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COMPLETENESS OF SECURITIES MARKET MODELS—AN
OPERATOR POINT OF VIEW 1

BY ROBERT BATTIG¨
Cornell University

We propose a notion of market completeness which is invariant under
change to an equivalent probability measure. Completeness means that
an operator T acting on stopping time simple trading strategies has dense
range in the weakU topology on bounded random variables. In our setup,
the claims which can be approximated by attainable ones has codimension
equal to the dimension of the kernel of the adjoint operator TU acting on
signed measures, which in most cases is equal to the ‘‘dimension of the
space of martingale measures.’’ From this viewpoint the example of Artzner
and Heath is no longer paradoxical since all the dimensions are 1. We also
illustrate how one can check for injectivity of TU and hence for complete-

Žness in the case of price processes on a Brownian filtration e.g.,
.Black]Scholes, Heath]Jarrow]Morton and price processes driven by a

multivariate point process.

Ž .1. Introduction. Since the papers of Harrison and Kreps 1979 and
Ž .Harrison and Pliska 1981 , there has been much interest in the connection

between notions of no arbitrage and completeness and the structure of the set
of equivalent martingale measures. Roughly, the absence of arbitrage is
characterized by the existence of an equivalent martingale measure, while
completeness holds if and only if the equivalent martingale measure is
unique. Precise results along these lines usually go under the names of the
First and the Second Fundamental Theorem of Asset Pricing.

The question of completeness has typically been addressed by first fixing
an equivalent martingale measure Q and then making the trading strategies
w Ž .xHarrison and Pliska 1981 , the topology used in the definition of complete-

w Ž .x wness Artzner and Heath 1995 or the definition of a hedge Ansel and
Ž .xStricker 1994 depend on Q. As was pointed out by Artzner and Heath

Ž .1995 , such a measure-dependent notion of completeness is not generally
sufficient to ensure uniqueness of the equivalent martingale measure or,
more loosely speaking, is not sufficient to ensure unique pricing. In their
example there are many martingale measures, and traders choosing different
measures may not agree on which claims can be approximated by attainable
ones. A trader will think that the market is complete if and only if she choose
one of the two extremal equivalent martingale measures.
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We propose instead a setup for a securities market model which is invari-
ant under change to an equivalent probability measure and a notion of
completeness that also has this property. This removes the logical depen-
dence between the questions of no arbitrage and completeness, introduced by

Žfirst fixing an equivalent martingale measure Q in this connection see
Section 6; the paragraph after the proof of Theorem 5 as well as Example 6.1
illustrate that the existence of an equivalent martingale measure may actu-

.ally rule out the possibility of completeness . It also resolves the ‘‘paradox’’ of
the Artzner]Heath example, since from our new viewpoint, the claims which
can be approximated by attainable claims has codimension one, reflecting the
fact that the ‘‘set of equivalent martingale measures has dimension 1.’’

As our title indicates, we approach the question of completeness by making
use of operators. This approach to investigating completeness was first

Ž .suggested by Jarrow and Madan 1997 and their paper inspired this work. In
a different sense, operators were also used in Bjork, Kabanov and Rung-¨

Ž . Ž .galdier 1996 and Bjork, Di Masi, Kabanov and Runggaldier 1997 . These¨
authors associate operators to the jump-diffusion coefficients used in model-
ing the fundamental price processes.

We now describe in broad strokes our setup and the main results. All
proofs as well as precise definitions and explanations not given here will

Žappear in later sections. Given is a filtered probability space V, FF, F s
Ž . .FF , P satisfying the usual conditions, a set A of labels for assetst t gw0, 1x
Ž . �Ž a . 4which may be infinite , and a family VV s Z of fundamentalt t gw0, 1x a g Aj �D4

price processes with ZD ' 1. In words, we assume that a deflation has beent
carried out, so that the riskless asset D is constant.

An agent is allowed to trade in a finite number of assets via self-financing,
bounded, stopping time simple trading strategies that yield a bounded payoff
at time 1. We denote by Y the space of all these trading strategies and by

`Ž .C s L FF , P the space of claims. A typical trading strategy is of the form1
Ž Ž a . .x, H , where x g R stands for the time 0 value of the portfolio anda g A
H a is a bounded, stopping time simple process with H a representing thet

w xholdings in asset a at time t g 0, 1 . Since an agent trades only in a finite
number of assets simultaneously, all but finitely many H a ’s are identically
zero. Thus the linear operator T : Y ª C given by

1
a a a aT x , H s x q H dZ , x , H g YŽ . Ž .Ž . Ž .Ý HagA agAu u

0agA

is well defined and calculates the time 1 payoff resulting from a given trading
Ž . astrategy. Noe that the stochastic integrals make sense even if the Z ’s are

not semimartingales, because the H a ’s are stopping time simple and hence
the integrals reduce to sums.

We let M denote the space of P-absolutely continuous signed measures on
FF and think of m g M as an agent’s personal way of assigning values to1
claims. She assigns the value HX dm to the claim X g C. An agent’s valuation
m g M also gives her a way of measuring closeness of claims, in that the
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Ž . � < < Ž . < 4finite intersections of sets of the form B X, « s Y g C H X y Y dm - « ,
X g C and « ) 0 are a basis for a topology t m on C. We endow C with the
coarsest topology t finer than all of the t m, m g M. This topology is obviously
agent]measure-independent. Loosely speaking, claims are close if any agent,
regardless of her valuation m g M agrees that they are close. Here M

endowed with the total variation norm is a Banach space which is isomorphic
1Ž .to L FF , P by the Radon]Nikodym theorem and hence its topological dual is1

`Ž .C s L FF , P . Furthermore, the topology t on C can alternatively be de-1
scribed as the coarsest topology making all the elements of M continuous
linear functionals on C. Therefore, t is what is frequently referred to as the

U w Ž .xweak topology see, e.g., Rudin 1991 and we will also use this terminology.
Ž Ž a . .If an agent wishes to trade according to x, H g Y, then she needsa g A

Ž Ž a . .to put up an amount of money x at time 0. Thus p x, H s x for0 a g A
Ž Ž a . .x, H g Y is the market’s way of valuing trading strategies. On thea g A
other hand, an agent’s personal valuation m g M of claims induces a valua-
tion TU m of trading strategies given by

TU m x , H a s T x , H a dm , x , H a g Y.Ž . Ž . Ž . Ž .Ž . Ž . Ž .HagA agA agA

� U 4 � 4We endow Y with the coarsest topology, making T m j p continuousmg M 0
linear functionals on Y. The topological dual of Y is denoted by X and we can
regard TU as a linear operator from M into X. As will be seen later, TU is in
fact the adjoint operator of T. We summarize this pictorially as

TU

6X M,
T 6

Y C.

Our setup is measure-independent in the sense that X, Y, C and M are all
invariant under change to an equivalent probability measure.

We let AA denote the attainable claims and AA0 the claims attainable at1 1
zero initial cost

1
a a aAA s x q H dZ x , H g Y s Im T ,Ž .Ž .Ý H agA1 u u½ 50agA

10 a a aAA s H dZ 0, H g Y .Ž .Ž .Ý H agA1 u u½ 50agA

Let M rM loc denote the P-equivalent martingale]local martingale mea-qq qq
sures for VV . We are now ready to define completeness.

DEFINITION 1. The market is complete if AA s Im T is dense in C with1
respect to the weakU topology.

Since the weakU topology as well as the space Y of trading strategies is
agent]measure-independent, the same is true for our notion of completeness.
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In referring to the measure-dependent notion of completeness used by Artzner
Ž .and Heath 1995 , we shall use the following terminology:

DEFINITION 2. For Q g M loc we say that the market is Q-complete ifqq
1Ž .AA s Im T is dense in C with respect to the L FF , Q topology.1 1

To be able to state our results, we need one more definition.

Ž . 0 � 4DEFINITION 3. The no arbitrage condition NA holds if AA l C s 0 ,1 q
where C denotes the r.v.’s in C which are P-a.s. nonnegative.q

Since we consider only stopping time simple trading strategies and no
closures of sets appear in Definition 3, NA is a mild no arbitrage condition.
Stronger conditions are needed to obtain versions of the first fundamental
theorem of asset pricing when the time set is infinite. See Dalang, Morton

Ž . Ž . Ž .and Willinger 1990 , Lakner 1993 , Schachermayer 1994 and Delbaen and
Ž .Schachermayer 1994 . For our purposes NA is sufficient; it ensures that if

X g AA , then any two trading strategies resulting in the payoff X are valued1
a ˜aŽ Ž . . Ž Ž . .the same by the market, that is, X s T x, H s T x, H im-˜a g A a g A

a ˜aŽ Ž . . Ž Ž . .plies p x, H s x s x s p x, H . Thus, attainable claims are˜ ˜0 a g A 0 a g A
unambiguously priced by the initial investment required to attain them.

First, we give operator characterizations of completeness and Q-complete-
ness. The numbering of conditions may seem strange. However, conditions
Ž . Ž .iii and iv will appear a little later and the numbering has been chosen to
be natural, given the relationship we will deduce between the various condi-
tions. See Figure 1 for help in following the development.

FIG. 1. Except for the top row, it is assumed that NA holds and that the price processes are
locally bounded. If VV is finite or all the elements of VV are processes with continuous sample
paths, then all the conditions are equivalent.
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THEOREM 1. The following are equivalent:

Ž .i The market is complete.
Ž . Uii The operator T : M ª X is injective.

Let Q g M loc . The following are equivalent:qq

Ž .v The market is Q-complete.
Ž . U ŽQ, `. ŽQ, `.vi The operator T restricted to M is injective, where M denotes
Ž .the signed measures in M with bounded Radon]Nikodym derivative with

respect to Q.

Ž . Ž .REMARK 1. In particular, comparing ii and vi shows that our notion of
completeness is stronger than Q-completeness.

Ž Ž a . . Ž Ž a . .Recall that p x, H s x for x, H g Y gives the market’s0 a g A a g A
valuation of trading strategies. We denote by PP the signed measuredqry
whose induced valuation of trading strategies is consistent with the market,
that is, m g PP if and only if TUm s p . Finally, we led M denote theqry 0 qq
cone of P-equivalent positive measures in M. The next result states that,
under appropriate assumptions, the equivalent local martingale measures
are simply the positive measures inducing a market consistent valuation of
trading strategies.

Ž . locPROPOSITION 1. If NA holds in particular if M / B then M : PPqq qq qry
l M . If, furthermore, the elements of VV are locally bounded, then M loc sqq qq
PP l M .qry qq

The structure of the sets PP and M loc is closely connected to ker TU
qry qq

and hence to completeness and Q-completeness:

� < U4THEOREM 2. If Q g PP , then PP s Q q m m g ker T . Hence condi-qry qry
Ž . Ž .tions i and ii of Theorem 1 are further equivalent to:

Ž . � 4iii PP s Q .qry

Assume that NA holds and that the elements of VV are locally bounded. If
loc Ž . loc � 4Q g M and we let iv denote the condition M s Q then we haveqq qq

iii « iv « vi .Ž . Ž . Ž .

Ž . Ž X. � 4When Q g M , iv may be replaced by iv M s Q .qq qq
If VV is finite or if all the elements of VV are processes with continuous

Ž . Ž .sample paths then i ] vi are all equivalent.

Ž .REMARK 2. The Artzner]Heath example see Examples 4.1 and 4.2 below
Ž . Ž .shows that v , which by Theorem 1 is equivalent to vi , is not generally
Ž . Ž X . Ž .sufficient for iv or iv when Q g M . In Example 4.3 we will see that ivqq

Ž . Ž .does not generally imply i , which is equivalent to iii .
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locŽ .If Q is a probability measure, we let A Q denote the vector space of
locŽ . pprocesses of Q-locally integrable variation. For A g A Q we use A to

Ž . Ž .denote the Q-compensator or dual predictable projection of A. We let MM Q
pŽ .denote the space of uniformly integrable Q-martingales and HH Q , 1 F p F

5 < < 5 p
locŽ .`, the space of Q-martingales X for which sup X - `. MM Q andL ŽQ .t t t

p, locŽ . Ž . pŽ .HH Q consist of the processes which are locally in MM Q and HH Q
Ž . locŽ .1 F p F ` , respectively. In particular, MM Q is the space of local Q-

Ž . � Ž . < 4 pŽ . p, locŽ . Ž .martingales. We let A Q s X g A Q X s 0 and HH Q , HH Q , MM Q0 0 0 0 0
locŽ .and MM Q are defined analogously. Finally, when no confusion can arise,0

we omit the dependence of these spaces on Q, writing, for example, A in place
Ž .of A Q .

