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COMPLETENESS OF SECURITIES MARKET MODELS—AN
OPERATOR POINT OF VIEW!

By ROBERT BATTIG

Cornell University

We propose a notion of market completeness which is invariant under
change to an equivalent probability measure. Completeness means that
an operator T' acting on stopping time simple trading strategies has dense
range in the weak* topology on bounded random variables. In our setup,
the claims which can be approximated by attainable ones has codimension
equal to the dimension of the kernel of the adjoint operator T* acting on
signed measures, which in most cases is equal to the “dimension of the
space of martingale measures.” From this viewpoint the example of Artzner
and Heath is no longer paradoxical since all the dimensions are 1. We also
illustrate how one can check for injectivity of 7% and hence for complete-
ness in the case of price processes on a Brownian filtration (e.g.,
Black—Scholes, Heath—Jarrow—Morton) and price processes driven by a
multivariate point process.

1. Introduction. Since the papers of Harrison and Kreps (1979) and
Harrison and Pliska (1981), there has been much interest in the connection
between notions of no arbitrage and completeness and the structure of the set
of equivalent martingale measures. Roughly, the absence of arbitrage is
characterized by the existence of an equivalent martingale measure, while
completeness holds if and only if the equivalent martingale measure is
unique. Precise results along these lines usually go under the names of the
First and the Second Fundamental Theorem of Asset Pricing.

The question of completeness has typically been addressed by first fixing
an equivalent martingale measure @ and then making the trading strategies
[Harrison and Pliska (1981)], the topology used in the definition of complete-
ness [Artzner and Heath (1995)] or the definition of a hedge [Ansel and
Stricker (1994)] depend on Q. As was pointed out by Artzner and Heath
(1995), such a measure-dependent notion of completeness is not generally
sufficient to ensure uniqueness of the equivalent martingale measure or,
more loosely speaking, is not sufficient to ensure unique pricing. In their
example there are many martingale measures, and traders choosing different
measures may not agree on which claims can be approximated by attainable
ones. A trader will think that the market is complete if and only if she choose
one of the two extremal equivalent martingale measures.
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We propose instead a setup for a securities market model which is invari-
ant under change to an equivalent probability measure and a notion of
completeness that also has this property. This removes the logical depen-
dence between the questions of no arbitrage and completeness, introduced by
first fixing an equivalent martingale measure @ (in this connection see
Section 6; the paragraph after the proof of Theorem 5 as well as Example 6.1
illustrate that the existence of an equivalent martingale measure may actu-
ally rule out the possibility of completeness). It also resolves the “paradox” of
the Artzner—-Heath example, since from our new viewpoint, the claims which
can be approximated by attainable claims has codimension one, reflecting the
fact that the “set of equivalent martingale measures has dimension 1.”

As our title indicates, we approach the question of completeness by making
use of operators. This approach to investigating completeness was first
suggested by Jarrow and Madan (1997) and their paper inspired this work. In
a different sense, operators were also used in Bjork, Kabanov and Rung-
galdier (1996) and Bjork, Di Masi, Kabanov and Runggaldier (1997). These
authors associate operators to the jump-diffusion coefficients used in model-
ing the fundamental price processes.

We now describe in broad strokes our setup and the main results. All
proofs as well as precise definitions and explanations not given here will
appear in later sections. Given is a filtered probability space (Q,,F =
(%) 0,1, P) satisfying the usual conditions, a set A of labels for assets
(which may be infinite), and a family 7= {(Z*), ¢y 1)}, < 4 u () Of fundamental
price processes with Z* = 1. In words, we assume that a deflation has been
carried out, so that the riskless asset A is constant.

An agent is allowed to trade in a finite number of assets via self-financing,
bounded, stopping time simple trading strategies that yield a bounded payoff
at time 1. We denote by Y the space of all these trading strategies and by
C = L*(95, P) the space of claims. A typical trading strategy is of the form
(x,(H*), < 4), where x € R stands for the time 0 value of the portfolio and
H<* is a bounded, stopping time simple process with H,* representing the
holdings in asset o at time ¢ € [0, 1]. Since an agent trades only in a finite
number of assets simultaneously, all but finitely many H“’s are identically
zero. Thus the linear operator 7: Y — C given by

T(x,(H) o) =2+ L [(HedZg, (x,(H"),cs) €Y
acA”0

is well defined and calculates the time 1 payoff resulting from a given trading
strategy. Noe that the (stochastic) integrals make sense even if the Z*’s are
not semimartingales, because the H“’s are stopping time simple and hence
the integrals reduce to sums.

We let M denote the space of P-absolutely continuous signed measures on
&, and think of € M as an agent’s personal way of assigning values to
claims. She assigns the value [Xdpu to the claim X € C. An agent’s valuation
n € M also gives her a way of measuring closeness of claims, in that the
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finite intersections of sets of the form B(X, &) ={Y € C||[(X - Y)dpul < &},
X € C and & > 0 are a basis for a topology 7* on C. We endow C with the
coarsest topology 7 finer than all of the 7#, u € M. This topology is obviously
agent—measure-independent. Loosely speaking, claims are close if any agent,
regardless of her valuation w € M agrees that they are close. Here M
endowed with the total variation norm is a Banach space which is isomorphic
to L'(#;, P) by the Radon—Nikodym theorem and hence its topological dual is
C = L*(¥7, P). Furthermore, the topology 7 on C can alternatively be de-
scribed as the coarsest topology making all the elements of M continuous
linear functionals on C. Therefore, v is what is frequently referred to as the
weak* topology [see, e.g., Rudin (1991)] and we will also use this terminology.

If an agent wishes to trade according to (x,(H%),. 4) € Y, then she needs
to put up an amount of money x at time 0. Thus 7 (x,(H*), . 4) = x for
(x,(H*),c ) €Y is the market’s way of valuing trading strategies. On the
other hand, an agent’s personal valuation uw € M of claims induces a valua-
tion T* u of trading strategies given by

(T*w) (%, (H") aca) = [T(x,(H")uea) du, (%, (H*)ues) € V.

We endow Y with the coarsest topology, making {T*u}, ., U {m,} continuous
linear functionals on Y. The topological dual of Y is denoted by X and we can
regard T* as a linear operator from M into X. As will be seen later, T* is in
fact the adjoint operator of 7. We summarize this pictorially as

Xe—I" _ wm,

Y d C.

Our setup is measure-independent in the sense that X, Y, C and M are all
invariant under change to an equivalent probability measure.

We let «/; denote the attainable claims and &/} the claims attainable at
zero initial cost

o = {x+ Y [‘Hdzg

acA "0

(2, (H%) gea) EY} =ImT,

S = { )y le;dZ;j
acA "0

(0,(H%) yen) € Y}.

Let M, /M denote the P-equivalent martingale—local martingale mea-
sures for 7. We are now ready to define completeness.

