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ERGODIC THEOREMS FOR SOME CLASSICAL PROBLEMS
IN COMBINATORIAL OPTIMIZATION1

BY J. E. YUKICH

Lehigh University

We show that the stochastic versions of some classical problems in
combinatorial optimization may be imbedded in multiparameter subaddi-
tive processes having an intrinsic ergodic structure. A multiparameter
generalization of Kingman’s subadditive ergodic theorem is used to cap-
ture strong laws for these optimization problems, including the traveling
salesman and minimal spanning tree processes. In this way we make
progress on some open problems and provide alternate proofs of some well
known asymptotic results.

1. Introduction. Limit theorems for random processes which arise in
problems of geometric probability are relatively well understood. There are

w Ž . Ž . Ž .now several approaches Steele 1981, 1988 ; Talagrand 1995 ; Rhee 1993 ;
Ž .xRedmond and Yukich 1994, 1996 for establishing a.s. limits for the shortest

path through a random sample, the length of a minimal spanning tree
spanned by a random sample and the length of a minimal matching on a
random sample.

In this paper we show that these and other familiar problems of combina-
torial optimization may be imbedded in a subadditive multiparameter
stochastic process. We do this by viewing optimization problems on R d as
processes indexed by d-dimensional rectangles. In this way we may use a
multiparameter generalization of Kingman’s subadditive ergodic theorem
w Ž .xKingman 1968 to capture strong laws for certain problems which involve
minimizing sums of Euclidean distances. The role of ergodic theory has been
apparently overlooked in connection with stochastic optimization problems.
By drawing on their intrinsic subadditive ergodic structure, we deduce limit
results for optimization problems on uniform samples, the most studied case.
In this way we make progress on some open problems. The approach taken
here provides a conceptual framework which yields elementary proofs of some
well known results.

Our approach does not depend upon isoperimetric or other fundamental
w Ž . Ž .xdeviation inequalities Rhee 1993 ; Talagrand 1995, 1996a, b , variance

bounds or the usual subadditive tools for the study of problems in geometric
w Ž .xprobability Steele 1981 . The only overlap with previous work involves the

use of ‘‘boundary processes,’’ a tool which simplifies both the technical
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analysis and the conceptual presentation. Unlike the seminal and classic
Ž .work of Steele 1981 , which in spirit resembles the theory of subadditive

processes, the present work is formulated entirely in the context of subaddi-
tive multiparameter processes and subadditive ergodic theorems. This formu-
lation makes it possible to draw upon the fundamental ergodic theorems of

Ž .Akcoglu and Krengel 1981 , which have been used, for example, in statistical
wphysics to analyze the behavior of long-range random spin systems van

Ž .xEnter and van Hemmen 1983 .
We focus attention on the following optimization problems.

Ž . � 41. Traveling salesman problem TSP . Let V [ x , . . . , x be a set of points1 n
d pŽ .in R , d G 2. For all p ) 0, let T x , . . . , x be the length of the shortest1 n

closed path on V with pth power weighted edges,

p < < p� 4T x , . . . , x [ inf e ,Ý1 n
T egT

where the minimum is taken over all closed paths T on V with edges e.
Ž .A closed path may pass through a vertex more than once.

Ž . pŽ .2. Minimal spanning trees MST . Let M x , . . . , x be the length of the1 n
shortest spanning tree on V with pth power weighted edges, namely,

p < < p� 4M x , . . . , x [ min e ,Ý1 n
T egT

where the minimum is over all connected graphs T with vertex set V.
3. Minimal matching. The minimal matching on V with pth power weighted

edges is given by

nr2
pp 5 5� 4S x , . . . , x [ min x y x ,Ý1 n s Ž2 iy1. s Ž2 i.

s is1

where the minimum is over all permutations s of the integers 1, 2, . . . , n,
and where n is assumed to have even parity.

Our main results describe the asymptotic behavior of T p and M p on
w x drandom samples in the unit cube and also on sequences of cubes 0, n ,

n G 1, of increasing edge length. Asymptotics of the latter sort resemble those
Ž .considered in statistical mechanics. Throughout we let P [ P 1 denote a

Poisson point process on R d with intensity 1. Let U , U , . . . be i.i.d. random1 2
w x dvariables with the uniform distribution on 0, 1 , d G 2. The following is our

main result.

Ž .THEOREM 1.1. a For all 0 - p F d there is a finite, positive constant
Ž p .a T , d such that

dp d pw x1.1 lim T P l 0, n rn s a T , d a.s.Ž . Ž .Ž .
nª`
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Ž . Ž p .b For all p ) 0 there is a finite, positive constant a M , d such that
dp d pw x1.2 lim M P l 0, n rn s a M , d a.s.Ž . Ž .Ž .

nª`

The next result describes the asymptotics for the power-weighted TSP and
MST processes on the unit cube. This corollary is not new, but we state it for
completeness and give a simple proof based on Theorem 1.1. The notation
lim X s Y means that X converges to Y in probability.nª` n P n

Ž . qCOROLLARY 1.2. a For all d g N ,

1.19 lim T d U , . . . , U s a T d , d .Ž . Ž . Ž .1 n P
nª`

Ž . qb For all d g N and p G d,

1.29 lim M p U , . . . , U rnŽ pyd .r d s a M p , d .Ž . Ž . Ž .1 n P
nª`

Ž . Ž .When p s 1, the asymptotics 1.1 and 1.2 are classic and go back to
Ž . Ž .Beardwood, Halton and Hammersley 1959 and Steele 1988 , respectively.

