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ALMOST SURE CONVERGENCE FOR ITERATED FUNCTIONS OF
INDEPENDENT RANDOM VARIABLES1

BY JONATHAN JORDAN

University of Oxford

We consider a class of probabilistic models obtained by iterating random
functions of k random variables. We prove an analogue of the weak law
of large numbers and under a symmetry condition we prove a strong law.
The symmetry condition is satisfied if the initial random variables are
exchangeable. Our results can be used to give stronger results than those
previously obtained in the special case where the function is deterministic.
Both types of models have applications in physics and in computer science.

1. Introduction. Let D ⊆ (−∞,∞) be a closed domain and consider a
function

f :Dk → D for some k ∈ N.

Now consider a set of i.i.d. random variables {X(0)
j ; j ≥ 1} = X(0), say, on some

probability space (	,F ,P).
Define

X
(1)
j = f (X

(0)
(j−1)k+1, . . . ,X

(0)
jk ) for j ≥ 1.

This gives a sequence X(1) = RX(0) of i.i.d. random variables. We iterate the
map R to get a sequence X(0),X(1), . . . ,X(n), . . . of i.i.d. sequences, and we are
interested in the limiting behavior.

This type of model arises naturally in the study of networks of random resistors
on hierarchical lattices; see for example Schlösser and Spohn (1992); Essoh and
Bellisard (1989); Schenkel, Wehr and Wittwer (2000); Wehr (1997); Wehr and
Woo (2000). Hierarchical models are studied in statistical physics because they
can often be solved explicitly and may provide insight into behavior on standard
lattices. For a discussion see Stinchcombe and Watson (1976); Bernasconi (1978).
For studies of some statistical physics models in the hierarchical setting see Griff-
iths and Kaufman (1982); Derrida (1986). Similar models also occur in other
situations arising in physics, such as modelling earthquakes and fibre strengths
in Newman et al. (1994). A discussion of the relationship between classical
probability results such as the central limit theorem and renormalization in physics
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appears in Jona-Lasinio (1975). Fluctuation theorems for specific models are
obtained in Essoh and Bellisard (1989); Wehr and Woo (2000); Schenkel, Wehr
and Wittwer (2000).

An application to computer science is the study of the biased coin problem
considered in Alon and Rabin (1989); Boppana and Narayanan (1993) and related
to the use of physical sources of randomness with a small bias. A model of the
above type is studied, with

f (x1, x2)= min
(( 1

2 − ε
)
x1 + (1

2 + ε
)
x2,

(1
2 + ε

)
x1 + (1

2 − ε
)
x2
)
.

Another, similar, problem is discussed in Alon and Naor (1993). Boppana and
Narayanan (1993, 2000) is concerned with the problem of a group of processors
designating a processor as a leader in circumstances where some of the processors
are faulty. In this case the function f is replaced by a random function:

f (x1, x2) = x1 + x2

2
with probability 1 − ε

= min(x1, x2) with probability ε,

where ε is the probability of an individual processor being faulty, with processors
being faulty independently of each other and of the initial sequence of random
variables X(0). This is an example of the randomized hierarchical models
considered in Section 2. Using an extended moment calculation, it was shown
in Boppana and Narayanan (2000) that, for ε < 1

2 , there exists δ1 such that

P(X
(n)
j < δ1) < δ2 for n large enough, for any δ2 > 0. Our results can be applied to

show that there is an almost sure constant limit, although it would remain to show
that the limit is nonzero.

In the case where the function is continuous, defined on D = [0,1], concave,
positively homogeneous and increasing convergence in probability to a constant is
proved in Shneiberg (1986). For one particular function obtained by considering
a specific lattice, almost sure convergence to a constant is proved in Essoh and
Bellisard (1989). The most general result to date is due to Li and Rogers (1999)
who at each level n of the renormalization considered a (deterministic) function fn
of kn variables. They assumed that the initial sequence of random variables was
stationary and m-dependent; that is, the two collections {X(0)

1 , . . . ,X
(0)
n } and

{X(0)
n+m+1,X

(0)
n+m+2, . . .} are independent, and proved a weak law of large numbers.

