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We consider weak and strong Gaussian approximations for a two-color
generalized Friedman’s urn model with homogeneous and nonhomogeneous
generating matrices. In particular, the functional central limit theorems and
the laws of iterated logarithm are obtained. As an application, we obtain the
asymptotic properties for the randomized-play-the-winner rule. Based on the
Gaussian approximations, we also get some variance estimators for the urn
model.

1. Introduction. Adaptive designs in clinical trials have received consider-
able attention in the literature. The goal of adaptive designs is to pursue higher
survival rates in a long run of clinical trials while not significantly affecting the ac-
curacy of the statistical inferences on all treatments involved in the trials. In these
designs, more patients are sequentially to be assigned to better treatments, based on
outcomes of previous treatments in clinical trials. A very important class of adap-
tive designs is based on the generalized Friedman’s urn (GFU) model [also called
the generalized Pólya urn (GPU) in the literature] which has been used in clinical
trials, bioassay and psychophysics. For more detailed references, the reader is re-
ferred to Flournoy and Rosenberger (1995), Rosenberger (1996), Rosenberger and
Grill (1997). Athreya and Karlin (1968) first considered the asymptotic properties
of the GFU model with homogeneous generating matrix. Smythe (1996) defined
the extended Pólya urn model (EPU) (a special class of GFU) and considered its
asymptotic normality. In applications, it is quite often that the generating matri-
ces are not homogeneous. Examples can be found in Coad (1991) and Hu and
Rosenberger (2000) as well as Bai, Hu and Shen (2002). For the nonhomogeneous
case, Bai and Hu (1999) establish strong consistency and asymptotic normality of
the GFU model. Statistical inference about adaptive designs is considered in Wei,
Smythe, Lin and Park (1990), Rosenberger and Sriram (1997) for the homoge-
neous case and Hu, Rosenberger and Zidek (2000) for the nonhomogeneous case.

In this paper, we consider a two-color GFU model with W0 white and W 0
black balls with T0 = W0 +W 0. Balls are drawn at random in succession, their
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color noticed and then replaced in the urn, together with new black and white

balls. Replacements are controlled by a sequence of rule matrices Ri = [
Ai Bi
Ci Di

]
as

follows: at stage i, if a white ball is drawn, it is returned to the urn with Ai white
and Bi black balls. Otherwise, when a black is drawn, it is returned with Ci white
andDi black balls. Negative entries in Ri are allowed and correspond to removals.
After n splits and generations, the numbers of white and black balls in the urn are
denoted by Wn and Wn, respectively, and Tn =Wn +Wn is the total number of
balls.

In a two-arm clinical trial, the white and black balls represent treatments 1
and 2, respectively. If a white ball is drawn at the ith stage, then the treatment 1 is
assigned to the ith patient. The rule Ri is usually a function of ξ(i), a random
variable associated with the ith stage of the clinical trial, which may include
measurements on the ith patient and the outcome of the treatment at the ith stage.
The sequence of the expectations of the rules

Hi =
[

EAi EBi
ECi EDi

]
=:

[
ai bi
ci di

]
are called generating matrices. The GFU model is called homogeneous if Hi = H
for all i.

When Ri = [
a b
c d

]
is a deterministic matrix for all i, Gouet (1993) established

the weak invariance principle for the urn process {Wn}. This leads us to show that
the urn process {Wn} can be weakly and strongly approximated by a Gaussian
process for both the homogeneous and nonhomogeneous cases. As an application,
we establish the weak invariance principle and the law of the iterated logarithm for
{Wn}. The technique used here is the Gaussian approximation of a process, which
is different from Gouet (1993) as well as others. Some results of Bai and Hu (1999,
2000), if reduced to the two-arm case, can also be obtained as special cases of the
results in the present paper.

The paper is organized as follows. In Section 2, we first describe the model
and some important assumptions. Then some main theorems are presented. The
proofs are given in Section 3. In Section 4, we apply the results to the randomized
play-the-winner rule [Wei (1979)] to get its asymptotic properties. The asymptotic
results in Section 2 depend on an unknown variance. Based on Wn, we obtain two
variance estimators of the GFU model by using the Gaussian approximation.

2. Main results.

2.1. Notation and assumptions. Suppose that there is a sequence of increasing
σ -fields {Fn} and that Wn, An and Cn are three sequences of random variables
which are adapted to {Fn} and satisfy the following model:

Wn =Wn−1 + InAn+ (1 − In)Cn,(2.1)
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where (An,Cn) is the adding rule at the stage n and In is the result of the nth draw
with In = 1 or 0 according to whether a white ball or a black is drawn. We assume
that for each n, (An,Cn) is conditionally independent of In when given Fn−1 and
P(In = 1|Fn−1) =Wn−1/Tn−1, where Tn = Wn +Wn is the total number of all
balls in the urn at stage n. Write

E(An|Fn−1)= an, E(Cn|Fn−1)= cn,
where an and cn are assumed to be nonrandom. The model is called homogeneous
if ai = a and ci = c for all i.

We need the following assumptions.

ASSUMPTION 2.1. Tn = ns + β , where β > 0 is the number of the balls in
the initial urn and s is the number of balls added to the urn at each stage. Without
loss of generality, we assume β = 1 and s = 1.

In some cases, the number of balls added to the urn at each stage is random.
Thus, Tn may be a random variable and Assumption 2.1 may not be satisfied. In
such cases, we shall assume that Tn is not far away from ns+β . And thus in those
cases, we shall make an assumption on the distance of Tn from ns + β instead of
Assumption 2.1. For example, we may assume that T = ns + β + o(√n) in L2
when we consider the L2-approximations.

ASSUMPTION 2.2. an → a and cn → c as n→ ∞. Denote ρn = an − cn,
ρ = a− c and µ= c/(1 − ρ). Assume ρ ≤ 1/2.

ASSUMPTION 2.3. For some C > 0 and 0< ε ≤ 1, the rule (An,Cn) satisfies

E|An|2+ε ≤ C <∞, E|Cn|2+ε <∞ for all n

and also

Var(An|Fn−1)→ Va a.s., Var(Cn|Fn−1)→ Vc a.s.,

where Va and Vc are nonrandom nonnegative numbers.