Ž . Ž . Ž .For 1 F p - d, 1.2 is essentially due to Steele 1988 and 1.1 is due to
Ž .Redmond and Yukich 1996 . The interest of Theorem 1.1 and Corollary 1.2

derives from the fact that they hold for the critical case p s d, where the
usual geometric subadditivity methods break down. For the critical case

Ž . Ž .p s d, we recall that 1.19 and 1.29 represent conjectures of Steele and
Bland, respectively. By the uniform boundedness of T d and M d in dimension

Ž . Ž .d, the a.s. results 1.1 and 1.2 imply similar mean versions.
Ž .When p s d, Aldous and Steele 1992 considered the probabilistic theory

2 Ž .of infinite trees to obtain an L version of 1.29 , thus settling Bland’s
Ž . Ž . Ž .conjecture. The results 1.19 and 1.29 were later obtained by Yukich 1995 ,

Ž .settling Steele’s conjecture. Yukich 1995 requires that the closed paths in
the definition of T p assign every vertex a degree of 2, but his methods cover
the present T p process as well.

Ž p .Little is known concerning the exact value of the limiting constant a T , d .
We will identify this constant with the spatial constant of a well-defined

d � 4dsuperadditive ergodic process in the following way. Let N denote 1, 2, . . .
d Ž . w xand let u g N have the representation u [ u , u , . . . , u . Let 0, u de-1 2 d

w x w x w xnote the d-dimensional rectangle 0, u = 0, u = ??? = 0, u . We will show1 2 d
that

p p w xd1.3 a T , d [ sup ET P l 0, u ru ? u ??? u ,Ž . Ž . Ž .ug N B 1 2 d

where T p is the canonical boundary process associated with T p; T p will beB B
Ž . Ž p .defined in the sequel. An identity similar to 1.3 holds for a M , d , adding

Ž .to the more precise results of Avram and Bertsimas 1992 .
For completeness, we mention another approach to Theorem 1.1 and

Corollary 1.2, one which does not involve ergodic theory and which is instead
Ž .inspired by the deep work of Talagrand 1995, 1996a, b on isoperimetry and

concentration inequalities. This approach, which was indicated to me by
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Talagrand, has two steps: the first uses subadditivity methods to establish an
1 Ž . Ž . 1L version of 1.1 and 1.2 . The second step converts these L estimates to

a.s. results by finding the appropriate concentration inequalities which de-
scribe the spread of T p and M p around their means. While it remains to find
these concentration inequalities, they would surely be similar in spirit to the
far-reaching ones developed by Talagrand. While this approach does not
identify the limiting constants, it provides asymptotics for two different
models of problem generation; it treats the incrementing model of problem

Žgeneration the existing sample points U , . . . , U are incremented to get a1 n
.new sample U , . . . , U and also the independent model of problem genera-1 nq1

Žtion the sample U , . . . , U is discarded and replaced by a completely new1 n
X X .sample U , . . . , U . The present approach is limited to the first model of1 nq1

problem generation.
We point out that the ergodic theoretic approach to Theorem 1.1 is not

limited to the TSP and MST problems, but also applies to the minimal
matching problem S p as well as other problems; see Section 6. The methods
outlined here hold potential for generalization and extension. We illustrate
this in Section 6.3 by showing how to obtain strong limit theorems for
optimization processes uniformly over convex domains which increase with
the sample size.

2. Boundary processes. Imbedding problems of combinatorial opti-
mization into a multiparameter subadditive process depends upon the notion
of a boundary process, the key to revealing the intrinsic subadditive structure
of the problems considered here. Boundary processes are defined on pairs
Ž . dF, R , where F ; R is a finite set and R is a d-dimensional rectangle.
wA d-dimensional rectangle is a d-fold Cartesian product of intervals and has

�Ž . 4 Ž . Ž . Ž q. d xthe form w : u F w - v , 1 F i F d , where u and v g N . Looselyi i i i i i
speaking, boundary processes on a d-dimensional rectangle R allow free
travel on the boundary dR; that is, edge connections on dR incur no cost. We
now provide formal definitions of the boundary TSP, MST and minimal
matching processes.

2.1. The boundary TSP process. For all d-dimensional rectangles R,
pŽ .discrete sets F ; R and p ) 0, let T F j a j b represent the length of the

Ž .shortest path with pth power-weighted edges through F j a, b with end-
points a and b, where a and b are constrained to lie on dR. Define the
boundary process T p associated with T p byB

T p F , R [ min T p F , inf T p F j a j b ,Ž . Ž . Ž .Ý i i i½ 5B
i

� 4where the infimum ranges over all partitions F of F and all sequences ofi iG1
�Ž .4 pŽ .pairs of points a , b belonging to dR. The process T F, R may bei i iG1 B

Žinterpreted as the cost of the minimal closed path with pth power weighted
.edges through the set F which may repeatedly exit to the boundary of R at
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one point and reenter at another, incurring no cost when moving along the
boundary.

2.2. The boundary MST process. For all d-dimensional rectangles R,
discrete sets F ; R and p ) 0, define

M p F , R [ min M p F , inf M p F j a ,Ž . Ž . Ž .Ý i i½ 5B
i

Ž .where the infimum ranges over all partitions F of F and all sequencesi iG1
� 4 pŽ .of points a on dR. The graph realizing the boundary process M F, Ri iG1 B

may be interpreted as a collection of small trees connected via the boundary
into a single large tree, where the connections along the boundary of R incur
no cost.

2.3. The boundary minimal matching process. For all d-dimensional rect-
ˆpŽ .angles R, discrete sets F ; R and p ) 0, let S F, R denote the length ofB

Ž .the least Euclidean matching with pth power weighted edges of points in F
with matching to points on dR permitted. More precisely, each point in F is

ˆpŽ .paired with either a boundary point on dR or another point in F; S F, RB
minimizes the sum of the pth powers of the edge lengths over all such
pairings. Define the boundary minimal matching by

p p ˆpS F , R [ min S F , S F , R .Ž . Ž . Ž .� 4B B

We make a simple but crucial observation concerning the geometry of
boundary processes.