We say that two adapted cadlag processes X, Y are orthogonal and we
write X H Y if XY g MM loc. When X, Y are local martingales this coincides0
with the usual notion of orthogonality for local martingales. If SS is a family
of adapted cadlag processes, we write X H SS to indicate that X is orthogonal
to each element in SS . Of course, this notion of orthogonality is in reference to
a particular probability measure. In Theorem 1 we saw that completeness
was equivalent to injectivity of TU. To make this a practically useful observa-
tion, we need a way of checking for injectivity of TU. For this purpose we
introduce the following orthogonality condition which also appears in Jacod
Ž . loc1979 as condition C when BB : MM .1 0

˜DEFINITION 4. Let P be a P-equivalent probability measure. We say that
the family of price processes VV satisfies the orthogonality condition with

˜ ˜ 1 ˜Ž . � Ž . < 4 � 4respect to P or more briefly that OO VV , P holds if j g HH P j H VV s 0 .

The next result will be useful in further characterizing injectivity of TU

Žand hence completeness in a number of settings see Theorems 4 and 5
.below :

THEOREM 3. Assume NA holds and that the elements of VV are locally
˜ Ž .bounded. if P is any P-equivalent probability measure then condition ii of

Theorem 1 which states that the operator TU : M ª X is injective, is equivalent
to:

˜Ž . Ž .vii OO VV , P holds.

˜ loc Ž .If P s Q g M then vii takes the following form:qq

Ž .X � Ž . <w a x locŽ . w a x p 4 � 4vii j g MM Q j , Z g A Q and j , Z s 0 ; a g A s 0 .0

The results contained in Theorems 1]3 are graphically summarized in
Figure 1.

Ž .Given a semimartingale X, let EE X denote its Doleans-Dade exponential,´
Ž .that is, Y s EE X is the unique solution to dY s Y dX with Y s 1. Int t t ty t 0

Section 5 we consider price processes which are positive continuous semi-
Ž .martingales on a d-dimensional Brownian filtration and hence are of the
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form
Za s Za EE Ra ,Ž . tt 0

where
d

t
a a a iR s A q s i dB ,Ž .Ý Ht t u u n 1

0is1

a Ž . as i , i s 1, . . . , d, are predictable processes, the A ’s are continuous adapted
a Ž i.dfinite variation processes with A s 0, a g A and B is d-dimensional0 t is1

Brownian motion. Ra has the economic interpretation as the return process
of asset a . One obvious type of model covered by this setup is a generalized
Black]Scholes stock model with prices evolving as possibly time inhomoge-

�Ž T . 4 � 4neous diffusions. Another possibility is to have VV s Z j 1 ,t t gw0, 1x T g TT
w . Twhere TT : 1, ` and Z is the deflated price of a bond with maturity T g TT

Ž .as in Heath, Jarrow and Morton 1992 . Since we are interested in complete-
ness at time 1, the bonds under consideration clearly should have maturity

w .after time 1, hence the restriction TT : 1, ` .
< <If the number of assets is finite, that is, A - `, we let S denote thet

< < Ž a Ž ..dpredictable A = d-matrix process whose row vectors are s i , a g A.t is1
We call S the volatility matrix of the risky assets. Since there are only dt
‘‘sources of randomness’’ coming from the Brownian motion, it is natural to
expect that d ‘‘sufficiently independent’’ risky assets are needed for complete-
ness. More precisely, we will use Theorem 3 to obtain Theorem 4.

loc < <THEOREM 4. Assume M / B, that NA holds and that A - `. Let S beqq t
as in the preceding paragraph. Then the market is complete if and only if rank
S s d holds M P-a.e.t

Theorem 4 is essentially known. Indeed by Theorem 3 the market is
< qq <complete if and only if MM s 1, so the result follows from a slight modifi-loc

Ž .cation of Theoreme 6 of Ansel and Stricker 1992 .´ `
Price processes with jumps have been studied by various authors with

Ž .different goals in mind. See, for example, Merton 1976 , Mercurio and
Ž . Ž .Runggaldier 1993 and Jeanblanc-Picque and Pontier 1990 . In Section 6 we´

will consider price processes which are driven by an E-valued multivariate
Ž . Ž .point process m with compensator n dt, dx s K dx dt. We will see that ourt

assumptions on the price processes allow us to write them in the following
form:

Za s Za EE Ra ,Ž . tt 0

where

Ra s Aa q s a u , x m du, dx y n du, dx� 4Ž . Ž . Ž .Ht t
w x0, t =E

a Ž . P aand the s t, x ’s are bounded M -a.e. Here s , m and n may depend on v,m

but as is customary, this dependence is suppressed. Again, Ra has the
interpretation as the return process of asset a .
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The points of E should be thought of as possible types of ‘‘shocks’’ which
occur in the economy according to the multivariate point process m and cause

< < a Ž .the price processes to adjust by jumping. If E - ` we may regard s t, x
< < Ž a Ž ..as an E -dimensional vector for fixed v and t, and we then write s xt x g E

a Ž . < < < <in place of s t, x . If now A q E - `, we let S denote the predictablet
< < < < Ž a Ž ..A = E -matrix process whose row vectors are s x , a g A. Oncet x g E
again, we call S the volatility matrix of the risky assets. The situation ist

< <very much analogous to the Brownian setting. There are now E ‘‘sources of
randomness’’ corresponding to the different possible shocks. We will use the

< <orthogonality condition in Theorem 3 to show that E ‘‘sufficiently indepen-
dent’’ risky assets are needed for completeness.

loc < < < <THEOREM 5. Assume M / B, that NA holds and that E q A - `. Letqq
P Ž� 4.S be as in the preceeding paragraph and assume that M -a.e. K x ) 0 ;t t

< < Px g E. Then the market is complete if and only if rank S s E holds M -a.e.t

This paper is organized as follows. In Section 2 we discuss the second
fundamental theorem from an operator point of view for a securities market
model on a finite probability space. This simple setting allows us to point out
the fundamental connection between completeness, operators and equivalent
martingale measures without having the technicalities of infinite-dimen-
sional spaces obscure the basic ideas. Section 3 gives our general setup and
establishes Proposition 1 and Theorems 1]3. Sections 4]6 are devoted to
three types of examples. Section 4 contains the Artzner]Heath example as
well as the other examples mentioned in Remark 2, which illustrate the
problems that arise when there are an infinite number of discontinuous price
processes. Sections 5 and 6 deal, respectively, with price processes on a
Brownian filtration and price processes driven by a multivariate point pro-
cess. There we use the orthogonality condition of Theorem 3 to establish the
characterization of completeness given in Theorems 4 and 5.

2. Securities market models on a finite probability space. A com-
Ž .plete analysis of finite models was provided by Taqqu and Willinger 1987 .

We briefly discuss the Second Fundamental Theorem of Asset Pricing in this
simple context; here the basic ideas of our approach to completeness can be
illustrated without having to deal with topological issues which are present
in a more general setting.

Ž � 4 .We take as given a filtered probability space V, FF, FF , P , wheret t g P

� 4 < < � 4 Ž . Ž .P s 0, 1, . . . , T , V s M - `, FF s B, V , FF s FF s PP V power set of V0 T
Ž .and P v ) 0 ; v g V. In addition to a riskless asset whose price process is

identically 1, there are N risky assets whose prices are modelled by adapted
Ž i. Ž . Ž . Ž 1 N .processes Z i s 1, . . . , N and we set Z s Z , . . . , Z . Fort t g P t g P t t t g P

t � t4t g P, FF is generated by a finite partition PP s P of n nonemptyt i is1, . . . , n tt

disjoint subsets of V and for t - T any element of PP t is the union of
elements from PP tq1. So in this case, the stochastic basis or filtered probabil-
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ity space can be pictured as a tree whose nodes at time t are given by
P t, . . . , P t . One allows predictable, self-financing trading strategies and be-1 n t

cause of our simple setting there is no ambiguity as to the appropriate
definitions of no arbitrage and completeness. The questions of no arbitrage,
completeness, existence and uniqueness of an equivalent martingale measure
Ž .e.m.m. may be investigated either globally, that is, for the tree as a whole or
locally, that is, at a particular node. It is easily seen that no arbitrage,
existence of an e.m.m. and uniqueness of an e.m.m. holds globally if and only
if the corresponding property holds at each node. Also, when no arbitrage
holds, completeness globally is equivalent to completeness at each node. In
view of these remarks, there is no loss of generality in considering a one-time
period model, that is, T s 1.

�Ž . <In the one-time period model, the space of trading strategy is Y s x, H x
N 4 Ž 1 N .g R, H g R . Here H s H , . . . , H gives the holdings in the N risky

w xassets during the time interval 0, 1 and x denotes the time 0 value of the
entire portfolio, so the holding in the riskless asset are x y H ? Z . With this0

Ž .convention, the time 1 value of the portfolio is given by x q H Z y Z . We1 0
`Ž Ž . . Mlet C s L V, PP V , P ( R , where ‘‘( ’’ indicates that the two spaces are

isomorphic as Banach spaces. We introduce the operator T : Y ª C defined by
Ž . Ž .T x, H s x q H Z y Z which calculates the time 1 value of a given strat-1 0

Ž .egy x, H g Y and completeness means that T is surjective. We let M, X
Ž . Ž .denote the topological duals of C, Y, respectively, and consider on Y, X , C, M

the natural bilinear forms. With the generalizations to come in mind, note
Ž Ž ..that M can be thought of as the space of signed measures on V, PP V acting

² :on C through integration; m, X s HX dm for m g M and X g C. We denote
by TU : M ª X the adjoint operator of T and we have

² U : ² :T m , X , H s m , T x , HŽ . Ž .

s T x , H dm s x q H Z y Z dmŽ . Ž .H H 1 0

2.1Ž .

Ž .for m g M and x, H g Y.
We let M denote the set of equivalent martingale measures and Mqq qq

Ž Ž ..the set of strictly positive measures on V, PP V . We assume that M / B,qq
say Q g M , which in this setting is equivalent to the no arbitrage assump-qq

Ž .tion by the first fundamental theorem of asset pricing. From 2.1 we see that
Ž . Ž .if p g X is defined by p x, H s x for x, H g Y, then0 0

y1U U<� 4M s T p l M s Q q m m g ker T l MŽ . Ž .qq 0 qq qq

and hence

� 4 UM s Q m T is injective m T is surjective,qq

using the fact that M is finite-dimensional for the first equivalence and linear
algebra for the second. Since, by definition, completeness means that T is
surjective, we have recovered the classical version of the Second Fundamen-
tal Theorem of Asset Pricing, as follows.
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THEOREM 6. Assume no arbitrage holds, say Q g M . Then the marketqq
� 4is complete if and only if M s Q .qq

3. General setup and results. Throughout this section, a filtered prob-
Ž Ž . .ability space V, FF, F s FF , P satisfying the usual conditions, that is,t t gw0, 1x

the filtration is right-continuous and FF contains all P-null sets, is fixed. We0
further assume that FF contains only sets of P-measure zero or one. Also0

�Ž a . 4given is a family VV s Z of adapted cadlag price processest t gw0, 1x a g Aj �D4

w x Don the time interval 0, 1 with Z ' 1. In other words, the D-asset plays thet
role of deflator and we assume that the deflation has been carried out. A is
allowed to be infinite. Further properties of the elements of VV will be
introduced later. For the moment, however, we do not even assume that the
price processes are semimartingales. We can get away with this level of
generality since we only consider stochastic integrals on stopping time simple
integrands. Of course, if there is an equivalent local martingale measure for

wVV then the elements of VV are necessarily semimartingales Jacod and
Ž . xShiryaev 1987 , Theorem 3.13, page 156 . For some purposes it is more

convenient to work with the time set R and we therefore let FF s FF andq t 1
Za s Za for t G 1. Since FF s FF for t G 1, we will use F to denote botht 1 t 1
Ž . Ž . Ž .FF and FF . When we say that X is a local martingale wet t gw0, 1x t t g R t t gw0, 1xq

mean that X extended to R by X s X for t G is a local martingale on theq t 1
Ž .filtration F s FF .t t g Rq

A few comments about technicalities are in order. For basic stochastic
Ž .calculus definitions we refer the reader to Jacod 1979 and Jacod and

Ž .Shiryaev 1987 . The measures we deal with are considered on the s-algebra
FF s E FF s FF . Given a process X and a stopping time t , we write Xt

` t g R t 1q
for the process stopped at time t . When we write an equality between
processes it is understood to hold up to a P-evanescent set. With these
conventions in place, we note that our filtration has the property that X s X 1

for any martingale X and hence also for any local martingale. In other words,
any local martingale on our filtration is constant after time 1. In particular, a
martingale is automatically a uniformly integrable martingale, and, to check

