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THE NUMBER OF WINNERS IN A DISCRETE

GEOMETRICALLY DISTRIBUTED SAMPLE

BY PETER KIRSCHENHOFER AND HELMUT PRODINGER

Technical University of Vienna

In this tutorial, statistics on the number of people who tie for first

place are considered. It is demonstrated that the so-called Rice’s method

from the calculus of finite differences is a very convenient tool both to

rederive known results as well as to gain new ones with ease.

� 4Let the random variable G be geometrically distributed. That is, P G s k

s pq ky1, with q s 1 y p. Also, assume that n independent copies are given.

Finally, let X count the number of random variables with highest value. A

popular realization of this situation is to consider n ‘‘players’’ who indepen-

dently toss coins until each of them sees the first head. In this interpretation,

X is the number of players who gain their respective heads in the very last
w xround of the game, that is, the ‘‘winners’’ of the game. In 1 the probability

distribution of X, the expectation E X of X and the asymptotic behavior of
� 4 Ž .P X s 1 probability of a single winner for n ª ` were to be determined. In

w xthe solution 2 it was remarked that}surprisingly}this probability does

not converge as n ª ` but rather has an oscillating behavior. At the same
w xtime, Eisenberg, Stengle and Strang 5 discussed this problem and related

topics, exhibiting the structure of the periodic fluctuation, for which an

explicit Fourier expansion was given. Also about this time, Brands, Steutel
w xand Wilms 4 came independently to roughly the same results. A recent

w xpaper by Baryshnikov, Eisenberg and Stengle 3 deals with the existence of

the limiting probability of a tie for first place.

In fact, a fluctuating behavior in asymptotic expansions is not at all

uncommon. There are numerous results of that type, for example, in the
w x w xanalysis of divide-and-conquer recursions 7, 8, 16 or digital sums 6 , that

play a prominent role in the probabilistic analysis of algorithms.

Our aim in this paper is to some extent tutorial: the asymptotic technique

that yields the Fourier expansions of the fluctuating functions very comfort-
Ž w x.ably is called ‘‘Rice’s method’’ see the recent survey 9 . In order to convince

the reader of the advantages of this method, we will rederive a result on the

initially mentioned problem in the sequel, and afterwards present some new

results concerning higher moments of distribution as well as the number of
Ž .persons reaching a specified level beyond the winner s .
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Let us abbreviate Q [ 1rq and L [ log Q. Also, let p denote them

� 4probability p s P X s m , that is, the probability of having m winnersm

Ž .amongst n players . Then

nymnm Ž jy1.m jy11 p s p q 1 y q .Ž . Ž .Ým ž /m
jG1

Ž .This follows from the observation that m out of n people have a winning

value j, while the other ones have a smaller value. Now we set N [ n y m,

expand the binomial and sum over j to get the alternative formula

N 1N knm2 p s p y1 .Ž . Ž .Ým ykymž / ž /m k 1 y Qks0

The key point in analyzing this alternating sum asymptotically is the follow-

ing lemma.

Žw x. Ž . w wLEMMA 1 9 . Let f z be a function that is analytic on n ,q ` . Assume0

Ž . `that f z is meromorphic in the whole of C and analytic on V s D g ,js1 j

Ž .where the g are concentric circles whose radius tends to `. Let f z be ofj

polynomial growth on V. Then, for N large enough,

N
kN w x3 y1 f k s Res N ; z f z ,Ž . Ž . Ž . Ž .Ý Ýž /k

zksn0

where

Ny 1
y1 N ! G N q 1 G yzŽ . Ž . Ž .

w xN ; z s s
z z y 1 ??? z y N G N q 1 y zŽ . Ž . Ž .

w wand the sum is extended to all poles not on n ,q ` .0

The following proposition collects the asymptotic results concerning the

distribution of the number of winners among n players. We demonstrate the

use of Rice’s method by giving our alternative proof for the asymptotics of the
Ž . Ž .probabilities, mention the known expectation and derive the new asymp-

totics of the variance.

PROPOSITION 1. Let X be the random variable ‘‘number of winners among

n players’’ as described above. Then

� 4p s P X s mm

1 pm pm 1
s q d log n q OO , m fixed, n ª `,Ž .m Q ž /L m L n

4Ž .

p 1 1
5 E s E X s 1 q d log n q OOŽ . Ž .Ž .n 1 Q ž /q L n
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and

V s Var Xn

p 1 p2 1 Q j 1 1
s y 2 q q t log n q OO ,Ž .Ý 1 Q2 2 2 ž /jž /L L 4 nq q Q q 1jG1 Ž .

6Ž .

Ž . Ž .where d x and t x are continuous periodic functions of period 1, mean 0m 1

and small amplitude.