DerFINITION 1. The market is complete if &, = Im T is dense in C with
respect to the weak™ topology.

Since the weak*® topology as well as the space Y of trading strategies is
agent—measure-independent, the same is true for our notion of completeness.
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In referring to the measure-dependent notion of completeness used by Artzner
and Heath (1995), we shall use the following terminology:

DEFINITION 2. For @ € I we say that the market is @-complete if
o/, = Im T is dense in C with respect to the L'(F;, @) topology.

To be able to state our results, we need one more definition.

DEFINITION 3. The no arbitrage condition (NA) holds if & N C,= {0},
where C, denotes the r.v.’s in C which are P-a.s. nonnegative.

Since we consider only stopping time simple trading strategies and no
closures of sets appear in Definition 3, NA is a mild no arbitrage condition.
Stronger conditions are needed to obtain versions of the first fundamental
theorem of asset pricing when the time set is infinite. See Dalang, Morton
and Willinger (1990), Lakner (1993), Schachermayer (1994) and Delbaen and
Schachermayer (1994). For our purposes NA is sufficient; it ensures that if
X €4, then any two trading strategies resulting in the payoff X are valued
the same by the market, that is, X = T'(x,(H®),. ,) = T(%,(H%), . ,) im-
plies mo(x,(H*), . 4) =x =% = mo(%,(H®),  ,). Thus, attainable claims are
unambiguously priced by the initial investment required to attain them.

First, we give operator characterizations of completeness and @-complete-
ness. The numbering of conditions may seem strange. However, conditions
(iii) and (iv) will appear a little later and the numbering has been chosen to
be natural, given the relationship we will deduce between the various condi-
tions. See Figure 1 for help in following the development.

. QEP, /-
(i) Market complete e——e——x—s (ii) T* iujective(=+/> (iil) P4/ = {Q}

Qemles

not generally;

see Example 4.3 (vii) O(V, P) holds

Qem,

(iv) M4 = {Q}

) ;s = {Q)

not generally;
see Examples 4.1 and 4.2

(v) Market is Q-complete <—=====—=> (vi) T" injective on M(2->)

Fic. 1. Except for the top row, it is assumed that NA holds and that the price processes are
locally bounded. If 7" is finite or all the elements of 7 are processes with continuous sample
paths, then all the conditions are equivalent.
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THEOREM 1. The following are equivalent:

(1) The market is complete.
(i) The operator T*: M — X is injective.

Let @ € M. The following are equivalent:

(v) The market is Q-complete.

(vi) The operator T* restricted to M@ is injective, where M@ denotes
the (signed) measures in M with bounded Radon—Nikodym derivative with
respect to Q.

REMARK 1. In particular, comparing (ii) and (vi) shows that our notion of
completeness is stronger than @-completeness.

Recall that 7 (x,(H%),. 4) = x for (x,(H%),. ) € Y gives the market’s
valuation of trading strategies. We denote by &, ,  the signed measured
whose induced valuation of trading strategies is consistent with the market,
that is, p €2, ,_ if and only if T"u = 7. Finally, we led M, , denote the
cone of P-equivalent positive measures in M. The next result states that,
under appropriate assumptions, the equivalent local martingale measures
are simply the positive measures inducing a market consistent valuation of
trading strategies.

PROPOSITION 1. If NA holds (in particular if I, ,+ Q&) then M cp, /-
N M, .. If, furthermore, the elements of 7" are locally bounded, then ¢ =
P, NM,,.

The structure of the sets %, and Mloe is closely connected to ker 7*
and hence to completeness and @-completeness:

THEOREM 2. IfQ €%, , ,then #,, ={Q + ulu € ker T*}. Hence condi-
tions (1) and (i) of Theorem 1 are further equivalent to:

Gi) 2, ,_ = {(Q.

Assume that NA holds and that the elements of 7 are locally bounded. If
Q € M and we let (iv) denote the condition I = {Q} then we have

(iil) = (iv) = (vi).

When @ € i, ,, (iv) may be replaced by (iv') M, , = {Q}.
If 7 is finite or if all the elements of 7" are processes with continuous
sample paths then (1)—-(vi) are all equivalent.

REMARK 2. The Artzner—Heath example (see Examples 4.1 and 4.2 below)
shows that (v), which by Theorem 1 is equivalent to (vi), is not generally
sufficient for (iv) or (iv') when @ € ¥t .. In Example 4.3 we will see that (iv)
does not generally imply (i), which is equivalent to (iii).
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If @ is a probability measure, we let A°(Q) denote the vector space of
processes of @Q-locally integrable variation. For A € A°(Q) we use A” to
denote the @-compensator (or dual predictable projection) of A. We let .Z(Q)
denote the space of uniformly integrable @-martingales and Z7(Q), 1 <p <
%, the space of @-martingales X, for which |lsup,|X,|ll5rq) < %. #"(Q) and
ZP1°°(Q) consist of the processes which are locally in .#(Q) and .Z#”(Q)
(1 < p < =), respectively. In particular, .#"°(Q) is the space of local Q-
martingales. We let A (@) = {X € A(Q)| X, = 0} and Z(Q), 7P °(Q), #,(Q)
and .Z°°(Q) are defined analogously. Finally, when no confusion can arise,
we omit the dependence of these spaces on @, writing, for example, A in place
of A(Q).

We say that two adapted cadlag processes X,Y are orthogonal and we
write X L Y if XY €#°°. When X,Y are local martingales this coincides
with the usual notion of orthogonality for local martingales. If % is a family
of adapted cadlag processes, we write X 1 . to indicate that X is orthogonal
to each element in .%. Of course, this notion of orthogonality is in reference to
a particular probability measure. In Theorem 1 we saw that completeness
was equivalent to injectivity of T*. To make this a practically useful observa-
tion, we need a way of checking for injectivity of T*. For this purpose we
introduce the following orthogonality condition which also appears in Jacod
(1979) as condition C; when % C.Z,°.

DEFINITION 4. Let P be a P- equivalent probability measure. We say that
the family of price processes 7~ satisfies the orthogonality condition with
respect to P or more briefly that #(7", P) holds if {& E%l(P)If 1L 77} ={0}.

The next result will be useful in further characterizing injectivity of T*
and hence completeness in a number of settings (see Theorems 4 and 5
below):

THEOREM 3. Assume NA holds and that the elements of 7 are locally
bounded. if P is any P-equivalent probability measure then condition (ii) of
Theorem 1 which states that the operator T*: M — X is injective, is equivalent
to:

(vil) @(7", P) holds.
IfP =Q € MY then (vii) takes the following form:
vil) {¢ e (QN &, Z%] € A°(Q) and [ £,Z]P =0V a € A} = {0}.

The results contained in Theorems 1-3 are graphically summarized in
Figure 1.