ASSUMPTION 2.4. |an− a| + |cn− c| = o((log logn)−1) and |Var(An|Fn−1)

− Va| + |Var(Cn|Fn−1)− Vc| = o((log logn)−1) a.s.

ASSUMPTION 2.5. For some 0< ε ≤ 1, |an− a| + |cn− c| = o((logn)−1−ε)
and |Var(An|Fn−1)− Va| + |Var(Cn|Fn−1)− Vc| = o((logn)−1−ε) a.s.

ASSUMPTION 2.6. |an − a| + |cn − c| =O(n−1/2), |Var(An|Fn−1)− Va| +
|Var(Cn| Fn−1) −Vc| =O(n−1/2) a.s. and

E|An|4 ≤ C <∞, E|Cn|4 ≤ C <∞ for all n.



1152 Z. D. BAI, F. HU AND L.-X. ZHANG

2.2. Main results. Denote

σ 2
M =µVa + (1 −µ)Vc + ρ2µ(1 −µ), σ = σM/

√
1 − 2ρ,(2.2)

e0 = 1 and

en =
n−1∑
k=0

ρk+1
ek

k + 1
+

n∑
k=1

ck,(2.3)

for all n≤ 1.
The following are the first two approximations related to the law of the iterated

logarithm and the invariance principle.

THEOREM 2.1. If ρ < 1/2 and Tn = n + 1 + o((n log logn)1/2) a.s., then
under Assumptions 2.2, 2.3, there exists a probability space on which the sequence
{Wn} and a standard Brownian motionW(·) are so defined that

Wn− en−Gn = o((n log logn)1/2
)
a.s.(2.4)

Also, if we further assume Tn = n+ 1 + o((n log logn)1/2) in L1, then

Wn− EWn −Gn = o((n log logn)1/2
)
a.s.,(2.5)

where

Gt = tρ
∫ t

0

dW(sσ 2
M)

sρ
, t ≥ 0(2.6)

and {
Gt; t ≥ 0

} D= {
σ tρW(t1−2ρ); t ≥ 0

}
.(2.7)

In addition, if
n∑
k=1

{
(ak − a)µ+ (ck − c)(1 −µ)}= o(√n ),(2.8)

then

Wn− nµ−Gn = o((n log logn)1/2
)
a.s.(2.9)

THEOREM 2.2. Under Assumptions 2.2 and 2.3, if ρ < 1/2 and Tn = n+ 1 +
o(

√
n) in L2, then

max
k≤n |Wk − ek −Gk| = o(√n ) in L2(2.10)

and

max
k≤n |Wk − EWk −Gk| = o(√n ) in L2.(2.11)

Furthermore, if condition (2.8) is also satisfied, then

max
k≤n |Wk − kµ−Gk| = o(√n ) in L2.(2.12)



APPROXIMATION FOR URN MODELS 1153

From Theorems 2.1 and 2.2, it is easily seen that

COROLLARY 2.1. Assume ρ < 1/2, and Tn = n + 1 + o(√n) in L2, then
under Assumptions 2.2, 2.3,

n1/2(W[nt] − EW[nt])�⇒ σ tρW(t1−2ρ);(2.13)

if Tn = n+ 1 + o((n log logn)1/2) a.s. and in L1, then under Assumptions 2.2, 2.3,

lim sup
n→∞

Wn− EWn√
2n log logn

= σ a.s.(2.14)

Furthermore, if condition (2.8) is also satisfied, then EWn can be placed by nµ.

REMARK. (2.13) was first established by Gouet (1993) in the case of
An = a and Cn = c for all n. Result (2.14) is new. For the random and non-
homogeneous Pólya’s urn, Bai and Hu (1999) showed that

n−1/2(Wn − EWn)
D→N(0, σ )(2.15)

under the condition
∞∑
k=1

|ak − a| + |ck − c|
k

<∞.(2.16)

Also, the result of Bai and Hu (2000) implies that

n−1/2(Wn− nµ) D→N(0, σ ),

but the following condition is needed:
∞∑
k=1

|ak − a| + |ck − c|√
k

<∞.(2.17)

Obviously, condition (2.17) is stronger than (2.8). But, Bai and Hu (1999, 2000)
studied the multicolor urn models.

Assumptions 2.2 and 2.3 used in Theorems 2.1 and 2.2 are very weak and
standard, but the rates of the approximations obtained are slow. The next three
theorems give faster rates for strong approximations.

THEOREM 2.3. If ρ < 1/2 Tn = n + 1 + o(√n) a.s., then under Assump-
tions 2.2, 2.3 and 2.4,

Wn − en−Gn = o(√n) a.s.(2.18)

And if also Tn = n+ 1 + o(√n) in L1, then

Wn− EWn −Gn = o(√n) a.s.(2.19)

Furthermore, if (2.8) holds, then

Wn− nµ−Gn = o(√n) a.s.(2.20)
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THEOREM 2.4. If ρ < 1/2 and Tn = n+ 1 + o(n1/2(logn)−1/2−ε) a.s., then
under Assumptions 2.2, 2.3 and 2.5,

Wn− en −Gn = o(n1/2(logn)−1/2−ε/3) a.s.

and if also Tn = n+ 1 + o(n1/2(logn)−1/2−ε) in L1, then

Wn − EWn−Gn = o(n1/2(logn)−1/2−ε/3) a.s.

THEOREM 2.5. If ρ < 1/2, then under Assumptions 2.1, 2.2 and 2.6 we have

Wn − en−Gn = o(n1/2−δ) a.s. ∀0< δ < (1/2 − ρ)∧ (1/4)
and

Wn− EWn−Gn = o(n1/2−δ) a.s. ∀0< δ < (1/2 − ρ)∧ (1/4),
where a ∧ b= min(a, b).

It is known that the best convergence rate of Skorokhod embedding is
O(n1/4(logn)1/2(log logn)1/4). Theorem 2.5 gives an approximation close to this
rate. In the remainder of this section, we give a strong approximation in the case
of ρ = 1/2.