Ž . Ž .PROOF. In order to prove 4 , we apply the lemma with n s 0 to0

Ž . Ž . Ž yzym.expression 2 . In this instance f z s 1r 1 y Q has poles at z s

ym q x , with x s 2 jp irL, and is bounded on concentric circles C aboutj j j

the origin passing through the points

2 j q 1 p iŽ .
ym " , j s 1, 2, . . . .

L

Therefore we only have to consider the residues of

1
w xN ; z at z s ym q x .jyzym1 y Q

The computation of the residues is simple;

G N q 1 G m y x 1Ž . Ž .j
Res s ,zsymqx j G N q 1 q m y x LŽ .j

m nwwhence we have after multiplication by the factor p and going back tož /m

xn ) m instead of N G 1 the formulas

1 pm G n q 1Ž .
7 p s G m y x , n ) m,Ž . Ž .Ým j

L m! G n q 1 y xŽ .jjgZ

where}according to the previous remarks}the series stands for the Cauchy

principal value.

Using Stirling’s formula for the approximation of the G-functions, we find

that

G n q 1 1Ž .
x js n 1 q OO , n ª `,ž /ž /G n q 1 y x nŽ .j

so that, for n getting large, the series converges to the Fourier expansion of a
Žperiodic function in log n. Pulling out the term with index j s 0 theQ

. Ž .‘‘mean’’ and denoting the remaining periodic fluctuation of mean 0 ,

1
2 jp i xd x s G m y x e ,Ž . Ž .Ým j

m! j/0

Ž .we gain formula 4 .
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Ž .It is interesting to note that the alternating sum 2 can also be rewritten
Žusing the partial fraction decomposition of the meromorphic function 1r 1 y

zqm.q , namely,

1 1 1 1 2 jp i
8 s q with x s .Ž . Ý jzqm1 y q 2 L z q m q x LjjgZ

Ž w x .Compare 11 , 7.10. Again, the sum stands for the Cauchy principal value.

Ž .The usual argument to derive 8 is to compute the sum of the principal parts

of the function and to show that the difference between this sum and the

function}which has to be entire}is bounded, and thus a constant. Inserting
Ž . Ž .8 into 2 , we find

N N1 1 1
k kN Nn nm mp s p y1 q p y1 .Ž . Ž .Ý Ý Ým ž / ž /ž / ž /m mk k2 L k q m q xjks0 jgZ ks0

� 4Now, for x g C R yN, . . . , 0 ,

N 1 G N q 1 G x N !Ž . Ž .kN
y1 s sŽ .Ý ž /k k q x G N q 1 q x N q x N q x y 1 ??? xŽ . Ž . Ž .ks0

Ž w x Ž .. Ž .compare 10 , 5.41 , so that remembering N s n y m

pm 1 pm n!
p s d q Ým n , m

2 L m! m q x ??? n q xŽ . Ž .j jjgZ

pm 1 pm G n q 1Ž .
s d q G m y x .Ž .Ýn , m j

2 L m! G n q 1 y xŽ .jjgZ

9Ž .

Ž . Ž .In order to get 5 , we observe that E s Q p y pd as was alreadyn 1 n, 1

w x Ž .reported in 2 . Let us now engage in the proof of 6 . For this we compute the

second factorial moment M for n G 2:n

M s m m y 1 pŽ .Ýn m

mG2

nymn y 2 m jm js n n y 1 p q 1 y qŽ . Ž .Ý Ýž /m y 2
mG2 jG0

n n y 1 p2Ž . ny22 j js q 1 y qŽ .Ý2q jG1
10Ž .

2 ny2n n y 1 p 1Ž . kn y 2
s y1Ž .Ý2 kq2ž /kq Q y 1ks0

p2

2 2 2s 2Q p y 2 d s 2Q p y p d .Ž .2 n , 2 2 n , 22q
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The variance is obtained in the usual way by computing V s M q E y E2.n n n n

Hence

p2 1 p 1 p2 1 1
11 V s q y q t log n q OO .Ž . Ž .n Q2 2 2 ž /L q L nq q L

This time

p2 2 p 1 p2 1
2t x s d x q d x y d xŽ . Ž . Ž . Ž .2 1 12 2 2L q Lq q L

Ž .has integral mean different from 0! While this quantity is quite small, it can
w xbe extracted using the methods described in 12 , and we find the alternative

Ž .formula 6 of the proposition. I

There is a nice way to derive the explicit forms of the expectation and the
Ž .second factorial moment, using probability generating functions. Let the

k Ž .coefficient of z in F z denote the probability that n players produce kn

winners. We get the following recursion:

n
n nyk k n n12 F z s p q F z q p z , n G 1.Ž . Ž . Ž .Ýn kž /k

ks1

Ž .It is convenient to set F z s 1. This recursion is almost self-explanatory.0

When, at a certain level, the remaining players all fail, we label each of them
Žby a ‘‘z ’’ and leave the recursion equivalently we might think of z as the

.probability of an event independent of the game . The expectation E isn
XŽ .obtained via F 1 ; thereforen

n
n nyk k nE s p q E q np , n G 1.Ýn kž /k

ks1

Ž . nDefining the exponential generating function E z s Ý E z rn!, we ob-nG1 n

tain

E z s e p zE qz q pze p z .Ž . Ž .