Given a semimartingale X, let £(X) denote its Doléans-Dade exponential,
that is, Y, = &(X), is the unique solution to dY, = Y,_ dX, with Y, = 1. In
Section 5 we consider price processes which are positive continuous semi-
martingales on a (d-dimensional) Brownian filtration and hence are of the
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form
Zta = Zgg(Ra)t’
where
d .
Ry=A;+ ¥ [00(i)dBi,,,
i=1°0
o*(),i=1,...,d, are predictable processes, the A*’s are continuous adapted

finite variation processes with A =0, o € A and (B}){_, is d-dimensional

Brownian motion. R* has the economic interpretation as the return process
of asset a@. One obvious type of model covered by this setup is a generalized
Black—Scholes stock model with prices evolving as possibly time inhomoge-
neous diffusions. Another possibility is to have 7= {(Z]), . 1}y U {1},
where 7 C [1,) and Z7 is the deflated price of a bond with maturity 7' € .9
as in Heath, Jarrow and Morton (1992). Since we are interested in complete-
ness at time 1, the bonds under consideration clearly should have maturity
after time 1, hence the restriction . C [1, ).

If the number of assets is finite, that is, |Al < », we let 3, denote the
predictable |A| X d-matrix process whose row vectors are (o,%(i))’,, a € A.
We call 2, the volatility matrix of the risky assets. Since there are only d
“sources of randomness” coming from the Brownian motion, it is natural to
expect that d “sufficiently independent” risky assets are needed for complete-
ness. More precisely, we will use Theorem 3 to obtain Theorem 4.

THEOREM 4. Assume I + &, that NA holds and that | Al < . Let 3, be
as in the preceding paragraph. Then the market is complete if and only if rank
3, = d holds M*-a.e.

Theorem 4 is essentially known. Indeed by Theorem 3 the market is
complete if and only if [.Z; 7| = 1, so the result follows from a slight modifi-
cation of Théoréme 6 of Ansel and Stricker (1992).

Price processes with jumps have been studied by various authors with
different goals in mind. See, for example, Merton (1976), Mercurio and
Runggaldier (1993) and Jeanblanc-Picqué and Pontier (1990). In Section 6 we
will consider price processes which are driven by an E-valued multivariate
point process p with compensator v(d¢, dx) = K,(dx) dt. We will see that our
assumptions on the price processes allow us to write them in the following
form:

Zf =Z;&(R"),,
where
Ry =A; + [ o(u, x){ w(du,dx) — v(du, dx))
[0,¢1XE

and the o “(¢, x)’s are bounded Mf-a.e. Here o *, u and v may depend on o,
but as is customary, this dependence is suppressed. Again, R® has the
interpretation as the return process of asset «.
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The points of E should be thought of as possible types of “shocks” which
occur in the economy according to the multivariate point process u and cause
the price processes to adjust by jumping. If |E| < « we may regard o *(¢, x)
as an | E|-dimensional vector for fixed w and ¢, and we then write (o,%(x)), c
in place of o “(¢, x). If now |A| + |E| < », we let X, denote the predictable
| Al X |El-matrix process whose row vectors are (o,*(x)), .z, a € A. Once
again, we call 3, the volatility matrix of the risky assets. The situation is
very much analogous to the Brownian setting. There are now |E| “sources of
randomness” corresponding to the different possible shocks. We will use the
orthogonality condition in Theorem 3 to show that | E| “sufficiently indepen-
dent” risky assets are needed for completeness.

THEOREM 5. Assume ¢ # &, that NA holds and that |E| + |A| < =. Let
S, be as in the preceeding paragraph and assume that M*-a.e. K,({x}) > 0V
x € E. Then the market is complete if and only if rank 3, = |E| holds M*-a.e.

This paper is organized as follows. In Section 2 we discuss the second
fundamental theorem from an operator point of view for a securities market
model on a finite probability space. This simple setting allows us to point out
the fundamental connection between completeness, operators and equivalent
martingale measures without having the technicalities of infinite-dimen-
sional spaces obscure the basic ideas. Section 3 gives our general setup and
establishes Proposition 1 and Theorems 1-3. Sections 4-6 are devoted to
three types of examples. Section 4 contains the Artzner—Heath example as
well as the other examples mentioned in Remark 2, which illustrate the
problems that arise when there are an infinite number of discontinuous price
processes. Sections 5 and 6 deal, respectively, with price processes on a
Brownian filtration and price processes driven by a multivariate point pro-
cess. There we use the orthogonality condition of Theorem 3 to establish the
characterization of completeness given in Theorems 4 and 5.

2. Securities market models on a finite probability space. A com-
plete analysis of finite models was provided by Tagqu and Willinger (1987).
We briefly discuss the Second Fundamental Theorem of Asset Pricing in this
simple context; here the basic ideas of our approach to completeness can be
illustrated without having to deal with topological issues which are present
in a more general setting.

We take as given a filtered probability space (Q, F,{%), <, P), where
II={0,1,....,7T} 1Ql =M < o, 7, = {J, O}, Fp = F =2(Q) (power set of Q)
and P(w) > 0V w € Q. In addition to a riskless asset whose price process is
identically 1, there are N risky assets whose prices are modelled by adapted
processes (Z!),.; (i =1,...,N) and we set (Z),.; = (Z},...,ZN), . For
t € 11, 7, is generated by a finite partition #' = {P/},_, , of n, nonempty
disjoint subsets of Q and for # < T any element of %' is the union of
elements from 2'*!. So in this case, the stochastic basis or filtered probabil-
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ity space can be pictured as a tree whose nodes at time ¢ are given by
Pj,..., P, . One allows predictable, self-financing trading strategies and be-
cause of our simple setting there is no ambiguity as to the appropriate
definitions of no arbitrage and completeness. The questions of no arbitrage,
completeness, existence and uniqueness of an equivalent martingale measure
(e.m.m.) may be investigated either globally, that is, for the tree as a whole or
locally, that is, at a particular node. It is easily seen that no arbitrage,
existence of an e.m.m. and uniqueness of an e.m.m. holds globally if and only
if the corresponding property holds at each node. Also, when no arbitrage
holds, completeness globally is equivalent to completeness at each node. In
view of these remarks, there is no loss of generality in considering a one-time
period model, that is, 7' = 1.

In the one-time period model, the space of trading strategy is Y = {(x, H)|x
€ R, He RY). Here H=(H!,..., H") gives the holdings in the N risky
assets during the time interval [0, 1] and x denotes the time 0 value of the
entire portfolio, so the holding in the riskless asset are x — H - Z,. With this
convention, the time 1 value of the portfolio is given by x + H(Z, — Z,). We
let C = L*(Q, 2(Q), P) = R¥, where “= ” indicates that the two spaces are
isomorphic as Banach spaces. We introduce the operator 7: Y — C defined by
T(x,H) = x + H(Z, — Z,) which calculates the time 1 value of a given strat-
egy (x,H) € Y and completeness means that T is surjective. We let M, X
denote the topological duals of C, Y, respectively, and consider on (Y, X), (C, M)
the natural bilinear forms. With the generalizations to come in mind, note
that M can be thought of as the space of signed measures on (2, 2({))) acting
on C through integration; { u, X) = [Xdu for p € M and X € C. We denote
by T*: M — X the adjoint operator of T' and we have

(T*u, (X, H)) =, T(x,H))

(1) = [T(x,H)dp = [x + H(Z, — Zy) dp
for w € M and (x,H) € V.