Under stronger conditions they proved the following strong law [Theorem 2.1(iii)
of Li and Rogers (1999)].

THEOREM 1.1. Suppose that the fn satisfy the subadditive constraint

fn(x1, . . . , xk)≤ 1

k

k∑
i=1

xi for all (x1, . . . , xk) ∈ Dk.
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Then if D is bounded below, the fn, n≥ 1, are symmetric functions of k (≥ 2) real
variables and X(0) = {X(0)

j ; j ≥ 1} is a sequence of i.i.d. random variables such
that

E|X(0)
1 |<∞,

then for some λ ∈ D ,

lim
n→∞X

(n)
1 = λ a.s.

We will develop a randomized version of the problem and extend the weak law
from Li and Rogers (1999) to this setting. In the randomized setting the symmetry
condition needed for the strong law is less rigid and we can then use this strong law
to weaken the conditions of Li and Rogers (1999) in the nonrandomized model,
giving the following result.

THEOREM 1.2. (a) If

f (x1, . . . , xn)≤
k∑

i=1

αixi,

where the αi are positive constants with αi < 1 for each i,
∑k

i=1 αi = 1 and

E
(|X(0)

1 |(L(|X(0)
1 |))δ)<∞,

where

δ > 1 and L(x) = max{1, logx},
then there exists λ ∈ D with

X
(n)
1 → λ a.s.

(b) Further, if αi = 1
k

for all i, then the conclusion holds under the weaker

condition that E|X(0)
1 | <∞.

Part (b) of this was originally claimed in Wehr (1997).
The main results and their proofs are described in Section 2. Some lemmas

necessary to prove the results are included in the Appendix.
For recent work on this problem in the Banach space setting, see Hambly and

O’Connell (2000).
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2. The randomized model. We let X(0) = {X(0)
j ; j ≥ 1} be a sequence of

independent identically distributed random variables with P(X(0) ∈ D) = 1 for
some closed domain D ⊆ R. We define ξ = inf{x :x ∈ D}. (Note that ξ may be
−∞ but otherwise ξ ∈ D .)

Now let Z(n)
j ; j ≥ 1, n ≥ 1 be a set of independent (of each other and of X(0))

and identically distributed random variables taking values in some measurable
space R. For each r ∈ R let fr :Dk → D be a real measurable function of
k variables, where k is a fixed integer, k > 1.

We now define a sequence {X(n); n ≥ 0} by

X
(n)
j = f

Z
(n)
j

(
X

(n−1)
(k−1)j+1,X

(n−1)
(k−1)j+2, . . . ,X

(n−1)
kj

)
,

X(n) = RX(n−1) = {X(n)
j ; j ≥ 1}.

The leader election model of Alon and Naor (1993); Boppana and Narayanan
(1993, 2000) has R = {1,2}, f1(x1, x2)= x1+x2

2 , f2(x1, x2)= min{x1, x2}.
Define σ -algebras Fn = σ(X

(j)
i ; 0 ≤ j ≤ n, i ≥ 1) and Gn = σ(Z

(n)
i ; i ≥ 1).

The following result is based on Theorem 2.1(i) of Li and Rogers (1999) and
the proof is largely the same except for the use of conditional expectation.

THEOREM 2.1. Suppose that we have nonnegative constants αi,r ,1 ≤ i

≤ k, r ∈ R, such that
∑k

i=1 αi,r = 1 for all r and αi,r ≤ A for all i, r and some
constant A < 1. Further suppose that for all r ∈ R, we have the subadditivity
constraint

fr(x1, x2, . . . , xk) ≤
k∑

i=1

αi,rxi.

If
E(X

(0)
1 ∧ 0) <∞,

then for some λ ∈ D ∪ {ξ},
EX

(n)
1 ↓ λ as n→ ∞ and X

(n)
1 →p λ.

