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COUPLING AND POPULATION DEPENDENCE
IN BRANCHING PROCESSES1

BY PETER JAGERS

Chalmers University of Technology and Gothenburg University

Consider supercritical general branching processes, where, however,
individual reproduction may be influenced by the history of the popula-
tion, in particular by the total population size. Assume that reproductions
approach those of a classical, possibly multitype, supercritical process
either from above or from below as the population grows. Conditions are
established for the population-history dependent populations to display
balanced exponential growth with the same Malthusian parameter as
the limiting population. Applications are made to a tumor model with
quiescence.

1. Introduction. Recently, two attempts have been made to study inter-
Ž .action in supercritical general branching processes. Olofsson 1994, 1996

used the concept of macroindividuals to analyze populations with interaction,
which is local in the pedigree, such as within-sibship-dependence. In that
prototype case, each sibship is turned into a macroindividual, these latter
forming independent individuals in a new branching population. Jagers
Ž .1996 used conditioning on individually adapted historical s-algebras to
obtain asymptotic exponential growth in populations satisfying general crite-
ria of limited collaboration between disjoint daughter processes and a stabi-
lization of the influence of remote history.

The former approach is inherently local and the latter also turns out not to
adapt itself readily to situations where individual behavior is affected by
global properties of the population, such as the total population size.

Such dependencies have earlier been studied only in the simple
Bienayme]Galton]Watson or real-time Markov branching cases; compare´

Ž . Žthe series of papers by Klebaner 1984, 1985, 1989, 1994 , Kuster 1983,¨
. Ž . Ž .1985 , Yurachkovskii 1987 and Rittgen’s thesis 1986 . A special form is

Ž .what Sevastyanov and Zubkov 1974 called controlled processes, their idea
being that the number of reproducing mothers is affected by the population
size, the reproduction in itself remaining unaffected. In the other cases, the
presumption is that the offspring distribution in a generation is directly

Ž .determined by the generation size. Kersting 1986 and Keller, Kersting, and
Ž .Rosler 1987 made a general approach to dependence in discrete time¨

population growth, based on stochastic difference equations.
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We consider general, abstract multitype, supercritical populations, where
individual reproduction may be affected by properties of the whole popula-
tion, such as its size. The situation we shall focus upon is that where
reproduction tends to decrease as the population grows, the limiting individ-

Ž .ual reproductions being those of a traditional i.e., population-independent
supercritical branching population. Alternatively, one could think of repro-
duction as being enhanced by population growth. The purpose is to find
conditions for the population dependence not to matter so that, asymptoti-
cally, classical Malthusian growth shows up with the same parameters as
those of the limiting population where individuals reproduce independently,
once they have been born into the population and obtained their types. We
shall refer to the these latter reproductions and the whole limiting population
they define as imaginary. In contrast, the population-dependent entities will
be called actual.

The idea is to couple actual and imaginary reproductions of individuals. If
the imaginary reproduction does not exceed the actual, then we can erase
actual newborns in a thought experiment, in the hope of mimicking the
imaginary reproduction process. In this manner, any individual in the origi-
nal population gives rise to two populations, an actual daughter population
tree and a thinned version. To the extent the mimicking is successful, the
latter are classical independently growing branching trees, and their growth
is exponential. If the thinning ultimately ceases to have effect, the original
population with dependence must also exhibit the same Malthusian behavior,
and we have found a successful coupling. There is also a dual theorem for
populations approaching the limit reproduction from below, as populations
grow, and versions where convergence need not be from a given side could
also be stated.

Finally, applications will be made to a tumor model with quiescence, which
w Ž .xcommands independent interest Gyllenberg and Webb 1990 . It will be

discussed in two versions, first with dependence upon cell age and tumor size
Ž .Jagers, 1997 and then in the original Bell]Anderson formulation, where it
is cell size rather than age that matters.

The simple structure of the former highlights the essentials of the whole
approach: when a cell is born, assume that it enters the so-called G state of0

Ž . Žeternal quiescence with a probability 1 y p n , where n is the population i.e.,
. Ž .tumor size at the moment of birth. Otherwise, with probability p n the cell

embarks upon the cell cycle, which is assumed to have i.i.d. lengths with an
arbitrary but continuous distribution function. Usually it is assumed that the

Ž .growth rate decreases with tumor size, so that 1 G p n x p ) 1r2, as n ª `.
Ž .The coupling argument shows that if and only if

p n y p - `,� 4Ž .Ý
Ž .then after some random but finite time not a stopping time, though all

individuals will behave as those of an underlying binary splitting
Bellman]Harris process with a constant splitting probability p and a quies-
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cent state, entered by nonsplitting cells. Thus the tumor-size dependent
model must exhibit the same exponential growth and ultimate asymptotic
composition as the classical branching process, and monotonicity in conver-
gence is actually not required.