We let 9, ., denote the set of equivalent martingale measures and M, ,
the set of strictly positive measures on (Q, 2(Q)). We assume that I, , # &,
say @ € M, which in this setting is equivalent to the no arbitrage assump-
tion by the first fundamental theorem of asset pricing. From (2.1) we see that
if m, € X is defined by 7 (x, H) = x for (x,H) € Y, then

M, = (T*) (7)) "M, ,={Q + ulu € ker T*} "M, ,
and hence
M, ,={Q} & T* isinjective « T is surjective,

using the fact that M is finite-dimensional for the first equivalence and linear
algebra for the second. Since, by definition, completeness means that 7' is
surjective, we have recovered the classical version of the Second Fundamen-
tal Theorem of Asset Pricing, as follows.
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THEOREM 6. Assume no arbitrage holds, say @ € N, . Then the market
is complete if and only if M, , = {Q}.

3. General setup and results. Throughout this section, a filtered prob-
ability space (Q, 7, F = (%), (o 1), P) satisfying the usual conditions, that is,
the filtration is right-continuous and %, contains all P-null sets, is fixed. We
further assume that %, contains only sets of P-measure zero or one. Also
given is a family 7= {(Z),c (¢ 1))a < au(a, Of adapted cadlag price processes
on the time interval [0, 1] with Z* = 1. In other words, the A-asset plays the
role of deflator and we assume that the deflation has been carried out. A is
allowed to be infinite. Further properties of the elements of #~ will be
introduced later. For the moment, however, we do not even assume that the
price processes are semimartingales. We can get away with this level of
generality since we only consider stochastic integrals on stopping time simple
integrands. Of course, if there is an equivalent local martingale measure for
7" then the elements of 7° are necessarily semimartingales [Jacod and
Shiryaev (1987), Theorem 3.13, page 156]. For some purposes it is more
convenient to work with the time set R, and we therefore let % =% and
Z} =273 for t > 1. Since &, =5 for t = 1, we will use F to denote both
(FDier0.1) and (F), c g - When we say that (X,), (o ;; is a local martingale we
mean that X extended to R, by X, = X for ¢t > is a local martingale on the
filtration F = (%), -

A few comments about technicalities are in order. For basic stochastic
calculus definitions we refer the reader to Jacod (1979) and Jacod and
Shiryaev (1987). The measures we deal with are considered on the o-algebra
F, = VtER+'/o_t = . Given a process X and a stopping time 7, we write X~
for the process stopped at time 7. When we write an equality between
processes it is understood to hold up to a P-evanescent set. With these
conventions in place, we note that our filtration has the property that X = X!
for any martingale X and hence also for any local martingale. In other words,
any local martingale on our filtration is constant after time 1. In particular, a
martingale is automatically a uniformly integrable martingale, and, to check
if a local martingale is of class D (or equivalently if it is a uniformly
integrable martingale), it suffices to consider stopping times which are
bounded by 1. Recall that if X is an adapted cadlag process which admits a
terminal r.v. then a necessary and sufficient condition for X to be a uniformly
integrable martingale is that EX = EX, for any stopping time 7. We will
apply this fact repeatedly to processes that are constant after time 1, in
which case it suffices to consider stopping times 7 < 1. Finally observe that
since %, is assumed to contain only sets of P-measure zero or one, X, is
constant P-a.s. for any adapted process X and so EX, = X,.

In the introduction we gave a nontechnical and economically motivated
description of our setup. We now focus on the mathematical aspects and refer
the reader to Grothendieck (1973) for functional analytic background mate-
rial. We allow an agent to invest in the riskless asset plus a finite number of
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risky assets via self-financing, stopping time simple strategies [see (3.1) and
(3.2) below] yielding bounded payoffs. This means that the agent can arbitrar-
ily choose holdings in the riskless and the risky assets at time 0 and after
time 0 chooses holdings in the risky assets, with the holdings in the riskless
asset being determined by the self-financing condition. More precisely, let

(3'1) V= (x’(Ha)aEA)Lx €R, H = Z h?,ll(ﬁ:l,nﬂ](t) >
i=1

where 0 < 7§ < -+ < 7,° < 1 are stopping times, h{ € L(#., P)and H* =0
except for finitely many « € A. (H*), . 4, represents the holdings in the risky
assets after time 0. Rather than specifying the holdings at time zero of the
riskless and all the risky assets, we let x stand for the time 0 value of the
entire portfolio. We denote by L(#,) the vector space of .#;-measurable r.v.’s
modulo P-equivalent and define the operator T: Y — L°(%)) by

T(x,(H ) gen) =2+ L [ HedZg
acA "0

Here the sum is finite and T' calculates the time 1 payoff resulting from the
strategy (x,(H®),. ,) € Y. The space of claims will be C = L*(%;, P), that is,
the & -measurable bounded r.v.’s modulo P-equivalence. To ensure that the
payoffs are bounded, the space of trading strategies is taken to be

(3.2) Y =Y nTYL(%,P))

and we shall refer to the elements of Y as stopping time simple strategies
yielding bounded payoffs. Finally, we denote by 7: Y — C the restriction of T'
to Y.

We let M denote the vector space of P-absolutely continuous signed
measures on (Q, 7). Then (C, M) forms a duality via the bilinear form ¢ -, - ):
C XM — R given by (X, u) = [Xdu which is separated in the sense that
(X,-)=0onlyif X=0and (-, u) =0onlyif u =0(X € C, u € M). Recall
that 7o(x,(H*),c ) =%, (x,(H%),c4) €Y, is the market’s way of valu-
ing trading strategies. We let X denote the vector space generated by { w°
T},em Y {m). Since {u°T},cy U {m} are linear functionals on YV,
(Y,X) forms a duality via the bilinear form (-,:): Y X X - R given by
(x,(HY), c 4), ¢y = ¢(x,(H*), . ,) which is separated in X because ( -, ¢)
=0onlyif  =0(x,(H*),c) €Y, peX).

The vector spaces Y, X, C and M become locally convex topological vector
spaces when endowed with the weak topologies arising from the dualities
described in the last paragraph. In particular, since M is isomorphic to
LY, P) by the Radon—-Nikodym theorem, the topology on C is the weak*
topology, viewing C as the topological dual of L'(F;, P). Also, it follows from
Grothendieck [(1973), Proposition 24, page 80] that 7: Y — C is weakly
continuous and Corollary 2, page 81 of the same source yields the weakly
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continuous adjoint operator T*: M — X explicitly given by

(T*w)(%, (H) gea) = [T(x,(H ) gea) di, (%, (H")gen) € V.