THEOREM 2.6. Suppose ρ = 1/2 and Tn = n+ 1 + o(n1/2(logn)1/2−ε) a.s.
Then under Assumptions 2.2, 2.3, 2.5 and (2.16) there exists a δ > 0 such that

Wn− en − Ĝn = o(n1/2(logn)1/2−δ) a.s.(2.21)

Also if Tn = n+ 1 + o(n1/2(logn)1/2−ε) in L1, then

Wn − EWn− Ĝn = o(n1/2(logn)1/2−δ) a.s.,

where

Ĝt = t1/2
∫ t

1

dW(sσ 2
M)

s1/2
, t ≥ 0(2.22)

and {
Ĝt; t > 0

} D= {
σMt

1/2W(log t); t > 0
}
.(2.23)

Furthermore, if condition (2.17) is satisfied, then

Wn − nµ− Ĝn = o(n1/2(logn)1/2−δ) a.s.

The following corollary comes from Theorem 2.6 immediately.
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COROLLARY 2.2. Under the conditions in Theorem 2.6, we have

(nt logn)1/2
(
W[nt ] − EW[nt ]

)�⇒ σMW(t),

and

lim sup
n→∞

Wn − EWn√
2n(logn)(log log logn)

= σM a.s.

Furthermore, if condition (2.17) is satisfied, then EW[nt ] and EWn can be replaced
by ntµ and nµ, respectively.

3. Proofs. Recalling (2.1), write

Wn =W0 +
n∑
k=1

(Ak −Ck)Ik +
n∑
k=1

Ck

=W0 +
n∑
k=1

{
(Ak −Ck)Ik − E[(Ak −Ck)Ik|Fk−1] + (Ck − ck)}

(3.1)

+
n−1∑
k=0

ρk+1
Wk

Tk
+

n∑
k=1

ck

=W0 +Mn +
n−1∑
k=0

ρk+1
Wk

k + 1
+
n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k + 1

)
+

n∑
k=1

ck,

where

Mn :=
n∑
k=1

'Mk =
n∑
k=1

{
(Ak −Ck)Ik − E[(Ak −Ck)Ik|Fk−1] + (Ck − ck)}

is a martingale with

E[('Mn)2|Fn−1]

= E
[(
(An −Cn)In +Cn− cn)2|Fn−1

]− (
(an − cn)Wn−1

Tn−1

)2

= E
[
(An −Cn)2In+ 2(An−Cn)(Cn − cn)In + (Cn − cn)2|Fn−1

]
−
(
(an − cn)Wn−1

Tn−1

)2

= Wn−1

Tn−1
E
[
(An−Cn)2 + 2(An−Cn)(Cn − cn)|Fn−1

]+ Var(Cn|Fn−1)

−
(
(an − cn)Wn−1

Tn−1

)2
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= Wn−1

Tn−1
Var(An|Fn−1)+

(
1 − Wn−1

Tn−1

)
Var(Cn|Fn−1)

+ ρ2
n

Wn−1

Tn−1

(
1 − Wn−1

Tn−1

)
(3.2)

=µVar(An|Fn−1)+ (1 −µ)Var(Cn|Fn−1)+ ρ2
nµ(1 −µ)

+O
(
Wn−1

Tn−1
−µ

)

=µVa + Vc(1 −µ)+ ρ2µ(1 −µ)+ o(1)+O
(
Wn−1

Tn−1
−µ

)

= σ 2
M + o(1)+O

(
Wn−1

Tn−1
−µ

)
a.s.

under Assumptions 2.2 and 2.3.
By the Skorokhod embedding theorem [cf. Hall and Heyde (1980)], there exists

an Fn-adapted sequence of nonnegative random variables {τn} and a standard
Brownian motionW , such that

E[τn|Fn−1] = E[('Mn)2|Fn−1], E|τn|1+ε/2 ≤ CE|'Mn|2+ε(3.3)

and {
W

(
n∑
i=1

τi

)
; n= 1,2, . . .

}
D= {
Mn; n= 1,2, . . .

}
.

Without loss of generality, we write

Mn =W
(
n∑
i=1

τi

)
, n= 1,2, . . . .(3.4)

On the other hand, from (2.3) and (3.1), it follows that

Wn− en =W0 +Mn +
n−1∑
k=0

ρk+1
Wk − ek
k + 1

+
n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k+ 1

)
.(3.5)

If Assumption 2.1 is satisfied, that is, Tk = k + 1, then (3.5) becomes

Wn− en =W0 +Mn +
n−1∑
k=0

ρk+1
Wk − ek
k + 1

.(3.6)

So it is natural that Wn may be approximated by a Gaussian process, and what we
need to show is how Wn − en can be approximated by a related Gaussian process
whenMn can.

Before proving the theorems, we need some lemmas first. The first two are on
the convergence rates of a real sequence of type (3.6).
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LEMMA 3.1. Let ρn and pn be two sequences of real numbers. Define {qn} by

q1 = p1 and qn = pn +
n−1∑
k=1

ρk
qk

k
.

Then

qn =
n∑
k=1

pkrn,k,(3.7)

where rn,n = 1 and

rn,k = ρk
k

n−1∏
i=k+1

(
1 + ρi

i

)
, k = 1,2, . . . , n− 1, n= 1,2, . . . .

Here we define
∏k
i=k+1(·)= 1. Furthermore, if ρk → ρ, then for ∀ ε > 0, there is

a constant C > 0 such that

|rn,k| ≤ Ck−1(n/k)ρ+ε, k = 1,2, . . . , n, n= 1,2, . . . .

And if
∞∑
k=1

|ρk − ρ|/k <∞,(3.8)

then

|rn,k| ≤ Ck−1(n/k)ρ, k = 1,2, . . . , n, n= 1,2, . . . .

