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Let � ⊆ �−∞�∞� be a closed domain and set ξ = inf�x�x ∈ �
. Let
the sequence � �n� = �X�n�

j �j ≥ 1
, n ≥ 1 be associated with the sequence
of measurable iterated functions fn�x1� x2� � � � � xkn �: �kn → � �kn ≥ 2�,
n ≥ 1 and some initial sequence � �0� = �X�0�

j �j ≥ 1
 of stationary and
m-dependent random variables such that P�X�0�

1 ∈ � � = 1 and X
�n�
j =

fn�X�n−1�
�j−1�kn+1� � � � �X

�n−1�
jkn

�, j ≥ 1, n ≥ 1. This paper studies the asymp-
totic behavior for the hierarchical sequence �X�n�

1 �n ≥ 0
. We establish
general asymptotic results for such sequences under some surprisingly
relaxed conditions. Suppose that, for each n ≥ 1, there exist kn non-
negative constants αn� i, 1 ≤ i ≤ kn such that

∑kn
i=1 αn� i = 1 and

fn�x1� � � � � xkn � ≤
∑kn

i=1 αn� ixi� ∀ �x1� � � � � xkn � ∈ �kn . If
∏n

j=1 max1≤i≤kj
αj� i → 0 as n → ∞ and E�X�0�

1 ∨ 0� < ∞, then, for some λ ∈ � ∪ �ξ
,

E�X�n�
1 � ↓ λ as n → ∞ and X

�n�
1 →P λ. We conclude with various exam-

ples, comments and open questions and discuss further how our results
can be applied to models arising in mathematical physics.

1. Introduction. Let � ⊆ �−∞�∞� be a closed domain and � �0� =
�X�0�

j �j ≥ 1
 a sequence of independent and identically distributed (i.i.d.) real
random variables on a complete probability space ���� �P� such that P�X1 ∈
� � = 1. Let f�x1� � � � � xk�: �k → � �k ≥ 2� be a real measurable function of k
real variables. A sequence �X�n�

1 �n ≥ 0
 of random variables is defined recur-
sively, using the given f, as follows. Define

X
�1�
j = f

(
X

�0�
�j−1�k+1� � � � �X

�0�
jk

)
� j ≥ 1(1.1)

and denote the resulting sequence � �1� = �X�1�
j �j ≥ 1
 by �f�

�0�. Iterating
the map, we then obtain a sequence � �0��� �1�� � � � �� �n�� � � � of i.i.d. sequences,
where � �n+1� = �f�

�n� for n = 0�1�2� � � � � We will write

� �n� = {
X

�n�
j �j ≥ 1

}
�(1.2)

We finally obtain the sequence �X�n�
1 �n ≥ 0
 of random variables. Arising orig-

inally from statistical physics, this is a special type of hierarchical model, of-
ten encountered in applications [See Blumenfeld (1988), Schlösser and Spohn
(1992), Schenkel, Wehr and Wittwer (1998), Shneiberg (1986), Stinchcombe
and Watson (1976) and Wehr (1997)]. Hierarchical models have been studied
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extensively in the literature for diverse purposes; see, for example, Bernasconi
(1978), Boppana and Narayan (1993), Bovin, Vas’kin and Shneiberg (1983),
Collet and Eckmann (1978), Derrida (1986), Griffiths and Kaufman (1982),
Koch and Wittwer (1994), Moore and Shannon (1956a, b), Newman, Gabri-
elove, Durand, Phoenix and Turcotte (1994), and Sinai (1982), among others.

If � = �0�1� the unit interval and f is homogeneous of degree one un-
der multiplication by positive numbers, convex separately in each variable
and satisfies a normalization condition f�1� � � � �1� = 1, then, by a theorem
of Shneiberg [(1986), page 137], the sequence X

�n�
1 converges to a constant in

probability. Shneiberg (1986) demonstrates that this theorem can be applied
to hierarchical resistor networks with bounded conductivities.

Under the assumption that � = �a�∞� for some constant a ∈ �−∞�∞�,

f�x1� � � � � xk� ≤
x1 + · · · + xk

k
(1.3)

for all �x1� � � � � xk� ∈ �a�∞�k and

E
(∣∣X�0�

1

∣∣) < ∞�(1.4)

Using the reversed-time martingale technique, Wehr (1997) claimed the se-
quence X

�n�
1 converges almost surely to a constant; see the main result Theo-

rem 1 of Wehr [(1997), page 1376]. Wehr (1997) then gives several applications
to models arising in mathematical physics and other areas which we revisit
in Section 4. Unfortunately, the proof of Theorem 1 of Wehr (1997) is incorrect
as it stands.

At the beginning of the proof, Wehr [(1997), page 1376] constructed a se-
quence of σ-algebras

�n = σ
(
X

�n�
1 + · · · +X

�n�
k �X

�0�
kn+1+1�X

�0�
kn+1+2� � � �

)
� n ≥ 0�

and claimed, “Clearly, the �n form a decreasing sequence of σ-algebras � � � ”.
This critical statement, however, is false.

In fact, if �n, n ≥ 0 form a decreasing sequence of σ-algebras, then Yn+1

is �n-measurable, where Yn+1 = X
�n+1�
1 + · · · +X

�n+1�
k , and since X

�n+1�
2 � � � � �

X
�n+1�
k are �n-measurable, it follows that X�n+1�

1 is also �n-measurable. Note
that X�n+1�

1 is independent of X�0�
kn+1+1� X

�0�
kn+1+2� � � �, so we must have

X
�n+1�
1 = E

(
X

�n+1�
1

∣∣�n

) = E
(
X

�n+1�
1

∣∣X�n�
1 + · · · +X

�n�
k

)�
in other words,

f
(
X

�n�
1 � � � � �X

�n�
k

) = E
(
X

�n+1�
1

∣∣X�n�
1 + · · · +X

�n�
k

)
�

which is true if and only if there exists a real measurable function g�x��� �k� →
� such that

f

(
X

�n�
1 � � � � �X

�n�
k

)
= g

(
X

�n�
1 + · · · +X

�n�
k

)
a.s.�

where � �k� = �y = x1 + · · · + xk�xi ∈ � �1 ≤ i ≤ k
.
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One may want to use

� ′
n = σ

(
X

�n�
1 � � � � �X

�n�
k �X

�0�
kn+1+1�X

�0�
kn+1+2� � � �

)
� n ≥ 0

to replace �n, n ≥ 0. Obviously, the � ′
n , n ≥ 0 form a decreasing sequence

of σ-algebras, but, in general the sequence ��X�n�
1 + · · · +X

�n�
k �/k; n ≥ 0
 is

not necessarily a reversed-time submartingale relative to the family �� ′
n� of

σ-algebras because E��X�n�
1 + · · · +X

�n�
k �/k � X�n+1�

1 � is independent of X�n+1�
j ,

j ≥ 2 and it follows that

E

(
X

�n�
1 + · · · +X

�n�
k

k

∣∣∣∣� ′
n+1

)
= E

(
X

�n�
1 + · · · +X

�n�
k

k

∣∣∣∣X�n+1�
1

)

≥ X
�n+1�
1 + · · · +X

�n+1�
k

k
a.s.�

which does not hold in general.
We have tried to remedy Wehr’s proof without success. On the other hand,

applying our Theorem 2.1, under the condition f�x1� � � � � xk� ≤ �x1 + · · · + xk�/
k for all xi ∈ � , 1 ≤ i ≤ k [i.e., (1.3)], and E��X�0�

1 �� < ∞ [i.e., (1.4)], there
follows

X
�n�
1 →P λ and lim sup

n→∞
X

�n�
1 = λ a.s.(1.5)

for some finite constant and, if further, f is a symmetric function of k vari-
ables, then

lim
n→∞X

�n�
1 = λ a.s.(1.6)

Here and below →P denotes convergence in probability.
The present paper is concerned with providing relaxed conditions under

which some asymptotic behaviors hold for such type of hierarchical models.
The main result, Theorem 2.1, appears in Section 2 and its proof is provided in
Section 3. Theorem 2.1 extends previous studies in two directions as follows:
(1) The original i.i.d. sequence is replaced by the sequence of (strictly) station-
ary and m-dependent random variables, and (2) the sequence �X�n�

1 �n ≥ 0

will be obtained by iterative procedures � �n� = �fn

� �n−1�, n ≥ 1 where, for
each n ≥ 1, fn�x1� � � � � xkn�� �kn → � is a real measurable function of kn �≥ 2�
variables which satisfies a more general condition than (1.3). Theorem 2.1 is
divided into three parts. The proof of Theorem 2.1 is based on the limit the-
orems for weighted sums of stationary and m-dependent random variables
stated in Proposition 3.1 and appears to have some novel features. The proof
of Theorem 2.1(iii) relies on certain submartingale techniques (and the conclu-
sion of Theorem 2.1(ii)). In Section 4, we provide examples, comments, a list
of open problems and applications. In light of our results and the examples it
seems that the further study of such types of hierarchical models will depend
on results of order statistics. We explain in Section 4 how the results can be
applied to the theory of disordered systems among other applied areas.
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2. Main results. We start this section with some notation. Let � �0� =
�X�0�

j �j ≥ 1
 be a sequence of (strictly) stationary and m-dependent random
variables such that P�X�0�

1 ∈ � � = 1 for some closed domain � ⊆ �−∞�∞�.
That is, for each n ≥ 1, the sequence �X�0�

n+j�j ≥ 1
 has the same distribution
as �X�0�

j �j ≥ 1
 and, the two collections{
X

�0�
1 � � � � �X

�0�
n

}
and

{
X

�0�
n+m+1�X

�0�
n+m+2� � � �

}
are independent. In this terminology, an i.i.d. sequence is 0-dependent and,
for any m1 < m2, m1-dependence implies m2-dependence. For each n ≥ 1, let
fn�x1� � � � � xkn�: �kn → � be a real measurable function of kn variables where
�kn ≥ 2�n ≥ 1
 is a sequence of integers. We will use fn, n ≥ 1 to define
a sequence � �n�, n ≥ 1 of strictly stationary and m-dependent sequences as
follows

� �n� = �fn
� �n−1� = {

X
�n�
j �j ≥ 1

}
� n ≥ 1�

X
�n�
j = fn

(
X

�n−1�
�j−1�kn+1� � � � �X

�n−1�
jkn

)
� j ≥ 1�

(2.1)

We define L�t� = ln max�e� t
, t ∈ �−∞�∞� and ξ = inf�x�x ∈ �
. Clearly,
ξ ∈ � if and only if � is bounded below.

The major result of this paper, which provides some relaxed conditions un-
der which certain asymptotic behaviors hold for �X�n�

1 �n ≥ 0
, follows.

Theorem 2.1. Suppose that, for each n ≥ 1, there exist kn non-
negative constants αn� i, 1 ≤ i ≤ kn such that

∑kn
i=1 αn� i = 1 and the fn satis-

fies the subadditive constraint

fn�x1� � � � � xkn� ≤
kn∑
i=1

αn�ixi ∀ �x1� � � � � xkn� ∈ �kn �(2.2)

(i) If

βn
�=

n∏
j=1

max
1≤i≤kj

αj�i → 0 as n → ∞(2.3)

and

E
(
X

�0�
1 ∨ 0

)
< ∞�(2.4)

then for some λ ∈ � ∪ �ξ
,

E
(
X

�n�
1

) ↓ λ as n → ∞ and X
�n�
1 →P λ�(2.5)

(ii) If � is bounded below,

γ−1
n

�=
n∏

j=1

kj∑
i=1

α2
j� i ≤ c · b−n� n ≥ 1�(2.6)
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for some constants b > 1 and c > 0, and

E
(�X�0�

1 �(L��X�0�
1 ��)δ) < ∞(2.7)

for some δ > 1 then for some λ ∈ � , both (2.5) and

lim sup
n→∞

X
�n�
1 = λ a.s.(2.8)

hold.
(iii) If � is bounded below, the fn, n ≥ 1 are symmetric functions of k1 =

k2 = · · · = k �≥ 2� real variables [i.e., for each n ≥ 1 and each permutation
�i1� � � � � ik� of �1� � � � � k�, we have fn�xi1

� � � � � xik� = f�x1� � � � � xk�] and � �0� =
�X�0�

j �j ≥ 1
 is a sequence of i.i.d. random variables such that

E
(∣∣X�0�

1

∣∣) < ∞�(2.9)

then for some λ ∈ � ,

lim
n→∞X

�n�
1 = λ a.s.(2.10)

Remark 2.1. Theorem 2.1(i) provides a general technique from which we
can get a weak law of large numbers for �X�n�

1 �n ≥ 0
 by checking conditions
(2.2)–(2.4) [which in fact are weaker than corresponding conditions given in
Wehr (1997)]. Theorem 2.1(ii) and (iii) are concerned with almost sure con-
vergence or a strong law of large numbers for �X�n�

1 �n ≥ 0
. Generally, the
conditions in Theorem 2.1 are easy to check. We now demonstrate how con-
clusions (2.5), (2.8) and (2.10) can be drawn from Theorem 2.1 by considering
the following two general examples. Further examples are provided in Sec-
tion 4.

Example 2.1. If, for each n ≥ 1, fn� �k → � is real measurable function
of k �≥ 2� real variables such that

fn�x1� � � � � xk� ≤
k∑

i=1

αixi ∀ �x1� � � � � xk� ∈ �k(2.11)

for some k nonnegative constants �α1� � � � � αk
 with

k∑
i=1

αi = 1 and max
1≤i≤k

αi < 1�(2.12)

it follows easily that

βn =
(

max
1≤i≤k

αi

)n
→ 0 as n → ∞

and

γ−1
n =

( n∑
i=1

α2
i

)n

= b−n where b =
( n∑
i=1

α2
i

)−1

> 1�
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that is, conditions (2.3) and (2.6) hold. Thus (2.5) follows if (2.4) holds, (2.8)
follows provided � is bounded below and (2.7) holds, and (2.10) follows if the
conditions in Theorem 2.1(iii) hold.

Example 2.2. Let f�x1� � � � � xk�: �k → � be a real measurable function
of k �≥ 2� real variables satisfying conditions (2.11) and (2.12). We now let
f1 = f2 = · · · = f. This is just a subcase of Example 2.1 which also includes
the special case when α1 = α2 = · · · = αk = 1/k discussed by Wehr (1997).

Remark 2.2. From the proof of Theorem 2.1(ii), we will find that, if con-
dition (2.7) is replaced by (2.4) and the bounded-below condition of � is re-
moved, then conclusion (2.8) still holds for some λ ∈ � ∪�ξ
 when αn� i = 1/kn,
1 ≤ i ≤ kn, n ≥ 1.

Remark 2.3. Let �Wn�n ≥ 1
 be a sequence of independent random vari-
ables such that

P

(
Wn = 1 + 1

n

)
= 1 −P�Wn = 0� = n

n+ 1
� n ≥ 1�

Then it follows that

E�Wn� ≡ 1� Wn →P 1

and

lim sup
n→∞

Wn = 1 a.s. and lim inf
n→∞ Wn = 0 a.s.