In Section 4 we will want to discuss discrete-time models and the following
argument shows that our continuous time setup still applies. Consider the
time set T = {¢,, 1, t9,..-, bp_1, Ep} With 0 = £, < t; <y < -+ <tp_; <tp=
1, the filtered probability space (Q, %, F = (%), <, P), and the family 7=
{(Z%),;cnlac auqay of finite-time price processes adapted to the filtration [.
Here one allows trading strategies which are F-predictable, bounded and
self-financing. The bounded claims attainable in the continuous-time model
obtained by letting

!]7;= Zi’ te[ti’tiJrl)’ and Z~ta= Zt,d te[ti’tzﬂrl)’
I, t=1, zZy, t=1,
are the same as the bounded attainable claims in the finite-time model. In
this way, finite-time models can always be embedded into continuous time.
We briefly recall some of the notation and definitions given in Section 1.
The space of attainable claims is ., = Im T and ./ the space of claims
attainable at zero initial cost. Then M. /M denote the P-equivalent
martingale /local martingale measures for 7° and %, ,  the set of signed
measured u € M for which T%u = 7,. Recall also that completeness means
that .7, is weak* dense in C, while for @ € I, @-completeness means that
&/, is dense in C with respect to the L'(#;, ®) topology. We also defined a
weak no arbitrage condition (NA); .« N C, = {0}, where C, = {(XeClX=0
(P-a.s.)}. For a P-equivalent probability measure P we say that the orthogo-
nality condition #(7”, P) holds if {¢ e#Y(P) ¢ L 7} ={0}. Since ¢ € #Y(P)
belongs to #!(P) if and only if ¢ 1 1, we have

(3.3) &(7°,P) holds & {¢£ €27} (P)|¢ L {Z°),ca} = {0}
(34) And {§E%O(P')|§J- {Za}aEA} = {0},
using %’0(}5) g%l’l"c(ﬁ) to get the last equivalence. Finally, we let . denote

the space of value processes corresponding to the attainable claims

o = {x+ Y /'H;dzg (x,(H") es) €Y.

acA 0

We now prove Proposition 1 and Theorems 1-3.

ProOOF OF THEOREM 1. From our setup we have that (Y, X) and (C, M) are
dual systems separated in X and M, respectively, and that T: Y — C is a
weakly continuous linear operator. Proposition 26, page 82 of Grothendieck
(1973) implies that Im T' is weakly dense in C if and only if 7%: M — X is
injective. Since the weak topology on C arising from the dual system (C, M) is
precisely the weak* topology, the equivalence of (i) and (ii) follows.
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For the equivalence of (v) and (vi), we just need to modify the argument of
the last paragraph slightly. Note that (C, M@ ®) forms a dual system via the
bilinear form (-,-): C X M@* - R given by (X, u) = [Xdu which is
separated in M@ ®, Furthermore, T: Y — C is weakly continuous with
respect to the dualities (Y,X) and (C, M@ ). Proposition 26, page 82 of
Grothendieck (1973) now gives that Im T is weakly dense in C for the
dualities (Y,X) and (C,M® %) if and only if T* restricted to M@ ™ is
injective. By the corollary to Theorem 4, page 60 of Grothendieck (1973), this
is in turn equivalent to Im 7' being dense in C with respect to the L'(%;, @)
topology because the L'(%;, @) topology on C is consistent with the duality
(C,M@*) in the sense that the dual space of C when endowed with the
LY, @) topology is M@ * [which is isomorphic to L*(7;, Q). O

Before giving a proof of Proposition 1, we point out that the containment
Mloe cop ,~-N M, may be strict if the local boundedness in Proposition 1 is
dropped.

ExaMpPLE 3.1. We consider the filtered probability space (Q,{%,,#}, P)
where Q = N, 7, = {J, O}, 77 = 2(Q) (the power set of ) and with P(w) > 0
Y w € Q. There is a single risky asset with price process Z, = 2, Z,(i) = i for
i > 1. In this case &, consists only of constants and hence &_, is the set of
all probability measures on N with support N. It is clear that ¢, , # & and
hence NA holds. If @ is a probability measure on N with support N such that
Z, ¢ IM%,Q)then @ €, but Q & M=, ..

The example is trivial in the sense that ./, consists only of constants. By
introducing a second period, one can give an example to the same effect in
which 7, consists of more than just constants.

PrOOF OF PROPOSITION 1. First I claim that
(3.5) NA = the elements of & are bounded processes.
Let V €., say,

Vi=x+ ¥ [Hpdzg,  (x,(H%) ) €Y.
acA”0

We assume that |V;| < M and show that
(3.6) sup|lV,| <M + 1, P-as.
¢

Consider the stopping times
o"=1inf{¢|lV,> M + 1} A 1and o = inf{¢|]V, < —M — 1} A 1.
Then
Vi=Ve+ T [H, () dZg
0

acA
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and from the definition of ¢* and the fact that |V;| < M we deduce that
1

(3.7) 0<l, .y< ¥ fo — H{1, yy(u) dZ¢.

acA

The claim on the right-hand side is attainable with (0,(—H;1 .+ 1,(w), c )
€ Y and so NA implies that the inequalities in (3.7) are equalities. Hence
o"=1 P-as. and similarly ¢~ = 1 P-a.s. so that

oc"A o =mf{t||IVI/>M+1} A1=1, P-as,

which establishes (3.6) and hence (3.5).
It now follows that if NA holds, then

(3.8) o Q)
for any @ € M. Hence

(T*Q)(x,(H")aea) = EQT(x,(H")aea) = Eq

x+ ¥ [H dZ;j)
acA "0
=x=my(x,(H")qea)
for (x,(H%), < 4) € Y which shows that
%Eig@+/_ﬁ M, .