Žif a local martingale is of class D or equivalently if it is a uniformly
.integrable martingale , it suffices to consider stopping times which are

bounded by 1. Recall that if X is an adapted cadlag process which admits a
terminal r.v. then a necessary and sufficient condition for X to be a uniformly
integrable martingale is that EX s EX for any stopping time t . We willt 0
apply this fact repeatedly to processes that are constant after time 1, in
which case it suffices to consider stopping times t F 1. Finally observe that
since FF is assumed to contain only sets of P-measure zero or one, X is0 0
constant P-a.s. for any adapted process X and so EX s X .0 0

In the introduction we gave a nontechnical and economically motivated
description of our setup. We now focus on the mathematical aspects and refer

Ž .the reader to Grothendieck 1973 for functional analytic background mate-
rial. We allow an agent to invest in the riskless asset plus a finite number of
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w Ž .risky assets via self-financing, stopping time simple strategies see 3.1 and
Ž . x3.2 below yielding bounded payoffs. This means that the agent can arbitrar-
ily choose holdings in the riskless and the risky assets at time 0 and after
time 0 chooses holdings in the risky assets, with the holdings in the riskless
asset being determined by the self-financing condition. More precisely, let

na

a a a˜ < a a3.1 Y s x , H x g R, H s h 1 t ,Ž . Ž . Ž .Ž . ÝagA t iy1 Žt , t xis 1 i½ 5
is1

a a a `Ž . a
awhere 0 F t F ??? F t F 1 are stopping times, h g L FF , P and H ' 00 n i ta i

Ž a .except for finitely many a g A. H represents the holdings in the riskya g A
assets after time 0. Rather than specifying the holdings at time zero of the
riskless and all the risky assets, we let x stand for the time 0 value of the

0Ž .entire portfolio. We denote by L FF the vector space of FF -measurable r.v.’s1 1
˜ ˜ 0Ž .modulo P-equivalent and define the operator T : Y ª L FF by1

1
a a aT̃ x , H s x q H dZ .Ž .Ž . Ý HagA u u

0agA

˜Here the sum is finite and T calculates the time 1 payoff resulting from the
a ˜ `Ž Ž . . Ž .strategy x, H g Y. The space of claims will be C s L FF , P , that is,a g A 1

the FF -measurable bounded r.v.’s modulo P-equivalence. To ensure that the1
payoffs are bounded, the space of trading strategies is taken to be

˜ ỹ1 `3.2 Y s Y l T L FF , PŽ . Ž .Ž .1

and we shall refer to the elements of Y as stopping time simple strategies
˜yielding bounded payoffs. Finally, we denote by T : Y ª C the restriction of T

to Y.
We let M denote the vector space of P-absolutely continuous signed

Ž . Ž . ² :measures on V, FF . Then C, M forms a duality via the bilinear form ? , ? :1
² :C = M ª R given by X, m s HX dm which is separated in the sense that

² : ² : Ž .X, ? ' 0 only if X s 0 and ? , m ' 0 only if m s 0 X g C, m g M . Recall
Ž Ž a . . Ž Ž a . .that p x, H s x, x, H g Y, is the market’s way of valu-0 a g A a g A

�ing trading strategies. We let X denote the vector space generated by m(
4 � 4 � 4 � 4T j p . Since m(T j p are linear functionals on Y,mg M 0 m g M 0

Ž . ² :Y, X forms a duality via the bilinear form ? , ? : Y = X ª R given by
²Ž Ž a . . : Ž Ž a . . ² :x, H , f s f x, H which is separated in X because ? , fa g A a g A

ŽŽ Ž a . . .' 0 only if f s 0 x, H g Y, f g X .a g A
The vector spaces Y, X, C and M become locally convex topological vector

spaces when endowed with the weak topologies arising from the dualities
described in the last paragraph. In particular, since M is isomorphic to

1Ž . UL FF , P by the Radon]Nikodym theorem, the topology on C is the weak1
1Ž .topology, viewing C as the topological dual of L FF , P . Also, it follows from1

wŽ . xGrothendieck 1973 , Proposition 24, page 80 that T : Y ª C is weakly
continuous and Corollary 2, page 81 of the same source yields the weakly



¨R. BATTIG540

continuous adjoint operator TU : M ª X explicitly given by

TU m x , H a s T x , H a dm , x , H a g Y.Ž . Ž . Ž . Ž .Ž . Ž . Ž .HagA agA agA

In Section 4 we will want to discuss discrete-time models and the following
argument shows that our continuous time setup still applies. Consider the

� 4time set P s t , t , t , . . . , t , t with 0 s t - t - t - ??? - t - t s0 1 2 Ty1 T 0 1 2 Ty1 T
Ž Ž . .1, the filtered probability space V, FF, F s FF , P , and the family VV st t g P

�Ž a . 4Z of finite-time price processes adapted to the filtration F.t g P a g Aj �D4
Here one allows trading strategies which are F-predictable, bounded and
self-financing. The bounded claims attainable in the continuous-time model
obtained by letting

a wZ , t g t , t ,wFF , t g t , t , .. t i iq1t i iq1 ii a˜ ˜FF s and Z st t a½ ½FF , t s 1, Z , t s 1,1 1

are the same as the bounded attainable claims in the finite-time model. In
this way, finite-time models can always be embedded into continuous time.

We briefly recall some of the notation and definitions given in Section 1.
The space of attainable claims is AA s Im T and AA0 the space of claims1 1
attainable at zero initial cost. Then M rM loc denote the P-equivalentqq qq
martingalerlocal martingale measures for VV and PP the set of signedqry
measured m g M for which TUm s p . Recall also that completeness means0
that AA is weakU dense in C, while for Q g M loc , Q-completeness means that1 qq

1Ž .AA is dense in C with respect to the L FF , Q topology. We also defined a1 1
Ž . 0 � 4 � <weak no arbitrage condition NA ; AA l C s 0 , where C s X g C X G 01 q q

˜Ž .4P-a.s. . For a P-equivalent probability measure P we say that the orthogo-
˜ 1 ˜ 1 ˜Ž . � Ž . < 4 � 4 Ž .nality condition OO VV , P holds if j g HH P j H VV s 0 . Since j g HH P

1 ˜Ž .belongs to HH P if and only if j H 1, we have0

˜ 1 ˜ a< � 4 � 43.3 OO VV , P holds m j g HH P j H Z s 0Ž . Ž . Ž .� 4agA0

˜ a< � 4 � 43.4 m j g MM P j H Z s 0 ,Ž . Ž .� 4agA0

˜ 1, loc ˜Ž . Ž .using MM P : HH P to get the last equivalence. Finally, we let AA denote0 0
the space of value processes corresponding to the attainable claims

?
a a aAA s x q H dZ x , H g Y .Ž .Ž .Ý H agAu u½ 50agA

We now prove Proposition 1 and Theorems 1]3.

Ž . Ž .PROOF OF THEOREM 1. From our setup we have that Y, X and C, M are
dual systems separated in X and M, respectively, and that T : Y ª C is a
weakly continuous linear operator. Proposition 26, page 82 of Grothendieck
Ž . U1973 implies that Im T is weakly dense in C if and only if T : M ª X is

Ž .injective. Since the weak topology on C arising from the dual system C, M is
U Ž . Ž .precisely the weak topology, the equivalence of i and ii follows.
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Ž . Ž .For the equivalence of v and vi , we just need to modify the argument of
Ž ŽQ, `..the last paragraph slightly. Note that C, M forms a dual system via the

² : ŽQ, `. ² :bilinear form ? , ? : C = M ª R given by X, m s HX dm which is
separated in MŽQ, `.. Furthermore, T : Y ª C is weakly continuous with

Ž . Ž ŽQ, `..respect to the dualities Y, X and C, M . Proposition 26, page 82 of
Ž .Grothendieck 1973 now gives that Im T is weakly dense in C for the

Ž . Ž ŽQ, `.. U ŽQ, `.dualities Y, X and C, M if and only if T restricted to M is
Ž .injective. By the corollary to Theorem 4, page 60 of Grothendieck 1973 , this

1Ž .is in turn equivalent to Im T being dense in C with respect to the L FF , Q1
1Ž .topology because the L FF , Q topology on C is consistent with the duality1

Ž ŽQ, `..C, M in the sense that the dual space of C when endowed with the
1Ž . ŽQ, `. w `Ž .xL FF , Q topology is M which is isomorphic to L FF , Q . I1 1

Before giving a proof of Proposition 1, we point out that the containment
M loc : PP l M may be strict if the local boundedness in Proposition 1 isqq qry qq
dropped.

Ž � 4 .EXAMPLE 3.1. We consider the filtered probability space V, FF , FF , P0 1
� 4 Ž . Ž . Ž .where V s N, FF s B, V , FF s PP V the power set of V and with P v ) 00 1

Ž .; v g V. There is a single risky asset with price process Z ' 2, Z i s i for0 1
i G 1. In this case AA consists only of constants and hence PP is the set of1 qq
all probability measures on N with support N. It is clear that M / B andqq
hence NA holds. If Q is a probability measure on N with support N such that

1Ž . locZ f L FF , Q then Q g PP but Q f M s M .1 1 qq qq qq

The example is trivial in the sense that AA consists only of constants. By1
introducing a second period, one can give an example to the same effect in
which AA consists of more than just constants.1

PROOF OF PROPOSITION 1. First I claim that

3.5 NA « the elements of AA are bounded processes.Ž .
Let V g AA, say,

1
a a aV s x q H dZ , x , H g Y.Ž .Ž .Ý H agAt u u

0agA

< <We assume that V F M and show that1

< <3.6 sup V F M q 1, P-a.s.Ž . t
t

Consider the stopping times
q < y <s s inf t V ) M q 1 n 1 and s s inf t V - yM y 1 n 1.� 4 � 4t t

Then
1

a a
q qV s V q H 1 u dZŽ .Ý H1 s u Žs , 1x u

0agA
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q < <and from the definition of s and the fact that V F M we deduce that1

1
a a

q q3.7 0 F 1 F y H 1 u dZ .Ž . Ž .Ý H�s -14 u Žs , 1x u
0agA

Ž Ž a Ž .. .qThe claim on the right-hand side is attainable with 0, yH 1 uu Žs , 1x a g A
Ž .g Y and so NA implies that the inequalities in 3.7 are equalities. Hence

sqs 1 P-a.s. and similarly sys 1 P-a.s. so that
q y < < <s n s s inf t V ) M q 1 n 1 s 1, P-a.s.,� 4t

Ž . Ž .which establishes 3.6 and hence 3.5 .
It now follows that if NA holds, then

3.8 AA : HH ` QŽ . Ž .
for any Q g M loc . Henceqq

1U a a a aT Q x , H s E T x , H s E x q H dZŽ . Ž . Ž .Ž . Ž . Ý HagA agAQ Q u už /0agA

s x s p x , H aŽ .Ž .agA0

Ž Ž a . .for x, H g Y which shows thata g A

M loc : PP l M .qq qry qq

Conversely, let Q g PP l M and note that qQ is a probability mea-qry qq
sure. Since we are working under the additional assumption that the ele-
ments of VV are locally bounded, it suffices to show that for a fixed aU g A

Ž aU .t Ž aU .tand any stopping time t that Z is bounded, A is a Q-martingale. As
pointed out at the beginning of this section, since ZaU

is constant after time
1, this will follow if we show that

U t U t U t U ta a a aE Z s Z or equivalently E X y Z s 0Ž . Ž . Ž . Ž .� 4s 0 s 0Q Q

for any stopping time s F 1. Given such a s and setting H a ' 0 if a / aU
u

a U Ž Ž a . .and H s 1 if a s a we have 0, H g Y and henceu uFt n s a g A
U t U t U Ua a a aE Z y Z s E Z y Z� 4Ž . Ž . Ž . Ž .� 4s 0 tns 0Q Q

s E T 0, H a s 0. IŽ .Ž .Ž agAQ

˜Let P be any P-equivalent probability measure and for m g M denote by
˜Ž . Ž .w m the density process of m with respect to P, that is, w m s˜ ˜P t P t

˜ ˜� < 4 Ž .E dmrdP FF . Then w defines a bijection between M and MM P . The˜ ˜P t P
U ˜� Ž . <following lemma implies that ker T gets mapped onto j g MM P j H0

� a4 4Z by w and plays a key role in the proofs of Theorems 2 and 3:˜a g A P

˜Ž . Ž . Ž .LEMMA 3.1. Let m g M with m V s 0. Then j s w m g MM P and theP̃ 0
following three conditions are equivalent:

Ž . � a4i j H Z ;a g A
Ž .ii j H AA;
Ž . Uiii m g ker T .
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Ž .PROOF OF LEMMA 3.1. It is clear that if m g M with m V s 0 then
˜Ž . Ž .j s w m g MM P . Now j is constant after time 1 and if h is any boundedP̃ 0

adapted cadlag process which is also constant after time 1 then

˜3.9 j H h m jh g MM P m E jh s 0 ; stopping times T F 1.Ž . Ž .Ž . ˜ T0 P

Ž . Ž .Since NA holds, the statement in 3.8 holds and implies that 3.9 applies to
Ž . Ž . Žany h g AA. This for the first equivalence and E j Y s HY dm dm sP̃ T T

˜ . Ž .j dP on FF for the second equivalence yieldsT T

ii m E j Y s 0 ; Y g AA and stoppingtimes T F 1,Ž . Ž .˜ TP

m Y dm s 0 ; Y g AA and stopping times T F 1.H T

3.10Ž .