PROOF. When n= 1, we have q1 = p1 = r1,1p1. Thus (3.7) is true for n= 1.
By induction, we have

qn = pn +
n−1∑
k=1

ρk

k

k∑
j=1

pj rkj = pnrn,n+
n−1∑
j=1

pj

n−1∑
k=j

ρk

k
rk,j =

n∑
j=1

pj rn,j ,

where the last step follows from

n−1∑
k=j

ρk

k
rk,j = ρj

j

(
1 +

n−1∑
k=j+1

ρk

k

k−1∏
i=j+1

(
1 + ρi

i

))
= rn,j .

The first part of the conclusion is proved. The second part is obvious since

log
n−1∏
i=k

(
1 + ρi

i

)
=
n−1∑
i=k

log
(

1 + ρi
i

)
=
n−1∑
i=k

ρi

i
+O(1)

=
n−1∑
i=k

ρ

i
+
n−1∑
i=k

ρi − ρ
i

+O(1). �
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LEMMA 3.2. Let pn, ρn and qn be defined as in Lemma 3.1. If ρn → ρ

and pn = o(nρ+δδn) [or O(nρ+δδn)] where δ > 0 and {δn} is a nondecreasing
sequence of positive numbers, then

qn = o(nρ+δδn) [
corresp. qn =O(nρ+δδn)].

If (3.8) holds and pn = o(nρδn) [corresp. = O(nρδn)] where δn is a sequence of
positive numbers, then

qn = o
(
nρ

n∑
k=1

δk/k

) (
corresp. qn =O

(
nρ

n∑
k=1

δk/k

))
.

By Lemma 3.1, the proof is easy.
The definition of en seems complicated. But, the following two lemmas tell us

that it can be replaced by EWn in most cases, or by nµ in some cases.

LEMMA 3.3. (a) Suppose that Assumptions 2.1 and 2.2 are satisfied. If ρ <
1/2, then

EWn− en = o(n1/2−δ) ∀0 ≤ δ < (1/2 − ρ)∧ 1/2.

If ρ = 1/2 and (3.8) holds, then

EWn− en = o(n1/2).

(b) Suppose ρ < 1/2, Assumption 2.2 is true and Tn = n+1+o((n log logn)1/2)
in L1. Then

EWn− en = o((n log logn)1/2
)
.

(c) Suppose ρ < 1/2, Assumption 2.2 and Tn = n+ 1 + o(√n) in L1. Then

EWn− en = o(√n ).
(d) Suppose Assumption 2.2 and Tn = n+ 1 + o(n1/2(logn)−1/2−ε) in L1 for

some ε > 0. If ρ < 1/2, then

EWn− en = o(n1/2(logn)−1/2−ε).
If ρ = 1/2 and (3.8) holds, then

EWn− en = o(n1/2(logn)1/2−ε).
PROOF. We give the proof of (a) only. By (3.5),

EWn− en =
n−1∑
k=0

ρk+1
EWk − ek
k + 1

+O(1)=
n−1∑
k=0

ρk+1
EWk − ek
k+ 1

+ o(n1/2−δ).
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By Lemma 3.2, it follows that if ρ < 1/2, then

|EWn− en| = o(n1/2−δ)

since ε =: 1/2 − δ− ρ > 0. If ρ = 1/2 and (3.8) holds, then

|EWn − en| = o
(
n1/2

n∑
k=1

k−1−1/2

)
= o(n1/2). �

LEMMA 3.4. Under Assumption 2.2, we have

en

n
→µ.

Furthermore, if (2.8) holds and ρ < 1/2, then

en− nµ= o(√n )
and if ρ = 1/2 and condition (2.17) is satisfied, then

en− nµ=O(√n ).
PROOF. By (2.3),

en− nµ=
n−1∑
k=0

ρk+1
ek − (k + 1)µ

k+ 1
+

n∑
k=1

{(ak − a)µ+ (ck − c)(1 −µ)}.(3.9)

The first two conclusions follow from Lemma 3.2 easily by taking pn = o(nρ+1−ρ)
and pn = o(nρ+1/2−ρ), respectively. Now, assume ρ = 1/2 and (2.17). Take
bn = n1/2δn, where

δn =
∑n
k=1{(ak − a)µ+ (ck − c)(1 −µ)}√

n
.

Then, by the second part of Lemma 3.2,

en− nµ=O
(
n1/2

n∑
k=1

δk/k

)

=O
(
n1/2

n∑
k=1

∑k
i=1{(ai − a)µ+ (ci − c)(1 −µ)}

k3/2

)

=O
(
n1/2

n∑
i=1

(|ai − a| + |ci − c|)
n∑
k=i
k−3/2

)

=O
(
n1/2

n∑
i=1

|ai − a| + |ci − c|√
i

)
=O(√n ). �
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Define

G0 = 0, Gn =W(nσ 2
M)+ ρ

n−1∑
k=1

Gk

k
,(3.10)

where
∑0
k=1(·) = 0. The next two lemmas tell us how Gn is close to Gn or Ĝn,

where Gn and Ĝn are defined in (2.6) and (2.22), respectively.

LEMMA 3.5. If ρ < 1/2, we have for all 0 ≤ δ < 1/2 − ρ,

Gn−Gn = o(n1/2−δ) a.s.(3.11)

and ∥∥∥max
k≤n |Gk −Gk|

∥∥∥
2
= o(n1/2−δ).(3.12)

PROOF. By the Taylor expansion,

Gn−Gn−1 = nρ
∫ n
n−1

dW(sσ 2
M)

sρ
+
(

1 + 1

n− 1

)ρ
Gn−1 −Gn−1

= nρ
∫ n
n−1

dW(sσ 2
M)

sρ
+ ρGn−1

n− 1
+ ρ(ρ − 1)

2(n− 1)2
(1 + ξn−1)

ρ−2Gn−1,

where ξn−1 ∈ [0,1] is a real number. It follows that

Gn = ρ
n−1∑
k=1

Gk

k
+

n∑
k=1

kρ
∫ k
k−1

dW(sσ 2
M)

sρ
+ ρ(ρ − 1)

2

n−1∑
k=1

(1 + ξk)ρ−2

k2 Gk.