From this example, we can see that, under conditions of Theorem 2.1(ii), (2.5)
and (2.8) do not imply that

lim
n→∞X

�n�
1 = λ a.s.

Remark 2.4. Let f�x1� � � � � xk�� �k → � be a real measurable symmetric
function of k �≥ 2� real variables satisfying (2.11). We can assume without
loss of generality that

α1 ≥ α2 ≥ · · · ≥ αk�

Given k real numbers x1� � � � � xk, we arrange them in order as follows:

xk �1 ≤ xk �2 ≤ · · · ≤ xk �k�

Because of the symmetry of f, we have

f �x1� � � � � xk� ≤
k∑

i=1

αixk � i ∀ �x1� � � � � xk� ∈ �k�

By induction, it is easy to see that

k∑
i=1

αixk � i ≤
x1 + · · · + xk

k
�
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from which it follows that

f�x1� � � � � xk� ≤
k∑

i=1

αixk � i ≤
x1 + · · · + xk

k
∀ �x1� � � � � xk� ∈ �k�(2.13)

Remark 2.5. There is, of course, a theorem analogous to Theorem 2.1 for
the case when, for each n ≥ 1,

�2�2′� fn�x1� � � � � xkn� ≥
kn∑
i=1

αn� ixi ∀ �x1� � � � � xkn� ∈ �kn �

For example, if (2.2), (2.3) and

�2�4′� E�X�0�
1 ∧ 0� > −∞

hold, then for some λ ∈ � ∪ �ξ′
,

�2�5′� E
(
X

�n�
1

) ↑ λ as n → ∞ and X
�n�
1 →P λ�

where ξ′ = sup�x�x ∈ �
.

3. Proof of Theorem 2.1 We will need the following two general results
for weighted sums of stationary and m-dependent random variables in order
to prove Theorem 2.1.

Proposition 3.1. Let �Xn�n ≥ 1
 be a sequence of stationary and m-
dependent random variables and �an�k; k ≥ 1, n ≥ 1
 an array of nonnegative
real numbers such that ∑

k≥1

an�k = 1� n ≥ 1�

(a) If

sup
k≥1

an�k → 0 as n → ∞(3.1)

and

E�X1 ∨ 0� < ∞�(3.2)

then for each n ≥ 1,
∑

k≥1 an�kXk is a well-defined �−∞�∞�-valued random
variable with

E
(∑
k≥1

an�kXk

)
= E�X1�

and ∑
k≥1

an�kXk →P E�X1��(3.3)
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(b) If

ζ−1
n

�= ∑
k≥1

a2
n�k ≤ c · b−n� n ≥ 1(3.4)

for some constants b > 1 and c > 0, and

E
(�X1�

(
L��X1��

)δ)
< ∞(3.5)

for some δ > 1, then

∑
n≥1

P

(∣∣∣∣∑
k≥1

an�kXk −E�X1�
∣∣∣∣ ≥ ε

)
< ∞ ∀ ε > 0(3.6)

and it follows that

lim
n→∞

∑
k≥1

an�kXk = E�X1� a.s.(3.7)

Proof. For Proposition 3.1(a), we only need to prove its second part [i.e.,
(3.3)] because the first part is trivial. If E�X1 ∧ 0� > −∞, then, together with
(3.2), we have that

E��X1�� < ∞�

Given ε > 0, we choose τ > 0 such that

E
(�X1�I��X1�≥τ


) ≤ ε2

2
�

For each n ≥ 1, set

Yn�τ� = XnI��Xn�≤τ
 −E
(
XnI��Xn�≤τ


)
� Zn�τ� = Xn −E�X1� −Yn�τ��

Since
∑

k≥1 an�k = 1, ∀n ≥ 1, there follows

∑
k≥1

an�kXk −E�X1� =
∑
k≥1

an�kYk�τ� +
∑
k≥1

an�kZk�τ��

Since �Xn�n ≥ 1
 is a stationary sequence, we have that

P

(∣∣∣∣∑
k≥1

an�kZk�τ�
)
≥ ε

∣∣∣∣
)
≤ 1

ε
E

(∣∣∣∣∑
k≥1

an�kZk�τ�
∣∣∣∣
)

≤ 1
ε

∑
k≥1

an�kE
(�Zk�τ��

)

≤ 2
ε
E
(�X1�I��X1�>τ


)
≤ ε�

(3.8)



ASYMPTOTICS FOR HIERARCHICAL MODELS 1183

Since �Xn�n ≥ 1
 is a stationary and m-dependent sequence, using condition
(3.1), we may conclude that

P

(∣∣∣∣∑
k≥1

an�kYk�τ�
∣∣∣∣ ≥ ε

)
≤ 1

ε2
Var

(∑
k≥1

an�kYk�τ�
)

= 1
ε2

(∑
k≥1

a2
n�k Var�Yk�τ��

+ 2
∑

1≤i−j≤m
an� ian�j Cov�Yi�τ��Yj�τ��

)

≤ 1
ε2

�m+ 1�∑
k≥1

a2
n�k Var�Yk�τ��

≤ 2�m+ 1�τ2

ε2
sup
k≥1

an�k
∑
k≥1

an�k

= 2�m+ 1�τ2

ε2
sup
k≥1

an�k

→ 0 as n → ∞�

(3.9)

Then (3.8) and (3.9) imply

lim sup
n→∞

P

(∣∣∣∣∑
k≥1

an�kXk −E�X1�
∣∣∣∣ ≥ 2ε

)
≤ ε�

and since ε > 0 is arbitrary, (3.3) follows.
Now if E �X1 ∧ 0� = −∞, then together with (3.2), we have that

lim
τ→∞E�X1I�X1≥−τ
� = −∞�

Note that, for every τ > 0,∑
k≥1

an�kXk ≤ ∑
k≥1

an�kXkI�Xk≥−τ


and ∑
k≥1

an�kXk ≤ ∑
k≥1

an�kXkI�Xk≥−τ
 →P E�X1I�X1≥−τ
��

Letting τ → ∞, (3.3) follows with E�X1� = −∞. This completes the proof of
Proposition 3.1(a).

We now give the proof of Proposition 3.1(b). Note that, by Proposition 3.1(a),∑
k≥1

an�kXk →P E�X1��

So, applying Lemma 2.1 of Li, Rao, Jiang and Wang (1995), we may assume
that X1 is symmetric and hence E�X1� = 0. For each n ≥ 1, set

Un = ∑
k≥1

an�kXkI��Xk�≤ζn
� Vn = ∑
k≥1

an�kXkI��Xk�>ζn
�
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Since �Xn�n ≥ 1
 is a stationary sequence, (3.4) and (3.5) imply, for every
given ε > 0, that

∑
n≥1 P

(�Vn� ≥ ε
) ≤ 1

ε

∑
n≥1

E��Vn��

≤ 1
ε

∑
n≥1

E
(∣∣X1I��X1�>ζn


∣∣)

≤ 1
ε

∑
n≥1

E
(∣∣X1I��X1�>bn/c


∣∣)

≤ 1
ε

∞∑
n=1

∞∑
j=n

bj+1

c
P
(
bj/c < �X1� ≤ bj+1/c

)

≤ 1
ε

∑
j≥1

jbj+1

c
P
(
bj < �cX1� ≤ bj+1)

≤ b

ε ln b
E
(�X1�L��cX1��

)
< ∞�

(3.10)