Since Y s Y T and Y T g AA whenever Y g AA and T F 1 is any stopping time,T 1
Ž .the condition in 3.10 is equivalent to

Y dm s 0, ; Y g AAH 1

Ž .which is equivalent iii .
Ž . Ž .It remains to check the equivalence of i and ii . First we recall the

w Ž .following easily verified fact He, Wang and Yan 1992 , Theorem 7.38 and its
xproof, page 203 :

˜ `Ž . Ž .Let M g MM P , T a stopping time and g g L FF . ThenT3.11Ž .
T ˜Ž . Ž .g My M g MM P .

Consider an arbitrary a g AA and let T a ­` a.s. be a sequence of stoppingn
Ž a .T a

n Ž . Ž .times such that Z is bounded. For i « ii , we need to show that when
Ž .i holds,

t sa a `j H h Z y Z for stopping times s F t F 1 and h g L FF ,Ž . Ž . Ž .� 4 s

which follows if we show
a tnT a a snT a

T a T an nn n ˜ah1 j Z y j Z g MM P ; n.Ž . Ž . Ž .� 4s n T ss 0n

Ž .In view of 3.11 it is enough to show that
a tnT a a snT a

T a T an nn n ˜j Z , j Z g MM P ; n ,Ž . Ž . Ž .0

T a
n Ž a .t n T a

n T a
n Ž a .s n T a

n asince we can then take M s j Z y j Z , T s s n T andn
Ž .g s h1 in 3.11 . For any stopping time T F 1 we haveTss

a tnT a
T a ann a aE j Z s E j ZŽ .Ž .˜ ˜P P T n T t n T n TT n n

a <a a as E E j Z FF� 4˜ ˜P P T n T t n T n T t n T n Tn n n

s E j a Za
aŽ . tnT nTP̃ t n T n T nn

3.12Ž .

a T a
T a nns E j Z .Ž .Ž .P̃ Tnt

T a
n a T a

n T a
n ˜ a T a

nŽ . Ž . Ž . Ž .If i holds then j H Z with j g MM P and Z bounded and0
Ž . Ž .constant after time 1 so that 3.9 implies that the last expectation in 3.12 is
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Ž .zero. Therefore, i implies that
a tnT a

T a nnE j Z s 0 ; stopping times T F 1,Ž .Ž .P̃ T

T a
n a t n T a

n ˜Ž . Ž .which shows that j Z g MM P . One shows similarly that0
T a

n a s n T a
n ˜Ž . Ž .j Z g MM P .0

Finally,
T a T a T a aa a a Tn n n nj Z s j Z y Z j y j� 4Ž . Ž . Ž .

a T a
n ˜ a T a

n a T a
nŽ . Ž . Ž . Ž . Ž . �and if ii holds, then j Z g MM P since Z g AA while Z j y0

T a
n ˜ a T a

n ˜ a4 Ž . Ž . Ž . Ž .j g MM P follows from 3.11 . Hence j Z g MM P ; n, that is, j H Z0 0
Ž . Ž . Ž .when ii holds and ii « i follows. I

Ž . Ž . Ž .Lemma 3.1 and 3.4 imply the equivalence of conditions ii and vii as
asserted in Theorem 3, so its proof is almost complete:

loc Ž .PROOF OF THEOREM 3. It remains only to show that if Q g M then viiqq
Ž .X Ž .takes the form vii . Again it is convenient to use the characterization of vii

Ž . Ž .contained in 3.4 . If j g MM Q then0

a w a x loc w a x loc locj H Z m j , Z g MM Q m j , Z g MM Q l A Q ,Ž . Ž . Ž .0 0

wŽ . xusing Proposition 1.43 of Jacod 1979 , page 20 to obtain the last equiva-
lence. Hence

pa a loc aw x w xj H Z m j , Z g A Q and j , Z s 0. IŽ .

Finally, we establish Theorem 2.

Ž U .y1Ž .PROOF OF THEOREM 2. Since by definition PP s T p , it is clearqry 0

� < U4 Ž .that if Q g PP , then PP s Q q m m g ker T and hence iii is equiva-qry qry
Ž .lent to ii of Theorem 1. For the rest of the proof we assume that NA holds,

that the elements of VV are locally bounded and that Q g M loc . Thenqq
loc Ž . Ž .M s PP l M by Proposition 1 and hence the implications iii « ivqq qry qq
Ž . Ž .Xand iii « iv when Q g M are immediate.qq

Ž . Ž . Ž .XNext we assume that vi fails and show that iv fails and that iv fails if
Ž U � 4. ŽQ, `.Q g M . Let m g ker T _ 0 l M and multiplying by a constant,qq

˜5 5assume without loss of generality that dmrdQ - 1r2. Then Q s Q q m,`

˜ Ž .that is, dQ s 1 q dmrdQ dQ defines a P-equivalent probability measure
˜ loc ˜different from Q and we show that Q g M and Q g M when Q g M .qq qq qq

U a Ž . a Ž .Since m g ker T , Lemma 3.1 implies that Z H w m , that is, Z w m gQ Q
locŽ . Ž . � < 4MM Q , where w m s E dmrdQ FF is the density process of m with0 Q t Q t

a locŽ . loc a Ž Ž ..respect to Q. Also, Z g MM Q since Q g M and so Z 1 q w m gqq Q
loc a loc ˜ ˜ locŽ . Ž .MM Q . Equivalently, Z g MM Q and therefore Q g M . Finally, observeqq

˜that a family of r.v.’s is Q-uniformly integrable if and only if it is Q-uniformly
Ž . aintegrable since 1r2 - 1 q w m - 3r2. It follows that Z is of class DQ t

˜ aunder Q if and only if it is of class D under Q. Now if Q g M , then Z isqq
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˜ aof class D under Q hence under Q which in turn implies that Z is a
˜ ˜uniformly integrable Q-martingale and so Q g M .qq

Ž . Ž .Since Theorem 3 vii implies ii , we complete the proof by showing that if
VV is finite or all the elements of VV have continuous sample paths then the

Ž . Ž . Ž . Ž .equivalent Theorem 1 conditions v and vi imply vii . From Lemma 3.1
Ž . Ž . Uwe know that w m defines a bijection between M and MM Q and that ker TQ

� Ž . < � a4 4 U ŽQ, `.gets mapped onto j g MM Q j H Z . It follows that ker T l M0 a g A
� `Ž . < � a4 4gets mapped onto j g HH Q j H Z . Hence0 a g A

` < a� 4 � 43.13 vi m j g HH Q j H Z s 0� 4Ž . Ž . Ž . agA0

` , loc < a� 4 � 43.14 m j g HH Q j H Z s 0 .Ž . Ž .� 4agA0

Ž .At this point one can appeal to Proposition 4.13, page 118 VV finite , to
ŽProposition 4.67, page 146 and Corollary 4.12, page 117 elements of VV are

. Ž . Ž .continuous of Jacod 1979 to get that the second statement in 3.13 is
Ž .equivalent to vii when the elements of VV are continuous or when the family

VV is finite. However, we now outline a proof, adapting the arguments of
Ž .Jacod 1979 to the particularities of our setting.

loc `Ž . Ž .Since Q g M and NA holds, we know that AA : HH Q by 3.8 from theqq
proof of Proposition 1. First we establish that

3.15 v « AA is dense in HH 1 QŽ . Ž . Ž .
wŽ . xand by Proposition 2.39 of Jacod 1979 , page 40 it suffices to show that AA is

`Ž . 1Ž . `Ž .dense in HH Q with respect to the HH Q topology. Consider then X g HH Q
Ž . nand using v find X g AA such that

5 n 5 13.16 lim X y X s 0.Ž . L ŽQ .1 1
nª`

By Doob’s inequality,

1
n n

1< < 5 5Q sup X y X G l F X y X , l ) 0L ŽQ .t t 1 1ž / ltF1

and so
< nk <3.17 lim sup X y X s 0, Q-a.s.,Ž . t t

kª` tF1

� 4for a subsequence n . Define stopping timesk

n < < nk <t s inf t X ) n for some k G 1 n 1� 4t

and note that
Q-a.s. t n s 1 for n large enough

Ž . `Ž .because of 3.17 and the fact that X g HH Q . Hence

< t n
<lim sup X y X ª 0, Q-a.s.,t t

nª` tF1

`Ž .and since X g HH Q , the dominated convergence theorem yields

< t n
< 5 t n

5 1lim E sup X y X s 0, that is, lim X y X s 0.HH ŽQ .Q t t
nª` nª`tF1
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Ž nk .t n
Noting that X g AA for all k and n, it now suffices to show that for fixed
n,

n ntn tklim E sup X y X s 0,Ž . tQ t
kª` tF1

n ntn tk 1that is, lim X y X s 0.Ž . Ž .HH Q
kª`

3.18Ž .

We have
n ntn t n nk k k< < < <n nE sup X y X F E sup X y X q E X y XŽ . tQ t Q t t Q t t

ntF1 t-t

< nk < 5 nk 5 1F E sup X y X q X y X ,L ŽQ .Q t t 1 1
nt-t

3.19Ž .

the last inequality following from the fact that a convex transformation of a
martingale is a submartingale. Now

< nk < 5 5 `sup X y X F n q X ; k ,HH ŽQ .t t
nt-t

Ž .which, combined with 3.17 , allows us to apply the dominated convergence
theorem to obtain

< nk <lim E sup X y X s 0.Q t t
nkª` t-t

Also,
5 nk 5 1lim X y X s 0L ŽQ .1 1

kª`

Ž . Ž . Ž . Ž .by 3.16 and so letting k ª ` in 3.19 establishes 3.18 and hence 3.15 .
If now the elements of VV are all continuous, the same is true for the

Ž . w Ž . xelements of AA and when vi equivalent to v by Theorem 1 holds, then
Ž . 1Ž . 1Ž .3.15 shows that AA is dense in HH Q . Hence all elements of HH Q are
continuous and in particular locally bounded. Therefore,

1 < a ` , log < a� 4 � 4j g HH Q j H Z : j g HH Q j H ZŽ . Ž .� 4 � 4agA agA0 0

Ž . Ž . Ž . Ž .and in view of 3.14 and 3.3 we obtain that vi « vii .
� 4 � i < 4Finally assume that the family VV is finite, say VV s 1 j Z i s 1, . . . , N .

We show
1 < i � 4v « j g HH Q j H Z , i s 1, . . . , N s 0Ž . Ž .� 40

Ž . Ž . Ž 1 N .and the last statement is equivalent to vii by 3.3 . We set Z s Z , . . . , Z .
Ž . Ž . 1Ž .Equation 3.15 tells us that when v holds, then j g HH Q may be written0

as
N

t i i 1j s lim H n dZ in HH QŽ . Ž .ÝHt u u
nª` 0 is1

iŽ . Ž .for stopping time simple H n i s 1, . . . , N and n g N . It can be shownu
that

N
t ti i3.20 j s lim H n dZ s H dZŽ . Ž .ÝH Ht u u u u

nª` 0 0is1
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for a suitable N-dimensional predictable process H; see Theorem 4.60, page
Ž . t143 of Jacod 1979 . Here H H dZ is the stochastic integral with respect to0 u u

the multidimensional local Q-martingale Z as defined in Chapter 4, Section 4,
Ž . Ž .of Jacod 1979 or in Jacod 1980 . Using the associativity of the vector

Ž .stochastic integral and 3.20 we have
? ?

1 dj , 1 djH H<H < F n u <H < F n u
0 0 t

? ?

s 1 dj , H 1 dZŽ .H H<H < F n u u <H < F n u
0 0 t

3.21Ž .

?t
s 1 d j , H 1 dZ .Ž .H H<H < F n u <H < F n u

0 0 u

Now
iN? d j , Zt ij , H 1 dZ s H 1 dC ,Ž . ÝH Hu <H < F n u u <H < F n u½ 5ž /dC0 0t uis1

where C is any increasing finite variation process with the property that
w i j x w Ž . xd Z , Z g dC for i, j s 1, . . . , N Jacod 1980 , page 162 . However,j u

id j , Zt 0i i iH 1 dC s H 1 d j , ZH Hu <H < F n u u <H < F n už /C0 tu

Ž .and so 3.21 may be written as
N? ? t i i3.22 1 dj , 1 dj s H 1 d j , Z .Ž . ÝH H H<H < F n u <H < F n u u <H < F n u

0 0 0t is1

i w i x locŽ . locŽ .Since j H Z , we have j , Z g MM Q l A Q and the right-hand side oft 0
Ž . locŽ . wŽ . x3.22 is therefore in MM Q by Corollary 1.44 of Jacod 1979 , page 20 ,
which implies that

?