Ž .In the general case, the probabilities p n and p are replaced by expected
offspring numbers, and the factor influencing individual reproduction need
not be precisely population size, somehow measured, but could concern other
properties of the population as a whole. For size dependence our results can,

Ž .however, be summarized as: if m n, s denotes the expected total number of
Ž .children of a type s individual born into a size n population and m s denotes

the same number in a classical Malthusian supercritical general branching
Ž . Ž .population, m n, s G m s , then the convergence

sup m n , s y m s - `� 4Ž . Ž .Ý
s

implies almost sure exponential growth with the same Malthusian parameter
and the same stable asymptotic composition as in the classical process.

� Ž . 4 Ž .In the one-type case, this takes the form Ý m n y m - `, m n beingn
the expected number of children of an individual born into a size n popula-

Ž .tion. This should be compared to Klebaner’s 1984 essentially necessary and
sufficient condition for exponential increase of population-size dependent

� Ž . 4Galton]Watson processes, namely, Ý m n y m rn - ` and similarly in then
Ž .Markov branching case 1994 . Besides smoothness requirements, Gyllenberg

Ž . Ž .and Webb 1990 also arrive at a condition of this form their H.7 and H.8 .
The fact that this very same condition is obtained in two radically different

special models makes it plausible that it catches some fundamental property
also in more general setups, and shows that exponential increase can occur
even though the coupling does not succeed. That requires that the never
ending differences be rare and some sort of symmetry in population growth.
These matters are discussed in Section 6.

2. Framework. We quickly recapitulate the framework as given in
Ž .Jagers 1989 . Let

`
n 0 � 4 � 4I s N , N s 0 , N s 1, 2, . . .D

ns0

denote the Ulam]Harris space of all possible individuals. Think of the
Ž .population as initiated by an Eve, whose name in I is 0, and of xk [ x, k g I

as x ’s kth child, twins, and so on, numbered in an arbitrary way. Assume
that each x g I has a reproduction process j , giving x ’s age at her succes-x
sive childbearings and the types of the children then born, the latter being

Ž .elements of a type space S, SS with a countably generated s-algebra.
Ž Ž . Ž .. Ž .Thus, there is a sequence of maps t k , s k , k s 1, 2, . . . , 0 F t 1 Fx x x

Ž . Ž . Ž .t 2 F ??? F `, s k with values in S and the interpretation that t k isx x x
Ž .x ’s age at giving birth to her kth child and s k is that child’s type. Ofx

Ž . Ž .course, if t k - t k q 1 s `, then x never has more than k children, andx x
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the corresponding individuals in I are not realized. Clearly,

j A = B s a k g I ; s k g A , t k g B .� 4Ž . Ž . Ž .x x x

The birth time and type of an individual x g I are denoted by t and s ,x x
respectively. These are inductively given from a starting type s g S and0
t s 0.0

Population size can be measured by random characteristics. That is, at
Ž .time t the individual x is assumed to have some weight x s , t y t , wherex x x

x is a functional x as evaluated on x ’s daughter process. More precisely,x
define S to be the coordinate projection, restricting attention from the spacex
of all lives to only the life of x and all her progeny. In other words S rendersx
x the ancestor in a space, which otherwise has the same structure as the
original space V of all possible life careers of all possible individuals. A
characteristic is a measurable map x : S = R = V ª R , which is D-valuedq q
in its second coordinate, interpreted as age. Further, x [ x (S . Thus, anx x
individual’s weight, once her type and age are given, is determined by her
own life, and possibly her progeny’s lives. We assume characteristics to be
nonnegative, bounded and vanishing for negative ages. Typical characteris-
tics would be 1 , or 1 for A g SS . Such characteristics, andS=R A=w0, minŽl , a.xq x

many others, are individual in the sense that they actually depend only upon
x ’s own life, type and age, and remain unaffected by x ’s progeny.