Using the same argument as in (3.9), conditions (3.4) and (3.5) also imply for
every given ε > 0, that

∑
n≥1

P
(�Un� ≥ ε

) ≤ 1
ε2

∑
n≥1

E�U2
n�

≤ m+ 1
ε2

∑
n≥1

∑
k≥1

a2
n�kE

(
X2

1I��X1�≤ζn

)

≤ m+ 1
ε2

∑
n≥1

ζ−1
n E

(
X2

1I��X1�≤ζn

)

= m+ 1
ε2

∑
n≥1

ζ−1
n

(
ζnO

(
1

�L�ζn��δ
)
E
(�X1�

(
L��X1��

)δ))

= ∑
n≥1

O
(

1
nδ

)
< ∞�

(3.11)

Thus, from (3.10) and (3.11), (3.6) follows. This completes the proof of the
proposition. ✷

Proof of Theorem 2.1(i). Set

l0 = 1 and ln =
n∏
i=1

ki� n ≥ 1

and

gn�x1� � � � � xkn� =
kn∑
i=1

αn� ixi� n ≥ 1�
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For every n ≥ 1 define

hn�x1� � � � � xln� = gn

(
hn−1�x1� � � � � xln−1

�� hn−1�xln−1+1� � � � � x2ln−1
�� � � � �

hn−1�x�kn−1�ln−1+1� � � � � xln�
)
�

where h0�x� = x. Clearly, for every n ≥ 1,

hn

(
x1� � � � � xln

) = ln∑
i=1

dn� ixi� n ≥ 1�(3.12)

where dn�j, 1 ≤ j ≤ ln are ln nonnegative constants such that

dn�j = αn� idn−1� r if j = �i− 1�ln−1 + r�1 ≤ i ≤ kn and 1 ≤ r ≤ ln−1�(3.13)

where d0�1 = 1. Using mathematical induction, we may prove that

max
1≤j≤ln

dn�j =
n∏

j=1

max
1≤i≤kj

αj� i = βn� n ≥ 1(3.14)

and for every s > 0,

ln∑
j=1

ds
n�j =

n∏
j=1

kj∑
i=1

αsj� i� n ≥ 1�(3.15)

In particular,

ln∑
j=1

dn�j = 1 and
ln∑
j=1

d2
n�j =

n∏
j=1

kj∑
i=1

α2
j� i = γ−1

n � n ≥ 1�(3.16)

Clearly, conditions
∑kn

i=1 αn� i = 1� n ≥ 1, (2.2) and (2.4) imply that E�X�n�
1 ��

n ≥ 1 form a nonincreasing sequence of �−∞�∞�-valued numbers. Thus there
exists λ ∈ �−∞�∞� such that

E�X�n�
1 � ↓ λ as n → ∞�(3.17)

Note that by (2.2) and the definitions of gn, hn, n ≥ 1, it follows that

X
�n�
1 ≤ gn

(
X

�n−1�
1 � � � � �X

�n−1�
kn

) ≤ · · · ≤ hn

(
X

�0�
1 � � � � �X

�0�
ln

)
� n ≥ 1�

It follows from (3.12) that

X
�n�
1 ≤

ln∑
i=1

dn� iX
�0�
i � n ≥ 1�(3.18)

Because of (3.14) and (3.16), by Proposition 2.1(a), (2.3) and (2.4) imply that

ln∑
i=1

dn� iX
�0�
i →P E

(
X

�0�
1

)
�(3.19)

Consequently,

X
�n�
1 →P −∞ if E

(
X

�0�
1

) = −∞�(3.20)
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and, for ∀ ε > 0�

lim
n→∞P

(
X

�n�
1 ≥ E

(
X

�0�
1

)+ ε
)
= 0 if E

(�X�0�
1 �) < ∞�(3.21)

When E��X�0�
1 �� < ∞, it is easy to see that, for ∀ ε > 0,

lim
n→∞E

(
X

�n�
1 I�X�n�

1 ≥E�X�0�
1 �+ε


)
= 0�(3.22)

In fact, note that

X
�n�
1 I�X�n�

1 ≥E�X�0�
1 �+ε
 ≤

ln∑
i=1

dn� iX
�0�
i I�∑ln

i=1 dn� iX
�0�
i ≥E�X�0�

1 �+ε
� n ≥ 1

and, for every M > 0,

E

( ln∑
i=1

dn� i

∣∣X�0�
i

∣∣I�∑ln
i=1 dn� iX

�0�
i ≥E�X�0�

1 �+ε


)

≤ MP

( ln∑
i=1

dn� iX
�0�
i ≥ E�X�0�

1 � + ε� +E
(∣∣X�0�

1

∣∣I��X�0�
1 �≥M


)
�

Thus (3.19) and E��X�0�
1 �� < ∞ imply (3.22).

For any given integer n0 ≥ 1, (2.3) and (2.4) imply that
n∏

j=1

max
1≤i≤kj+n0

αj+n0� i
→ 0 as n → ∞ and E

(
X

�n0�
1 ∨ 0

)
< ∞�

If we repeat the previous procedures and assume E�X�n0�
1 � = −∞, then

X
�n�
1 →P −∞�(3.23)

If E��X�n0�
1 �� < ∞ then, for ∀ ε > 0, there follows

lim
n→∞P

(
X

�n�
1 ≥ E

(
X

�n0�
1

)+ ε
) = 0(3.24)

and

lim
n→∞E

(
X

�n�
1 I�X�n�

1 ≥E�X�n0�
1 �+ε


)
= 0�(3.25)

Thus, by (3.17), if λ = −∞, then

X
�n�
1 →P −∞�(3.26)

and if λ > −∞, then for ∀ ε > 0,

lim
n→∞P

(
X

�n�
1 ≥ λ+ ε

) = 0(3.27)

and

lim
n→∞E

(
X

�n�
1 I�X�n�

1 ≥λ+ε

)
= 0�(3.28)
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If λ > −∞, then it is easy to show (3.17) and (3.28) imply that, for ∀ ε > 0,

lim
n→∞E

((
X

�n�
1 − λ

)
I�X�n�

1 ≤λ−ε

)
= 0�(3.29)

and, together with (3.27), there follows

X
�n�
1 →P λ�

Finally, we prove λ ∈ � ∪ �ξ
. Since X
�n�
1 →P λ, there exists a subsequence

�nj�j ≥ 1
 of �1�2� � � � � n� � � �
 such that

X
�nj�
1 → λ a.s.