3.23 1 dj s 0.Ž . H <H < F n u
0

On the other hand, the dominated convergence theorem for stochastic inte-
w Ž . xgrals Jacod 1979 , Proposition 2.73, page 56 implies that the left-hand side

Ž . 1Ž .of 3.23 converges to j in HH Q and so j s 0. I

4. Countably many price processes on a countable probability
Ž .space. In this section we discuss the example of Artzner and Heath 1995 ,

Ž .Example 4.1 , which shows that Q-completeness is not generally sufficient
for uniqueness of the equivalent local martingale measure from our operator
point of view. In the same setting we also give an Artzner]Heath type

Ž .example in which the price processes are nonnegative Example 4.2 and
finally an example which shows that uniqueness of the equivalent local

Žmartingale measure is not generally sufficient i.e., when there are an infinite
.number of discontinuous price processes for our notion of completeness

Ž .Example 4.3 .
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Ž � 4 .We work with a filtered probability space V, FF, FF , FF , P with V count-0 1
� 4 Ž . Ž . Ž .able, FF s B, V , FF s FF s PP V the power set of V and with P v ) 0 ;0 1

v g V. For D : V we denote by 1 the r.v. which is one on the set D and zeroD
Ž . Ž . � X4otherwise; 1 v s 1 if v g D and 1 v s 0 if v f D. When D s v weD D

abuse notation slightly and write 1 X instead of 1 X . We consider a familyv �v 4
�Ž a . 4 � 4VV s Z j 1 of bounded price processes, where A is countablet t g Ž0, 1. a g A

and since the price processes are bounded we have M loc s M . Hereqq qq
a A < aY s x , H g R = R H has finite support ;� 4Ž . Ž .Ž .agA agA

` <� 4C s ll V s f : V ª R f is bounded ;Ž .
1 <M s ll V s f : V ª R f v - `Ž . Ž .Ý½ 5

vgV

and X is the topological dual of Y where Y is topologized as in Section 3. Also,
Ž Ž a . .for x, H g Y and m g M we havea g A

T x , H a s x q H a Za y Za ,Ž . Ž .Ž . ÝagA 1 0
agA

TU m x , H a s m V q H a Za y Za dm.Ž . Ž . Ž .Ž . Ž .Ž . Ý HagA 1 0
agA

The vector spaces X, Y, C and M are infinite-dimensional here and we can
point out some problems which arise in this context.

Ž .EXAMPLE 4.1. This example is due to Artzner and Heath 1995 and we
Ž . Ž .discuss it here from our operator point of view. Let p g 0, 1 , q g p, 1 , set

Ž . Ž .c s pr 1 y p q qr 1 y q and take

� 4V s Z_ 0 ;

A s Z;

Z i ' 1 for i g Z;0

c
0Z j s 1 j q 1 j ;Ž . Ž . Ž .Ž .1 y1 1p q qŽ .

c q iq1yp iq1 c p iyq iŽ . Ž .
i � 4Z j s 1 j q 1 j for igN, jgZ_ 0 ;Ž . Ž . Ž .1 i iq1i ipq qyp pq qypŽ . Ž . Ž . Ž .
i yi � 4Z j s Z yj for yi g N, j g Z_ P 0 .Ž . Ž .1 1

U � 4Here we can explicitly find ker T . Indeed, a signed measure m on Z_ 0 is
U Ž . i iin ker T if and only if m V s 0 and HZ y Z dm s 0, i g Z. This implies1 0

i iŽ . yi Ž .that HZ dm s 0, i g Z and using the fact that Z j s Z yj we see that m1 1 1
must solve the following equations:

Z 0 y1 m y1 q Z 0 1 m 1 s 0;Ž . Ž . Ž . Ž .1 1

Z i i m i q Z i i q 1 m i q 1 s 0, i G 1;Ž . Ž . Ž . Ž .1 1

Z i i m yi q Z i i q 1 m yi y 1 s 0, i G 1.Ž . Ž . Ž . Ž .1 1
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On the other hand, any m satisfying these equations automatically has total
U U Ž . U Ž . i imass zero and so m g ker T . Note that m i s ym yi s q y p , i G 1

defines a signed measure solving the above equations and that any other such
measure is a scalar multiple of mU. Hence

U U <� 4ker T s gm g g R

Ž .and by Theorem 1 we do not have completeness. Next observe that P i s0
y1Ž i yi .c p 1 q q 1 is an element of M and so by Proposition 1 andi) 0 i- 0 qq

Theorem 2,

< U U <M s PP l M s P q m m g ker T l M s P q gm g g G ,� 4 � 4qq qry qq 0 qq 0

where G consists of all g for which the measure P q gmU is strictly positive.0
y1 � Ž .i4 y1 � Ž .i4We have g g G if and only if c r 1 y qrp - g - c r 1 y prq for

y1 � Ž .i4 y1 � Ž .i4 y1i G 1 and since c r 1 y qrp ­0 and c r 1 y prq xc we see that
w y1 xG s 0, c . Therefore,

w xM s P , P ,qq 0 1

where P is the measure we get by taking g s cy1.1
Ž . w xIf now Q g M , say Q s « P q 1 y « P with « g , 1 , then we knowqq 0 1

from Theorem 1 that Q-completeness is equivalent to injectivity of TU on
ŽQ, `. U � U < 4M . Since ker T s gm g g R , this is equivalent to saying that

dmU q i y p i 1 q pyi y qyi 1Ž . Ž .i) 0 i- 0 � 4i s , i g Z_ 0Ž . i yi i yidQ « p 1 q q 1 q 1 y « q 1 q p 1Ž .Ž . Ž .i) 0 i- 0 i) 0 i- 0

is unbounded, which is the case if and only if « s 0 or 1. In other words,
Q-completeness holds if and only if Q is extremal, that is, Q s P or P . This0 1

Ž .fact is true in general; see Chapter XI of Jacod 1979 .
To summarize, we do not have completeness since ker TU is one-dimen-

sional, that is, the space of attainable claims has codimension 1. If, however,
one is interested in Q-completeness, then one requires only that ker TU not
contain any nonzero measures having bounded Radon]Nikodyn derivative
with respect to Q and this example illustrates that this may hold for multiple
Q g M .qq

We now consider a slightly different setup and give two more examples. As
Ž . Ž .before, p g 0, 1 and q g p, 1 , but now

� 4V s N j 0 ;

A s N;

Z i ' 1 for i g N;0

i � 4Z j s z i , i 1 j q z i , i q 1 1 j for i g N, j g N j 0 .Ž . Ž . Ž . Ž . Ž .1 i iq1

Ž . Ž .We will take z i, i , z i, i q 1 ) 0, i G 1 and hence the price processes are
Ž . Ž . iŽ . � 4nonnegative and bounded . Let P i s p 1 y p , i g N j 0 and note that0

P g M if and only if0 qq

4.1 z i , i p i 1 y p q z i , i q 1 p iq1 1 y p s 1, i G 1.Ž . Ž . Ž . Ž . Ž .
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� 4 UAlso, a signed measure m on N j 0 is in ker T if and only if

4.2 m V s 0 and z i , i m i q z i , i q 1 m i q 1 s 0, i G 1.Ž . Ž . Ž . Ž . Ž . Ž .
� 4 Ž . Ž . Ž .If m is any signed measure on N j 0 with m V s 0 and m i y 1 m i - 0,

Ž . Ž . Ž . Ž .i G 1, then 4.1 and 4.2 can be solved uniquely for z i, i , z i, i q 1 ) 0.
Hence we have nonnegative price processes, P g M and0 qq

U <� 4ker T s gm g g R .

Thus the market is incomplete and

<M s P q gm g g G ,� 4qq 0

where G consists of all g for which the measure P q gm is strictly positive.0
The next two examples simply correspond to particular choices of the signed
measure m and we then figure out what M looks like.qq

EXAMPLE 4.2. This is an Artzner]Heath-type example with nonnegative
Ž . 2 i Ž . 2 iy1 Ž .price processes. We take m 2 i s q , m 2 i y 1 s yap 2 ir 2 i q 1 , i G 1

Ž . Ž 2 Ž 2 . 2 iy1 Ž ..and m 0 s y q r 1 y q y aÝ p 2 ir 2 i q 1 with a ) 0 choseniG1
Ž . Ž . Ž .large enough to make m 0 ) 0. Then g g G if and only if g ) p y 1 rm 0

2 iy1Ž . � 2 iy1 Ž .4 2 iŽ . 2 iand p 1 y p r ap 2 ir 2 i q 1 ) g ) yp 1 y p rq , i G 1. It fol-
w Ž . xlows that G s 0, 1 y p ra and therefore,

w xM s P , P ,qq 0 1

Ž .where P corresponds to choosing g s 1 y p ra. Thus we have an1
Artzner]Heath-type example with nonnegative price processes; the market is
incomplete, but is P -complete since dmrdP is unbounded for i s 0, 1.i i

Ž . 2 i Ž . 2 iy1 Ž .EXAMPLE 4.3. If we take m 2 i s q , m 2 i y 1 s yq , i G 1 and m 0
Ž 2 . Ž 2 . Ž . Ž . Žs q y q r 1 y q , then g g G if and only if g ) p y 1 rm 0 and 1 y

.Ž .2 iy1 Ž .Ž .2 i Ž .ip prq ) g ) p y 1 prq , i G 1. Since prq ª 0 as i ª `, it fol-
� 4lows that G s 0 and therefore

� 4M s P .qq 0

In other words, there is a unique equivalent martingale measure because as
soon as we add a nonzero multiple of m to P we end up with a nonpositive0
measure. However, the market is incomplete.

The purpose of the final two sections is to illustrate the usefulness of the
orthogonality condition appearing in Theorem 3 by using it to establish the
characterizations of completeness given in Theorems 4 and 5.

5. Positive price processes on a Brownian filtration. In this section
we use various results from continuous sample path stochastic calculus which

Ž .can be found in Revuz and Yor 1991 . We take as given a probability space
Ž . Ž 1 d .V, GG, P with a d-dimensional P-Brownian motion B s B , . . . , B on itt t t

Ž .and we let F s FF be the smallest right-continuous P-complete filtra-t t gw0, 1x
Ž .tion to which B is adapted. We also set FF s FF and we then have thet t gw0, 1x 1

Ž Ž . .filtered probability space V, FF, F s FF , P satisfying all the propertiest t gw0, 1x
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�Ž a . 4we required in Section 3. Here the price processes are VV s Z jt t gw0, 1x a g A
� 4 a1 , where the Z ’s are strictly positive semimartingales with continuous
sample paths.

As was pointed out in Section 3, F may be considered as a filtration on the
time set R by letting FF s FF for t G 1 and we then let Za s Za for t G 1.q t 1 t 1

Ž .Recall also that a process X is a local martingale if it is a localt t gw0, 1x
Ž .martingale with respect to F s FF when extended to a process on R byt t g R qq

Ž .letting X s X for t G 1. Equivalently, X is a local martingale ift 1 t t gw0, 1x
Ž .there exists a sequence of stopping times T ­1 P-a.s. such that P T G 1 ªn n

1. Throughout this section we shall think of F as a filtration on R and of theq
Za ’s as processes on R . We let PP denote the predictable s-algebra onq
V = R corresponding to F and consider on PP the Doleans measure M P´q

P Ž .associated to the Brownian motion stopped at time 1, that is, M A s
` Ž . 1 Ž . 2Ž P .E H 1 v, s 1 ds s E H 1 v, s ds for A g PP. We denote by L M theP 0 A sF1 P 0 A

2 Ž P . 0Ž P .L -space on the measure space V = R , PP, M and we let L M andq
`Ž P .L M denote, respectively, all PP-measurable functions and all bounded

P 2, locŽ P .PP-measurable functions modulo M -equivalence. Finally let L M de-
note the set

0 P < 2 PH g L M ' stopping times T ­`, P-a.s. such that H 1 g L MŽ . Ž .� 4n u uF Tn

and note that

12, loc P 0 P 2L M s H g L M H du - `, P-a.s. .Ž . Ž . H u½ 5
0

Hence if Q is a P-equivalent probability measure on FF s E FF s FF andt g R t 1q
Q P 2, locŽ P . 2, locŽ Q.we define M analogously to M , then L M s L M and so we

shall simply write L2, loc.
First we determine what the positive, continuous semimartingales and

local martingales on F look like. If R is a continuous semimartingale we let
Ž . Ž . ŽEE R denote the Doleans-Dade exponential of R, that is, EE R s exp R y´t t t

² : . Ž .R y R r2 . Alternatively, EE R is the unique solution to dY s Y dRt0 t t t t
Ž . locŽ . locŽ .with Y s 1 from which we see that EE R g MM P if and only if R g MM P .0

Observe that if X is a positive, continuous semimartingale then X st
Ž X . X tX EE R , where R s H 1rX dX is also a continuous semimartingale,0 t t 0 u u

hence decomposes as R X s AX q M X for a continuous adapted finite varia-t t t
X X X locŽ . Xtion process A with A s 0 and M g MM P . Since M is constant after0 0

time 1 it is also a local martingale on the natural filtration generated by
Ž . wB and from the Brownian representation theorem Revuz and Yort t g Rq

Ž . x X1991 , Theorem 3.5, page 188 , one easily deduces that M is of the form
X d t X Ž . i X Ž . 2, loc Ž .M s Ý H s i dB , where s i g L i s 1, . . . , d . To summarizet is1 0 u u n 1

our findings, an arbitrary positive, continuous semimartingale on F is of
Ž X d ? X Ž . i . Xthe form X s X EE A q Ý H s i dB , where A is a continuoust 0 is1 0 u u n 1 t

X X Ž . 2, loc Ž .adapted finite variation process with A s 0 and s i g L i s 1, . . . , d .0
locŽ . XFurthermore, X g MM P if and only if A ' 0. In particular, the price
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processes Za are of the form

5.1 Za s Za EE Ra ,Ž . Ž . tt 0

where
d

t
a a a i5.2 R s A q s i dB ,Ž . Ž .Ý Ht t u u n 1

0is1

a Ž . 2, loc Ž . as i g L i s 1, . . . , d and the A ’s are continuous adapted finite varia-
tion processes with Aa s 0, a g A. The process Ra has the economic inter-0
pretation as the return on asset a .