The x-counted population size at time t is then defined as

z x [ x s , t y t .Ž .Ýt x x x
xgI

Thus, the characteristic 1 yields the total population, that is, all thoseS=Rq
born, and the other characteristic mentioned gives the number of those alive
of type A and not older than a. Though it is important to vary the character-
istics in order to catch the asymptotic composition of the population, we shall
usually consider a fixed, but arbitrary such entity x , and then sometimes
write just z for z x.t t

In the classical case of independent reproduction, the reproduction process
depends upon the past only through the individual type and the form of
supercritical population growth is essentially governed by the reproduction
kernel m, defined as the expected number of births of children of various
types and at various ages:

m r , ds = dt [ E j ds = dt ,Ž . Ž .r

r being the type of the individual with reproduction j . The usual assumption
is that the population is Malthusian and supercritical, this meaning that
there is a number a ) 0, the Malthusian parameter, such that the kernel
Ž .m a ,ˆ

`
ya tm r , ds ; a [ e m r , ds = dtŽ . Ž .ˆ H

0

Ž . whas Perron root one and is what Shurenkov 1989 calls conservative. This
corresponds to irreducibility and a-recurrence in the terminology of Niemi
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Ž . x wand Nummelin 1986 . By the abstract Perron]Frobenius theorem Shuren-
Ž . Ž . xkov 1989 , page 43, or Nummelin 1984 , page 70 , there is then a s-finite

Ž . w xmeasure p on the type space S, SS and a strictly positive a.e. p finite
measurable function h on the same space such that

m r , ds ; a p dr s p ds ,Ž . Ž . Ž .ˆH
S

h s m r , ds ; a s h r .Ž . Ž . Ž .ˆH
S

1w xFurther, strong or positive a-recurrence holds in the sense that h g L p is
required and

0 - b s teya th s m r , ds = dt p dr - `.Ž . Ž . Ž .H
S=S=Rq

ŽIn population dynamics this entity might be interpreted as the long-run
.stable age at childbearing. Then, one norms to

h dp s 1H
S

and makes the homogeneity assumption that inf h ) 0. Then p is finite and
Ž .can and will also be normed to a probability measure. These are the

Ž .conditions i.e., those concerning m for the general Markov renewal theorem
wŽ . xof Shurenkov 1989 , page 107 , which in the nonlattice case lead to the

expected asymptotics
x a tE z ; h s E x a e rab ,Ž . Ž .ˆs t p

was t ª `. Here the hat denotes Laplace transform, so that
`

ya tx a s a e x s , t dt ,Ž . Ž .ˆ H
0

where s denotes the type, following the stable type distribution p , as
Ž .indicated by the suffix of the expectation, E [ H E p ds , and the necessaryp S s

direct-Riemann-type regularity assumptions on the expected characteristic
xare tacitly assumed.

The fundamental finding of the theory of general, supercritical branching
processes is that under very broad conditions this leads to a similar behavior
of the process itself, in L1, in L2, in probability, or a.s. for p-almost-all P ,s

x a tz ; wE x a e rab ,Ž .ˆt p

where w is a random variable, vanishing precisely if the process dies out and
w x Ž .with mean value E w s h s . The fact that this holds for many different x ’ss

is what is referred to as balanced exponential growth in certain branches of
Ž .biology and as asynchronous exponential growth in deterministic mathe-

matical population dynamics. Here we shall bypass the technical conditions
w Ž . Ž .xfor such growth cf. Jagers 1989 , Nerman 1981 , and instead assume

directly that the limiting, classical independent-individual, branching popula-
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tion exhibits balanced exponential growth. Somewhat inadvertently, we shall
Ž . Ž .summarize this by referring to the latter population as nonlattice Malthu-

Žsian, adding the particular character of the asymptotics a.s., in probability,
.or in the mean whenever necessary. The populations under study will be

referred to as actual or history-dependent. It will be assumed that they are
Ž .always finite at finite times . If they exhibit the exponential asymptotics of

the formula above, they will also be called Mathusian and the entities a , h,
and p will be referred to as their Malthusian parameter, fitness function
and stable type distribution, as for populations with independently acting
individuals.

3. Minorized reproduction. By the assumption that history-dependent
populations remain finite at finite times, individuals can be numbered as they
appear, starting from the ancestor X and continuing X , X , . . . , with1 2 3
simultaneously born individuals}if any}so numbered that progeny can

� 4never precede their ancestors. A filtration FF of s-algebras is defined byn
letting FF be generated by the complete lives of all individuals X , X , . . . , X .n 1 2 n
Define GG byx

� 4A g GG m A l X s x g FF ,x n ny1

for all n. If no individuals are ever born together, this means that GG is thex
s-algebra generated by the complete lives of all individuals born before x.
The reason for this seemingly complicated, stopping line type definition is to
cover possible simultaneous births. The time t when x g I is born isx

Žmeasurable with respect to GG , as is x ’s type s with a suitable conventionx x
.for never-realized individuals .