Note that � is a closed subset of �−∞�∞� and

P

( ∞⋂
j=1

{
X

�nj�
1 ∈ �

}) = 1�

So λ ∈ � ∪ �ξ
 follows. Theorem 2.1(i) is proved. ✷

Proof of Theorem 2.1(ii). Since the closed subset � of �−∞� ∞� is
bounded below, it follows that � ∪ �ξ
 = � . By Theorem 2.1(i), (2.6) and (2.7)
imply (2.5). Therefore there exists a subsequence �nj; j ≥ 1
 of �1�2� � � � �
n� � � �
 such that

lim
j→∞

X
�nj�
1 = λ a.s.

so that

lim sup
n→∞

X
�n�
1 ≥ λ a.s.(3.30)

By (3.18), (3.16) and (2.6), we have, for ∀ n ≥ 1,

X
�n�
1 ≤

ln∑
i=1

dn� iX
�0�
i and

ln∑
i=1

d2
n� i ≤ c · b−n

for some constants b > 1 and c > 0. Thus by Proposition 3.1(b), (2.7) implies

lim
n→∞

ln∑
i=1

dn� iX
�0�
i = E

(
X

�0�
1

)
a.s.

and so

lim sup
n→∞

X
�n�
1 ≤ E

(
X

�0�
1

)
a.s.(3.31)

Note that, for any given n0 ≥ 1, the fact that � is bounded below along with
(2.7) implies that

E
(∣∣X�n0�

1

∣∣(L��X�n0�
1 �))δ) < ∞
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and (2.6) implies

n∏
j=1

kj+n0∑
i=1

α2
j+n0� i

≤ cn0
b−n� n ≥ 1�

where cn0
= c · bn0/

∏n0
j=1

∑kj
i=1 α

2
j� i > 0. Using the same argument as in the

proof of Theorem 2.1(i), applying Proposition 3.1(b) again, we conclude

lim sup
n→∞

X
�n�
1 ≤ E

(
X

�n0�
1

)
a.s.(3.32)

Note that E�X�n�
1 � ↓ λ. So letting n0 → ∞, we have finally

lim sup
n→∞

X
�n�
1 ≤ λ a.s.(3.33)

and this, together with (3.30), implies (2.8). ✷

Proof of Theorem 2.1(iii). By Remark 2.4, (2.13), the sequence fn�x1�
� � � � xk�: �k → � , n ≥ 1 of real measurable symmetric functions with (2.2)
and kn = k, n ≥ 1 must satisfy the condition

fn

(
x1� � � � � xk

) ≤ x1 + · · · + xk
k

∀ �x1� � � � � xk� ∈ �k�

Note that � is bounded below, so applying Theorem 2.1(i), (2.9) implies that
there exists λ ∈ � such that

X
�n�
1 →P λ�(3.34)

Further, for every given integer n0 ≥ 0, by the same argument as in the proof
of Theorem 2.1(i), it is easy to see that

X
�n+n0�
1 ≤

∑kn

i=1 X
�n0�
i

kn
� n ≥ 1�

From the strong law of large numbers, we then have

lim sup
n→∞

X
�n�
1 ≤ E

(
X

�n0�
1

)
a.s.(3.35)

Letting n0 → ∞, together with (3.34), it follows that

lim sup
n→∞

X
�n�
1 = λ a.s.(3.36)

Similarly, for every l > 1, we have

X
�n�
l →P λ and lim sup

n→∞
X

�n�
l = λ a.s.(3.37)

We may now prove that the sequence �X�n�
1 + · · · + X

�n�
k ; n ≥ 0
 converges

almost surely to constant kλ. Define

�n = σ
(
X

�l�
1 + · · · +X

�l�
k � l ≥ n

)
� n ≥ 0�
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Obviously, the �n, n ≥ 0 form a decreasing sequence of σ-algebras and for
each n, X�n�

1 + · · · +X
�n�
k is �n-measurable. Furthermore, by the symmetry of

fn�x1� � � � � xk�� �x1� � � � � xk� ∈ �k, n ≥ 1, we have

E
(
X

�n�
�i−1�k+1 + · · · +X

�n�
ik

∣∣�n+1
) = E

(
X

�n�
1 + · · · +X

�n�
k

∣∣�n+1
)
� 1 ≤ i ≤ k�

It then follows that

E
(
X

�n�
1 + · · · +X

�n�
k

∣∣�n+1
) = E�X�n�

1 +X
�n�
2 + · · · +X

�n�
k2 ��n+1�

k

≥ E
(
X

�n+1�
1 + · · · +X

�n+1�
k

∣∣�n+1
)

≥ X
�n+1�
1 + · · · +X

�n+1�
k a.s.

(3.38)

We have shown that the sequence �X�n�
1 +· · ·+X

�n�
k ; n ≥ 1
 is a reversed-time

submartingale relative to the family ��n; n ≥ 0
 of σ-algebras [see Chow and
Teicher (1988) for the definition and fundamental theorems about reversed-
time submartingales]. Since X�n�

1 +· · ·+X
�n�
k −kξ ≥ 0, the convergence theorem

for nonnegative reversed-time submartingales implies that

lim
n→∞

(
X

�n�
1 + · · · +X

�n�
k − kξ

) = Z a.s.

for some random variable Z. Note that (3.34) and (3.37) imply that

X
�n�
1 + · · · +X

�n�
k →P kλ�

So Z = k�λ− ξ� almost surely and it follows that

lim
n→∞

(
X

�n�
1 + · · · +X

�n�
k

) = kλ a.s.(3.39)

Hence, combining (3.37) and (3.39), we have that

kλ = lim inf
n→∞

(
X

�n�
1 + · · · +X

�n�
k

)
≤ lim inf

n→∞ X
�n�
1 + lim sup

n→∞
X

�n�
2 + · · · + lim sup

n→∞
X

�n�
k

≤ lim inf
n→∞ X

�n�
1 + �k− 1�λ a.s.

(3.40)

and hence that

lim inf
n→∞ X

�n�
1 ≥ λ a.s.

which, together with (3.36), (2.10) follows and thus Theorem 2.1(iii) has been
established. ✷

As a by-product of the proof of Theorem 2.1(iii), we can strengthen Theo-
rem 2.1(iii) to the extent of providing a convergence rate.
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Corollary 3.1. Suppose that all conditions for Theorem 2.1(iii) are satis-

fied. Then X
�n�
1 , n ≥ 0 converges completely to λ, that is,

∞∑
n=0

P
(∣∣X�n�

1 − λ
∣∣ ≥ ε

)
< ∞ ∀ ε > 0�(3.41)

Proof. Note that, for each n ≥ 1, X�n�
2 is determined by random variables

�X�0�
j ; kn + 1 ≤ j ≤ 2kn
 and kn + 1 > 2kn−1. So �X�0�

j ; kn + 1 ≤ j ≤ 2kn
,
n ≥ 0 are independent and it follows that �X�n�

2 ; n ≥ 0
 is a sequence of
independent random variables. From the proof of Theorem 2.1(iii), we also
have that X

�n�
2 → λ almost surely as n → ∞. Applying the Borel–Cantelli

lemma, X�n�
2 , n ≥ 0 converges completely to λ. That is,

∞∑
n=0

P
(∣∣X�n�

2 − λ
∣∣ ≥ ε

)
< ∞ ∀ ε > 0�

Since, for each n ≥ 0, X�n�
1 and X

�n�
2 are i.i.d. random variables, (3.41) fol-

lows. ✷

4. Examples, comments and applications. Theorem 2.1 can be applied
to a very wide class of iterated functions. In this section we would like to pro-
vide some examples, comments, open problems and applications related to
Theorem 2.1. Obviously, our results can be applied to the several situations
discussed in Wehr (1997) such as random resistor networks, durability of hi-
erarchical fibers, the biased coin problem and so on. The following subsections
which include many interesting situations are just the application of Theo-
rem 2.1 in this connection.

4.1. Linear situation. We consider linear functions

fn�x1� � � � � xkn� =
kn∑
i=1

αn� ixi� n ≥ 1�(4.1)

where

αn� i ≥ 0�1 ≤ i ≤ kn and
kn∑
i=1

αn� i = 1� n ≥ 1�

Then by (3.12) we have

X
�n�
1 =

ln∑
i=1

dn� iX
�0�
i � n ≥ 1�(4.2)
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where, for every n ≥ 1, ln = ∏n
i=1 ki and dn�j, 1 ≤ j ≤ ln are ln nonnegative

constants satisfying (3.13)–(3.16). Thus, applying Theorem 2.1, we have:

1. Under (2.3) and (2.4),

E
(
X

�n�
1

) ≡ E
(
X

�0�
1

)
and X

�n�
1 →P E

(
X

�0�
1

)
�(4.3)

2. Under (2.6) and (2.7),

lim
n→∞X

�n�
1 = E

(
X

�0�
1

)
a.s.(4.4)

In particular, if αn� i = 1/kn, 1 ≤ i ≤ kn, n ≥ 1, then (4.4) also holds
given (2.4).