LEMMA 2.1. Let L p denote the boundary processes associated with eitherB
the TSP, MST or minimal matching problems. Then L p is a superadditiveB
process in the sense that for all d-dimensional rectangles R and F ; R,

L p F , R G L p F l R , R ,Ž . Ž .Ý i iB B
iFn

where R , i F n, are disjoint rectangles and have union R.i

pŽ w x d . pŽ . w x dBy definition, T F, 0, 1 F T F for all F ; 0, 1 and similarly forB
M p and S p. The following lemma, which is proved in the Appendix, shows anB B
estimate in the other direction. Here and elsewhere, C denotes a universal

< <constant whose value may change from line to line and F denotes the
cardinality of the set F.

LEMMA 2.2. Let L denote either the TSP, MST or minimal matching
w x dproblems. Then for all p ) 0 and all F ; 0, 1 we have

dp Ždypy1.rŽdy1.p < < < <w xL F F L F , 0, 1 q C F k log F .Ž . Ž .B
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3. Subadditive ergodic theorems. Before proceeding further we state
for convenience an elegant multiparameter generalization of Kingman’s deep

Ž .subadditive ergodic theorem. We write RR [ RR d for the collection of d-
dimensional rectangles.

w Ž .x � Ž . 4THEOREM A Akcoglu and Krengel 1981 . Let L [ L R , R g RR be a
Ž .real-valued process defined on a probability space V, AA, P . Suppose that L is

a stationary multiparameter superadditive process. That is, satisfies the
following properties.

Ž . Ž q. di Stationarity: For all k G 1, R , . . . , R g RR and u g R , the joint1 k
Ž . Ž . Ž .distribution of L R , . . . , L R is the same as that of L R q u , . . . ,1 k 1

Ž .L R q u .k
Ž .ii Superadditivity: Given disjoint rectangles R , i F n, with D R gi iF n i

Ž . Ž .RR, we have L D R G Ý L R .iF n i iF n i
Ž . Ž .iii Integrability: L R , R g RR, are integrable.
Ž . Žw x d . div Boundedness in mean: sup E L 0, n rn - `.n

Ž . 1Ž .Then there exists f L, d g L V, AA, P such that
d dw xlim L 0, n rn s f L, d a.s.Ž .Ž .

nª`

Ž . Ž . Žw x.dMoreover, E f L, d s a L, d [ sup E L 0, u ru ??? u .ug N 1 d

Ž .Here a L, d is the spatial constant for the process L. Spatial constants
are the multiparameter analogs of the ‘‘time constants’’ in one-dimensional

Ž . Ž .subadditive theory. The identification E f L, d s a L, d may be seen from
Ž .Smythe’s 1976 mean ergodic theorem.

Given an optimization problem L, the traditional approach for finding its
asymptotics involves understanding how L behaves on the finite subsets of
Ž q. dR . In what follows, we change the perspective and consider L as a process
defined over the parameter set RR of d-dimensional rectangles. With this
point of view the ergodic structure of L becomes transparent.

To carry out this approach let L denote either the TSP, MST or minimal
Ž . dmatching problem. Recalling that P [ P 1 is a Poisson point process on R

with intensity 1, we define the process L p over the rectangles in RR according
to the convention

L p R [ L p P l R , R g RR.Ž . Ž .
Similarly, we define

L p R [ L p
P l R , R , R g RR.Ž . Ž .B B

pŽ . pŽ .We obtain the multiparameter processes L R and L R , R g RR. Thus,B
pŽ .when L is the TSP, L R is the optimal rooted path of points in R l P,B

with rooting to dR permitted.
We observe that the multiparameter process L p satisfies the four proper-B

Ž .ties of Theorem A. Indeed, property i is a result of the well-known transla-
Ž . Ž .tion invariance of L. Property ii is a result of Lemma 2.1. Property iii is
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Ž . peasily verified. To prove iv , we appeal to bounds for L based on theB
w Ž .xspace-filling curve heuristic see Steele 1990 . These bounds tell us that

when L is either the TSP, MST or minimal matching problem, then
dp Ždyp.r dw x� 4E L U , . . . , U , 0, 1 F CkŽ .1 kB

w x dfor U , i G 1, i.i.d. with the uniform distribution on 0, 1 . It easily followsi
Ž d .that if N [ N n is an independent Poisson random variable with parame-

ter nd, then by the scaling property

L p aF , aR s a pL p F ,R for F ; R , a ) 0,Ž . Ž .B B

we have
d dp pw x w xE L 0, n s E L n U , . . . , U , 0, nŽ .Ž . Ž .1 NB B

dpp w xs n E L U , . . . , U , 0, 1Ž .Ž .1 NB

F Cn pE N Ždyp.r dŽ .
F Cnd ,

Ž .by Jensen’s inequality. The proof of iv is complete.
We have verified that the boundary process L p is a discrete stationaryB

multiparameter superadditive process. By Theorem A, we deduce for all
1 Ž p .p ) 0 the existence of an L function f L , d such thatB

dp pdw x3.1 lim L 0, n rn s f L , d a.s.Ž . Ž .Ž .B B
nª`

w x d w x dThe number N of vertices in 0, n and the volume V of 0, n tend to
infinity but in such a way that the particle number density NrV essentially
remains finite. Borrowing a term from statistical mechanics, we say that
Ž p . pf L , d is the infinite-volume limit for the process L . By Theorem A, theB B

Ž p .expectation of f L , d satisfiesB

3.2 E f L p , d s a L p , d .Ž . Ž . Ž .B B

We have thus shown that Theorem A implies the following proposition.

PROPOSITION 3.1. Let L denote either the boundary TSP, MST or mini-B
mal matching processes. For all d g Nq and p ) 0 there exists an L1 function
Ž p .f L , d such thatB

dp pdw x3.3 L 0, n rn ª f L , d a.s.Ž . Ž .Ž .B B

Before deducing Theorem 1.1 from Proposition 3.1 for general p, consider
first the simple case 0 - p - d, for which we offer a straightforward proof.

