(Xθ ). These
will lead to the uniform integrability we need to prove the aforementioned
theorems. For example, we wish to show that if the partition a satisfies a1 �= n

(i.e., not all alleles in the sample are distinct), then

sup
θ>1

E0

∣∣∣∣√θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)∣∣∣∣
r

< ∞.(67)

To aid us in our derivation of (67), we will exploit a relationship between the
population moments, Hm(Xθ ), and the conditional sampling function, φa(Xθ ).

This is given by the following general identity, which holds for any partition a
of a sample of size n:

n∏
m=2

(
θm−1

(m − 1)!Hm(Xθ )

)am

(68)

= θn

θ(n)

φa(Xθ )

E0(φa(Xθ ))
+ θn−k∏n

m=2((m − 1)!)am

∑
b∈Ca

lbφb(Xθ ),

where Ca is defined to be the collection of all partitions formed by coalescing two
or more of the classes associated with a, and lb is a nonnegative combinatorial
factor whose exact form is not important here. A derivation appears in Joyce,
Krone and Kurtz (2001). To understand why this identity will be useful, note
that the term on the left involves population homozygosities and the last term is
small when θ is large, as will be seen below. So the large-θ asymptotics of φa(Xθ )

will be determined by those of the various population homozygosities. This is
helpful because the population homozygosities are especially simple examples of
sampling distributions.
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Since E0(φa(Xθ )) = ESF(θ,a), the above identity can be used to obtain∣∣∣∣φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

∣∣∣∣=
∣∣∣∣ φa(Xθ )

E0(φa(Xθ ))
− 1
∣∣∣∣

≤
∣∣∣∣θ(n)

θn

n∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1
∣∣∣∣

+ θ(n)

θn

θn−k∏n
m=2((m − 1)!)am

∑
b∈Ca

lbφb(Xθ ).

Next, notice that

√
θ

(
θ(n)

θn
− 1
)

∼ O

(
1√
θ

)
,

and set

B ≡ sup
θ>1

√
θ

∣∣∣∣θ(n)

θn
− 1
∣∣∣∣.

Thus, the quantity whose r th moment appears in (67) has absolute value

√
θ

∣∣∣∣ φa(Xθ )

E0(φa(Xθ ))
− 1
∣∣∣∣

≤ √
θ

∣∣∣∣∣
n∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1

∣∣∣∣∣+
√

θ

∣∣∣∣θ(n)

θn
− 1
∣∣∣∣

n∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

+ θn−k∏n
m=2((m − 1)!)am

∑
b∈Ca

lbφb(Xθ )(69)

≤ √
θ

∣∣∣∣∣
n∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1

∣∣∣∣∣+ B

n∏
m=2

∣∣∣∣Zm,θ√
θ

+ 1
∣∣∣∣
am

+ θn−k∏n
m=2((m − 1)!)am

∑
b∈Ca

lbφb(Xθ ).

The first term in the last line of (69) is the most important, and we isolate it in
the first part of the next lemma. The uniform integrability condition given in (67)
will then be given, followed by the last part of the lemma treating the special case
when a1 = n.

LEMMA 11. Suppose Xθ ∼ µ0 and let a be a partition corresponding to a
sample of size n drawn from a population with ordered frequencies Xθ .
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(i) If a1 �= n, then

sup
θ>1

θr/2
E0

∣∣∣∣∣
n∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1

∣∣∣∣∣
r

< ∞ for each r > 0.(70)

(ii) If a1 �= n, then

sup
θ>1

θr/2
E0

∣∣∣∣φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

∣∣∣∣
r

< ∞ for each r > 0.

(iii) If a1 = (n,0, . . . ,0) and a2 = (n − 2,1,0, . . . ,0) are the allelic partitions
with n singletons and n − 2 singletons, respectively, then

sup
θ>1

θr/2
E0

∣∣∣∣φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a2)

∣∣∣∣
r

< ∞ for each r > 0.

PROOF. We prove (i) by induction on the sample size n. If n = 2, then the
assumption, a1 �= n, implies a2 must be 1. In this case, (70) reduces to the uniform
integrability result in Lemma 5:

sup
θ>1

θr/2
E0|θH2(Xθ ) − 1|r = sup

θ>1
E0|Z2,θ |r < ∞.