Consider next a P-equivalent probability measure Q on FF s E FF s FF .t g R t 1qQ Ž .The corresponding density process Z is a strictly positive element of MM P
with ZQ s 1 and so the last paragraph implies that it is of the form0

Q Ž Q.Z s EE L , wheret t

d
1Q Q i5.3 L s s i dBŽ . Ž .Ý Ht u u n 1

0is1

QŽ . 2, loc Ž .for s i g L i s 1, . . . , d and in particular

dQ s EE LQ dP .Ž . 1

Let
i i ² i Q:W s B y B , L t n 1t t n 1

wŽ .for i s 1, . . . , d. It readily follows from Revuz and Yor 1991 , Theorem 1.12,
x Ž i.d Ž . Ž .page 306 , that W s W is F, Q -BM stopped at time 1 and 5.2 may bet t is1

written as
d d

tn1 t
a a a i Q a i² :5.4 R s A q s i d B , L q s i dW .Ž . Ž . Ž .Ý ÝH u Ht t u u u

0 0is1 is1

We deduce from here that LQ corresponding to Q g M loc satisfies theqq
equation

d
tn1

a a i Q² :A q s i d B , L ' 0Ž .Ý H ut u
0is1

Ž .and hence 5.4 becomes
d

t
a a i5.5 R s s i dW .Ž . Ž .Ý Ht u u

0is1

Ž .XIn the present setting, the orthogonality condition vii of Theorem 3 can
be expressed in terms of the coefficients s a used in modelling the Za ’s to
obtain the following lemma.

LEMMA 5.1. Assume M loc / B and that NA holds. Then the market isqq
complete if and only if

d
dd ` P a p � 4g i g L M g i s i s 0, M -a.e. ; a g A s 0 .Ž . Ž . Ž . Ž .Ž . Ž . Ýis1 u u½ 5

is1
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PROOF OF LEMMA 5.1. We show that

d
dd ` P a P � 4g i g L M g i s s 0, M -a.e. ; a g A s 0Ž . Ž . Ž .Ž . Ž . Ýis1 u u½ 5

is1

Ž .X loc Q Ž .is equivalent to vii of Theorem 3. Let Q g M and let L be as in 5.3 . Inqq
Q Ž Q ² Q:.particular, L is continuous and dP s EE yL q L dQ. Hence1

loc Q ² Q: loch g MM P m h EE yL q L g MM QŽ . Ž .Ž .
and so

loc Q ² Q: < loc5.6 MM Q s h EE yL q L h g MM P .� 4Ž . Ž . Ž .Ž .
Ž . Ž Q ² Q:.It follows from 5.3 that EE yL q L is continuous and since all the

locŽ . Ž .elements of MM P are also continuous having an integral representation
Ž . locŽ .we conclude from 5.6 that all the elements of MM Q are continuous. Hence

locŽ . w Ž .if j g MM Q we can apply Girsanov’s theorem Revuz and Yor 1991 ,0
xTheorem 1.7, page 305 to get that

² Q ² Q:: locEE y j , yL q L g MM P .Ž .0

w Ž .Using the Brownian representation theorem Revuz and Yor 1991 , Theorem
x j Ž . 2, loc Ž .3.5, page 188 we can then find s i g L i s 1, . . . , d such that

d
tQ Q j i² ² ::j y j , yL q L s s dBÝt Ht u u n 1

0is1

d d
t t

j i j i Q² :s s i dW q s i d B , L .Ž . Ž .Ý ÝH H uu u u
0 0is1 is1

Hence
d d

t t
j i Q Q j i Q² ² :: ² :j y s i dW s j , yL q L q s i d B , LŽ . Ž .Ý ÝH t H ut u u u

0 0is1 is1

d t j Ž . i Žand from here we see that j y Ý H s i dW is a predictable continuoust is1 0 u u

. locŽ .in fact finite variation process in MM Q and so is identically zero. There-0
fore

d
t

j i5.7 j s s i dW .Ž . Ž .Ý Ht u u
0is1

locŽ .To summarize, we have shown that all the elements of MM Q are continu-0
ous and have a predictable integral representation with respect to W s
Ž i.d locŽ .W . It should be noted that MM Q refers to the filtration F and thisis1 0
filtration can be strictly larger than the natural filtration generated by

Ž i.dW s W .is1
locŽ . locŽ .Since all the elements of MM Q are continuous, we have MM Q :0 0

2, locŽ . Ž .XHH Q and it follows that vii of Theorem 3 is equivalent to0

p2 a loc aw x w x � 45.8 j g HH Q j , Z g A Q and j , Z s 0 ; a g A s 0 .Ž . Ž . Ž .� 40
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Ž .From 5.7 we obtain

d
t2 j i j 2 Q5.9 HH Q s s i dW s i g L M i s 1, . . . , d .Ž . Ž . Ž . Ž . Ž . Ž .Ý H0 u u u½ 50is1

Also,

5.10 j s 0 m s j i s 0, i s 1, . . . , d.Ž . Ž .u

2Ž . d t j Ž . iConsider now j g HH Q , say, j s Ý H s i dW . Since j is continuous,0 t is1 0 u u
w a x w a x locŽ . Ž . Ž .the same is true for j , Z . Hence j , Z g A Q and using 5.1 and 5.5

we get
pa a² :w xj , Z s j , Z tt

d ? ?
j i a a as s i dW , Z q Z dRŽ .Ý H Hu u 0 u¦ ;

0 0is1 t

d d? ?
j i a a is s i dW , Z s i dWŽ . Ž .Ý ÝH Hu u u u u¦ ;ž /0 0is1 is1 t

d
t

a j as Z s i s i du.Ž . Ž .ÝH u u už /0 is1

Therefore,
d

pa a j a Qw xj , Z s 0 m Z s i s i s 0, M -a.e.Ž . Ž .Ýt t t tž /
is1

5.11Ž .
d

j a Qm s i s i s 0, M -a.e.Ž . Ž .Ý t t
is1

Ž . Ž . Ž . Ž .From 5.9 , 5.10 and 5.11 it follows that the condition in 5.8 which we
know to be equivalent to completeness holds if and only if

d
ddj 2 Q j as i g L M s i s i s 0,Ž . Ž . Ž . Ž .Ž . Ž . Ý u uis1½

is1
5.12Ž .

Q � 4M -a.e. ; a g A s 0 .5
Ž j Ž ..d Ž 2Ž Q..d � 4Replacing s i g L M _ 0 byis1

d
js iŽ . d` Q

j d � 41 g L M _ 0 ,Ž .Ž .Ž Ž ..s i )0d is 1jž /s iŽ .Ž . is1 is1

Ž .we see that the condition in 5.12 is equivalent to

d
ddj ` Q j a Q � 4s i g L M s i s i s 0, M -a.e. ; a g A s 0Ž . Ž . Ž . Ž .Ž . Ž . Ý u uis1½ 5

is1
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or finally to

d
ddj ` P j a P � 4s i g L M s i s i s 0, M -a.e. ; a g A s 0Ž . Ž . Ž . Ž .Ž . Ž . Ý u uis1½ 5

is1

since M P ; M Q. I

< < < <Finally, suppose that A - ` and let S denote the predictable A = d-t
Ž a Ž ..dmatrix process whose row vectors are s i , a g A. We will sometimest is1

Ž .write S v, t in place of S if it is necessary to emphasize the dependence oft
S on v and t. Here the condition of Lemma 5.1 takes the form

< <d Add ` P 0 P � 45.13 g i g L M S g i s 0 in L M s 0 .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .½ 5ž /is1 t t is1

Clearly this should be equivalent to ‘‘rank S s d M P-a.e.’’ That is the contentt
of Theorem 4 which we now prove.

P Ž .PROOF OF THEOREM 4. If the rank condition holds then for M -a.e. v, u
tŽ . < A < d Ž . dg V = R , S v, u : R ª R is surjective or equivalently S v, Iu : R ªq

< A < Ž .R is injective. But then the condition in 5.13 , and hence completeness,
holds. We now suppose that the rank condition fails, that is, rank S s dt
M P-a.e. is false. Intuitively, one can then choose on a set of positive M P-mea-
sure unit vectors which are orthogonal to the row vectors of S and we simplyt
have to make sure that the vectors can be chosen so as to ‘‘piece together’’ to

Ž d . Ž .a predictable R -valued process to conclude that 5.13 fails. To this end we
use the section theorem from the general theory of stochastic processes. To
apply it, we define

Hd t5 5D s v , u , x g V = R = R x s 1 and x g Im S v , u .Ž . Ž .Ž .½ 5q

Let P : Rd ª R denote the projection onto the ith coordinate and that Pi i
Ž d . Ž .can be considered as a PP = BB R -measurable function i s 1, . . . , d . Since

a Ž . Ž d .s i is predictable, it can also be considered as a PP = BB R -measurable
Ž .function i s 1, . . . , d; a g A . Writing

d
2dD s v , u , x g V = R = R P x s 1Ž . Ž .Ž .Ýq i½ 5

is1

d
d al v , u , x g V = R = R P x s i v , u s 0 ,Ž . Ž . Ž . Ž .F Ýq i½ 5½ 5

agA is1

Ž d . dwe see that D g PP = BB R . If we let P: V = R = R ª V = R denote theq q
projection which ‘‘forgets’’ the Rd-coordinate then we have

P D s v , u g V = R rank S v , u - d .� 4Ž . Ž . Ž .q

w Ž .The section theorem Dellacherie and Meyer 1975 , Section 84, pages 219
x Ž . Ž .and 220, Vol. A implies that P D belongs to the universal completion of PP

P Ž Ž ..and since the rank condition fails, M P D ) 0. The section theorem
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further gives the existence of a PP-measurable map z taking values in
d � 4R j ` with the property that

M P z g Rd s M P P D ) 0Ž .Ž .Ž .
and

v , u , z v , u g D whenever z v , u g Rd .Ž . Ž .Ž .
It follows that z 1 d is a nonzero element ofz g R

d
dd ` P a Pg i g L M g i s i s 0, M -a.e. ; a g AŽ . Ž . Ž . Ž .Ž . Ž . Ýis1 t t½ 5

is1

< <d Add ` P 0 Ps g i g L M S g i s 0 in L M .Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .½ 5ž /is1 t t is1

Ž .Hence the condition in 5.13 fails and we do not have completeness. I

REMARK 5.1. If Q ; P then M Q ; M P and consequently the statements
of Lemma 5.1 and Theorem 4 are invariant under change to an equivalent
probability measure.

6. Price processes driven by a multivariate point process. The
basic reference furnishing the probability background for this section is Jacod

Ž . Ž .and Shiryaev 1987 . We take as given a probability space V, GG, P and a
Ž .Polish space E, EE . For the most part E will actually be finite and EE the

power set of E. First we need a definition.