Then,

Gn −Gn = ρ
n−1∑
k=1

Gk −Gk
k

+
n∑
k=1

kρ
∫ k
k−1

(
1

sρ
− 1

kρ

)
dW(sσ 2

M)

+ ρ(ρ − 1)

2

n−1∑
k=1

(1 + ξk)ρ−2

k2 Gk(3.13)

= ρ
n−1∑
k=1

Gk −Gk
k

+
n∑
k=1

Zk + ρ(ρ − 1)

2

n−1∑
k=1

(1 + ξk)ρ−2

k2 Gk,

where {Zk; k = 1,2, . . .} is a sequence of independent normal variables with
EZk = 0 and

EZ2
k = σ 2

Mk
2ρ
∫ k
k−1

(
1

sρ
− 1

kρ

)2

ds ≤ Ck2ρ 1

k2ρ+2
≤ Ck−2.
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It follows that
∑n
k=1Zk = O(1) in L2, and

∑n
k=1Zk = O(1) a.s. by the three-

series theorem. Also∣∣∣∣∣ρ(ρ − 1)

2

n−1∑
k=1

(1 + ξk)ρ−2

k2 Gk

∣∣∣∣∣≤ |ρ(ρ − 1)|
2

n−1∑
k=1

|Gk|
k2 <∞ a.s. and in L2.

So,

Gn−Gn = ρ
n−1∑
k=1

Gk −Gk
k

+O(1)
(3.14)

= ρ
n−1∑
k=1

Gk −Gk
k

+ o(n1/2−δ) a.s. and in L2.

Hence, from Lemma 3.2 it follows that

Gn−Gn = o(n1/2−δ) a.s. and in L2 ∀0 ≤ δ < 1/2 − ρ.
The assertion (3.11) is proved. Finally,

max
m≤n |Gm −Gm| ≤ |ρ|

n−1∑
k=1

|Gk −Gk|
k

+ max
m≤n

∣∣∣∣∣
m∑
k=1

Zk

∣∣∣∣∣+ |ρ(ρ − 1)|
2

n−1∑
k=1

|Gk|
k2 .

It follows that∥∥∥∥max
m≤n |Gm−Gm|

∥∥∥∥
2
≤ |ρ|

n−1∑
k=1

‖Gk −Gk‖2

k
+
∥∥∥∥∥max
m≤n |

m∑
k=1

Zk

∥∥∥∥∥
2

+ |ρ(ρ − 1)|
2

n−1∑
k=1

‖Gk‖2

k2

≤ |ρ|
n−1∑
k=1

o(k1/2−δ−1)+O(1)+
n−1∑
k=1

O(k1/2−2)= o(n1/2−δ).

The conclusion (3.12) follows. �

LEMMA 3.6. If ρ = 1/2, we have

Gn − Ĝn = o(n1/2) a.s.

PROOF. Similarly to (3.13),

Ĝn −Gn = ρ
n−1∑
k=1

Ĝk −Gk
k

+W(σ 2
M)+

n∑
k=2

Zk + ρ(ρ − 1)

2

n−1∑
k=1

(1 + ξk)ρ−2

k2
Ĝk.



1162 Z. D. BAI, F. HU AND L.-X. ZHANG

So, just as in (3.14), we have

Ĝn −Gn = ρ
n−1∑
k=1

Ĝk −Gk
k

+ o(n1/2−δ) a.s. ∀0< δ < 1/2.

Applying the second part of Lemma 3.2, we conclude that

Ĝn−Gn = o
(
n1/2

n∑
k=1

k−1−δ
)

= o(√n ) a.s. �

Now we are in position to prove the main theorems.

PROOF OF THEOREM 2.1. We first show the two processes are equal in law.
Since EGt = 0 and for t ≥ s,

EGsGt = tρsρE
(∫ s

0

dW(xσ 2
M)

xρ

)2

= tρsρ
∫ s

0

σ 2
M

x2ρ
dx = σ 2tρsρs1−2ρ = E

(
σ tρW(t1−2ρ)

)(
σsρW(s1−2ρ)

)
.

This shows that the two Gaussian processes have the same mean and covariance
functions, which implies (2.7).

Note that (2.5) follows from (2.4) and Lemma 3.3(b) whereas (2.9) follows
from (2.4) and Lemma 3.4. To complete the proof of Theorem 2.1, it suffices to
prove (2.4). To this end, we shall first show how Mn can be approximated by
W(nσ 2

M). Let τn be defined as in (3.3) and (3.4) through the Skorohod embedding
theorem. Note that

E|'Mn|2+ε

= E
∣∣(An −Cn)In− E[(An −Cn)In|Fn−1] + (Cn − E[Cn|Fn−1])

∣∣2+ε

≤ C(E|An|2+ε + E|Cn|2+ε) < C <∞,
where C is a generic notation for positive constants; that is, it may take different
values at different appearances.

It then follows that E|τn|1+ε/2 <C <∞. Hence,

∞∑
n=1

E
∣∣∣∣ τnn1−ε/3

∣∣∣∣1+ε/2
<∞.

So, by the law of large numbers for martingales [cf. Theorem 20.11 of Davidson
(1994)],

n∑
k=1

τk −
n∑
k=1

E[('Mk)2|Fk−1] =
n∑
k=1

(τk − E[τk|Fk−1])= o(n1−ε/3) a.s.(3.15)
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Obviously, by (3.2),

E[('Mn)2|Fn−1] =O(1) a.s.

Thus,
n∑
k=1

τk =O(n) a.s.

Then by (3.4) and the law of iterated logarithm of a Brownian motion,

Mn =O((n log logn)1/2
)

a.s.

which, together with (3.5) and Lemma 3.2, implies

Wn− en =O((n log logn)1/2
)

a.s.(3.16)

By (3.2) and (3.16) and Lemma 3.4, it follows that

E[('Mn)2|Fn−1] = σ 2
M + o(1)+O

(
Wn−1

Tn−1
− en−1

Tn−1

)
+O

(
en−1

Tn−1
−µ

)
= σ 2

M + o(1) a.s.