Proposition 4.1. Suppose further that � �0� = �X�0�
j ; j ≥ 1
 is a sequence

of i.i.d. random variables and �X�n�
1 ; n ≥ 0
 is obtained by the iterated linear

functions given in (4.1). Let

βn =
n∏

j=1

max
1≤i≤kj

αj� i and γn =
n∏

j=1

kj∑
i=1

α2
j� i� n ≥ 1�(4.5)

If

βn√
γn

=
n∏

j=1

max1≤i≤kj αj� i√∑kj
i=1 α

2
j� i

→ 0 as n → ∞(4.6)

and

E
((
X

�0�
1

)2)
< ∞�(4.7)

then

X
�n�
1 −E

(
X

�0�
1

)
σ
√
γn

→D N�0�1��(4.8)

where σ2 = Var�X�0�
1 � > 0� →D denotes convergence in distribution, and

N�0�1� stands for the standard normal distribution.

Proof. Using (4.2), we have

X
�n�
1 −E�X�0�

1 �
σ
√
γn

=
ln∑
i=1

bn� iZi� n ≥ 1�(4.9)

where

bn� i =
dn� i√
γn

and Zn = X
�0�
n −E�X�0�

1 �
σ

� 1 ≤ i ≤ ln� n ≥ 1�
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Obviously �Zn; n ≥ 1
 is a sequence of i.i.d. random variables with mean zero
and variance one and from (3.14)–(3.16), together with (4.6), we have

max
1≤i≤ln

bn� i =
βn√
γn

→ 0 as n → ∞ and
ln∑
i=1

b2
n� i = 1� n ≥ 1�(4.10)

Let ϕ�·� be the characteristic function of Z1. Then, from the Taylor expansion
at t = 0, there exists a constant δ > 0 such that

ϕ�t� = exp
{
−t2

2
�1 + ε�t��

}
� �t� ≤ δ�(4.11)

where ε�t�, �t� ≤ δ is a complex-valued function defined on �−δ� δ�, depend-
ing on ϕ�·� with limt→0 ε�t� = 0. Let ϕn�·� be the characteristic function of(
X

�n�
1 −E�X�0�

1 �)/σ√γn� n ≥ 1. Then, for every given t and for all sufficiently
large values of n, (4.9)–(4.11) imply

ϕn�t� =
ln∏
i=1

exp
{
−b2

n� it
2

2

(
1 + ε�bn� it�

)} = exp
{
−t2

2

(
1 + o�1�)}�

Consequently, we have

lim
n→∞ϕn�t� = exp

{
−t2

2

}
�

Finally applying the inverse limit theorem for characteristic functions [cf., e.g.,
Chow and Teicher (1988)], (4.8) follows. ✷

We can also give an analogue of the law of the iterated logarithm for the
�X�n�

1 ; n ≥ 0
 just discussed in Proposition 4.1. For example, if k1 = k2 = · · · =
k �≥ 2� and

fn�x1� � � � � xk� =
k∑

i=1

αixi� n ≥ 1

for some k nonnegative constants �α1� � � � � αk
 with

k∑
i=1

αi = 1 and max
1≤i≤k

αi < 1�

then clearly,

βn√
γn

=
(

max1≤i≤k αi√∑k
i=1 α

2
i

)n

→ 0 as n → ∞�

Using Proposition 4.1, (4.7) implies

X
�n�
1 −E�X�0�

1 �
σ�∑k

i=1 α
2
i �n/2

→D N�0�1��(4.12)
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A law of the iterated logarithm-type result for �X�n�
1 ; n ≥ 0
 is then

lim sup
n→∞

X
�n�
1 −E�X�0�

1 �
σ�∑k

i=1 α
2
i �n/2

√
2 lnn

= − lim inf
n→∞

X
�n�
1 −E�X�0�

1 �
σ�∑k

i=1 α
2
i �n/2

√
2 lnn

= 1 a.s.

(4.13)

The proof of (4.13) is left to the reader. ✷

4.2. L-statistics. From Remark 2.4, it seems that there exists an interest-
ing relationship between the special type of hierarchical models and linear
combinations of order statistics (in short, L-statistics).

Let �kn ≥ 2; n ≥ 1
 be a sequence of positive integers. Given kn real
numbers x1� � � � � xkn , we arrange them in order,

xkn �1 ≤ xkn �2 ≤ · · · ≤ xkn �kn� n ≥ 1�

We now consider the following symmetric functions:

fn�x1� � � � � xkn� =
kn∑
i=1

αn� ixkn � i� n ≥ 1�(4.14)

where

αn�j ≥ 0�1 ≤ j ≤ ln and
kn∑
i=1

αn� i = 1� n ≥ 1�

If further, αn�1 ≥ αn�2 ≥ · · · ≥ αn�kn ≥ 0, n ≥ 1 then from (2.13), we have

fn�x1� � � � � xkn� ≤
x1 + x2 + · · · + xkn

kn
� n ≥ 1�(4.15)

Let the sequence � �n� = �X�n�
j ; j ≥ 1
, n ≥ 1 be associated with some initial

sequence � �0� = �X�0�
j ; j ≥ 1
 of stationary and m-dependent random vari-

ables and the sequence of iterated functions defined in (4.14). Then clearly for
every n ≥ 1, X�n�

1 is an L-statistic of X�n−1�
1 � � � � �X

�n−1�
kn

. Applying Theorem 2.1
under condition (2.4), there exists a λ ∈ �−∞�∞� such that

E�X�n�
1 � ↓ λ as n → ∞�X

�n�
1 →P λ and lim sup

n→∞
X

�n�
1 = λ a.s.(4.16)

If conditions αn�1 ≥ αn�2 ≥ · · · ≥ αn�kn ≥ 0, n ≥ 1 and (2.4) are replaced by
conditions 0 ≤ αn�1 ≤ αn�2 ≤ · · · ≤ αn�kn , n ≥ 1 and E�X�0�

1 ∧ 0� > −∞, then
for some λ ∈ �−∞�∞�,

E�X�n�
1 � ↑ λ as n → ∞�X

�n�
1 →P λ and lim inf

n→∞ X
�n�
1 = λ a.s.(4.17)

If kn = k �≥ 2�, n ≥ 1 and � �0� is a sequence of i.i.d. random variables, then,
also under (2.4), we conclude

lim
n→∞X

�n�
1 = λ a.s.(4.18)
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We now assume that � �0� = �X�0�
j ; j ≥ 1
 is a sequence of i.i.d. random

variables with common distribution function F�x�, x ∈ �−∞�∞� and discuss
a few special cases as follows.

Case I. If αn�1 = · · · = αn�kn = 1/kn, n ≥ 1, then

fn�x1� � � � � xkn� =
x1 + · · · + xkn

kn
� n ≥ 1

and so

X
�n�
1 =

∑ln
i=1 X

�0�
i

ln
� n ≥ 1�(4.19)

This is just a special case discussed in Section 4.1 and, from (4.5) and (4.8),
we have √

ln
σ

(
X

�n�
1 −E

(
X

�0�
1

))→D N�0�1�(4.20)

provided condition (4.7). That is, under (4.7), suitably normalized random vari-
ables X

�n�
1 −E�X�0�

1 �, n ≥ 0 converge to the standard normal distribution.