DEFINITION 5. An E-valued multivariate process m is a family of positive
Ž Ž . .measures on the space R = E, BB R = EE indexed by v g V and satisfy-q q

ing:

Ž . Ž . � 4 Ž .i m v; A g N j ` , A g BB R = EE ;q
Ž . Ž � 4 .ii m v; t = E F 1, t g R ;q
Ž . Ž � 4 .iii m v; 0 = E s 0;
Ž . Ž w x .iv m v; 0, t = E - `, t g R .q

Ž . � < Ž w x . 4For n g N, define T v s inf t m v; 0, t = E G n . Then T ­` and Tn n n
� 4 �Ž . < Ž � 4 . 4 �Ž . <- T on T - ` . Let D s v, t m v; t = E s 1 s v, t ' n s.t. t snq1 n m

Ž .4T v and note that there exist X : V ª E such thatn n

m v ; dt , dx s 1 d dt , dx .Ž . Ž .Ý T Žv .-` ŽT Žv . , X Žv ..n n n
n

Ž .We let G s GG be the natural filtration generated by m, that is,t t g Rq
P Ž Žw x . < . PGG s NN k s m 0, s = B s F t, B g EE , where NN denotes the null sets oft

P. Considered on this filtration, m is a multivariate point process in the sense
Ž .of Jacod and Shiryaev 1987 and their assumption 1.25, page 135, holds.

w x Ž .Since our time interval is 0, 1 , we work with the filtration F s FFt t gw0, 1x
defined by FF s GG for t F 1 and we consider it as a filtration on the timet t
interval R by setting FF s FF for t G 1. The filtration G is right continuousq t 1



MARKET COMPLETENESS VIA OPERATORS 557

w Ž .xsee Remark 1.31, page 136 of Jacod and Shiryaev 1987 and P-complete,
hence the same is true for the filtration F. We shall refer to F as the filtration
generated by the multivariate point process m stopped at time 1. Unless
explicitly mentioned otherwise, the term local martingale will refer to the

Ž .filtration F. We set FF s E FF s FF . We let PP and PP G denote thet g R t 1q
predictable s-algebra on V = R corresponding to the filtrations F and G. Onq

˜ Ž̃ . Ž .V = R = E we consider the s-algebras PP s PP = EE and PP G s PP G = EE.q
˜ ˜ ˜ PŽ . Ž . Ž .Clearly PP : PP G and PP : PP G and on PP G the Doleans measure M of m´ m

P ˜Ž . Ž . Ž .is defined by M s E H 1 v, u, x m v; du, dx , A g PP G . We let nm P w0, `.=E A

Ž .denote the P-compensator or dual predictable projection of the optional and
˜ PŽ .PP G -s-finite random measure m and M the associated Doleans measure.´n

Ž̃ .Random measures and their Doleans measures are defined on PP G , al-´
˜ Ž̃ .though we will consider them only as measures on PP : PP G and representa-

˜tions of measures which follow below implicitly refer to the s-algebra PP. If no
confusion can arise, we henceforth suppress the dependence of processes,
Ž̃ .PP G -measurable functions and random measures on v.

Ž Ž . .So far we have a general filtered probability space V, FF, F s FF , Pt t g Rq
with the filtration generated by the multivariate point process m stopped at

�Ž a . 4 � 4time 1. We consider a family of price processes VV s Z j 1 andt t gw0, 1x a g A
the following assumptions are made:

1. The Za ’s defined by Za s Za for t G 1 are semimartingales on the filtra-t 1
tion F. Furthermore, having the interpretation of price processes, they are
assumed to be positive. More precisely, P-a.s. Za ) 0 and Za ) 0 for allt ty

Ž .t g R . As in Section 5, if R is a semimartingale then EE R denotes theq t
Doleans-Dade exponential, that is, the unique solution to dY s Y dt´ t ty
with Y s 1, but now R is not continuous. Because of the positivity of Za,0

a a Ž a . a t a aone may write Z s Z EE R , where R s H 1rZ dZ has the inter-t 0 t t 0 uy u
pretation as the return process on asset a .
Ž a . Ž Ž a . a . a a2. D R s DZ rZ is bounded, say, by C g R. In particular, R is at t ty
special semimartingale which means that the finite variation part in the

Ž .semimartingale decomposition can be chosen uniquely as a predictable
a a a a locŽ . aprocess. We let R s A q M , where M g MM P and A is predictablet t t 0

of finite variation with Aa s 0, be the canonical decomposition.0
a a <Ž a . < a a3. The drifts A of R have bounded jumps, say, D A F D for D g R.t

Ž .4. The compensator n of m is continuous in the sense that n dt = E g dt,
P-a.s.

Ž . loc aIn assumption 1 , if M / B, then Z ) 0 follows automatically fromqq ty
a Ž .Z ) 0. Assumption 2 states that for any given asset, the price jump as at

percentage of the prejump price is bounded. Note that the strict positivity of
a Ž a . Ž .Z already implies that D R ) y1. Assumption 2 also ensures that thet
a Ž .Z are locally bounded. Assumption 4 implies that we can find a PP-mea-

Ž . Ž . Žsurable function f such that n dt = E s f dt and since E, EE is Polish int
. w Ž .particular, Blackwell , we can disintegrate Jacod and Shiryaev 1987 , 1.2,

x Ž . Ž . Ž . Ž .page 65 n as n dt, dx s a t; dx n dt = E , where a t; dx is a transition
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Ž . Ž . Ž . Ž .kernel from V = R , PP into E, EE . Setting K dx s a t; dx f , we canq t t
Ž . Ž .write n dt, dx s K dx dt. This is the representation of n which will be thet

most useful for our purposes. Finally, if the local martingale parts M a of Ra

are locally square integrable and one assumes the existence of an equivalent
local martingale measure with locally square integrable density process, then

a Ž .the drifts A are in fact absolutely continuous so that 3 automatically holds.
ŽAs was pointed out in Section 3, the filtration F being constant after time

.1 has the property that all local martingales are constant after time 1. Hence
a Ž .the M ’s are also G, P -local martingales and we easily deduce from Theo-

˜wŽ . xrem 4.37 of Jacod and Shiryaev 1987 , page 177 , that there exist PP-mea-
surable s a such that

M a s s a u , x m du, dx y n du, dx� 4Ž . Ž . Ž .Ht
w x0, t =E

for

a locs u , x m du, dx g A PŽ . Ž . Ž .H
w x0, t =E

or equivalently

a locs u , x n du, dx g A P .Ž . Ž . Ž .H
w x0, t =E

Ž . a Ž .The continuity assumption 4 on n implies that D M v, t / 0 only if
Ž . Ž .v, t g D , that is, t s T v for some n in which case it equalsm n

a Ž Ž . Ž ..s v, T v , X v . Sincen n

a a a a aD M F D A q D R F C q D ,Ž . Ž . Ž .t t t

< a Ž . < a a Pit follows that s v, t, x F C q D M -a.e. In summary, our price pro-m

cesses are of the form

Za s Za EE Ra ,Ž . tt 0

where

6.1 Ra s Aa q s a u , x m du, dx y n du, dx� 4Ž . Ž . Ž . Ž .Ht t
w x0, t =E

and
a a a P6.2 s v , t , x F C q D , M -a.e.Ž . Ž . m

Let now Q be a probability measure on FF s E FF s FF which ist g R t 1q
equivalent to P and let ZQ denote the associated density process. We let Y Q

P ˜be the M -a.e. unique PP-measurable function such thatm

ZQ
uQE W u , x Y u , z m du, dx s E W u , x m du, dxŽ . Ž . Ž . Ž . Ž .H HP P QZw . w .0, ` =E 0, ` =E uy

˜ Q Pfor all nonnegative PP-measurable functions W. Then Y ) 0 M -a.e. sincem
Q Ž .Z is a strictly positive element of MM P and Girsanov’s theorem for random

w Ž .xmeasures see, e.g., Theorem 3.17, page 157 of Jacod and Shiryaev 1987
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tells us that

6.3 n Q dt , dx s Y Q t , x n dt , dx s K Q dx dt ,Ž . Ž . Ž . Ž . Ž .t

QŽ . QŽ . Ž .where K dx s Y t, x K dx , is a version of the Q-compensator of m.t t
loc a locŽ .Next note that Q g M if and only if R g MM Q for all a g A and ifqq

loc < a Ž . < Ž . locŽ . Ž .Q g M then H s u, x m du, dx g A Q in view of 6.2 whichqq w0, t x=E
allows us to obtain

Ra y s a u , x m du, dx y n Q du, dx� 4Ž . Ž . Ž .Ht
w x0, t =E

s Aa q s a u , x Y Q u , x y 1 n du, dx� 4Ž . Ž . Ž .Ht
w x0, t =E

Ž . a a Ž .� QŽ . 4 Ž .from 6.1 . But then A q H s u, x Y u, x y 1 n du, dx is a pre-t w0, t x=E
locŽ . loc Qdictable element of MM Q , hence identically zero. Thus for Q g M , Y0 qq

satisfies

6.4 Aa s s a u , x 1 y Y Q u , x n du, dx� 4Ž . Ž . Ž . Ž .Ht
w x0, t =E

and under Q we have the representation

6.5 Ra s s a u , x m du, dx y n Q du, dx .� 4Ž . Ž . Ž . Ž .Ht
w x0, t =E

P Ž .As in Section 5, we let M no subscript denote the Doleans measure on´
P Ž .PP associated with Brownian motion stopped at time 1, that is, M A s

1 Ž . QE H 1 v, u du, A g PP and recall that the Q-compensator n of m is givenP 0 A
Ž .by 6.3 . The orthogonality condition, which by Theorem 3 is equivalent to

completeness, can be used here to obtain the following characterization of
completeness.

LEMMA 6.1. Assume that NA holds and the M loc / B, say, Q g M loc .qq qq
Then the market is complete if and only if

a Q P � 4g g TT g t , x s t , x K dx s 0, M -a.e. ; a g A s 0 ,Ž . Ž . Ž .H t½ 5
E

˜ loc� < Ž . < Ž . < Ž . Ž .4where TT s g g t, x is PP-measurable s.t. H g t, x m dt, dx g A Q .w0, t x=E

PROOF OF LEMMA 6.1. As we pointed out after listing the assumptions on
the price processes, the Za ’s are locally bounded and so with the hypotheses
of the Lemma, Theorem 3 and a localization argument show that complete-
ness is equivalent to

ploc a loc aw x w x � 46.6 j g MM Q j , Z g A Q and j , Z s 0 ; a g A s 0 .Ž . Ž . Ž .� 40
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wŽ . xBy Theorem 4.37 of Jacod and Shiryaev 1987 , page 177 we have

loc Q6.7 MM Q s g u , x m du, dx y n du, dx g g TT .� 4Ž . Ž . Ž . Ž . Ž .H0 ½ 5w x0, ? =E

locŽ .If j g MM Q , say,0

6.8 j s g j u , x m du, dx y n Q du, dx� 4Ž . Ž . Ž . Ž .Ht
w x0, t =E

for g j g TT, then

w a x a a aj , Z s Dj DZ s Dj D R Z .Ž . Ž . Ž . Ž .Ý Ýt u u u u uy
uFt uFt

Ž . Ž . QŽ . Ž .In view of 6.5 and 6.8 and since n dt = E g dt P-a.s., Dj v, u and
a Ž . Ž . Ž .D R v, u are nonzero only if v, u g D , that is, u s T v for some n inm n

j Ž Ž . Ž ..which case they are respectively equal to g v, T v , X v andn n
a Ž Ž . Ž ..s v, T v , X v . Thusn n

w a x j a aj , Z s g T , X s T , X ZŽ . Ž .Ýt n n n n T yn
T Ftn

s g j u , x s a u , x Za m du, dxŽ . Ž . Ž .H uy
w x0, t =E

locŽ . Ž . aand this process is in A Q because of 6.2 , the fact that Z is locallyuy
bounded and g j g TT. Therefore

pa j a a Qw xj , Z s g u , x s u , x Z n du, dxŽ . Ž . Ž .Ht uy
w x0, t =E

t
j a a Qs g u , x s u , x Z K dx duŽ . Ž . Ž .H H uy u

0 E

and so

pa j a a Qw xj , Z s 0 m g u , x s u , x Z K dxŽ . Ž . Ž .H uy u
E

s 0, M P-a .e.6.9Ž .
m g j u , x s a u , x K Q dxŽ . Ž . Ž .H u

E

s 0, M P-a .e.
using Za ) 0 for the last equivalence. Finally,uy

2jw xj s 0 m j , j s g T , X s 0, P-a.s.Ž .Ž .Ý` n n
n6.10Ž .

m g j s 0, M P-a .e.m

Ž . Ž . Ž . Ž .and it follows from 6.7 , 6.9 and 6.10 that the statement in 6.6 , and
hence completeness, is equivalent to

a Q P � 4g g TT g u , x s u , x K dx s 0, M -a.e. ; a g A s 0 . IŽ . Ž . Ž .H u½ 5
E
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˜< < < <Finally we suppose that A q E - `. In this case, if g is a PP-measurable
< <function then for fixed v and t, g may be viewed as an E -dimensional