Ž .Since the convergence in 3.3 is unaffected by changes in finitely many
Ž p .vertices, the Hewitt]Savage zero]one law implies that f L , d reduces to itsB

Ž p . pmean value a L , d . Next, by Lemma 2.2, L is close to the boundaryB
p Ž w x d .process L . That is, if N [ card Pn 0, n , thenB

d d dp pp p Ždypy1.rŽdy1.w x w x w xL 0, n F L 0, n F L 0, n q Cn N k log N .Ž . Ž . Ž .B B
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pw Ždypy1.rŽdy1. x dWhen 0 - p - d, we have Cn N k log N rn ª 0 a.s. and we
thus deduce

d pp dw xL 0, n rn ª a L , d a.s.Ž .Ž . B

Ž .This is precisely 1.1 .

4. Asymptotics for the TSP. In this section we prove the two main
Ž . Ž .asymptotic results for the TSP, namely, Theorem 1.1 a and Corollary 1.1 a .

Ž .We use Proposition 3.1 as a starting point. With regard to Theorem 1.1 a , we
consider the proof of the critical case p s d; this proof may be divided into

Žw x d . Ž w x d .two simple steps. We continue to write T 0, n for T P l 0, n .

Ž . Ž d .STEP 1 Identification of the limit . Show that the random limit f T , dB
in Proposition 3.1 a.s. reduces to a constant; that is, show

4.1 f T d , d s a T d , d a.s.Ž . Ž . Ž .B B

Ž . dStep 1 gives a version of Theorem 1.1 a for the boundary TSP process T .B
The next step boosts this to the standard process T d.

Ž .STEP 2 Asymptotics for the standard process . Show that
d dd d dw x w x4.2 T 0, n y T 0, n rn ª 0 a.s.Ž . Ž . Ž .B

We will prove Steps 1 and 2 when d s 2. The proof for general dimension
d follows in a similar way. Not surprisingly, the method for proving Steps 1
and 2 for the TSP process centers on high probability smoothness estimates.
Throughout, the statement ‘‘E occurs with high probability’’ means that
Ž c. yA 2Ž . 2Ž .P E F Cn , where A is large. We will write T k for T U , . . . , U .B B 1 k

Ž .LEMMA 4.1 Smoothness for the TSP . There is a constant C such that for
all n G 1 and all 1 F k F n2r2,

2 2 2 2 3r24.3 T n y T n q k F Ck log nrnŽ . Ž . Ž . Ž .B B

with high probability. Moreover, for all 1 F k F n2r2,
2 2 2 2 3r24.4 T n y T n y k F Ck log nrnŽ . Ž . Ž . Ž .B B

with high probability.

Ž .PROOF. To show 4.3 we need some notation. Given i.i.d. random vari-
� 4n2 w x2

2ables U and U , j G 1, with the uniform distribution on 0, 1 , let Fi is1 n qj j
denote the edge of minimal Euclidean length which connects U 2 with an qj

� 4n2
point in the sample U . Notice that for all j G 1 we have with highi is1
probability,

1r2< <4.5 F F C log n rn F C log nrn,Ž . Ž .j

< <where here and elsewhere E denotes the Euclidean length of the edge E.
2Ž 2 . 2Given T n , let E , . . . , E be an enumeration of the edges in the pathB 1 n
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2Ž 2 . Ž . < <described by T n . By Lemma 2.4 of Yukich 1995 , the lengths E ,B j
1 F j F n2, satisfy the humble but useful high probability estimate

< < y1r24.6 E F Cn .Ž . j

Ž .We are now ready to show 4.3 . Consider the edge F and, relabeling if1
Ž . 2necessary, assume without loss of generality WLOG that F links U to1 n q1

2Ž 2 .U and that the path T n visits U after U . By inserting the edge F and1 B 2 1 1
Ž . Ž .2replacing the edge E [ U , U with the edge U , U of length at most1 1 2 n q1 2

< < < < 2Ž 2 .F q E , we may use the tour given by T n to construct a feasible tour1 1 B
< < 2 Ž < < < <.2 < < 22on U , . . . , U at an extra cost of at most F q F q E y E s1 n q1 1 1 1 1

< < 2 < < < < Ž . Ž .2 F q 2 F E . Thus, by 4.5 and 4.6 ,1 1 1

T 2 n2 q 1 F T 2 n2 q C log nrn3r2Ž . Ž .B B

with high probability. Iterating, we arrive at an estimate of the form

4.7 T 2 n2 q k F T 2 n2 q Ck log nrn3r2 .Ž . Ž . Ž . Ž .B B

This holds with high probability for 1 F k F n2.
Ž .To complete the proof of 4.3 , it remains to show the reverse high probabil-

ity inequality,

4.8 T 2 n2 F T 2 n2 q k q Ck log nrn3r2 , 1 F k F n2r2 .Ž . Ž . Ž . Ž .B B

Let N 2 and N 2 denote the two neighbors of U 2 in the minimaln q1, 1 n q1, 2 n q1
tour on U , . . . , U 2 . With high probability there is a sample point, say U ,1 n q1 1

Ž . Ž .2such that i U is within C log nrn of U and ii U is neither a neighborn q1 1 1
Ž .2 2 2 2of N nor of N . Let E denote the edge N , U and noten q1, 1 n q1, 2 1 n q1, 1 n q1

< < y1r2 Xthat E F Cn with high probability. Replace E with the edge E1 1 1
Ž < <2joining N to U . This may be done at an extra cost of at most E qn q1, 1 1 1

.2 < < 2 3r2C log nrn y E , which is bounded by C log nrn with high probability.1
Ž . X