The primary concern of this section is the situation where individual
reproduction tends to exceed what it would have been in an imaginary
infinite population, ‘‘tends to exceed’’ being interpreted as ‘‘stochastically
larger than.’’ In other words, if x g I, t - `, and h is a generic imaginaryx
reproduction point process, then the basic assumption is that for all u and
sets A, B,

P j A = B ) u N GG G P h A = B ) u ,Ž . Ž .Ž .Ž .x x s x

where the right-hand side P-suffix indicates the dependence upon type of
reproduction in a general branching process. Let P x denote a regular version
of the conditional distribution, given GG , supposed to exist. By Strassen’sx

w Ž . xtheorem Lindvall 1992 , page 129 we may assume that for each x g I there
Ž .is a pair of reproduction point processes j , h such that j is x ’s originalx x x

reproduction, whereas h is the imaginary reproduction, ‘‘if the populationx
xŽ .were already infinite,’’ and P j G h s 1 in the obvious partial order ofx x

w Ž .xmeasures. By an Ionesco]Tulcea construction cf. Jagers 1989 we may then
Ž .assume the pairs j , h to be defined on a joint population probability spacex x

with the proper conditional distributions and still satisfying j G h a.s.x x
Now define

� 4t [ inf t G 0; t F t - ` « j s h ,x x x
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so that any individual born into the actual population after t has coinciding
actual and imaginary daughter population trees. Let

� 4I [ x g I ; t - u F t - ` .u x ’s mother x

If t - `, then I is a well-defined finite random set, and in terms of thet

daughter processes

z x x [ x t y t ,Ž . Ž .Ýt x 9 x 9
x9 stems from x

we can write

z x s x t y t q z x x ,Ž . Ž .Ý Ýt x x tyt x
t Ft xgIx t

which is the fundamental decomposition at t . Since the real and imaginary
Ž .trees growing out from any x g I coincide by definition, there is a w x witht

x a tz x ; w x E x a e rab ,Ž . Ž . Ž .ˆt p

and we may hope that

xz ; exp yat w x E x a exp a t rab ,Ž . Ž . Ž . Ž .ˆÝt x p½ 5
xgIt

in suitable senses, as t ª `.
This sketchy argument is correct if the characteristic is determined by

reproductions, so that the x , t ) t follow the same law as they would in ax x
branching population with the imaginary reproductions h . One such charac-x
teristic is 1 . Others are those counting the number of individuals ofS=Rq
certain types, 1 , A g SS . But already the living population, counted byA=Rq

1 , need not have this property, unless life span is a function ofS= w0, lx
reproduction. Certainly, it is conceivable that life continues to, say, shrink,
while the population increases, even though reproductions do not change any
further.

One could think of different conditions to preclude such phenomena, the
most natural maybe being to require that conditionally, given x ’s type s andx
all the reproductions j of individuals x9 stemming from x, the x are i.i.d.x 9 x
Call such characteristics conditionally population independent.

THEOREM 1. Consider a history-dependent population, counted by a condi-
tionally population-independent characteristic. Assume reproductions j to be
finite and stochastically minorized by the reproductions of a general Malthu-
sian branching population with the finite reproduction kernel m. If

E j S = R N GG y m s , S = R - `,Ž . Ž .Ý s x q x x q
t -`x

then the individual reproductions in the history-dependent population coin-
cide with those of a version of the minorizing process from some finite random
time on. Thus it is also Malthusian, a.s. if the branching population is
Malthusian a.s., or in probability if that was the case for the latter. The
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exponential growth parameter a , fitness function and stable asymptotic com-
position also remain the same, as defined by m.

Ž .PROOF. By assumption, all reproductions j S = R are finite. Since a.s.X qi
Ž . Ž .j G h , t s ` m j ) h i.o. m j S = R ) h S = R i.o. But by thex x X X X q X qi i i iw Ž . xconditional Borel]Cantelli lemma Breiman 1968 , page 96 , a.s.,

j S = R ) h S = R i.o.Ž . Ž .X q X qi i

m P j S = R ) h S = R N FF s `Ž . Ž .Ž .Ý s X q X q iy1i i

« E j S = R y h S = R N FF s `Ž . Ž .Ý s X q X q iy1i i

« E j S = R N GG y m s , S = R s `,Ž . Ž .Ý s x q x x q
t -`x

the second to last implication being by Markov’s inequality.
But the last sum was assumed to converge. If, therefore, the population

with reproductions h is a.s. Malthusian, the fundamental decomposition
yields without further ado that so is the history-dependent population. Simi-
larly Malthusianness in probability carries over to history-dependent popula-
tions, since I must still have finitely many members a.s. It

That the theorem holds literally for stochastically majorized reproductions
goes without saying. What may be more intriguing is that the obvious
stochastic order we have been using could possibly be replaced by weaker

Ž . Ž .orderings. For example, define j # h to mean that j A = B G h A = B for
w xall A g SS but only for intervals B s 0, t , t G 0. This is a partial order in

which the requirement that the conditional reproduction of an individual
tends to exceed the imaginary reproduction in an infinite population has the
interpretation that large surrounding populations possibly do not only tend to
abort births but may as well just postpone them. Like the ordering ‘‘G ’’ it is
closed in the weak topology and so Strassen’s theorem applies. However,
elegant convergence criteria seem harder to formulate.