PROOF. Define

g
(n)
j (x1, . . . , xk)=

k∑
i=1

α
i,Z

(n)
j

xi

and

h
(n)
j (x1, . . . , xkn) = g

(n)
j

(
h
(n−1)
(j−1)k+1(x1, . . . , xkn−1),

h
(n−1)
(j−1)k+2(xkn−1+1, . . . , x2kn−1), . . . ,

h
(n−1)
jk (x(k−1)kn−1+1, . . . , xkn)

)
,

where h
(0)
j (x) = x for all j .
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Note that

h
(n)
j (x1, . . . , xkn)=

kn∑
i=1

d
(n)
i,j xi,

where d
(n)
i,j = α

p,Z
(n)
j

d
(n−1)
q,(j−1)k+q where i = (p − 1)kn−1 + q with 1 ≤ p ≤ k and

1 ≤ q ≤ kn−1. Inductively, we see that maxi d
(n)
i,1 ≤ An → 0 as n→ ∞. This allows

us to use Lemma A.1 (with an,i = d
(n)
i,1 ) to give

kn∑
i=1

d
(n)
i,1 X

(0)
i →p EX

(0)
1 .(1)

Now
E(X

(n)
1 |Fn−1,Gn) = f

Z
(n)
1

(
X

(n−1)
1 , . . . ,X

(n−1)
k

)

≤
k∑

i=1

α
i,Z

(n)
1
X

(n−1)
i

and using properties of conditional expectation and the i.i.d. property of X(n−1)

we have

E(X
(n)
1 |Gn) ≤

k∑
i=1

α
i,Z

(n)
1

E

(
X

(n−1)
i |Gn

)

= E(X
(n−1)
1 |Gn),

but X(n−1)
1 is independent of Gn so that EX

(n)
1 , n≥ 1, is a nonincreasing sequence

of real numbers, hence there exists λ ∈ [−∞,∞) such that

EX
(n)
1 ↓ λ as n → ∞.(2)

Then if EX
(0)
1 = −∞ we have, using (1), that X(n)

1 →p −∞ and if E|X(0)
1 | < ∞

then
lim
n→∞ P

(
X

(n)
1 ≥ EX

(0)
1 + ε

)
= 0.

Further,

X
(n)
1 I{X(n)

1 ≥EX
(0)
1 +ε} ≤

kn∑
i=1

dn,i|X(0)
i |I{∑kn

i=1 dn,iX
(0)
i ≥EX

(0)
1 +ε},

and for every M > 0,

E

(
kn∑
i=1

dn,i|X(0)
i |I{∑kn

i=1 dn,iX
(0)
i ≥EX

(0)
1 +ε}

)

≤ MP

(
kn∑
i=1

dn,iX
(0)
i ≥ EX

(0)
1 + ε

)
+ E

(
kn∑
i=1

dn,i|X(0)
i |I{∑kn

i=1 dn,i |X(0)
i |≥M}

)
,
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which with E|X(0)
1 |<∞ implies that

lim
n→∞ E

(
X

(n)
1 I{X(n)

1 ≥EX
(0)
1 +ε}

)
= 0.(3)

Now we repeat these arguments but starting with X(n0) instead of with X(0). The
conditions on X(0) imply that E(X

(n0)
1 ∧ 0) < ∞ so they apply to X(n0) as well.

So if for any n0, EX
(n0)
1 = −∞ then X

(n)
1 →p −∞ and if E|X(n0)

1 |< ∞ then

lim
n→∞P

(
X

(n)
1 ≥ EX

(n0)
1 + ε

)
= 0

and

lim
n→∞ E

(
X

(n)
1 I{X(n)

1 ≥EX
(n0)
1 +ε}

)
= 0.(4)

So if λ = −∞ then we have

X
(n)
1 →p −∞

and if λ > −∞, for all ε > 0,

lim
n→∞P

(
X

(n)
1 ≥ λ+ ε

)
= 0

and

lim
n→∞ E

(
X

(n)
1 I{X(n)

1 ≥λ+ε}
)

= 0.(5)

If λ >−∞ then

E(X
(n)
1 − λ) = E

((
X

(n)
1 − λ

)
I{X(n)

1 ≥λ+ε′}
)

+ E

((
X

(n)
1 − λ

)
I{X(n)

1 ≤λ−ε}
)

+ E

((
X

(n)
1 − λ

)
I{λ−ε<X

(n)
1 <λ+ε′}

)
,

so using (2) and (5) gives that

0 ≥ lim
n→∞E

((
X

(n)
1 − λ

)
I{X(n)

1 ≤λ−ε}
)

= − lim
n→∞E

((
X

(n)
1 − λ

)
I{λ−ε<X

(n)
1 <λ+ε′}

)
≥ −ε′

for all ε′ > 0. Hence

lim
n→∞ E

((
X

(n)
1 − λ

)
I{X(n)

1 ≤λ−ε}
)

= 0(6)

and (5) and (6) give the result

X
(n)
1 →p λ as n → ∞.