So,
n∑
k=1

τk = nσ 2
M + o(n) a.s.(3.17)

Thus by the properties of a Brownian motion [cf. Theorem 1.2.1 of Csörgő and
Révész (1981)], we get the following approximation ofMn:

Mn =W
(
n∑
k=1

τk

)
=W(nσ 2

M)+ o
(
(n log logn)1/2

)
a.s.(3.18)

Recalling the definition of Gn in (3.10) and noticing (3.11), the proof of (2.4)
reduces to showing that

Wn− en−Gn = o((n log logn)1/2
)

a.s.(3.19)

Note that

Gn =W(nσ 2
M)+ ρ

n−1∑
k=1

Gk

k

=W(nσ 2
M)+ ρ

n−1∑
k=1

Gk

k + 1
+ ρ

n−1∑
k=1

Gk

k(k + 1)
(3.20)

=W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1

+ ρ
n−1∑
k=1

Gk

k(k + 1)
+
n−1∑
k=0

(ρ − ρk+1)
Gk

k + 1
.
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Note that by (3.11) and (2.7),

Gn =O((n log logn)1/2
)

a.s.

It follows that

Gn =W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1

+ ρ
n−1∑
k=1

o(1)

k + 1
+
n−1∑
k=0

(ρ − ρk+1)
O((k log logk)1/2)

k + 1
.(3.21)

=W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1
+ o((n log logn)1/2

)
a.s.

By (3.5), (3.18), (3.21) and

n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k + 1

)
= o

(
n−1∑
k=0

(k log logk)1/2

k + 1

)
= o((n log logn)1/2

)
a.s.

we conclude that

Wn − en−Gn =
n−1∑
k=0

ρk+1
Wk − ek −Gk
k + 1

+ o((n log logn)1/2
)

a.s.

Hence by Lemma 3.2, we have proved (3.19). �

PROOF OF THEOREM 2.2. Noticing that (2.11) and (2.12) are consequences
of (2.10) and application of Lemmas 3.3 and 3.4, we need only to show (2.10).
Define νn =∑n

k=1 τk − nσ 2
M . Then by (3.17),

νn = o(n) a.s.(3.22)

First, we show that

max
k≤n |Mk −W(kσ 2

M)| = o
(√
n
)

in L2.(3.23)

Note that (3.22) implies that maxk≤n |νk|/n→ 0 in probability, and then

E max
k≤n |Mk −W(kσ 2

M)|2

= E max
k≤n |Mk −W(kσ 2

M)|2I
{

max
k≤n |νk| ≤ εn

}
+ E max

k≤n |Mk −W(kσ 2
M)|2I

{
max
k≤n |νk|> εn

}
≤ E sup

0≤t≤n(1+σ 2
M)

sup
0≤s≤εn

|W(t + s)−W(t)|2
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+ 2E max
k≤n |Mk|2I

{
max
k≤n |νk|> εn

}
+ 2E max

k≤n |W(kσ 2
M)|2I

{
max
k≤n |νk|> εn

}
≤ nE sup

0≤t≤1+σ 2
M

sup
0≤s≤ε

|W(t + s)−W(t)|2

+ 2
(∥∥∥∥max

k≤n |Mk|
∥∥∥∥2

2+ε
+
∥∥∥∥max
k≤n |W(kσ 2

M)|
∥∥∥∥2

2+ε

)

×
(

P
(

max
k≤n |νk|> εn

))(2+ε)/ε

≤ nE sup
0≤t≤1+σ 2

M

sup
0≤s≤ε

|W(t + s)−W(t)|2 +Cn
(

P
(

max
k≤n |νk|> εn

))(2+ε)/ε

= o(n) as n→ ∞ and then ε→ 0.

The assertion (3.23) is proved. Now, let Gn be defined through (3.10). By
Lemma 3.5, to prove (2.10), it is enough to show that

max
k≤n |Wk − ek −Gk| = o(√n ) in L2.(3.24)

By (3.5) and (3.20), we have

Wn− en−Gn =W0 +Mn −W(nσ 2
M)+

n−1∑
k=0

ρk+1
Wk − ek −Gk
k + 1

+ ρ
n−1∑
k=1

Gk

k(k + 1)
+
n−1∑
k=0

(ρ − ρk+1)
Gk

k+ 1
(3.25)

+
n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k + 1

)
.

By (3.12) and (2.7), we know that ‖Gn‖2 =O(√n). It follows that∥∥∥∥∥ρ
n−1∑
k=1

Gk

k(k + 1)
+
n−1∑
k=0

(ρ − ρk+1)
Gk

k + 1

∥∥∥∥∥
2

≤ |ρ|
n−1∑
k=1

‖Gk‖2

k(k + 1)
+
n−1∑
k=0

|ρ − ρk+1|‖Gk‖2

k+ 1

≤ |ρ|
n−1∑
k=1

O(
√
k)

k(k + 1)
+
n−1∑
k=0

|ρ − ρk+1|O(
√
k)

k + 1
= o(√n ),



1166 Z. D. BAI, F. HU AND L.-X. ZHANG

which, together with (3.23) and∥∥∥∥∥
n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k + 1

)∥∥∥∥∥
2

≤
n−1∑
k=0

|ρk+1|‖k + 1 − Tk‖2

k+ 1
= o(√n ),

implies

Wn− en −Gn =
n−1∑
k=0

ρk+1
Wk − ek −Gk
k + 1

+ o(√n ) in L2.

Thus by Lemma 3.2,

Wn − en−Gn = o(√n) in L2.(3.26)

Finally, by (3.25) we have

max
k≤n |Wk − ek −Gk| ≤ |W0| + max

k≤n |Mk −W(kσ 2
M)|

+
n−1∑
k=0

|ρk+1| |Wk − ek −Gk|
k + 1

+ |ρ|
n−1∑
k=1

|Gk|
k(k + 1)

+
n−1∑
k=0

|ρ − ρk+1| |Gk|
k + 1

+
n−1∑
k=0

|ρk+1| |k + 1 − Tk|
k + 1

.