Now assume that (70) holds for all partitions corresponding to samples of size less
than or equal to n, and let a = (a1, a2, . . . , an+1) be a partition corresponding to a
sample of size n + 1. For partitions with an+1 = 1 and with an = 1, a1 = 1, the
quantity of interest,

θr/2

∣∣∣∣∣
n+1∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1

∣∣∣∣∣
r

,

reduces to |Zn+1,θ |r and |Zn,θ |r , respectively, and hence can be handled by
Lemma 5. (Notice that terms associated with a1 never appear in the product.)
Since the hypothesis in (i) says a1 �= n + 1, we are left to treat the situation in
which aj ≥ 1 for some 1 < j ≤ n − 1. For such a j , define aj = (aj1, . . . , ajn) to
be a partition corresponding to a sample of size n+1 − j formed by removing one
allele with j representatives. That is, ajj = aj −1, and aji = ai for all i �= j . Then

θr/2

∣∣∣∣∣
n+1∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)am

− 1

∣∣∣∣∣
r

= θr/2

∣∣∣∣∣θ
j−1Hj(Xθ )

(j − 1)!
( n+1−j∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)amj

− 1

)
(71)

+ θj−1Hj(Xθ )

(j − 1)! − 1

∣∣∣∣∣
r

≤ 2rθr/2

∣∣∣∣∣θ
j−1Hj(Xθ )

(j − 1)!
( n+1−j∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)amj

− 1

)∣∣∣∣∣
r

+ 2r |Zj,θ |r .
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Since Lemma 5 can be used to handle the mean of the last term, it remains to treat
the first term in the last line of (71). An appeal to the Cauchy–Schwarz inequality
allows us to write

E0

∣∣∣∣∣θ
j−1Hj(Xθ )

(j − 1)!
( n+1−j∏

m=2

(
θm−1Hm(Xθ )

(m − 1)!
)amj

− 1

)∣∣∣∣∣
r

(72)

≤
√√√√√E0

∣∣∣∣θj−1Hj(Xθ )

(j − 1)!
∣∣∣∣
2r

E0

∣∣∣∣∣
n+1−j∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)amj

− 1

∣∣∣∣∣
2r

.

Clearly, the induction hypothesis implies

sup
θ>0

θr/2
E0

∣∣∣∣∣
n+1−j∏
m=2

(
θm−1Hm(Xθ )

(m − 1)!
)amj

− 1

∣∣∣∣∣
2r

< ∞,

and the first term under the square root is handled with Lemma 5. Combining all
this with (71) and (72) completes the proof of (i).

To prove (ii), we proceed by induction on the number, k, of different alleles
represented in the sample. If k = 1, then all the sampled individuals have the same
allele; that is, an = 1. Thus, φa(Xθ ) =∑Xn

i,θ , and (ii) follows as a special case of
Lemma 5, after a simple argument to account for the fact that the scaling terms are
only asymptotically the same. Next, assume (ii) holds for all partitions of n with
fewer than k distinct alleles. In other words, if b is such a partition and we define

Db(Xθ ) ≡ √
θ

(
φb(Xθ )

E0(φb(Xθ ))
− 1
)
,

then the induction hypothesis implies supθ>1 E0|Db(Xθ )|r < ∞ for all r > 0.
However, from the definition of Db(Xθ ), we can write

(
φb(Xθ )

)r = (E0
(
φb(Xθ )

))r(Db(Xθ )√
θ

+ 1
)r

.(73)

To apply this to a partition a with k distinct alleles, recall the inequality in (69).
Clearly, to complete the induction argument, it suffices to show that the r th
moment of each of the terms in the last line of (69) is uniformly bounded in θ > 1.
For the first term in (69), just apply part (i) above. For the last term in (69), using
the fact that the number of distinct alleles represented in any partition b ∈ Ca is
less than or equal to k − 1, we can infer from the Ewens sampling formula that
E0(φb(Xθ )) ∼ O(θk−1−n), and so, taking expectations on both sides of (73), we
get

sup
θ>1

θr(n−k)
E0
(
φb(Xθ )