As in Li and Rogers (1999), the proof finishes by taking an a.s.-convergent
subsequence to obtain λ ∈ D ∪ {ξ}. �

The next result is based on Theorem 2.1(ii) of Li and Rogers (1999) and gives
a form of strong law, but only for the lim sup. Again the proof is based on that in
Li and Rogers (1999).
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LEMMA 2.2. With the hypotheses of Theorem 2.1 and additionally if D is
bounded below and we have

E
(|X(0)

1 |(L(|X(0)
1 |))δ)<∞

for some δ > 1 then for some λ ∈ D the conclusion of Theorem 2.1 holds and
additionally,

lim sup
n→∞

X
(n)
1 = λ a.s.

PROOF. With the hypotheses of Theorem 2.1 holding, we know that X(n)
1 →p λ

for some λ ∈ D ∪ {ξ}. However D is closed and bounded below, so ξ ∈ D , hence
λ ∈ D . There exists a subsequence {nj ; j ≥ 1} such that

lim
j→∞X

(nj )

1 = λ a.s.

and hence

lim sup
j→∞

X
(nj )

1 ≥ λ a.s.(7)

Now X
(n)
1 ≤ ∑kn

i=1 d
(n)
i,1 X

(0)
i as before. The condition

∑kn

i=1(d
(n)
i,1 )

2 ≤ cb−n(b >

1, c > 0) necessary to apply Lemma A.2 is easy in our case [see Example 2.1
of Li and Rogers (1999)]. So we have

lim
n→∞

kn∑
i=1

d
(n)
i,1 X

(0)
i = EX

(0)
1 a.s.

and hence

lim sup
n→∞

X
(n)
1 ≤ EX

(0)
1 a.s.(8)

As in the proof of Theorem 2.1, we now observe that the conditions on X(0) imply
the same conditions on X(n0) for any integer n0 (we need D to be bounded below
here, and also Jensen’s inequality). So we can use identical arguments to those
above to obtain

lim sup
n→∞

X
(n)
1 ≤ EX

(n0)
1 a.s.(9)

and letting n0 → ∞,

lim sup
n→∞

X
(n)
1 ≤ λ a.s.(10)

Then (7) and (10) give the result. �

The next result is based on Theorem 2.1(iii) of Li and Rogers (1999) although
the symmetry condition is slightly modified. It gives strong-law convergence in a
restricted case.
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LEMMA 2.3. Assume the hypotheses of Lemma 2.2, and further, the following
symmetry condition: For all σ ∈ Sk , the permutation group on k elements, we have

P
(
f
Z
(n)
i

∈ E
)= P

(
f
Z
(n)
i

◦ σ ∈ E
)

for all P-measurable subsets E of measurable functions of k real variables
(i.e., changing the order of the input variables does not alter the conditional
distributions of X(n−1) and X(n)).

Then for some λ ∈ D , we have

lim
n→∞X

(n)
1 = λ a.s.

Further, if αi,r = 1/k for all i, r , then the conclusion holds under the weaker
condition that E|X(0)

1 |<∞.

PROOF. The hypotheses of Lemma 2.2 apply so we know that there exists a
λ ∈ D such that

X
(n)
1 →p λ

and

lim supX(n)
1 = λ a.s.(11)

Similarly for every l > 1 we have X
(n)
l →p λ and lim supX(n)

1 = λ a.s.
Now set

Y (n) =
k∑

i=1

X
(n)
k .

For n ≥ 0, define σ -algebras

F ′
n = σ(Y (l); l ≥ n).