Conversely, let @ €2, ,_N M, , and note that +Q is a probability mea-
sure. Since we are working under the additional assumption that the ele-
ments of 7" are locally bounded, it suffices to show that for a fixed o* € A
and any stopping time  that (Z%")" is bounded, (A%")" is a @-martingale. As
pointed out at the beginning of this section, since Z¢" is constant after time
1, this will follow if we show that

Ey(Z*),=(Z*"), or equivalently EQ{(X“*); - (Z“*)B} =0

for any stopping time o < 1. Given such a o and setting H* =0 if a # a*
and H' =1,_,,, if a = a* we have (0,(H%), . 4) € Y and hence

Eo{(Z*) e = (Z2°7)0} = Eo{(Z* ) ino — (Z°7)o}
= Eo(T(0,(H®) yes) = 0. O

Let P be any P-equivalent probability measure and for 1 € M denote by
o5(w), the density process of w with respect to P, that is, ¢s(u), =
Ep{d,u,/dISIZ}. Then ¢p defines a bijection between M and %’(ﬁ)ﬂ. The
following lemma implies that ker T* gets mapped onto {&e.z,(P)¢ L

{Z*},< A} by ¢p and plays a key role in the proofs of Theorems 2 and 3:

LEMMA 3.1. Let u € M with w(Q) = 0. Then ¢ = os( ) €.4,(P) and the
following three conditions are equivalent:

(1) § 1 {Za}aeA;
(i) ¢ L,
(ii1) p € ker T*.
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ProOF OF LEMMA 3.1. It is clear that if w €M with u(Q) =0 then
&= ¢os( ) e, (P). Now ¢ is constant after time 1 and if 7 is any bounded
adapted cadlag process which is also constant after time 1 then
(39) é¢Lne énesy(P) = Es(én)r=0  V stopping times 7' < 1.
Since NA holds, the statement in (3.8) holds and implies that (3.9) applies to
any n €. This (for the first equivalence) and Es(¢Y), = (Yo dup (dp =
&, dP on ;) (for the second equivalence) yields

(i) ® Ep(¢Y)r =0 VY € and stoppingtimes 7' < 1,
(3.10)
@fYT du=0 V Y €./ and stopping times T' < 1.

Since Y, = Y and Y7 €./ whenever Y €. and T < 1 is any stopping time,
the condition in (3.10) is equivalent to

jndu=m VY ew

which is equivalent (iii).

It remains to check the equivalence of (i) and (ii). First we recall the
following easily verified fact [He, Wang and Yan (1992), Theorem 7.38 and its
proof, page 203]:

Let M €.#(P), T a stopping time and g € L(¥;). Then
gM—-M") en(P).
Consider an arbitrary « € and let T, 1~ a.s. be a sequence of stopping
times such that (Z*)7" is bounded. For (i) = (ii), we need to show that when
(1) holds,

£1LR{(Z*) - (Z*)"} for stopping times o < 7 < 1and h € L*(5,),
which follows if we show

M, e (€72 = €T (Z*) M) ety (P) Y on.

(3.11)

In view of (3.11) it is enough to show that
£z €T Ze) T ey () Von,

since we can then take M = ¢T"(Z)y "Tw' — ¢TW(Z*)o "1 T = ¢ A T and
g = hl,__ in (3.11). For any stopping time 7' < 1 we have

x a AT a
Eﬁ(fT”(Z )A )T=E15§T,5ATZTAT:AT
:EﬁEﬁ{fT;?ATZTaAT;AT|ZAT;AT}
ZEﬁfmT;AT(Za)TATV?AT
& a\Tx
=Ep(£7(Z) " )ps.e

If () holds then ¢7+ 1 (Z*)"+ with ¢7 e.#,(P) and (Z*)"" bounded and
constant after time 1 so that (3.9) implies that the last expectation in (3.12) is

(3.12)
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zero. Therefore, (i) implies that
E~(§T:(Z“)MT'7)T= 0  V stopping times T' < 1,

which shows that ¢77(Z*) "% € #,(P). One shows similarly that
gT“(Z )o’ AT e.%o(P)
Finally,

(2)" = £(Z2)" — (Z2*) " (&~ £")
and if (i) holds, then £(Z*)"" e.#,(P) since (Z*)'+ €. while (Z*)Ti{& —

£T} ey (P) follows from (3.11). Hence (¢Z*)7+ e#,(P) VY n, thatis, £ L Z*
when (ii) holds and (ii) = (i) follows. O

Lemma 3.1 and (3.4) imply the equivalence of conditions (ii) and (vii) as
asserted in Theorem 3, so its proof is almost complete:

PROOF OF THEOREM 3. It remains only to show that if @ € !¢ then (vii)
takes the form (vii). Again it is convenient to use the characterlzatlon of (vii)
contained in (3.4). If ¢ €.7,(Q) then

ELZ% = [§,2°] ey (Q) = [£,2°] e™(Q) N A*(Q),

using Proposition 1.43 of Jacod [(1979), page 20] to obtain the last equiva-
lence. Hence

£LZ" = [¢,2°] € A°(Q) and [£,2Z°]" =0. O
Finally, we establish Theorem 2.

PROOF OF THEOREM 2. Since by definition &2, , = (T*) (m), it is clear
thatif @ €2, , , then . ,_= {@ + uln € ker T*} and hence (iii) is equiva-
lent to (ii) of Theorem 1. For the rest of the proof we assume that NA holds,
that the elements of 7" are locally bounded and that @ € Ii'°°. Then
Mloe = ,~N M, by Proposition 1 and hence the implications (111) @{v)
and (iii) = (iv)’ when @ € I, . are immediate.

Next we assume that (vi) fails and show that (iv) fails and that (iv) fails if
Qe M, . Let ue (ker T*\{0) N M?@* and multiplying by a constant,
assume without loss of generality that [[du/d@|.. < 1/2. Then @ = @ + p,
that is, d@ = (1 + du/d®@) dQ defines a P-equivalent probability measure
different from @ and we show that @ € ¢ and @ € M,, when Q € N .
Since u € ker T*, Lemma 3.1 implies that Z* 1 ¢o(w), that is, Z%y(u) €
M°(Q), where un( w), = Egldun/dQl7;} is the density process of w with
respect to Q. Also, Z* €.#°(Q) since @ € M and so Z*(1 + eo(m) €
A1Q). Equivalently, Z* e.#"(Q) and therefore @ & M. Finally, observe
that a family of r.v.’s is @-uniformly integrable if and only if it is Q uniformly
integrable since 1/2 <1+ ¢o(u), < 3/2. It follows that Z* is of class D
under @ if and only if it is of class D under Q. Now if @ € M +4, then Z% i
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of class D under @ hence under Q which in turn implies that Z* is a
uniformly integrable @-martingale and so @ < ), ..

Since Theorem 3(vii) implies (ii), we complete the proof by showing that if
7" is finite or all the elements of 7° have continuous sample paths then the
equivalent (Theorem 1) conditions (v) and (vi) imply (vii). From Lemma 3.1
we know that ¢,(u) defines a bijection between M and .#(Q) and that ker T*
gets mapped onto {& €.7,(Q)I¢ L {Z), . 4). Tt follows that ker 7% N M@ *
gets mapped onto {¢£ €7, (@) ¢ L {Z*}, c 4}. Hence
(3.13) (vi) o (£ €Z7(Q)I€ L {Z7)} ea} = {0}

(3.14) o {677 (Q)1€ L (Z%Y aca) = (0.

At this point one can appeal to Proposition 4.13, page 118 (7" finite), to
Proposition 4.67, page 146 and Corollary 4.12, page 117 (elements of 7 are
continuous) of Jacod (1979) to get that the second statement in (3.13) is
equivalent to (vii) when the elements of 7" are continuous or when the family
7" is finite. However, we now outline a proof, adapting the arguments of
Jacod (1979) to the particularities of our setting.