)r
< ∞.(74)
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From this, it follows immediately that the r th moment of the last term in (69)
is bounded in θ > 1. Finally, the middle term in (69) is easy to handle; just use
Lemma 5 and Hölder’s inequality to see that

sup
θ>1

E0

(
n∏

m=2

∣∣∣∣Zm,θ√
θ

+ 1
∣∣∣∣
ram
)

< ∞.(75)

To prove (iii), we note that φa1(Xθ ) = 1 −∑a �=a1
φa(Xθ ). Therefore,

φa1(Xθ ) − E0(φa1(Xθ ))

E0(φa2(Xθ ))

= E0(
∑

a �=a1
φa(Xθ )) −∑a �=a1

φa(Xθ )

E0(φa2(Xθ ))
(76)

= E0(φa2(Xθ )) − φa2(Xθ )

E0(φa2(Xθ ))
+ ∑

a �=a1,a2

E0(φa(Xθ )) − φa(Xθ )

E0(φa(Xθ ))

E0(φa(Xθ ))

E0(φa2(Xθ ))
.

It follows from direct calculation using the Ewens sampling formula (8) that

lim
θ→∞

E0(φa(Xθ ))

E0(φa2(Xθ ))
= 0

if a �= a1,a2. Thus,

sup
θ>1

E0(φa(Xθ ))

E0(φa2(Xθ ))
< ∞.(77)

Therefore,

sup
θ>1

θr/2
E0

∣∣∣∣φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a2)

∣∣∣∣
r

< ∞

follows from part (ii) and (76) and (77). �

6. Proofs of the main results.

PROOF OF THEOREM 1. It follows from (18) that cZ2,θ ⇒ cZ2, where
Z2 ∼ N(0,2). So, in the case σ = cθ3/2, we can use (15) and Lemmas 4 and 9,
with Yn replaced by cZ2,θ and n with θ , to get

dµσ

dµ0
(Xθ ) = exp{−cZ2,θ }

E0(exp{−cZ2,θ }) ⇒ exp{cZ2}
E(exp{−cZ2}) = exp{cZ2 − c2}.(78)

Here we have used E(e−cZ2) = ec2
and the fact that Z2 is equal in distribution to

−Z2. (Note that the t in Lemma 9 can be chosen so ct > 1.) The cases σ = cθ3/2+γ

with γ < 0 and γ > 0 of Theorem 1 also follow by applying Lemma 4. �
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PROOF OF THEOREM 2. Suppose Y(γ )
θ ∼ µσ , where σ = cθ3/2+γ . First,

consider the case γ ≤ 0. By (16), we have

dµσ

dµ0
(Y(γ )

θ ) = exp{−cθγ Z
(γ )
2,θ }

E0(exp{−cθγ Z2,θ }) ,(79)

and so the desired result follows from the continuous mapping theorem for weak
limits and the uniform integrability obtained from (66) and Lemma 9.

Now assume that σ = cθ3/2+γ , with γ > 0, and let g ≡ dµσ/dµ0. Then

Eσ

(
1√

g(Y(γ )
θ )

)
= E0

(
g(Xθ )√
g(Xθ )

)
= E0

(√
g(Xθ )

)
.

It follows from Lemma 3 and (15) that limθ→∞ E0(
√

g(Xθ)) = 0. Thus, we

conclude that limθ→∞ Eσ (1/

√
g(Y(γ )

θ )) = 0, implying g(Y(γ )
θ ) ⇒ ∞. �

PROOF OF THEOREM 3. The result follows immediately from Lemmas 1
and 10. �

PROOF OF THEOREM 4. Suppose σ = cθ3/2−α and a �= (n,0, . . . ,0) is a
partition for a sample of size n. Treating first the case α > 0, we have

θα+1/2
∣∣∣∣Pσ (An = a)

P0(An = a)
− 1
∣∣∣∣

= θα+1/2
∣∣∣∣Pσ (An = a) − P0(An = a)

P0(An = a)

∣∣∣∣
= θα+1/2

∣∣∣∣
∫

dµσ

dµ0
(x)

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
µ0(dx)

∣∣∣∣
=
∣∣∣∣E0

(√
θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
θα dµσ

dµ0
(Xθ )