Ž Ž ..vector. When we want to emphasize this view of g we will write g x ,t x g E
as always suppressing the dependence on v. We let S denote the predictablet
< < < < Ž a .Ž ..A = E -matrix process whose row vectors are s x , a g A. Then St x g E t
may be interpreted as the volatility matrix of the risky assets. Theorem 5
asserts that completeness in this setting is equivalent to a rank condition on
S and we now supply the proof.t

loc Ž . QŽ� 4.PROOF OF THEOREM 5. Let Q g M and from 6.3 we have K x sqq t
QŽ . Ž� 4. Q P Q PY x K x . Now Y ) 0 M -a.e. is equivalent to Y ) 0 M -a.e. Thet t t m t n

P Ž� 4.continuity assumption on n and the fact that M -a.e. K x ) 0 ; x g Et
P QŽ . P QŽ� 4.imply that M -a.e. Y x ) 0 ; x g E, so we also have that M -a.e. K xt t

< < < <) 0 ; x g E. Since A q E - `, the condition of Lemma 6.1 takes the form

a Q P� 4 � 4g g TT g x s x K x s 0 M -a.e. ; a g A s 0 .Ž . Ž . Ž .Ý t t t½ 5
xgE

� 4If g g TT _ 0 satisfies
a Q � 4 Pg x s x K x s 0, M -a.e. ; a g A ,Ž . Ž . Ž .Ý t t t

xgE

then
Q � 4 Qg x K x 1Ž . Ž .t t Ý <g Ž x .K Ž� x4. < ) 0x g E t tg x sŽ .Ž .˜t xgE Q< <ž /� 4Ý g x K xŽ . Ž .x g E t t xgE

Ž `Ž P .. < E < Ž . a Ž . Pis an element of L PP, M and Ý g x s x s 0 M -a.e. ; a g A.˜x g E t t
P QŽ� 4.Furthermore, g / 0 since g / 0 and M -a.e. K x ) 0 ; x g E.˜ t

Ž Ž .. Ž `Ž P .. < E < � 4On the other hand, if g x g L PP, M _ 0 is such that˜t x g E

g x s a x s 0, M P-a .e. ; a g A ,Ž . Ž .˜Ý t t
xgE

then
g xŽ .˜t

g sŽ .t xgE Qž /� 4K xŽ .t xgE
P QŽ� 4.is well defined since M -a.e. K x ) 0 ; x g E. Also, g / 0 andt

a Q � 4 Pg x s x K x s 0, M -a.e. ; a g A.Ž . Ž . Ž .Ý t t t
xgE

˜Finally, g is PP-measurable and

g xŽ .˜t uQ Q � 4g u , x n du, dx s K x du F g x tŽ . Ž . Ž .Ž . ˜Ý ÝH H uQ � 4K xw x Ž .0, t =E 0 uxgE xgE

5 5 `Ž P .where ? refers to the L PP, M -norm and we conclude that g g TT.
Hence we have shown that in the present setting, the condition of Lemma

6.1 which characterizes completeness is equivalent to

< <E` P a P � 4g g L PP, M g x s x s 0, M -a.e. ; a g A s 0Ž . Ž . Ž .Ž . Ý t t½ 5
xgE
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or in linear algebra notation to
< < <E A` P 0 P � 4g g L PP, M S g x s 0 in L PP, M s 0 .Ž . Ž . Ž .Ž .Ž . Ž .ž /½ 5t t xgE

The last condition is seen to be equivalent to the rank condition on S byt
arguing as in the proof of Theorem 4. I

< < < < P Ž� 4.We continue to assume that A q E - ` and M -a.e. K x ) 0 ;t
a a a Ž . Ž .x g E. We consider returns R of the form R s H s u, x m du, dx ,t w0, t x=E

a a Ž . Ž .that is, A s H s u, x n du, dx . If we assume M / B, say, Q gt w0, t x=E qq
Ž .M , then 6.4 here takes the formqq

s a u , x Y Q u , x n du, dx s 0 ; a g AŽ . Ž . Ž .H
w x0, t =E

or equivalently

t
a Q � 4s x K x du s 0 ; a g A ,Ž . Ž .ÝH u u

0 xgE

which holds if and only if
a Q � 4 P6.11 s x K x s 0 ; a g A M -a.e.Ž . Ž . Ž .Ý t t

xgE

Ž .In linear algebra notation 6.11 may be written as
< <AQ 0 P� 46.12 S K x s 0 in L PP, MŽ . Ž .Ž . Ž .Ž . ž /t t xgE

P QŽ� 4.In the proof of Theorem 5 we saw that M -a.e. K x ) 0 ; x g E and sot
Ž .6.12 shows that the existence of an equivalent martingale measure implies
that the rank condition on S fails and hence by Thoerem 5 we cannot havet
completeness.

We conclude with the simple but important case where m is a homoge-
Ž .neous Poisson random measure, that is, a random measure m v; dt, dx with

Ž . Ž . Ž .compensator n of the form n dt, dx s F dx l dt, where F dx is indepen-t
dent of v and t and l ) 0 is independent of v and x. We can alternativelyt

Ž x . x Žw x � 4.describe m by counting processes N defined by N s m 0, t = x .t x g E t
x x Žw xThen N are independent Poisson processes of intensity EN s Em 0, t =t t

� 4. Ž� 4. t xx s f x H l du. Here N counts the number of events of type x which0 u t
Ž .have occurred by time t. The condition on K dx appearing in Theorem 5t

Ž� 4.here amounts to F x ) 0 ; x g E, that is, only events having positive
probability of occurring are listed in E.

EXAMPLE 6.1. We consider an economy in which one of two events may
occur at random times. More precisely, with notation as in the last para-

� 4 Ž� 4. Ž� 4. Ž .graph, we take E s 1, 2 , l ' l and F 1 s p, F 2 s 1 y p for p g 0, 1 .u
We then have the independent Poisson processes N 1 and N 2 with respectivet t

Ž . Ž .intensities plt and 1 y p lt. There are two stocks i s 1, 2 with price
processes Z i growing at a fixed rate g and responding to events 1 and 2 byt i
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Ž . Ž .fixed percentage price jumps of s 1 ) y1 and s 2 ) y1, respectively.i i
Hence assuming without loss of generality that Z i s 1 we have0

N 1 N 2
i t tZ s exp g t 1 q s 1 1 q s 2Ž . Ž . Ž .Ž . Ž .t i i i

or

Z i s EE R i where R i s g t q s 1 N 1 q s 2 N 2 .Ž . Ž . Ž .tt t i i t i t

The canonical decomposition of R i is therefore given by R i s Ai q M i witht t t t

Ai s g q s 1 pl q s 2 1 y p l t� 4Ž . Ž . Ž .t i i i

and

M i s s 1 N 1 y plt q s 2 N 2 y 1 y p lt .Ž . Ž . Ž .� 4 � 4t i t i t

Here the matrix process S appearing in Theorem 5 is independent of v and t
and is given by

s 1 s 2Ž . Ž .1 1
S s

s 1 s 2Ž . Ž .2 2

Ž . locIn this case and after simplifying, 6.4 says that if Q g M thenqq

Qs 1 s 2 plY 1Ž . Ž . Ž . yg1 1 t 1 P6.13 s , M -a.e.Ž . Q ygž /s 1 s 2 ž /Ž . Ž . 21 y p lY 2Ž . Ž .2 2 t

First we consider the case when the stock prices stay unchanged unless
one of the two events occurs, in other words the growth rates are zero and we
show that:

Ž .a The existence of an equivalent martingale measure implies that com-
pleteness does not hold.

Ž .b If the rank condition holds then there are arbitrage opportunities and
the market is complete.

Ž . w Ž .xa simply illustrates more concretely the point made earlier see 6.12 .
Ž . locSince g s g s 0 here, 6.13 shows that if Q g M then the rank condi-1 2 qq

QŽ . QŽ . P Ž .tion fails because Y 1 , Y 2 ) 0 M -a.e. and a now follows from Tho-t t
erem 5.

Ž . `Ž .As for b , suppose that the rank condition holds. If Y g L FF , then1

<lim E Y FF s Y boundedly a.s.,� 4T n 1nnª`

where T denotes the time of the nth jump, and so completeness follows if wen
show

U`6.14 L FF : AA ; n the bar denotes the weak closure .Ž . Ž .Ž .T n 1n

We prove only the case n s 1 since a straightforward induction yields it for
arbitrary n. Consider the increasing family of s-algebras GG k, k G 1, defined
by

k k k k� 4GG s s X s i l T g lr2 , l q 1 r2 i s 1, 2; l s 0, . . . , 2 y 1 ,Ž .� 4.ž /1 1
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where X : V ª E indicates which type of jump occurs at time T ; in othern n
Ž . Ž . kwords, m dt, dx s Ý d dt, dx . Since GG ­ FF ,n ŽT , X . T n 1n n 1

< k� 4lim E Y GG s Y boundedly a.s.
nª`

`Ž . Ž .whenever Y g L FF and so 6.14 will hold for n s 1 if we showT n 11

L` GG k : AA ; k .Ž .
To this end it is enough to check that

1 k : AA, i s 1, 2; l s 1, . . . , 2 k .�X si , T - lr2 4i 1

Note that this will also establish that there are arbitrage opportunities; we
will have 1 g AA and the strategy which generates this payoff must have�T -141

zero initial investment. The rank condition on S implies that

1 s 1 s 1Ž . Ž .1 2

1 s 2 s 2Ž . Ž .1 2

1 0 0

Ž 1 2 .has rank 3 and hence we can find x, H , H such that

1 s 1 s 1Ž . Ž . x1 2 1
1 s .H 01 s 2 s 2Ž . Ž .1 2 ž /� 02 0H1 0 0

Then the strategy with initial investment x and respective holdings of
H 11 k and H 21 k in assets 1 and 2 yields time 1 payoff ofuF T n lr2 uF T n lr21 1

1 k . Similarly, 1 k : AA.�X s1, T -1r2 4 �X s2, T - lr2 41 1 1 1

Finally we leave the zero growth rate setting and show that if S satisfies
Ž . Ž . Ž . Ž .the rank condition, that is, s 1 s 2 y s 1 s 2 / 0 and1 2 2 1

y1
s 1 s 2Ž . Ž .a yg1 11 1sa ygž / ž /s 1 s 2Ž . Ž .2 22 2

has strictly positive components, then there exists an equivalent martingale
measure and the market is complete. It suffices to show the existence of an
equivalent martingale measure because in view of the rank condition com-
pleteness then holds by Theorem 5.

With the given hypotheses we can define the positive process

a a1 21 2j s exp lt q log N y a t q log N y a t .t t 1 t 2ž / ž /ž /pl 1 y p lŽ .
1 2 Ž .We must now merely show that j , Z j and Z j are genuine P-martingalest t t 1 t

since dQ s j dP then defines an e.m.m. This follows from the lemma.1

ŽLEMMA 6.2. Let c, a , a be constants with a , a ) 0. Then j s exp ct1 2 1 2 t
Ž . 1 Ž . 2 . Ž .q log a N q log a N is a positive P-martingale if and only if c s l1 t 2 t

Ž .y l pa y l 1 y p a .1 2
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PROOF. Using the independence of N 1 and N 2, we gett t

Ej s exp c y l q l pa q l 1 y p a t� 4Ž .Ž .t 1 2

from which the forward implication is immediate. Suppose conversely that
Ž .c s l y l pa y l 1 y p a . It is enough to show that j is a local P-1 2 t

martingale, since, being positive, it is then a P-supermartingale and having
constant expectation it must be a genuine P-martingale. After some cancella-

w Ž .tions, Ito’s lemma Jacod and Shiryaev 1987 ; see, e.g., Theorem 4.57, pageˆ
x57 yields

t t 1 2j s 1 q j c du q j a y 1 dN q a y 1 dN .Ž . Ž .� 4H Ht uy uy 1 u 2 u
0 0

Ž .Compensating the Poisson processes and using c s l y l pa y l 1 y p a1 2
gives the desired conclusion. I

Ž .REMARK 6.1. Equation 6.4 suggests the following strategy for finding
loc ˜Ž .Q g M . Solve 6.4 for a positive, PP-measurable Y and then find a P-equiv-qq

alent probability Q such that Y Q s Y. The question of constructing such a Q
Ž .is addressed in Jacod 1975 . The Q of the last paragraph could be thought of

QŽ . Ž . QŽ . Ž Ž ..as the Q for which Y 1 s a r l p and Y 2 s a r l 1 y p . Hencet 1 t 2
QŽ . QŽ . Ž . QŽ . Ž .n dt, dx s Y t, x n dt, dx s Y t, x F dx l dt is deterministic here so

wthat m is actually a Poisson random measure under Q Jacod and Shiryaev
Ž . x1987 , Theorem 4.8, page 104 .
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