Since @ € M and NA holds, we know that .7 C.#*(Q) by (3.8) from the
proof of Proposition 1. First we establish that
(3.15) (v) =« is dense in Z(Q)

and by Proposition 2.39 of Jacod [(1979), page 40] it suffices to show that .o is
dense in #*(Q) with respect to the #(Q) topology. Consider then X €.7(Q)
and using (v) find X" €« such that

(3.16) lim [| X7 = X llz1q) = 0.

By Doob’s inequality,
1
Q(suplxy - X,/ = A) < SIXF = Xillve, 4> 0
t<1
and so
(3.17) lim sup|X* - X,| =0, Q-as.,

ko<1
for a subsequence {n,}. Define stopping times
7" = inf{¢| | X"*| > n for some k > 1} A 1
and note that
Q-a.s. 7" =1 for n large enough
because of (3.17) and the fact that X €.7”(Q). Hence

lim sup|X;" - X,| > 0, Q-as.,

n—%° <l
and since X €.7(Q), the dominated convergence theorem yields

lim E,sup|X;" — X,| = 0, that is, lim [ X™" — X5 = 0.

n—ow t<1 n—ow
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Noting that (X")™ €. for all £ and n, it now suffices to show that for fixed
n,

lim Egsup|(X™)} - X;"| =0,
(3.18) sl
that is, lim l(x)™ = x| 71q = 0.
We have
Eqsup|(X™)] — X" | < Egsup| X — X,| + Eg| X% — X,.|
(319) t<1 t<t"
< EQ sup |thk - Xt| + ||X1nk — X1||L1(Q),
t<t"

the last inequality following from the fact that a convex transformation of a
martingale is a submartingale. Now

supIXt”k _Xt| <n-+ ||X||g/x(Q) Vk,

t<t™
which, combined with (3.17), allows us to apply the dominated convergence
theorem to obtain

lim E, sup | X" — X,| = 0.

koo Tpcgn

Also,
Hm [1X7% = X, llzq) = 0

by (3.16) and so letting £ — = in (3.19) establishes (3.18) and hence (3.15).

If now the elements of 7° are all continuous, the same is true for the
elements of . and when (vi) [equivalent to (v) by Theorem 1] holds, then
(3.15) shows that . is dense in #(Q). Hence all elements of #(Q) are
continuous and in particular locally bounded. Therefore,

{gE%I(QNfJ- {Za}uEA} c {§ e 8(Q) €L {Za}aEA}
and in view of (8.14) and (3.3) we obtain that (vi) = (vii). A
Finally assume that the family 7" is finite, say 7= {1} U {Z'|i = 1,..., N}.
We show
(v) = {é¢ex(@)eLZ,i=1,...,N} = {0}

and the last statement is equivalent to (vii) by (3.3). We set Z = (Z%,..., Z").
Equation (3.15) tells us that when (v) holds, then ¢ €.#(Q) may be written
as

N
&= lim [* Y Hi(n)dZ, in7'(Q)
0 =1
for stopping time simple Hi(n) (i = 1,..., N and n € N). It can be shown
that

N
(3.20) &= lim [* Y Hi(n)dz}, - [H,dZ,
0;-1 0
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for a suitable N-dimensional predictable process H; see Theorem 4.60, page
143 of Jacod (1979). Here [(H, dZ, is the stochastic integral with respect to
the multidimensional local @-martingale Z as defined in Chapter 4, Section 4,
of Jacod (1979) or in Jacod (1980). Using the associativity of the vector
stochastic integral and (3.20) we have

['/;).1|Hsn dglu ‘/(‘)‘1|H\sn dfu}t

(3.21) = |:j;).1|H|sn dfu’j;).(Hul\Hlsn) dzuL

= '/Ot1|H\gn d[f:fo'(Hulmwn) dzu} .

u

Now

- > dl¢. 2]
t . )
H, 1 dZ,| = H'1l ry= dC
[§7j;)( u \Hlsn) uL fo{i¥1 u |H|sn( dcC )u} us
where C is any increasing finite variation process with the property that
dlZ',Z’]; <dC, for i, j=1,..., N [Jacod (1980), page 162]. However,

4 d| ¢, 7 4 .
/:Hzilmgn(%) dCu =£OH;1\H\sn d[f,Zl]u

and so (3.21) may be written as

* ° N . .
(3.22) [[0 1H<ndgu,f01H<ndguL = -:ZIEHJI‘H‘“d[g’ZL]”'

Since & 1 Z', we have [ ¢, Z'], €.2°4(Q) N A*(®) and the right-hand side of
(3.22) is therefore in .#'"°°(Q) by Corollary 1.44 of Jacod [(1979), page 20],
which implies that

(3.23) fo'llmgn dé, = 0.

On the other hand, the dominated convergence theorem for stochastic inte-
grals [Jacod (1979), Proposition 2.73, page 56] implies that the left-hand side
of (3.23) converges to ¢ in #1(Q) and so £ = 0. O

4. Countably many price processes on a countable probability
space. In this section we discuss the example of Artzner and Heath (1995),
(Example 4.1), which shows that @-completeness is not generally sufficient
for uniqueness of the equivalent local martingale measure from our operator
point of view. In the same setting we also give an Artzner-Heath type
example in which the price processes are nonnegative (Example 4.2) and
finally an example which shows that uniqueness of the equivalent local
martingale measure is not generally sufficient (i.e., when there are an infinite
number of discontinuous price processes) for our notion of completeness
(Example 4.3).
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We work with a filtered probability space (Q, F,{%,, 7}, P) with Q count-
able, 7, = {J, O}, 7, = F =2(Q) (the power set of () and with P(w) >0V
o € Q. For D C () we denote by 1, the r.v. which is one on the set D and zero
otherwise; 1,(w) =1if w € D and 1,(w) =0 if o € D. When D = {0’} we
abuse notation slightly and write 1, instead of 1, We consider a family
7' ={Z); <, 1)}a ca U1} of bounded price processes, where A is countable
and since the price processes are bounded we have I'°¢ = 9, .. Here

={(x,(H*) gea) € R X RA(H®*),c4 has finite support};
C =/°°(Q) = {f: Q - R|f is bounded};
M=/19) = {9 > RIT |f(o)| <)
we)

and X is the topological dual of Y where Y is topologized as in Section 3. Also,
for (x,(H%),c ») € Y and u € M we have

T(x,(H*)qes) =x+ Y, HY(Z{ - Z§),

acA
(T* (1) (% (H") aca) = (@) + L H* [(Zi - 2§) dp.

The vector spaces X, Y, C and M are infinite-dimensional here and we can
point out some problems which arise in this context.