2 2By similarly replacing the edge E [ N , U with the edge E2 n q1, 2 n q1 2
joining N 2 to U , we obtain a path on U , . . . , U 2 which is obtained at ann q1, 2 1 1 n
additional cost which is bounded by C log nrn3r2 with high probability.
Thus, with high probability,

4.9 T 2 n2 F T 2 n2 q 1 q C log nrn3r2 .Ž . Ž . Ž .B B

Ž . Ž .Iterating 4.9 gives 4.8 as desired.
Ž .To now establish smoothness 4.4 , observe that the high probability

estimate

T 2 n2 F T 2 n2 y k q Ck log nrn3r2 , 0 F k F n2r2,Ž . Ž . Ž .B B

Ž . 2 2follows from 4.7 with n replaced by n y k. The reverse inequality

T 2 n2 y k F T 2 n2 q Ck log nrn3r2 , 0 F k F n2r2,Ž . Ž . Ž .B B

Ž . 2 2follows as in 4.8 with n replaced by n y k. This concludes the proof of
Lemma 4.1. I

Ž .We may now complete the two-step proof of Theorem 1.1 a .
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PROOF OF THEOREM 1.1a. Step 1. We want to show that the convergence

2 22 2 2w x w xT P l 0, n , 0, n rn ª f T , 2 a.s.Ž .Ž .B B

is unaffected by a change of finitely many vertices. To see this, notice that if
P is replaced by P9, which differs from P in k vertices, then with high

Ž yA .probability i.e., probability at least 1 y n we have

2 2 2 2 3r22 2 2w x w x w x w xT P l 0, n , 0, n y T P9 l 0, n , 0, n F Ckn log nrn .Ž .Ž . Ž .B B

Ž w x2 .To see this we let N [ card P l 0, n , we condition on N and note that
Ž .1r2 2with high probability N is within Cn log n of n . We then apply Lemma

4.1 and scale. Thus,

2 2 2 22 2 2w x w x w x w xT P l 0, n , 0, n y T P9 l 0, n , 0, n rn ª 0 a.s.Ž . Ž .B B

and by the triangle inequality

2 22 2 2w x w xT P9 l 0, n , 0, n rn ª f T , 2 a.s.Ž .Ž .B B

Ž 2 .Thus by the Hewitt]Savage zero]one law, f T , 2 is a.s. constant, complet-B
ing the proof of Step 1.

w x2Step 2. If the cardinality of P l 0, n is a fixed number, say k, then the
Ž .proof of Proposition 2.3 and Lemmas 2.4]2.7 of Yukich 1995 show that

2 2 22 2w x w x w xT P l 0, n F T P l 0, n , 0, n q D k ,Ž .Ž . Ž .B

Ž . 2 y1r10 yAwhere D k F Cn k with probability at least 1 y k . Here the factor of
n2 is the appropriate scaling factor. We may use this estimate to complete the

w x2proof of Step 2. Indeed, let the cardinality of P l 0, n be N, where N is a
Poisson random variable with parameter n2. Define the event

1r2 1r22 2E [ E n [ n y C log n n F N F n q C log n n .Ž . Ž . Ž .� 4
Then on the event E we have

2 2 22 2w x w x w xT P l 0, n F T P l 0, n , 0, n q D n ,Ž .Ž . Ž .B

Ž . 2Ž y1r5.where D n F Cn n holds with high probability, that is, with probabil-
ity at least 1 y nyA . Thus, with high probability we have

2 2 22 2w x w x w xT P l 0, n , 0, n F T P l 0, nŽ . Ž .B

2 22 9r5w x w xF T P l 0, n , 0, n q Cn .Ž .B

2Ž w x2 . 2This, together with the uniform bound T P l 0, n F Cn , yields the
Ž . Ž .desired conclusion 4.2 , completing Step 2 and the proof of Theorem 1.1 a . I

Ž .PROOF OF COROLLARY 1.2a. We next deduce Corollary 1.2 a . Since

2w xP l 0, n s n U , . . . , U ,Ž .d 1 N
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where N is a Poisson random variable with parameter n2 and which is
Ž .independent of U , U , . . . , we obtain from Theorem 1.1 a that1 2

T 2 U , . . . , U ª a T 2 , 2 .Ž . Ž .1 N P B

We may de-Poissonize this convergence result as follows. Once more we
Ž . � 2 Ž .1r2 2 Ž .1r2 4consider the event E [ E n [ n y C log n n F N F n q C log n n .

2 < 2 <Notice that since T is uniformly bounded and N y n rn has exponential
tails, we obtain

2 2 2
cT N y T n ? 1 ª 0.Ž . Ž . E P

We now show convergence to zero on the set E:

2 2 24.10 T N y T n ? 1 ª 0.Ž . Ž . Ž . E P

By Lemma 4.1 we have with high probability,
22 2 2 1r2T N y T n ? 1 F C log n rn ,Ž . Ž . Ž .E

Ž .and thus 4.10 is immediate.
Ž . 2We have thus shown that Corollary 1.2 a holds over samples of size n .

We now complete the proof by showing that we have convergence for samples
Ž .of all sizes. This amounts to a simple interpolation. Let n [ n n denote0 0

2 Ž .2the unique integer such that n F n - n q 1 . We wish to show0 0

2 2 24.11 T n y T n ª 0.Ž . Ž . Ž .0 P

Ž . 2By the analog of smoothness 4.3 for the standard TSP process T we have
with high probability,

2 2 2 1r2T n y T n F C log n rn ,Ž . Ž .0 0 0

2 Ž .since n and n differ by at most Cn . The estimate 4.11 follows. This0 0
Ž .completes the proof of Corollary 1.2 a . I

5. Asymptotics for the MST. The MST is easier to handle than the
TSP process. To deduce asymptotics for the MST, we may follow the methods

w x dof Section 4. Given U , i G 1, i.i.d. with the uniform distribution on 0, 1 ,i
pŽ . pŽ .abbreviate notation by writing M m for M U , . . . , U and similarly for1 mB B

pŽ .M m . The analog of the smoothness Lemma 4.1 for the boundary MST
process M p takes the following form.B