4. Population size dependence. The seemingly abstract main theorem
takes a neater form if history expresses itself through population size, z , ast
measured by some implicit characteristic. As in the Introduction, we assume
that the expected number of children of an s-type individual born into a

Ž . Ž . Ž .population of size z is m z, s . Correspondingly, write m s [ m s, S = Rq
for infinite populations. In this situation we call history-dependent reproduc-
tions population-size dependent.

The condition of Theorem 1 takes the form

m z , s y m s - `Ž . Ž .Ý t x xx
t -`x

or
m z , s y m s - `,Ž .Ž .Ý t X XX n nn

n
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which is more suitable in the present context, since many characteristics lead
Ž .to z s O n . If the relevant population size is the total number of births,t Xn

y , this is even exact, y s n, provided individuals are born one by one. Ift t Xn Ž .this is not required but the natural assumption made that sup y y yn t tX Xn ny
- `, it remains true that y ; n, as n ª `.t Xn Ž .With a more general but bounded Fc, say characteristic, the resulting zt
will not exceed cy . In many cases it is easy to see that alsot

lim inf z ry ) 0,t tX Xn nnª`

Žby martingale or law-of-large-numbers type arguments and the same for
.values immediately before births, z ry : assume that there is an aget tX Xny nyw x w Ž . xinterval a, b and a number d ) 0 such that E x t N GG G d for a F t F b.s x x

ŽThen, by conditional population independence often lim inf z r y yt ª` t tya
. Ž . Ž .y G d. If not only y s O n , but also y y y s O n , as n ª `,tyb t t tX X ya X ybn n nŽ .then z s O n .t Xn

COROLLARY 2. In the setting of Theorem 1, assume that the characteristic
is bounded, that

sup y y y - `, 0 - lim inf z rn F lim sup z rn - `,Ž .n t t t tX X X Xn ny n n

w Ž . x Ž . Ž . Ž .and that E j S = R N GG s m z , s . Write m s [ m s, S = R . Ifs x q x t x qx

sup m n , s y m s - `,� 4Ž . Ž .Ý
sn

then the population with population-size dependent reproductions is Malthu-
sian together with the limiting branching population and shares its Malthu-
sian parameters.

EXAMPLE. Besides the total population y , the most natural choice of z ist t
the number of individuals alive. For this purpose, let l denote x ’s life span,x
so that for any a F t,

z [ 1 G 1 .Ý Ýt �l ) tyt 4 �l ) a4x x x
t Ft tyaFt Ftx x

ŽIf, say, life spans are i.i.d. with distribution L so that population size may
.only influence reproduction and not life span , clearly

1 G z rnt Xn

yt Xn1
G y y y ry 1 ª 1 y L a ) 0,Ž .Ž . Ý½ 5t t t �l ) a4X X ya X Xn n n iy y yt t isyX X ya tn n X yan

if a is small enough, newborns do not necessarily face immediate death, and
Ž .y y y s O y , as n ª `.t t tX ya X yb Xn n n

5. Uniform integrability. Usually expected asymptotics are easy, and
the asymptotics of the processes themselves hard. Here it is the other way
round: since the coupling time t is not necessarily a stopping time, expected
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Malthusian growth is no immediate consequence of a.s. Malthusian growth
plus Malthusianness in L1 of the limiting population with imaginary repro-
ductions.

w Ž . x Ž .LEMMA 3. Let D G E j S = R N FF y m s , under the minoriza-n s X q ny1 Xn n

tion assumptions of Theorem 1. Then, for p G 1,
p pw xn E D - ` « E y - `.Ý s n s t

n

� 4PROOF. If n [ inf n; k G n « j s h , then y s y andX X t tk k Xn

P n ) n F P j ) hŽ . Ž .Ýs s X Xk k
k)n

F E j S = R y h S = RŽ . Ž .Ý s X q X qk k
k)n

s E E j S = R N FF y m sŽ . Ž .Ý s s X q ky1 Xk k
k)n

w xF E D . IÝ s k
k)n

Often, for example, in the total population-size dependent case, D can ben
� Ž . Ž .4chosen in a nonstochastic fashion, as sup m n, s y m s .s