Using the ‘‘Poisson transform’’

z n

yzˆ ˆE z s e E z s E ,Ž . Ž . Ý n
n!nG1

this simplifies to

ˆ ˆ yq zE z s E qz q pze .Ž . Ž .

Equating coefficients we see that, for n G 1,

np qn
ny1

Ê s y1Ž .n nq 1 y q
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and furthermore, for n G 1,

n n kp 1
ky1n nˆE s E s y1Ž .Ý Ýn k kž / ž /k k q Q y 1ks1 ks1

ny1np 1
kn y 1

s y1 ,Ž .Ý kq1ž /kq Q y 1ks0

w xwhich coincides with the formula in 2 . For the second factorial moment we

differentiate twice and evaluate at z s 1. An almost identical computation

gives the same expression that we obtained already.

w xThis approach was used by Knuth in 15 under the name ‘‘binomial
Ž w x.transform’’ and subsequently used by many people see, e.g., 17 .

Finally, we want to produce some additional new results which shed some

additional light on the original question about the number of winners.

Assume that the winners have reached the level j. We are interested in the

number of players who reached the level j y d, where d is a parameter.

Ž .d s 0 is the case that was just considered. Call the random variable in

question X . Then we have the following proposition.d

PROPOSITION 2. Let X denote the random variable ‘‘number of playersd

who reach level d below the winners.’’ Then

n� 4P X s m s Ý Ýd d m , . . . , m , mž /0 d
jGdq113Ž .

m m m0 djy1 jydy1 jydy1
= pq ??? pq 1 y q ,Ž . Ž . Ž .

where the first sum runs over all m G 1, m G 0, . . . , m G 0 and m s n y0 1 dy1

m y ??? ym ,0 d

1 p2 1 p2 1
Žd .14Ž . E s q d log n q OO , n ª `,Ž .n 1 Qdq1 dq1 ž /L L nq q

and

p2 1 p4 1 Q j 1
Žd . dq1V s 1 q q y 2 qŽ . Ýn 2 dq2 2 dq2 2jž /L L 4q q Q q 1jG1 Ž .

15Ž .
1

Žd .q t log n q OO .Ž .1 Q ž /n

wPROOF. The formula for the probabilities is self-explanatory compare the
Ž .xcomments on formula 1 . The expected value is just the sum of m timesd
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this quantity. We get

ny1Žd . jydy1 jy1 jydy1 jydy1E s n pq pq q ??? qpq q 1 y qŽ .Ýn

jGdq1

ny1jy2 jydy1 jydy1y pq q ??? qpq q 1 y qŽ .

ny1 ny1jydy1 j jy1s pn q 1 y q y 1 y qŽ . Ž .Ý
jGdq1

p2 pny1 ny1j j ds n q 1 y q y n 1 y q .Ž . Ž .Ýdq1 qq jGd

This formula holds only for d G 1. Since

p ny1Ž0. j jE s E s n q 1 y q ,Ž .Ýn n
q jG1

we find

2 dy1p p pny1 ny1Žd . Ž0. j j d16 E s E y n q 1 y q y n 1 y q ,Ž . Ž . Ž .Ýn nd dq1 qq q js1

and, because the extra terms are exponentially small, we can use the asymp-

totic result for EŽ0. and haven

p
Žd .E s p q exponentially small terms in n , n G 2,n 1dq1q

Ž . Ž . Žd .from which 14 is immediate using 4 . The second factorial moment M forn

Ž Ž0. .d G 1 is computed analogously as with M s Mn n

2 ny2 ny2Žd . jydy1 j jy1M s n n y 1 pq 1 y q y 1 y qŽ . Ž . Ž . Ž .Ýn

jGdq1

p3 p2
ny2 ny22 j j ds n n y 1 q 1 y q y n n y 1 1 y qŽ . Ž .Ž . Ž .Ý2 dq2 2q qjGd

17Ž .

p
Ž0.s M q exponentially small terms in n , n ª `.n2 dq

Ž .Thus formula 15 gives us the asymptotics for the variance. I
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