Our symmetry condition gives that, for 1 ≤ i ≤ k,

E

(
X

(n)
(i−1)k+1 + · · · +X

(n)
ik |F ′

n+1

)
= E(Y (n)|F ′

n+1)

and hence

E(Y (n)|F ′
n+1)= E(X

(n)
1 + · · · +X

(n)

k2 |F ′
n+1)

k
.

We note that the symmetry condition implies that Eα
i,Z

(n+1)
j

= 1/k and further that

Z
(n+1)
j is independent of F ′

n+1, and so

E(α
i,Z

(n+1)
j

|F ′
n+1)= 1

k
.
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Hence conditioning on the Z(n+1)
j and using the subadditivity of the functions will

give

E

(
X

(n)
1 + · · · +X

(n)
k

k

∣∣∣∣F ′
n+1

)
≥ E(X(n+1)|F ′

n+1)

and similarly for the other X(n+1)
k , giving

E

(
Y (n)|F ′

n+1

)
≥ E

(
X

(n+1)
1 + · · · +X

(n+1)
k |F ′

n+1

)
= Y (n+1) a.s.

Hence the sequence {Y (n); n ≥ 1} is a reversed time submartingale, so as in Li
and Rogers (1999) we can use the convergence theorem and the convergence in
probability to conclude that

lim inf
n→∞ X

(n)
1 ≥ λ a.s.(12)

Then (11) and (12) give the result.
When αi,r = 1/k we can use the strong law of large numbers instead of

Lemma A.2 [as in the proof of Theorem 2.1(iii) of Li and Rogers (1999)] and
so the final part of the statement follows. �

The following result and its proof are based on Corollary 3.1 of Li and Rogers
(1999).

COROLLARY 2.4. For any set of random variables X̃(n) where X̃(n) has the
same distribution as X(n)

1 for all n,

X̃(n) → λ a.s.

PROOF. For each n ≥ 1, X
(n)
2 is determined by the random variables

{X(0)
i ; kn + 1 ≤ i ≤ 2kn} ∪ {Z(j)

i ; 1 ≤ j ≤ n; kn−j + 1 ≤ i ≤ 2kn−j }. But these

sets are independent for different n and so {X(n)
2 ; n ≥ 0} is a set of independent

random variables.
From the proof of Lemma 2.3 we have that X(n)

2 → λ a.s. and so by Borel–
Cantelli we have that

∞∑
n=0

P(|X(n)
2 − λ| ≥ ε) <∞ for all ε > 0.(13)

However, for each n, X(n)
2 and X

(n)
1 are i.i.d. random variables. By the hypotheses

of the corollary, X̃(n) has the same distribution as X(n)
2 and hence (13) implies that

∞∑
n=0

P(|X̃(n) − λ| ≥ ε) <∞ for all ε > 0,

which, using Borel–Cantelli, gives the result. �
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We can now use this to strengthen Lemma 2.3 by removing the symmetry
condition. Theorem 1.2 is a special case of the following.

THEOREM 2.5. (a) Under the hypotheses of Lemma 2.2 there exists λ ∈ D
with

X
(n)
1 → λ a.s.

(b) If αi,r = 1/k for all i, r then the conclusion holds under the weaker condition
that E|X(0)

1 |<∞.

PROOF. We define

gr(x1, . . . , xk) =
k∑

i=1

αi,rxi for all (x1, . . . , xk) ∈ Dk.

Set R̃ = R × Sk where Sk is the kth permutation group. Then, for each r, σ ;
r ∈ R, σ ∈ Sk , define f̃(r,σ ) :Dk → D by

f̃(r,σ )(x1, . . . , xk)= fr ◦ σ(x1, . . . , xk).

The condition on the fr ensures that, for all r ,

f̃(r,σ )(x1, . . . , xk) ≤ g̃(r,σ )(x1, . . . , xk)

:= gr ◦ σ(x1, . . . , xk) for all (x1, . . . , xk) ∈ Dk.

We now consider a model with random variables Y
(n)
j , based on the set of

functions {f̃r̃; r̃ ∈ R̃}. The symmetry condition of Lemma 2.3 will be satisfied
if we define the random variables Z̃

(n)
i so that P(Z̃

(n)
i ∈ E × {σ }) = (1/k!)