Ž .LEMMA 5.1 Smoothness for MST . For all p ) 0 and d G 1 there is a
Ž . dC [ C p, d such that for all n G 1 and 1 F k F n r2,

pp pd d5.1 M n y M n q k F Ck log nrnŽ . Ž . Ž . Ž .B B

with high probability. Moreover, for all 0 F k F ndr2,
pp pd d5.2 M n y M n y k F Ck log nrn ,Ž . Ž . Ž . Ž .B B

with high probability.
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PROOF. Notice that

ndqk
dp p nd d p � 4M n q k F M n q d U , U ,Ž . Ž . Ý ž /j i is1B B

djsn q1

Ž .where d x, F denotes the Euclidean distance between the point x and the
d Ž � 4nd . Ž .1r ddiscrete set F. For all j G n q 1 we have d U , U F C log n rn Fj i is1

C log nrn with high probability. We obtain for all k F ndr2 the high proba-
bility estimate

pp pd dM n q k F M n q Ck log nrn .Ž . Ž . Ž .B B

Ž .To complete the proof of 5.1 we need to show the reverse high probability
inequality

pp pd dM n F M n q k q Ck log nrn .Ž . Ž . Ž .B B

We will first show
pp pd d5.3 M n F M n q 1 q C log nrnŽ . Ž . Ž . Ž .B B

� 4M Žd .
dand then iterate. Let N denote the neighbors of U given by thej js1 n q1

minimal spanning tree on U , . . . , U d . Since vertices in minimal spanning1 n q1
Ž .trees have bounded degree, M d is finite. With high probability there is a

Ž .1r d
dsample point, say WLOG U , such that U is within C log n rn of U .1 n q1 1

Ž . Ž . dReplace all M d edges E , 1 F i F M d , having U as a vertex withi n q1
Ž .edges leading to U instead. For each 1 F i F M d , this may be achieved at a1

cost of at most
p p p1rd 1rd< <E q C log n rn F C log n rn F C log nrnŽ . Ž . Ž .Ž .Ž .i

< < Ž .1r dsince E F C log n rn with high probability. The resulting graph gives ai
feasible spanning tree on U , . . . , U d showing the high probability bound1 n

pp pd dM n F M n q 1 q CM d log nrn ,Ž . Ž . Ž . Ž .B B

Ž . Ž . Ž .which is precisely 5.3 . Iterating gives 5.1 . The proof of 5.2 is similar. I

Ž . Ž .It is straightforward to see that the estimates 5.1 and 5.2 hold when the
boundary MST process M p is replaced by the standard MST M p. Using suchB
estimates, it is easy to verify the analog of Step 1 in the context of the MST.

Ž .To prove Theorem 1.1 b , it only remains to prove the analog of Step 2,
namely, we must verify

d d dpp d< w x w x w x5.4 M P l 0, n y M P l 0, n , 0, n rn ª 0 a.s.Ž . Ž . Ž .B

We rely upon a construction which consists of adding extra edges to the
pŽ w x d w x d .components formed by M P l 0, n , 0, n . We will roughly followB

Ž .the methods of Yukich 1995 ; for the sake of completeness, we provide the
details.

pŽ w x d w x d .Let the components of M P l 0, n , 0, n be given by T , . . . , T , N1 NB
Žw x d .random. Let the rooted tree T have endpoint B on d 0, 1 and let Mi i i
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denote the unique sample point which is rooted to B , 1 F i F N. The sum ofi
the pth powers of the lengths of the edges rooted to the boundary is small:

N
pp dy1< <5.5 M y B F Cn log nŽ . Ž .Ý i i

is1

with high probability. To see this, consider a subcube S of edge length n y 2
w x dcentered within 0, n . Without loss of generality we may assume M g S fori

all i G 1, since with high probability there are at most Cndy1 points in the
w x d dy1 Ž .moat 0, n _ S and these points contribute at most Cn to 5.5 .

Ž . w x dTo complete the proof of 5.5 , let F denote a face of 0, n . Observe that S
may be covered with Cndy1 rectangular solids which are perpendicular to F,
have height n y 2 and have a base with cross-sectional diameter 1. Geomet-
ric considerations show that every such solid contains at most one edge of the

pŽ w x d w x d .graph M P l 0, n , 0, n which is rooted to F. Were there two or moreB
such edges this would contradict optimality, as it would be more efficient to
join the points rooted to F with a single edge. By considering rectangular

w x dsolids which are perpendicular to the remaining faces of 0, n we may easily
conclude that given M g S, there is a rectangular solid R such that amongi
all sample points in R, M is the one which is closest to the boundary. Thusi
for all M in S we havei

prdp< <M y B F C log nŽ .i i

with high probability. Since there are as many points M in S as there arei
Ž .solids, 5.5 follows.

pŽ w x d w x d .We now add three types of edges to the trees in M P l 0, n , 0, n .B
For all 1 F i F N insert the edge F joining M to the nearest point in thei i

� 4ndy 1 w x dgrid G [ G of regularly spaced points on d 0, n . Since each B isi is1 i
Ž .within C of a grid point in G, 5.5 and the triangle inequality imply the high

probability estimate
N

pp p dy1< <5.6 S [ F F Cn log n .Ž . Ž .Ý iF
is1

Next, for all 1 F i F ndy1, add the edge E joining G to the nearest pointi i
w x d dy1in Pn 0, n . There are n such edges and since each edge satisfies the

< < Ž .1r dhigh probability bound E F C log n , it follows thati

ndy1

pp p dy1< <5.7 S [ E F Cn log nŽ . Ž .Ý iE
is1

with high probability.
By inserting the two types of edges F , 1 F i F N, and E , 1 F i F ndy1, wei i

Ž w x d .generate a boundary rooted tree on G j Pn 0, n ; this tree has disjoint
components, say T , . . . , T , L F N. Say that components are neighboring if1 L
they contain neighboring grid points.