� 4 2LEMMA 4. Let U be an L -bounded sequence of random variables and nn
positive, integer valued, and in L p for some p ) 2. Then,

n
1U g L .Ý n

ns1

PROOF. By Schwarz’s inequality
n `

< <E U F E U ; n ) nÝ Ýn n
ns1 ns1

` `
1r2 2 1r2 1r2F E U P n ) n F C P n ) n ,Ž . Ž .Ý Ýn

ns1 ns1

� 4 � Ž .4for some constant C. However, if a is P n ) n , or any nonnegativen
sequence with Ý n py1a - `, thenn

1r21r2r yrr2 r yra s n a n F n a n - `,' ' � 4Ý Ý Ý Ýn n n ½ 5
n n n

if r s p y 1 ) 1. I

REMARK. The moment condition was chosen by conventionality; a sharper
' 'criterion is the convergence of Ý P n ) n . Note that Ý P n ) n - ` «Ž . Ž .

w 2 x Ž 2 2 .E n - ` but not conversely choose a s 1rn log n .n
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Now, write

w [ eya t y , w x [ eya t y xŽ . Ž .t t t t

ya t � 4s e a x9 g I which stem from x and t F t ,x 9

and add bars when referring to the limiting classical population with repro-
duction processes h. Assume that the latter population is L2-Malthusian.

2w xThen sup E w - `, andt s t

w F y q w x s y q w x .Ž . Ž .Ý Ýt t tyt t tytx x
xgI xgIt t

THEOREM 5. Suppose that the limiting population is a.s. and L2-Malthu-
� 4sian, that some sequence D satisfies Lemma 5 with p ) 2, and finally thatn

ˆ 1w Ž .xsup E j 2a - `. Then sup w g L . Hence Malthusianness follows notx s x t t
only a.s. but also in L1.

p Ž .PROOF. By Lemma 5, y g L . With n s y and n [ j S = R ,t t n X qn

nn n

w x F w X i exp yat X ;Ž . Ž . Ž .Ž .Ý Ý Ýtyt tyt n i nx X i½ 5n
xgI ns1 is1t

Ž .recall that t x denotes x ’s age at begetting her ith child. In thisi

2E w X i N FFŽ .s tyt n nX in

Ž .is bounded by some constant K. Since n and the t X are measurable withn i n
Ž .respect to FF , and the different w X i , i s 1, . . . , n conditionally inde-n tyt n nX in

pendent, it follows that
2nn

E exp yat X w X iŽ . Ž .Ž .Ýs i n tyt nX i½ 5n
is1

nn

s E Var exp yat X w X i FFŽ . Ž .Ž .Ýs s i n tyt n nX in
is1

nn
2q E E exp yat X w X i FFŽ . Ž .Ž .Ýs s i n tyt n nX in

is1

ˆF 2 K E j 2a - `,Ž .s X n

by assumption. Hence we can apply Lemma 4 to conclude the proof. I

COROLLARY 6. For population-size dependent reproductions, strengthen
the conditions of Corollary 2 so that the limiting imaginary population is also
L2-Malthusian and

sup n p m n , s y m s - `,� 4Ž . Ž .Ý
sn
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for some p ) 2. Then

xz ; exp yat w x E x a exp a t rab ,Ž . Ž . Ž . Ž .ˆÝt x p½ 5
xgIt

in L1 as well as a.s.

6. When the coupling barely fails . . . . The difference between our
criterion and the Klebaner and Gyllenberg and Webb condition renders it
plausible that cases exist where the coupling is not successful, and possibly
t s `, but nevertheless differences between the imaginary and actual repro-
ductions are rare enough for the actual process ultimately to display the
Malthusian behavior of the imaginary population.

In order to catch such situations, note that the strict ordering j G hx x
means that the imaginary reproduction can be thought of as arising from the
actual, population-history dependent reproduction through abortion of some
children. Write d to indicate abortion or not of x, so thatx

`

h A = B s 1 y d 1 .Ž . Ž .Ýx x k �t Žk .g A , s Žk .g B4x x
ks1

Recall the definitions of age at kth birth, and type of the child then born; the
Ulam]Harris numbering consistently refers to the actual population. Note
that the latter is not affected by the value of d , so that given GG , d and thex x x
actual population are independent. Define

w x« [ E d N GG ,x s x x

Ž . Žand write « z for « in case of population-size dependence. It could well bet xx

argued that « should be determined by the size immediately before birth,
.z , instead.t yx

� x 4THEOREM 7. Let z be the population as counted by a conditionallyt
population independent characteristic x . Assume reproductions x are finite
and stochastically minorized by the reproductions of a general Malthusian

Žbranching population with the finite reproduction kernel m defining the
.Malthusian parameter a , stable type distribution p , and fitness h . Assume

that w [ eya tz x is tight.t t
Further, suppose that for some constant K,

x x xE z x rz N GG F KrzŽ .s tyt t x tx x

for all x g I and t G t , and thatx

xE « rz - `.Ý s x t x
x

Then, w tends in probability to some finite w G 0, not identically zero.t
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We shall refer to the basic condition

x x xE z x rz N GG F KrzŽ .s tyt t x tx x

as the condition of symmetric growth.
The theorem has one direct and two less immediate corollaries.