Case II. If αn�1 = · · · = αn�kn−1 = 0 and αn�kn = 1, n ≥ 1, then

fn�x1� � � � � xkn� = xkn �kn ≥ x1 + · · · + xkn
kn

� n ≥ 1�

For this case we have

X
�n�
1 = max

1≤j≤ln
X

�0�
j � n ≥ 1�(4.21)

which is a subsequence of �max1≤j≤n X
�0�
j ; n ≥ 1
, the sequence of extreme

(maximum) values of �X�0�
j ; j ≥ 1
. Thus the asymptotic behavior for �X�n�

1 ;
n ≥ 0
 is found to be related to extreme value theory.

Extreme value theory is an elegant and mathematically fascinating theory
as well as a subject which pervades a wide variety of applications. See in
particular the books by Galambos (1978), Leadbetter, Lindgren and Rootzen
(1983) and Resnick (1987).

For any sequence � �0� = �X�0�
j ; j ≥ 1
 of i.i.d. random variables, we have

lim
n→∞X

�n�
1 = lim

n→∞ max
1≤j≤ln

X
�0�
j = sup

{
x� P(X�0�

1 ≤ x
)
< 1

}
a.s.(4.22)

Similarly, if fn�x1� � � � � xkn� = xkn �1, n ≥ 1, then

lim
n→∞X

�n�
1 = lim

n→∞ min
1≤j≤ln

X
�0�
j = inf

{
x� P�X�0�

1 ≤ x� > 0
}

a.s.(4.23)

Thus condition (2.4) in Theorem 2.1 is not necessary for (2.5) to hold.
On the other hand, unlike Case I, the suitably normalized random variables

X
�n�
1 −E�X�0�

1 �, n ≥ 0 converge to a non-Gaussian distribution.
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Let τ > 0. Write

4τ�x� =
{

0� if x < 0�

exp�−x−τ
� if x ≥ 0�

5τ�x� =
{

exp�−�−x�τ
� if x < 0�

1� if x ≥ 0�

6�x� = exp �−e−x
 � x ∈ �−∞�∞��

The functions 4τ�·�, 5τ�·� and 6�·� are referred to as the extreme value distri-
butions [see, e.g., Resnick (1987), page 9].

Gnedenko (1943), de Haan (1970, 1976) and Weissman (1975) establish the
fundamental result for extreme value theory as follows. Suppose there exists
an > 0, bn ∈ �−∞�∞�, n ≥ 1 such that

max1≤j≤n X
�0�
j − bn

an
→D G�·��(4.24)

where G�·� is assumed nondegenerate. Then G�·� is of the type of one of the
three classes 4τ�·�, 5τ�·� and 6�·� defined above. We say F�·� is in the domain
of attraction of G�·� [and write F�·� ∈ D�G�] if (4.24) holds. Gnedenko (1943),
de Haan (1970, 1976), Weissman (1975) also obtain necessary and sufficient
conditions for F�·� ∈ D�4τ�·��, F�·� ∈ D�5τ�·�� and F�·� ∈ D�6�·��, respec-
tively. These results are summarized in Resnick (1987).

We now can state a result for the asymptotic distribution of sequence of
random variables defined by (4.21).

Proposition 4.2. If (4.24) holds, then

X
�n�
1 − bln
aln

= max1≤j≤ln X
�0�
j − bln

aln
→D G�·��(4.25)

However, the converse is not true.

Counterexample. Consider distribution function

F�x� =
{

1 − 2−�x�� if x ≥ 0�

0� if x < 0�

and iterated functions fn�x1� x2� = x2 �2, n ≥ 1. Then

X
�n�
1 = max

1≤j≤2n
X

�0�
j � n ≥ 1�
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Then we have

lim
n→∞P

(
X

�n�
1 − n ≤ x

) = P
(
X2n �2n − n ≤ x

)
= lim

n→∞
(
1 − 2−�x+n�)2n

= lim
n→∞�1 − 2−�x�−n�2n

= exp�−2−�x�
�
That is,

X
�n�
1 − n →D exp�−2−�x�
�

Clearly, exp�−2−�x�
 does not belong to any of three classes 4τ�·�, 5τ�·� and
6�·� defined above. Thus (4.24) does not hold for any an, bn ∈ �−∞�∞�, n ≥ 1.

Note that min1≤j≤ln X
�0�
j = −max1≤j≤ln�−X

�0�
j �, n ≥ 1. We thus can state

a result analogous to Proposition 4.2 for the case when, for each n ≥ 1,
fn�x1� � � � � xkn� = xkn �1.

Case III. Suppose that the sequence �X�n�
1 ; n ≥ 1
 of random variables is

obtained by iterated functions,

fn�x1� x2� = αn�1x2 �1 + αn�2x2 �2� n ≥ 1�

where αn�1 ≥ αn�2, n ≥ 1. Then, under (2.4), (4.18) holds. The special case
where αn�1 = 1 − ε, αn�2 = ε, n ≥ 1 with 0 ≤ ε ≤ 1/2 was considered by
Boppana and Narayan (1993) in relation to the so-called biased coin problem.

Case IV. Consider the case when, for each n ≥ 1, kn = 3, αn�1 = αn�3 = 0
and αn�2 = 1. Then

fn

(
x1� x2� x3

) = x3�2� n ≥ 1�

For this case Theorem 2.1 cannot be applied because condition (2.2) is not
satisfied with either ≤ or ≥.

Let the sequence � �n� = �X�n�
j ; j ≥ 1t
, n ≥ 1 be associated with some ini-

tial sequence � �0� = �X�0�
j ; j ≥ 1
 of i.i.d. random variables and the sequence

of iterated functions fn�x1� x2� x3� = x3 �2� n ≥ 1. For each n ≥ 1, let Fn�·� be
the common distribution function of � �n� = �X�n�

j ; j ≥ 1
 and define

λ1 = sup
{
x�F�x� < 1

2

}
and λ2 = inf

{
x� F�x� > 1

2

}
�

Then λ1 ≤ λ2, for every x ∈ �λ1� λ2�, x is a median of random variable X
�0�
1

and

P
(
λ1 < X

�0�
1 < λ2

) = 0�

Proposition 4.3. (a) If λ1 = λ2, then

lim
n→∞X

�n�
1 = λ1 a.s.(4.26)



ASYMPTOTICS FOR HIERARCHICAL MODELS 1197

(b) If λ1 < λ2, then

X
�n�
1 →D H1�x� =




0� if x < λ1�
1
2 � if λ1 ≤ x < λ2�

1� if x ≥ λ2�

(4.27)

Proof. For each n ≥ 1, we arrange random variables X
�n−1�
1 , X�n−1�

2 and
X

�n−1�
3 in order as follows:

X
�n−1�
3 �1 ≤ X

�n−1�
3 �2 ≤ X

�n−1�
3 �3 �

Then X
�n�
1 = X

�n−1�
3 �2 , n ≥ 1. Then we have

Fn�x� = P
(
X

�n�
1 ≤ x

) = P
(
X

�n−1�
3 �2 ≤ x

)
= F3

n−1�x� + 3F2
n−1�x��1 −Fn−1�x��

= F2
n−1�x��3 − 2Fn−1�x���

(4.28)

Similarly,

1 −Fn�x� = P
(
X

�n�
1 > x

) = (
1 −Fn�x�

)2(3 − 2�1 −Fn−1�x��
)
�(4.29)

For every ε > 0 let

p�ε� = F�λ1 − ε��3 − 2F�λ1 − ε��
and

q�ε� = �1 −F�λ2 + ε��(3 − 2�1 −F�λ2 + ε��)�
Clearly, p�ε�� q�ε� ∈ �0�1�. Using mathematical induction, (4.28) and (4.29),
we can show that, for ε > 0,

Fn�λ1 − ε� ≤ pn�ε�F�λ1 − ε� and

1−Fn�λ2 + ε� ≤ qn�ε��1−F�λ2 + ε���(4.30)

which implies
∞∑
n=1

P
(
X

�n�
1 ≤ λ1 − ε

) ≤ F�λ1 − ε�
∞∑
n=1

pn�ε� < ∞(4.31)

and
∞∑
n=1

P
(
X

�n�
1 > λ2 + ε

) ≤ (
1 −F�λ2 + ε�) ∞∑

n=1

qn�ε� < ∞�(4.32)

Applying the Borel–Cantelli lemma, Proposition 4.3(a) follows from (4.31) and
(4.32).