The triangle inequality implies that we may tie together any two neighbor-
w x ding components with a third type of edge H, which joins points in Pn 0, n
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and has a length which may be bounded in terms of lengths of edges of the
first two types. Let H , i G 1, denote an enumeration of all such edges. Theni

pŽ w x d .the H , i G 1, together with the edges in M P l 0, n , form a global treei B
Ž w x d . Ž .T 9 through G j Pn 0, n and moreover the triangle inequality, 5.6 and

Ž .5.7 imply that
pp p p p dy1< <5.8 S [ H F C S q S F Cn log nŽ . Ž .Ž .Ý iH E F

is1

with high probability. Moreover, by deleting all edges in T 9 which involve
Ž p p.grid points, and by adding edges of the order C S q S , we form a feasibleE F

w x dtree T through the smaller set Pn 0, n , which shows
d d dp p p pp < <w x w x w xM P l 0, n F e F M P l 0, n , 0, n q C S q S .Ž .Ž . Ž .Ý B E F

egT

Ž . Ž . Ž .Now 5.4 follows from 5.8 . This finishes the proof of 5.4 and completes the
Ž .proof of Theorem 1.1 b .

Ž .The proof of Corollary 1.2 b follows exactly as in the proof of Corollary
Ž .1.2 a ; no new ideas are needed.

6. Extensions and open problems. By viewing classical optimization
problems as processes defined on the parameter set of rectangles, we have
shown that the stochastic versions of these problems enjoy an intrinsic
superadditive ergodic structure. This structure yields a.s. asymptotics for the
TSP, MST and minimal matching processes. The ergodic theoretic approach
is not limited to these three classical processes, but applies to all optimization
problems which can be viewed as a stationary superadditive process. In this
way one could capture similar strong laws for the semimatching problem
w Ž .x w Ž .xSteele 1992 , the k-median problem Hochbaum and Steele 1982 and
related problems in geometric probability and computational geometry, in-
cluding the total length of a Voronoi tessellation. Here are some open
problems and directions for further research.

w x d pŽ .6.1. Minimal matchings. Given U , i G 1, i.i.d. on 0, 1 , write S k fori
pŽ . < pŽ . pŽ . < < < Ždyp.r dS U , . . . , U . Since S n y S m F C n y m for all integers n1 k

and m, it is not difficult to verify that the proof of Theorem 1.1 may be
modified to treat minimal matchings for 0 - p - d.

PROPOSITION 6.1. For 0 - p - d,
d pp dw x6.1 lim S P l 0, n rn s a S , d a.s.,Ž . Ž .Ž . B

nª`

Ž p .where a S , d is the spatial constant for the boundary minimal matchingB
process S p.B

It is likely that the methods of Section 4 could be modified to show that
Ž .6.1 also holds for powers of p in the critical region p G d, but this is not yet
settled. In particular, it is not clear whether a modification of Lemma 4.1
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holds for minimal matching S p. The difficulty here centers on the construc-
tion of a feasible matching on a uniform sample of cardinality k q 2 given the
optimal minimal matching on a uniform sample of cardinality k: one can
either add one long edge or several short edges, but it is unclear whether the
average combined length of additional edges is of the required small order.

6.2. TSP. It appears likely that a refinement of the methods in Section 4
Ž . pcould be used to extend Theorem 1.1 a to TSP processes T , where p exceeds

d, but this is also not yet resolved.

6.3. Infinite-volume limits over general averaging sets. By considering the
Ž . Ž .approach of Akcoglu and Krengel 1981 and Krengel and Pyke 1987 , it is

immediate that Proposition 3.1 holds in the context of averaging sets which
w x dare more general than the cube 0, n . Moreover, the infinite-volume limit

results of Proposition 3.1 hold uniformly over large collections of averaging
sets.

To make these ideas precise, we adopt the following notation. For measur-
d Ž .able A ; R , l A denotes the Lebesgue measure of A and d A denotes the

Ž . � d Ž .boundary of A. If r is the Euclidean distance, let A d [ v g R : r v, d A
4 � 4- d be the d-annulus of d A. Set nA [ nv: v g A . The following uniformity

result is of special interest.

w Ž .xTHEOREM B Krengel and Pyke 1987 . Suppose AA is a collection of Borel
w x dmeasurable subsets of 0, 1 such that

6.2 sup l A d : A g AA ª 0 as d ª 0.� 4Ž . Ž .Ž .

Let L be a stationary superadditive process on R d defined on the Borel
measurable subsets of R d. Then there is an f g L1 such that

< yd <6.3 sup n L nA y l A f ª 0 a.s. as n ª `.� 4Ž . Ž . Ž .
AgAA

We immediately deduce a uniformity result for the classical optimization
problems. Let L p denote either the boundary TSP, MST or minimal matchingB

Ž p . Ž .processes and let a L , d be the associated spatial constants 3.2 . ForB
pŽ . pŽ .A g AA, let L A [ L A l P, A .B B

COROLLARY 6.2. Let AA be a collection of sets satisfying the regularity
Ž . qcondition 6.2 . Then for all d g N and p ) 0,

p pyd6.4 sup n L nA y l A a L , d ª 0 a.s. as n ª `.Ž . Ž . Ž .� 4Ž .B B
AgAA

Ž .Thus 6.4 gives, for example, the asymptotics of the boundary TSP process
w x duniformly over the convex subsets of 0, 1 . From here it is possible to deduce

similar uniform results for the standard TSP; we leave this as an exercise.
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APPENDIX

PROOF OF LEMMA 2.2. In order to prove Lemma 2.2 we require an addi-
tional lemma. The proof of this result, which depends upon a dyadic subdivi-
sion of the cube, sheds some light on the structure of boundary processes.