COROLLARY 8. In the population-size dependent case, besides tightness
w x x Ž . Ž .and symmetric growth assume that E z s O n and that « t rt is ulti-s t Xn

mately concave, as t ª `. Then

« n rn - `Ž .Ý
implies that Malthusianness carries over.

COROLLARY 9. For population-size-dependent Galton]Watson processes
x Ž .with z s z s z and m n denoting the expected individual offspring in at t w t x

generation of size n,

« n rn - ` m m n y m rn - ` « z ; mn w� 4Ž . Ž .Ý Ý n

for a nonzero random variable w, provided « can be interpreted as concave.

For the tumor example we need a concept of growth fraction, elaborating
the ideas of Section 4: let c be the number of cycling cells at time t and zt t
the total tumor size, that is, cycling plus quiescent cells. The growth fraction

w xis called strictly positive if lim sup E z rc - `, the lim sup being overT ª` T T
larger and larger stopping times.

COROLLARY 10. Provided it has a strictly positive growth fraction and the
process w [ eya tz is tight, then the cell age and tumor size dependentt t
growth model exhibits balanced exponential growth with the same Malthusian
parameter a as the limiting nontumor-size dependent model, provided only

« n rn - `.Ž .Ý

PROOF OF THEOREM 7. First some notation: twiddled processes count only
x Ž .imaginary individuals; z x thus stands for the imaginary process start-t̃yt x

ing from the individual x in the actual population at time t . Similarly,x
x Ž . Ž Ž .. x Ž .w x [ exp ya t y t z x and so on.˜ ˜tyt x tytx x

For any u, z u records the summed x-values at time t q u of all individu-t
als born up to u and all individuals not stemming from an aborted individual
after u. If d s 0 precisely if x stems from an x9 with t ) u and d s 1,x u x 9 x 9

and d s 1 otherwise, thenx u

z u s d x t q u y t .Ž .Ýt x u x x
t Ftqux

In analogy with other notation, wu [ eya Ž tqu.z u.t t
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Clearly,

0 F z x y z u F d z x xŽ .Ýtqu t x tquyt x
t )ux

and
z x xŽ .tquyt xu< <w y w F w d .Ýtqu t tqu x xztqut )ux

Thus for any « 9, v ) 0,

u x< <P w y w ) « 9, w F v F vr« 9 K E d rzŽ .Ž . Ýs tqu t tqu s x t x
t )ux

for all t and starting types s g SS . But

< < < u < < u u < < u <w y w F w y w q w y w q w y w .tqu t 9qu tqu t t t 9 t 9qu t 9

Since

wu s exp yat w x ª exp yat w x ,Ž . Ž . Ž . Ž .˜ ˜Ý Ýt x tquyt xx
xgI xgIu u

as t ª `, the twiddled daughter processes being independent individual
supercritical branching process with Malthusian parameter a , it follows that

< u u <lim P w y w ) « 9 s 0.Ž .s t t 9
t , t 9ª`

Hence,

x< <lim sup P w n v y w n v ) « 9 F 2 vr« 9 K E d rz .Ž .Ž . Ýs tqu t 9qu s x t x
t , t 9ª` t )ux

Since u can be chosen so as to render the right-hand side arbitrarily small,
the convergence in probability follows by completeness and tightness. I

Ž . Ž . Ž . Ž .PROOF OF COROLLARY 9. As m n « n s m n y m and 1 - m F m n F
Ž .m 1 , the equivalence of the two conditions is obvious. Symmetric growth

follows by symmetry: let x g N k so that t s k and GG s BB , the s-algebrax x k
generated by the first k generations. With t s n

x xE z x rz N GG s E z x rz N BB s 1rz ,Ž . Ž .tyt t x nyk n k kx

since
< <z s z x and Z s zŽ .Ýn nyk k k

xgZk

if Z is the set of realized individuals in the kth generation.k
w Ž . xTo get hold of Ý E « z rz - `, note thatn t tX Xn n

z s z m y - n F y ,t k ky1 kXn

where y [ Ýk z is the total population up to k. Thus,k js0 j

« z rz s z « z rz ,Ž .Ž .Ý Ýt t k k kX Xn n
n k
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and
kw xE « z rz s E « z F « E z F « m 1 ,Ž . Ž .Ž . Ž . Ž .Ý Ý Ý Ýt t k kX Xn n

n k k k

Ž .which converges precisely if Ý « n rn - ` by an elementary analytic lemman
w Ž .x w xcf. Klebaner 1984 . The same condition yields E w - ` and hence tightness
w Ž .xTheorem 5 of Klebaner 1984 . I

And so we turn to the proof of the corollary.