×P(Z
(n)
i ∈ E) for measurable subsets E ⊆R and σ ∈ Sk . So if we set Y(0) = X(0)

and define i.i.d. sequences Y(n) = {Y (n)
i : i ≥ 1} using our new model, we can apply

Lemma 2.3 to obtain Y
(n)
1 → λ a.s. for some λ ∈ D .

Now note that, as {Y (n)
i : i ≥ 1} are i.i.d., the distribution of Y (1)

i is independent

of Z(1)
i . Hence it is the same as the distribution of X(1)

i . We continue inductively

to see that X
(n)
i and Y

(n)
i have the same distribution for all n, i (although the

joint distributions as n varies will not necessarily be the same). We now apply
Corollary 2.4 to obtain the result.

To apply Lemma 2.3 we need E(|X(0)
1 |(L(|X(0)

1 |))δ) < ∞, giving (a), except

when αi = 1/k when E|X(0)
1 |<∞ is sufficient, giving (b). �

Theorem 1.2 is just Theorem 2.5 in the case R = {1}.
It is conjectured in Li and Rogers (1999) that an almost sure limit will exist for

more general iterations which may vary from stage to stage, and with the initial
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random variables m-dependent rather than independent. In the case where k varies
the reversed submartingale argument of this paper cannot be used and the argument
in Theorem 2.5 requires independence initially, so the methods used here cannot
be applied in their present form to this conjecture.

APPENDIX

Required lemmas. The following results and their proofs are extensions of
Proposition 3.1 of Li and Rogers (1999) to the case with random weights.

A set of random variables {Xj : j ≥ 1} is said to be stationary and m-dependent
if for all n the sequence {Xn+j : j ≥ 1} has the same distribution as {Xj : j ≥ 1}
and the collections

{X1, . . . ,Xn} and {Xn+m+1,Xn+m+2, . . .}
are independent.

LEMMA A.1. Let {Xn;n ≥ 1} be a sequence of stationary and m-dependent
random variables on a probability space (	,F ,P) and {an,k; k ≥ 1, n ≥ 1}
an array of nonnegative real random variables on the same probability space
independent of {Xn; n ≥ 1} such that, for all ω ∈	,∑

k≥1

an,k = 1 for n ≥ 1.

If

sup
ω∈	

sup
k≥1

an,k → 0 as n → ∞

and

E(X1 ∨ 0) <∞,

then for each n ≥ 1,
∑

k≥1 an,kXk is a well-defined [−∞,∞)-valued random
variable with

E

(∑
k≥1

an,kXk

)
= EX1

and ∑
k≥1

an,kXk →p EX1.

PROOF. We define the σ -algebra Gn = σ(an,k; k ≥ 1). By conditioning on Gn

it is obvious that

E

(∑
k≥1

an,kXk

)
= EX1.
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For the second part, first assume that E(X1 ∧ 0) >−∞. Then we know that

E|X1|<∞
from the hypothesis that E(X1 ∨ 0) <∞. Given ε > 0 we choose τ > 0 such that

E(|X1|I{|X1|≥τ })≤ ε2

2
.

Now, for j ≥ 1, define the following two random variables:

Yj (τ )= Xj I{|X1|≤τ } − E(Xj I{|X1|≤τ }),
Zj (τ )= Xj − EX1 − Yj (τ ).

Then because
∑

k≥1 an,k = 1 for all ω ∈ 	 and all n ≥ 1, we have from the
definition of Zj (τ ),∑

k≥1

an,kXk − EX1 =∑
k≥1

an,kYk(τ )+∑
k≥1

an,kZk(τ ).

Now

P

(∣∣∣∣∣
∑
k≥1

an,kZk(τ )

∣∣∣∣∣≥ ε
∣∣∣Gn

)
≤ 1

ε
E

(∣∣∣∣∣
∑
k≥1

an,kZk(τ )

∣∣∣∣∣
∣∣∣Gn

)

≤ 1

ε

∑
k≥1

an,kE(|Zk(τ )||Gn).