pŽ .LEMMA A. Consider the graph given by a boundary TSP process T F ,B
< <F s n. Then the sum of the pth powers of the lengths of the edges connecting

w x d w Ždypy1.rŽdy1. xvertices in F with d 0, 1 is bounded by C n k log n . Identical
estimates hold for the boundary MST and boundary minimal matching
processes.

w x dPROOF. The proof depends upon a dyadic subdivision of 0, 1 similar to
Ž .that of Redmond and Yukich 1994 . Let Q be the cube of edge length 1r30

w x dand centered within 0, 1 . Let Q be the cube of edge length 2r3, also1
w x dcentered within 0, 1 . Partition Q _ Q into subcubes of edge length 1r6; it1 0

is easy to verify that the number of such subcubes is bounded by C6dy1.
Continue with the subdivision recursively, so that at the jth stage we

Ž j.y1define cube Q of edge length 1 y 2 3 ? 2 and partition Q _ Q intoj j jy1
Ž j.y1subcubes of edge length 3 ? 2 . The number of such subcubes is at most

dy1Ž j.dy1C3 2 . Carry out k stages, where k is the unique integer chosen so
that

2Žky1.Ždy1. F n - 2 k Ždy1. .

This recursive subdivision partitions Q into at mostk

k
dy1 jŽdy1.C3 2 s CnÝ

js0

subcubes with the property that each subcube has an edge length which is
w x dsmaller than the distance between the subcube and the boundary of 0, 1 .

Furthermore, by partitioning each subcube of this partition into 2 ld congru-
ent subcubes, where l is the least integer satisfying 2 l ) d1r2, we obtain a
partition QQ of Q consisting of at most Cn subcubes with the property thatk
the diameter of each subcube is less than the distance between it and the
boundary.

Observe that in an optimal rooted path on F each subcube Q in QQ contains
at most two points in F which are rooted to the boundary. Indeed, if there
were three or more points in F l Q which were rooted to the boundary, then
minimality tells us that it would be more efficient to link two of these three
points with an edge, since the diameter of the subcube is less than the
distance to the boundary.

The sum of the pth powers of the lengths of the edges connecting vertices
Ž .in F l Q _ Q with the boundary is thus bounded byj jy1

ypdy1 jŽdy1. jC3 2 3 ? 2 .Ž .
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Summing over all 1 F j F k gives a bound for the sum of the pth powers of
the lengths of the edges connecting points in F l Q ,k

k ypdy1 jŽdy1. j Ždypy1.rŽdy1.A.1 C3 2 3 ? 2 F C n k log n .Ž . Ž . Ž .Ý
js1

The sum of the pth powers of the lengths of the edges connecting vertices in
Žw x d .F l 0, 1 _ Q with the boundary is at most the product of n and the pthk

w x dpower of the width of the moat 0, 1 _ Q , that is, at mostk

A.2 Cn ? nyp rŽdy1. s CnŽdypy1.rŽdy1. .Ž .
Ž . Ž .Combining A.1 and A.2 gives Lemma A for the TSP.

The proof of the analogous estimates involving the MST and minimal
matching processes is identical, save for the observation that there is at most
one vertex in each subcube of QQ which is joined to the boundary. I

To conclude the proof of Lemma 2.2 for the TSP we need to show

dpp Ždypy1.rŽdy1.w xT F F T F , 0, 1 q C n k log n .Ž . Ž .B

pŽ w x d .Consider the minimal rooted path T given by T F, 0, 1 and let F9 ; FB
w x ddenote those vertices which are rooted to the boundary by T. Let M ; d 0, 1

denote the set of points where the edges in T meet the boundary; let
< < < <M s F9 s N. The goal is to use T to construct a feasible path through F.

Since M lies on the d y 1-dimensional boundary it is a simple matter to
find a matching S9 with power-weighted edges on M such that the edges in

w x d Ž . Ž .S9 are contained in d 0, 1 and the length l S9 satisfies l S9 F
Ž Ždypy1.rŽdy1. . Ž .C n k 1 . The matching S9 generates tours C , . . . , C R F N1 R

on the union F j M. Given tour C , 1 F i F R, select a point M g MM l Ci i i
� 4 Ž .and set M9 [ M , . . . , M . The triangle inequality, the estimate l S9 F1 R

Ž Ždypy1.rŽdy1. . Ž .C n k 1 and Lemma A for the TSP together tell us that we
may add and delete edges from the tours C , . . . , C to generate tours1 R
CX , . . . , CX on the smaller set F j M9 at an extra cost of at most1 R
Ž Ždypy1.rŽdy1. .C n k log n . Moreover, the sum of the pth powers of the lengths

Ž Ždypy1.rŽdy1. .of the edges with a vertex in M9 is bounded by C n k log n .
w x dFinally, we construct a tour through M9 having edges on d 0, 1 and a

Ž Ždypy1.rŽdy1. .length of at most C n k 1 .
The above construction, which is achieved at a cost of at most

pŽ w x d . Ž Ždypy1.rŽdy1. .T F, 0, 1 q C n k log n , generates a connected graph GB
through F j M9 consisting of tours CX , . . . , CX through F j M9 as well as a1 R

Ž Ždypy1.rŽdy1. .single tour through M9 with length at most C n k 1 . Since the
sum of the pth powers of the lengths of the edges in G with a vertex in M9 is

Ž Ždypy1.rŽdy1. .bounded by C n k log n , the triangle inequality implies that we
Ž Ždypy1.rŽdy1.may construct a tour through F at an extra cost of at most C n

.k log n . We have thus shown

dpp Ždypy1.rŽdy1.w xT F F T F , 0, 1 q C n k log nŽ . Ž .Ž .B
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as desired. This completes the proof of Lemma 2.2 for the TSP. The proof for
the MST and minimal matching processes is essentially the same. I
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