PROOF OF COROLLARY 10. In this case it is the growth of z that ist Xn
directly mastered, whereas the symmetric growth inequality causes difficul-
ties. Indeed,

z s 1, z s z s 2, z s z s 3, . . . , z s z s n q 1t t t t t t tX X X X X X X1 2 3 4 5 2 n 2 nq1

on the set where the population does not die out.
For any x g I with t - ` define the setx

� 4 � 4A [ x9 g I ; t F t and a daughter of x9 cycles at t j x .x x 9 x x

w Ž . Ž .xBy the line Neveu 1986 , Jagers 1989 property of A ,x

z x9 F z .Ž .Ý tyt tx 9

x9gA x

The inequality comes from the quiescent cells born before those in A .x
Ž . Ž .But the z x9 do not decrease in u whereas p s does not increase in s:u

< <1 G E z x9 rz N GG G A E z x rz N GG .Ž . Ž .Ý tyt t x x tyt t xx 9 x
x9gA x

< <But A must be greater than or equal to c r2. It is clear from the proof ofx t x

the theorem that now it only remains to prove that

E « n rc - `.Ž .Ý t Xn
n

But

E « n rc ; « n rnE z rc ; « n rnŽ . Ž . Ž .t t tX X Xn n n

by the assumption of a strictly positive growth factor. I

7. Another tumor model. An alternative to age-dependent tumor mod-
els is provided by Bell]Anderson type cell-size dependent approaches. Here

w Ž .xthe idea cf. Diekmann, Heijmans and Thieme 1984 is that cells grow
according to a differential equation, and split according to a cell-size deter-
mined intensity, daughter cells sharing their mother’s mass equally.

Ž .Hence, there is a splitting intensity b s G 0, s standing for individual cell
Ž .size. Similarly there may be a death intensity d s G 0. Individual cell growth

is usually taken to be deterministic in the model, that is, the same for all cells
Ž . Ž .with given birth size, s9 s g s , s 0 s size at birth, g ) 0.
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Ž .The growth equation yields dt s dsrg s and the distribution function for
the size r at death or division of a cell with birth size s is

r dq
1 y exp y b q q d q .Ž . Ž .Ž .H½ 5g qŽ .s

To obtain r-sized daughter cells the mother must herself attain size 2r and
the expected number of r-sized daughters becomes

dq2r
2b 2r exp y b q q d q .Ž . Ž . Ž .Ž .Hž /g qŽ .s

Once r has been fixed, the age u at division is determined by
dq2r

s u.H g qŽ .s

In the notation
s sdq dq

f s [ b q q d q , c s [ ,Ž . Ž . Ž . Ž .Ž .H Hg q g qŽ . Ž .0 0

we can thus write the reproduction kernel

b 2rŽ .
m s, dr = du s 4 exp y f 2r y f s 1 du dr ,Ž . Ž . Ž . Ž .Ž .Ž . �cŽ2 r .ycŽ s.4g 2rŽ .

2r G s,
so that

` b rŽ .
f Ž s. yf Žr .m s, R s 2 e e dr .Ž . Hq g rŽ .sr2

ŽIt is usually assumed that there are maximal and minimal cell sizes, and
.integration is restricted to the interval between those.

Ž .Gyllenberg and Webb 1990 introduced population size into this as above,
Ž . Ž .by a probability r z, s s 1 y p z, s that a newborn cell turns quiescent,

arguing that this usually occurs directly after mitosis, if ever. Clearly, one
could also consider population-size dependent splitting intensities, either
Ž . Ž .b z, s , d z, s , where z is the tumor size at the birth of the individual, or

with instantaneous feedback, z and s then denoting the tumor and cell sizes
at the time considered.

In the first case

` b rŽ .
f Ž s. yf Žr .m z , s s 2 p z , s e e drŽ . Ž . H g rŽ .sr2

and we recover the conditions

sup p n , s y p s - `� 4Ž . Ž .Ý
sn

Ž .or under further conditions, cf. Corollary 10

sup p n , s y p s rn - `� 4Ž . Ž .Ý
sn
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for Malthusianness to transfer, under weak requirements on the underlying
intensities and growth function. Similarly, it is a matter of straightforward
analytic technicalities to formulate and check suitable conditions on intensi-
ties for the latter two models.
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