Thus, by (3.12), (3.23) and (3.26), it follows that∥∥∥∥max
k≤n |Wk − ek −Gk|

∥∥∥∥
2
= o(√n )+ n−1∑

k=0

|ρk+1|o(
√
k)

k + 1
+ |ρ|

n−1∑
k=1

O(
√
k)

k(k + 1)

+
n−1∑
k=0

|ρ − ρk+1|O(
√
k)

k+ 1
+
n−1∑
k=0

|ρk+1|o(
√
k)

k + 1
= o(√n ).

The assertion (3.24) is proved. �

PROOF OF THEOREM 2.3. It is enough to show (2.19). First we show that

Mn−W(nσ 2
M)= o

(√
n
)

a.s.(3.27)

By Assumption 2.4,

n∑
k=1

{(ak − a)µ+ (ck − c)(1 −µ)} = o(n(log logn)−1).
It follows by Lemma 3.2 and (3.9) that

en

n
−µ= o((log logn)−1).
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And then by (3.2) and (3.16),

E[('Mn)2|Fn−1] = µVar(An|Fn−1)+ (1 −µ)Var(Cn|Fn−1)+ ρ2
nµ(1 −µ)

+O
(
Wn−1

Tn−1
− en−1

n

)
+O

(
en−1

n
−µ

)
= σ 2

M + o((log logn)−1) a.s.,

which, together with (3.15), implies

n∑
k=1

τk = nσ 2
M + o(n(log logn)−1) a.s.

Then by Theorem 1.2.1 of Csörgő and Révész (1981) again,

Mn =W
(
n∑
k=1

τk

)
=W(nσ 2

M)+ o
((
n(log logn)−1)1/2(log logn)1/2

)
=W(nσ 2

M)+ o
(√
n
)

a.s.,

from which (3.27) follows. Next, by (3.20),

Gn =W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1

+ ρ
n−1∑
k=1

o(1)

k + 1
+
n−1∑
k=0

o
(
(log log k)−1)O((k log logk)1/2)

k + 1
(3.28)

=W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1
+ o(√n ) a.s.

Hence by (3.5), (3.27), (3.28) and

n−1∑
k=0

ρk+1
Wk

Tk

(
k + 1 − Tk
k+ 1

)
= o

(
n−1∑
k=0

√
k

k + 1

)
= o(√n ) a.s.,

we conclude that

Wn− en−Gn =
n−1∑
k=0

ρk+1
Wk − ek −Gk
k + 1

+ o(√n ) a.s.

By Lemma 3.2, it follows that

Wn− en −Gn = o (√n ) a.s.

The rest of the proof is similar to that of Theorem 2.1. �
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The proofs of Theorems 2.4 and 2.5 are similar to that of Theorem 2.3, and the
details are omitted.

PROOF OF THEOREM 2.6. Assertion (2.23) can be easily verified by showing
that the two processes have identical covariance functions. Also, by Lemmas 3.3
and 3.4, to prove the theorem, it is enough to show (2.21). Following the lines of
the proof of Theorem 2.3, one can show that

Mn =W(nσ 2
M)+ o

(
n1/2(logn)−1/2−ε/3) a.s.

Also, similar to (3.28),

Gn =W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1

+ ρ
n−1∑
k=1

o(1)

k + 1
+
n−1∑
k=0

o
(
(log k)−1−ε)O((k log log k)1/2

k+ 1

=W(nσ 2
M)+

n−1∑
k=0

ρk+1
Gk

k + 1
+ o(n1/2(logn)−1−ε/2) a.s.

Hence

Wn− en−Gn =
n−1∑
k=0

ρk+1
Wk − ek −Gk
k + 1

+ o(n1/2(logn)−1/2−ε/3) a.s.

By the second part of Lemma 3.2, it follows that

Wn − en−Gn = o(1)n1/2
n∑
k=1

k−1(log k)−1/2−ε/3 = o(n1/2(logn)1/2−ε/3) a.s.

Finally, by Lemma 3.6,

Gn− Ĝn = o(√n ) a.s.

The proof is complete. �

4. Some applications.

4.1. Asymptotic properties of the randomized-play-the-winner rule. The ran-
domized-play-the-winner (RPW) rule was introduced by Wei and Durham (1978)
and it can be formulated as a GFU model [Wei (1979)] as follows: Assume there
are two treatments (say, T1 and T2), with dichotomous response (success and
failure). For the ith patient, if a white ball is drawn, the patient is assigned to
the treatment T1, and otherwise, the patient is assigned to the treatment T2. The
ball is then replaced in the urn and the patient response is observed. A success
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on treatment T1 or a failure on treatment T2 generates a white ball to the urn;
a success on treatment T2 or a failure on treatment T1 generates a black ball to the
urn.

Let p1 = P(success|T1), p2 = P(success|T2), q1 = 1 − p1 and q2 = 1 − p2. It
is easy to see that

R =
[
I (success|T1) 1 − I (success|T1)

1 − I (success|T2) I (success|T2)

]
and H =

[
p1 q1
q2 p2

]
,

where I is an indicator function. From the results of Section 2, we have the
following corollaries.

COROLLARY 4.1. If q1 + q2 > 1/2, then:

(i)

n−1/2
(
Wn− q2n

q1 + q2

)
→N(0, σ 2) in distribution

and further, we have

(ii)

lim sup
n→∞

Wn− q2n/(q1 + q2)√
2n log logn

= σ a.s.,

where σ 2 = q1q2/[(2(q1 + q2)− 1)(q1 + q2)
2].

It is easy to see that Tn = n + β and Assumptions 2.2 and 2.3 hold. From
Corollary 2.1, we can obtain both (i) and (ii). The result (i) has been studied
in Smythe and Rosenberger (1995) for the homogeneous case and Bai and Hu
(1999) for the nonhomogeneous generating matrices. The result (ii) is new. When
q1 + q2 = 1/2, the following similar results are true.