Now E|Zk(τ )|< 2E(|X1|I{|X1|≥τ }) by the definition of Zk(τ ) so we use properties
of conditional expectation to get

P

(∣∣∣∣∣
∑
k≥1

an,kZk(τ )

∣∣∣∣∣≥ ε

)
≤ 2

ε
E
(|X1|I{|X1|>τ }

)
≤ ε.

We now use the stationarity and m-dependence of {Xn; n≥ 1} to get

P

(∣∣∣∣∣
∑
k≥1

an,kYk(τ )

∣∣∣∣∣≥ ε
∣∣∣Gn

)
≤ 1

ε2 Var

(∑
k≥1

an,kYk(τ )
∣∣∣Gn

)

= 1

ε2

(∑
k≥1

a2
n,k Var(Yk(τ )|Gn)

+ 2
∑

1≤i−j≤m

an,ian,j Cov
(
Yi(τ ), Yj (τ )|Gn

))
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≤ 1

ε2
(m+ 1)

∑
k≥1

a2
n,k Var(Yk(τ )|Gn)

≤ 2(m+ 1)τ 2

ε2 sup
k≥1

an,k
∑
k≥1

an,k

= 2(m+ 1)τ 2

ε2 sup
k≥1

an,k.

Now remove the conditioning and use the condition on the an,k to obtain

P

(∣∣∣∣∣
∑
k≥1

an,kYk(τ )

∣∣∣∣∣≥ ε

)
→ 0 as n → ∞.

Hence

lim supP

(∣∣∣∣∣
∑
k≥1

an,kXk − EX1

∣∣∣∣∣≥ 2ε

)
≤ ε,

from which we can deduce the result, when E(X1 ∧0) >−∞. If E(X1 ∧0)= −∞,
for each M > 0, we truncate and apply the previous argument to XkI{Xk≥−M} as
in Li and Rogers (1999). �

LEMMA A.2. With the same framework as Lemma A.1, and further that

ζ−1
n :=∑

k≥1

a2
n,k ≤ cb−n for all n ≥ 1, ω ∈	

for some constants b > 1 and c > 0, and

E
(|X1|(L(|X1|))δ)< ∞

for some δ > 1, where L(x) := log(max{e, x}), then

∑
n≥1

P

(∣∣∣∣∣
∑
k≥1

an,kXk − EX1

∣∣∣∣∣≥ ε

)
<∞ for all ε > 0

and hence (via Borel–Cantelli) we have that

lim
n→∞

∑
k≥1

an,kXk = EX1 a.s.

PROOF. By subtracting EX1 from the initial random variables, we can assume
EX1 = 0.
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For each n ≥ 1, define the following random variables:

Un = ∑
k≥1

an,kXkI{|Xk|≤ζn},

Vn = ∑
k≥1

an,kXkI{|Xk|>ζn},

and define G = σ(an,k; n ≥ 1, k ≥ 1). Now

∑
n≥1

P(|Vn − E(Vn|G)| ≥ ε|G) ≤ 1

ε

∑
n≥1

E
(|Vn − E(Vn|G)||G)

= 1

ε

∑
n≥1

E
(∣∣X1I{|X1|>ζn} − E(X1I{|X1|>ζn}|G)

∣∣|G)

by the definition of Vn

≤ 2

ε

∑
n≥1

E
(∣∣X1I{|X1|>ζn}

∣∣|G)

by the triangle and Jensen’s inequalities.

Now remove the conditioning to get

∑
n≥1

P(|Vn − EVn| ≥ ε) ≤ 2

ε

∑
n≥1

E(|X1|I{|X1|>bn/c})

≤ 2

ε

∞∑
n=1

∞∑
j=n

bj+1

c
P(bj/c < |X1| < bj+1/c)

≤ 2

ε

∞∑
j=n

jbj+1

c
P(bj < |cX1|< bj+1)

≤ 2b

ε logb
E
(|X1|L(|cX1|))

< ∞.