)∣∣∣∣
=
∣∣∣∣E0

(√
θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
θα dµσ

dµ0
(Xθ ) − θα + θα

)∣∣∣∣
=
∣∣∣∣E0

(√
θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
θα

(
dµσ

dµ0
(Xθ ) − 1

))∣∣∣∣.
Note that Lemma 11 and part (ii) of Lemma 10, together with the Cauchy–Schwarz
inequality, give uniform integrability of the last expression. Therefore, we can
bring limits inside the expectation and use part (i) of Lemma 2, together with
Theorem 3, to get

lim
θ→∞ θα+1/2

∣∣∣∣Pσ (An = a)

P0(An = a)
− 1
∣∣∣∣= c

∣∣∣∣∣
n∑

i=2

ai Cov(Zi,Z2)

∣∣∣∣∣= 2c

n∑
i=2

ai

(
i

2

)
.
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In the case α = 0, applying Lemma 2 and noting that uniform integrability
follows by Lemmas 9 and 11, we have

lim
θ→∞ θ1/2

∣∣∣∣Pσ (An = a)

P0(An = a)
− 1
∣∣∣∣

= lim
θ→∞

∣∣∣∣E0

(√
θ

(
φa(Xθ ) − ESF(θ,a)

ESF(θ,a)

)
e−cZ2,θ

E0(e
−cZ2,θ )

)∣∣∣∣
=

n∑
i=2

ai

|E(Zie
−cZ2)|

E(e−cZ2)
.

It follows from standard properties of bivariate normal distributions that

E(e−cZ2Zi) = E
(
e−cZ2E(Zi |Z2)

)
(80)

= Cov(Z2,Zi)

VarZ2
E(e−cZ2Z2) = Cov(Z2,Zi)

2
E(e−cZ2Z2)

and

E(e−cZ2Z2) =
∫ ∞
−∞

1

2
√

π
ze−z2/4e−cz dz

(81)
= ec2

∫ ∞
−∞

1

2
√

π
ze−(z+2c)2/4 dz = −2cec2

.

Therefore,

lim
θ→∞ θ1/2

∣∣∣∣Pσ (An = a)

P0(An = a)
− 1
∣∣∣∣= e−c2

n∑
i=2

ai|E(Zie
−cZ2)|

= e−c2
n∑

i=2

ai

Cov(Z2,Zi)

2
(2cec2

)

= c

n∑
i=2

ai Cov(Z2,Zi) = 2c

n∑
i=2

ai

(
i

2

)
.

�

PROOF OF THEOREM 5. Suppose a1 = (n,0, . . . ,0) and a2 = (n − 2,1,0,

. . . ,0) are the allelic partitions with n singletons and n−2 singletons, respectively.
Then, for α > 0,

θα+3/2
∣∣∣∣Pσ (An = a1)

P0(An = a1)
− 1
∣∣∣∣

= θα+1

E0(e
−cθ−αZ2,θ )

∣∣∣∣E0

(√
θ

(
φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a1)

)
dµσ

dµ0
(Xθ )

)∣∣∣∣
= θα+1

E0(e
−cθ−αZ2,θ )

ESF(θ,a2)

ESF(θ,a1)
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×
∣∣∣∣E0

(√
θ

(
φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a2)

)(
dµσ

dµ0
(Xθ ) − 1

))∣∣∣∣
= θ

E0(e
−cθ−αZ2,θ )

ESF(θ,a2)

ESF(θ,a1)

×
∣∣∣∣E0

(√
θ

(
φa1(Xθ ) − ESF(θ,a1)

ESF(θ,a2)

)
θα

(
dµσ

dµ0
(Xθ ) − 1

))∣∣∣∣.
Note that θ ESF(θ,a2)/ESF(θ,a1) → 1, and E0(e

−cθ−αZ2,θ ) → 1 as θ → ∞.
Once again, the uniform integrability established in Lemmas 10 and 11 allows us
to bring the limit inside the last expected value. It then follows from part (ii) of
Lemma 2 and Theorem 3 that

lim
θ→∞ θα+3/2

∣∣∣∣Pσ (An = a1)

P0(An = a1)
− 1
∣∣∣∣= c|E0(−Z2Z2)| = c Var(Z2) = 2c. �
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