COROLLARY 4.2. If q1 + q2 = 1/2, then:

(i)

(n logn)−1/2
(
Wn− q2n

q1 + q2

)
→N(0, σ 2

W) in distribution

and further, we have

(ii)

lim sup
n→∞

Wn− q2n/(q1 + q2)√
2n(logn)(log log logn)

= σW a.s.,

where σ 2
W = q1q2/(q1 + q2)

2.
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4.2. Variance estimation. From Corollary 3.1, we know that under Assump-
tions 2.1, 2.2, 2.3 and condition (2.8),

Wn − nµ√
nσ

D→N(0,1),(4.1)

where σ is defined as in (2.2). The result (4.1) gives us the limit distribution of
Wn/n which is an estimator of µ. But (4.1) is difficult to apply since the value
of σ is unknown. So it is important to find a consistent estimate of σ from the
sample {Wn}.

Inspired by Shao (1994), we define two estimators as follows:

σ̂1,n = 1

logn

n∑
i=1

1√
i

∣∣∣∣Wii − Wn
n

∣∣∣∣ and σ̂ 2
2,n = 1

logn

n∑
i=1

(
Wi

i
− Wn
n

)2

.(4.2)

The following two theorems establish the weak and strong consistency of the
estimators, respectively.

THEOREM 4.1. Suppose ρ < 1/2. Under Assumptions 2.2, 2.3, (2.8) and that
Tn = n+ 1 + o(√n) in L2, we have

σ̂1,n→
√

2

π
σ and σ̂ 2

2,n→ σ 2 in L2.(4.3)

THEOREM 4.2. Suppose ρ < 1/2. Under Assumptions 2.2, 2.3, 2.4, (2.8) and
that Tn = n+ 1 + o(√n) a.s.,

σ̂1,n→
√

2

π
σ and σ̂ 2

2,n→ σ 2 a.s.(4.4)

The proofs of Theorems 4.1 and 4.2 are based on the Gaussian approximations
and the following lemma.

LEMMA 4.1. Suppose ρ < 1/2. Let {Gt; t ≥ 0} be as in (2.6), and let

V1,n = 1

logn

n∑
i=1

|Gi |
i3/2

and V 2
2,n = 1

logn

n∑
i=1

G2
i

i2
.(4.5)

Then

V1,n→
√

2

π
σ, V 2

2,n→ σ 2 a.s. as well as in L2.(4.6)

PROOF. Obviously,

EV1,n→
√

2

π
σ and EV 2

2,n→ σ 2.(4.7)
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Also, by (2.6), Cov(Gi/
√
i,Gj/

√
j)= σ 2(i/j)1/2−ρ for all i ≤ j . It follows that

Cov
( |Gi |√
i
,
|Gj |√
j

)
≤ σ 2(i/j)1/2−ρ

and

Cov
(
G2
i

i
,
G2
j

j

)
= 2σ 4(i/j)1−2ρ.

Then

Var(V1,n)= 1

(logn)2

{
n∑
i=1

1

i2
Var

( |Gi |√
i

)
+ 2

n−1∑
i=1

n∑
j=i+1

1

ij
Cov

( |Gi|√
i
,
|Gj |√
j

)}
(4.8)

≤ C 1

(logn)2

n−1∑
i=1

n∑
j=i

1

ij
(i/j)1/2−ρ ≤ C

logn

and

Var(V 2
1,n)≤ C

1

(logn)2

n−1∑
i=1

n∑
j=i

1

ij
(i/j)1−2ρ ≤ C

logn
.(4.9)

The estimates (4.7)–(4.9) directly imply the L2 convergence part of (4.6). By some
standard calculation, the three estimates also imply the a.s. convergence of (4.6)
[cf. Shao (1994)]. �

Now we start to prove the main theorems for the consistency of the variance
estimators.

PROOF OF THEOREM 4.1. Let V1,n and V2,n be defined as in (4.5). Since∣∣∣∣∣
∣∣∣∣Wii − Wn

n

∣∣∣∣− ∣∣∣∣Gii
∣∣∣∣
∣∣∣∣∣=

∣∣∣∣∣
∣∣∣∣Wi − iµi − Wn − nµ

n

∣∣∣∣− ∣∣∣∣Gii
∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣Wi − iµi − Wn− nµ

n
− Gi
i

∣∣∣∣
≤
∣∣∣∣Wi − iµ−Gi

i

∣∣∣∣+ ∣∣∣∣Wn− nµ
n

∣∣∣∣,
we have

‖σ̂1,n − V1,n‖2 ≤ 1

logn

n∑
i=1

1√
i

∥∥∥∥Wi − iµ−Gi
i

∥∥∥∥
2
+ 1

logn

n∑
i=1

1√
i

∥∥∥∥Wn− nµ
n

∥∥∥∥
2
.
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Also, if we define ‖ · ‖ to be the Euclidean norm in Rn, and write x = (x1, . . . , xn),
y = (y1, . . . , yn) and z = (z1, . . . , zn), where xi = Wi−iµ

i
, yi = Wn−nµ

n
, zi = Gi

i
,

i = 1, . . . , n, then

|σ̂2,n− V2,n| = 1

(logn)1/2
∣∣‖x − y‖ − ‖z‖∣∣≤ 1

(logn)1/2
‖x − y − z‖

≤ ‖x − z‖
(logn)1/2

+ ‖y‖
(logn)1/2

.

So,

‖σ̂2,n − V2,n‖2 ≤ 1

(logn)1/2
∥∥‖x − z‖∥∥2 + 1

(logn)1/2
∥∥‖y‖∥∥2

= 1

(logn)1/2

(
n∑
i=1

E
(
Wi − iµ−Gi

i

)2)1/2

+ 1

(logn)1/2

(
n∑
i=1

E
(
Wn− nµ
n

)2)1/2

.

From Theorem 2.2 it follows that

‖σ̂1,n− V1,n‖2 = 1

logn

n∑
i=1

1

i
o(1)+ 1

logn

n∑
i=1

1√
i
O
(
1/

√
n
)= o(1)

and

‖σ̂2,n−V2,n‖2 = 1

(logn)1/2

(
n∑
i=1

o

(
1

i

))1/2

+ 1

(logn)1/2

(
n∑
i=1

O

(
1

n

))1/2

= o(1).

Then, by Lemma 4.1 we have proved the theorem. �

By applying Theorem 2.3 instead of Theorem 2.2, the proof of Theorem 4.2 is
similar to that of Theorem 4.1.
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University of Singapore.
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