Now we use variance and covariance arguments again to get

P(|Un − E(Un|G)| ≥ ε|G) ≤ 1

ε2 Var(Un|G)

≤ m+ 1

ε2

∑
k≥1

a2
n,k Var(X1I{|X1|≤ζn}|G)

≤ m+ 1

ε2 ζ−1
n Var(X1I{|X1|≤ζn}|G).
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Now remove the conditioning to get∑
n≥1

P(|Un − EUn| ≥ ε)

≤ m+ 1

ε2

∑
n≥1

cb−n Var(X1I{|X1|≤bn/c})

≤ m+ 1

ε2

∑
n≥1

cb−n
E(X2

1I{|X1|≤bn/c})

= m+ 1

ε2

∑
n≥1

cb−n

(
bn

c
O

(
1

(L(bn/c))δ

)
E(|X1|(L(|X1|))δ)

)

= ∑
n≥1

O

(
1

nδ

)

<∞.

Combining the results for Un and Vn we can now use the Borel–Cantelli lemma to
get the result. �

REFERENCES

ALON, N. and NAOR, M. (1993). Coin-flipping games immune against linear sized coalitions. SIAM
J. Comput. 22 403–417.

ALON, N. and RABIN, M. O. (1989). Biased coins and randomized algorithms. In Advances in
Computing Research 5. Randomness and Computation (S. Micali, ed.) 499–507. JAI
Press, Greenwich, CT.

BERNASCONI, J. (1978). Real renormalization of bond disordered conductance lattices. Phys. Rev.
B 18 2185–2191.

BLUMENFELD, R. (1988). Probability densities of homogeneous functions: Explicit approximations
and applications to percolating networks. J. Phys. A 21 815–825.

BOPPANA, R. and NARAYANAN, B. (1993). The biased coin problem. In Proceedings of the 35th
ACM Symposium on Theory of Computing 252–257. ACM Press, New York.

BOPPANA, R. and NARAYANAN, B. (2000). Perfect-information leader election with optimal
resilience. SIAM J. Comput. 29 1304–1320.

DERRIDA, R. (1986). Pure and random models of statistical mechanics on hierarchical lattices. In
Critical Phenomena, Random Systems and Gauge Theories (K. Osterwalder and R. Stora,
eds.) 989–999. North-Holland, Amsterdam.

ESSOH, C. D. and BELLISARD, J. (1989). Resistance and fluctuation of a fractal network of random
resistors: A non-linear law of large numbers. J. Phys. A 22 4537–4548.

GRIFFITHS, R. and KAUFMAN, M. (1982). Spin systems on hierarchical lattices: Introduction and
thermodynamic limit. Phys. Rev. B 26 5022–5032.

HAMBLY, B. and O’CONNELL, N. (2000). A law of large numbers for random hierarchical
sequences. BRIMS Technical Report HPL-BRIMS-2000-13.

JONA-LASINIO, J. (1975). The renormalization group: A probabilistic view. Nuovo Cimento B 26
99–119.



1000 J. JORDAN

LI, D. L. and ROGERS, T. D. (1999). Asymptotic behavior for iterated functions of random
variables. Ann. Appl. Probab. 9 1175–1201.

NEWMAN, W. I., GABRIELOV, A. M., DURAND, T. A., PHOENIX, S. L. and TURCOTTE, D. L.
(1994). An exact renormalization model for earthquakes and material failure. Phys. D 77
200–216.

SCHENKEL, A., WEHR, J. and WITTWER, P. (2000). Computer-assisted proofs for fixed point
problems in Sobolev spaces. Elec. J. Math. Phys. 6.

SCHLÖSSER, T. and SPOHN, H. (1992). Sample-to-sample fluctuations in the conductivity of a
disordered medium. J. Statist. Phys. 69 955–967.

SHNEIBERG, I. YA. (1986). Hierarchical sequences of random variables. Theory Probab. Appl. 31
137–141.

STINCHCOMBE, R. B. and WATSON, B. P. (1976). Renormalization group approach for percolation
conductivity. J. Phys. C 9 3221–3247.

WEHR, J. (1997). A strong law of large numbers for iterated functions of independent random
variables. J. Statist. Phys. 86 1373–1384.

WEHR, J. and WOO, J.-M. (2000). Random conductance on hierarchical lattice. Preprint.

MATHEMATICAL INSTITUTE

UNIVERSITY OF OXFORD

24-29 ST. GILES

OXFORD OX1 3LB
UNITED KINGDOM

E-MAIL: jordan@maths.ox.ac.uk