As for Proposition 4.3(b), note that, for each n ≥ 1�

Fn�x� = 1
2 if λ1 < x < λ2�

So (4.31) and (4.32) also imply (4.27). This completes the proof of Proposi-
tion 4.3. ✷
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Similarly, one can consider the case when, for each n ≥ 1, kn = 4, αn�1 =
αn�3 = αn�4 = 0 and αn�2 = 1. Then

fn�x1� x2� x3� x4� = x4 �2� n ≥ 1�

Let �X�n�
1 ; n ≥ 1
 be associated with some initial � �0� = �X�0�

j ; j ≥ 1
 of i.i.d.
random variables and the sequence of iterated functions fn�x1� x2� x3� x4� =
x4 �2, n ≥ 1. Define

λ3 = sup
{
x� F�x� < 5 −√

13
6

}
and λ4 = inf

{
x� F�x� > 1 +√

13
6

}
�

We have (1) if λ3 = λ4, then

lim
n→∞X

�n�
1 = λ3 a.s.

and (2) if λ3 �= λ4, then

X
�n�
1 →D H2�x� =




0� if x < λ3�

5 −√
13

6
� if λ3 ≤ x < λ4�

1� if x ≥ λ4�

We leave the proof of this result to the reader. One may compare this result
with Proposition 4.3.

4.3. Random resistor networks. Similarly to Wehr (1997), our Theorem 2.1
applies to several hierarchical networks of random resistors. We now consider
the so-called weighted diamond network as follows:

fn�x1� x2� x3� x4� =
(

1
wn�1xjn�1

+ 1
wn�2xjn�2

)−1

+
(

1
wn�3xjn�3

+ 1
wn�4xjn�4

)−1

� n ≥ 1�

(4.33)

where for each n ≥ 1, �jn�1� jn�2� jn�3� jn�4
 is a permutation of �1�2�3�4
,
xi, wjn� i

, 1 ≤ i ≤ 4 are nonegative (and 0−1 = ∞, ∞−1 = 0) with

wn�1 +wn�2 +wn�3 +wn�4 = 4�

The xi, 1 ≤ i ≤ 4 represent conductivities of a random resistor while fn�x1�
x2� x3� x4� is the nth step effective conductivity of the system of four resistors
arranged in a “weighted diamond.” The example considered in Wehr [(1997),
page 1378] is just the special case when one chooses wn� i = 1, jn� i = i,
1 ≤ i ≤ 4, n ≥ 1. It is easy to see, using the inequality between harmonic and
arithmetic means that

fn�x1� x2� x3� x4� ≤
wn�1xjn�1

+wn�2xjn�2
+wn�3xjn�3

+wn�4xjn�4

4

= αn�1x1 + αn�2x2 + αn�3x3 + αn�4x4� n ≥ 1�

(4.34)
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where the weights αjn� i = wn� i/4, 1 ≤ i ≤ 4, n ≥ 1 satisfy

αn� i ≥ 0�1 ≤ i ≤ 4 and αn�1 + αn�2 + αn�3 + αn�4 = 1� n ≥ 1�

Let �X�n�
1 ; n ≥ 1
 be associated with some initial � �0� = �X�0�

j ; j ≥ 1
 of
nonnegative i.i.d. random variables and the sequence of iterated functions
fn�x1� x2� x3� x4�, n ≥ 1 defined by (4.33). Applying Theorem 2.1(i) and (ii), we
conclude (1) if

n∏
j=1

max
1≤i≤4

αj� i → 0 as n → ∞ and E
(
X

�0�
1

)
< ∞�(4.35)

then, for some λ ≥ 0,

E
(
X

�n�
1

) ↓ λ as n → ∞ and X
�n�
1 →P λ�(4.36)

and (2) if

n∏
j=1

4∑
i=1

α2
j� i ≤ c · b−n� n ≥ 1 and E

(
X

�0�
1

(
L
(
X

�0�
1

))δ)
< ∞(4.37)

for some constants b > 1, c > 0 and δ > 1, then, for some λ ≥ 0 both (4.36) and

lim sup
n→∞

X
�n�
1 = λ a.s.(4.38)

hold. As Wehr (1997) notes, the constant λ is interpreted as the effective con-
ductivity of the hierachical weighted diamond lattice in the infinite-volume
limit. The special situation where wn� i = 1, jn� i = i, 1 ≤ i ≤ 4, n ≥ 1 has also
been extensively studied by Blumenfeld (1988), Schlösser and Spohn (1992),
Schenkel, Wehr and Wittwer (1998) and Stinchcombe and Watson (1976).

On the other hand, Theorem 2.1(iii) cannot be applied here even for the
special situation discussed by Wehr [(1997), page 1378] because the fn�x1�
x2� x3� x4�, n ≥ 1 defined by (4.33) are not symmetric functions. All claims in
Wehr (1997) regarding applications to particular models can be easily proved
using the submartingale method (unlike, apparently, his main theorem), since
in all these cases one has enough symmetry to imply that E�X�n�

j � Yn+1� is
independent of j = 1� � � � � k, where Yn+1 = X

�n+1�
1 + · · · +X

�n+1�
k , n ≥ 0.

4.4. Future research directions. The main theme of this paper has been
the asymptotic behavior especially the law of large numbers for hierarchical
sequence �X�n�

1 ; n ≥ 0
. There remain many open questions concerning this
topic.

Although Theorem 2.1 is a sufficiently general result that it can be applied
to a wide class of iterated functions, it does not include Proposition 4.3(a) as
a special case. Our first questions is, Can a reasonably general result be found
which includes such interesting cases as Proposition 4.3(a), etc. as special cases?
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We have mentioned that the proof of Theorem 1 of Wehr (1997) needs to
be repaired. On the other hand, motivated by our Theorem 2.1, we conjecture
that, under conditions (2.4) and (2.6), both (2.5) and

lim
n→∞X

�n�
1 = λ a.s.

hold.
We have discussed a few situation of iterated functions defined by (4.14) in

Section 4.2. Let �X�n�
1 ; n ≥ 1
 be obtained by iterated functions

fn�x1� x2� � � � � xk� = α1xk �1 + α2xk �2 + · · · + αkxk �k� n ≥ 1

and initial sequence �X�0�
j � j ≥ 1
 of i.i.d. random variables, where

αi ≥ 0�1 ≤ i ≤ k and α1 + α2 + · · · + αk = 1�

Based on that analyses, we conjecture that, under suitable conditions of the
random variable X

�0�
1 , appropriately normalized random variables X�n�

1 , n ≥ 1
should converge in distribution to some nondegenerate random variable.
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