ExampLE 4.1. This example is due to Artzner and Heath (1995) and we
discuss it here from our operator point of view. Let p € (0,1), g € (p, 1), set
=p/(1 —p) +q/1 - q) and take

Q = 7\{0};
A=17,
Zi=1 foriez;

o C( i+1 _ H—l) c(pi_qi) ) . )
VA =— =1 —1,,, for ieN, j€ Z\{0};
) (Pg)'(q-p) s (pg)'(q-p) () for 1ef 720

Zi(j) =Z7(—j) for —i e N, je Z\P{0}.

Here we can explicitly find ker 7*. Indeed, a signed measure u on Z\{0} is
in ker T* if and only if w(Q) =0 and [Z! — Z{ du = 0, i € Z. This implies
that (Zidu = 0, i € Z and using the fact that Zi(j) = Z;'(—j) we see that u
must solve the following equations:

ZP(-Dp(—1) + Z{ (1) u(1) = 0;
Zi(iyu(i) + Zi(i + Dp(i +1) =0, i
Zi(iy(~i) + ZiGi+ Dp(—i - 1) =0, i

v
—

v
—
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On the other hand, any u satisfying these equations automatically has total
mass zero and so u € ker T*. Note that u*(i) = —u*(—i)=q' —p’, i >1
defines a signed measure solving the above equations and that any other such
measure is a scalar multiple of u*. Hence

ker T* = {yu*|ly € R}

and by Theorem 1 we do not have completeness. Next observe that Py(i) =
¢ Mp'l,.,+q '1,_,) is an element of M, and so by Proposition 1 and
Theorem 2,

9J3++=3?>+/_m M, = {P0+,u|,u,€kerT*} NM,,= {P0+ 'y;,L*|'yEF},

where T consists of all y for which the measure P, + yu* is strictly positive.
We have y €T if and only if ¢ /{1 — (¢/p)} < y<c /{1 — (p/q)}} for
i > 1 and since ¢ ' /{1 — (q/p)}10 and ¢ 1 /{1 — (p/q)'} | c ! we see that
I = [0, ¢ !]. Therefore,

EI)(64—4-: [PO’PI]’
1

where P, is the measure we get by taking y=c¢™".

If now @ € M, ,, say @ = ePy, + (1 — ¢)P; with ¢ €[, 1], then we know
from Theorem 1 that @-completeness is equivalent to injectivity of 7* on
M@ ). Since ker T* = {yu*|y € R}, this is equivalent to saying that

d#«*(i)_ (@' =P )0+ (P —a )Ly

dQ 8(plli>0+qﬂ1i<o)+(1_8)(ql1i>0 +pﬂ1i<o)’
is unbounded, which is the case if and only if £ = 0 or 1. In other words,
Q-completeness holds if and only if @ is extremal, that is, @ = P, or P;. This
fact is true in general; see Chapter XI of Jacod (1979).

To summarize, we do not have completeness since ker T* is one-dimen-
sional, that is, the space of attainable claims has codimension 1. If, however,
one is interested in @-completeness, then one requires only that ker 7* not
contain any nonzero measures having bounded Radon—Nikodyn derivative
with respect to @ and this example illustrates that this may hold for multiple
QeM,,.

We now consider a slightly different setup and give two more examples. As
before, p € (0,1) and g € (p, 1), but now

Q=NU{0);
A=N;
Zy=1 forieN;
Zi(j) =2(i,i)1;(j) + 2(i,i + 1)1;.4(j) forieN,jeNU{0}.
We will take z(i,i),z(i,i + 1) > 0, i > 1 and hence the price processes are

nonnegative (and bounded). Let P,(i) = pi(1 — p), i € N U {0} and note that
P, € I, , if and only if

(4.1) 2(i,i)p'(1—p) +2(i,i+ Dp"* (1 -p)=1, ix>1.

i € 7\{0}
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Also, a signed measure w on N U {0} is in ker T* if and only if
(4.2) w(Q) =0 and z(i,i)u(i)+z2(i,i+ Du(i+1) =0, i>1.

If u is any signed measure on N U {0} with w(Q) =0 and u(i — Du() <0,
i > 1, then (4.1) and (4.2) can be solved uniquely for z(i, i), z(i,i + 1) > 0.
Hence we have nonnegative price processes, P, € I, , and

ker T* = {yuly € R}.
Thus the market is incomplete and
M, = {Py + yuly €T},

where I' consists of all y for which the measure P, + yu is strictly positive.
The next two examples simply correspond to particular choices of the signed
measure p and we then figure out what It , looks like.

ExAMPLE 4.2. This is an Artzner—-Heath-type example with nonnegative
price processes. We take w(2i) = q2!, w(2i — 1) = —ap? " 12i/Q2i + 1), i > 1
and w0 = —(¢*/(0 — ¢*» —aX,.;p* '2i/(2i + 1)) with a > 0 chosen
large enough to make w(0) > 0. Then y € T" if and only if v > (p — 1)/u(0)
and p271(1 — p)Aap?~12i/@2i + 1} > y> —p?(1 — p)/q?, i = 1. It fol-
lows that I" = [0,(1 — p)/a] and therefore,

"M, ., = [PO,PI],

where P; corresponds to choosing y = (1 — p)/a. Thus we have an
Artzner—-Heath-type example with nonnegative price processes; the market is
incomplete, but is P;-complete since du/dP; is unbounded for i = 0, 1.

ExampPLE 4.3. If we take w(2i) = ¢?, w(2i — 1) = —q? "', i > 1 and u(0)
=(qg —q?) /(1 —q?), then y €T if and only if y> (p — 1)/u(0) and (1 —
pXp/@* 1> y>(p—1p/q)?, i= 1. Since (p/q)' - 0 as i — o, it fol-
lows that T" = {0} and therefore

M, = {Po}.

In other words, there is a unique equivalent martingale measure because as
soon as we add a nonzero multiple of u to P, we end up with a nonpositive
measure. However, the market is incomplete.

The purpose of the final two sections is to illustrate the usefulness of the
orthogonality condition appearing in Theorem 3 by using it to establish the
characterizations of completeness given in Theorems 4 and 5.

5. Positive price processes on a Brownian filtration. In this section
we use various results from continuous sample path stochastic calculus which
can be found in Revuz and Yor (1991). We take as given a probability space
(Q, 2, P) with a d-dimensional P-Brownian motion B, = (B},..., B?) on it
and we let F = (%), c(o 1) be the smallest right-continuous P-complete filtra-
tion to which (B,), <o ;; is adapted. We also set 7 = .7, and we then have the
filtered probability space (2, 7, F = (%), 9,15, P) satisfying all the properties
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we required in Section 3. Here the price processes are 7= {(Z;"), c(, 1}}ac a VY
{1}, where the Z*’s are strictly positive semimartingales with continuous
sample paths.

As was pointed out in Section 3, F may be considered as a filtration on the
time set R, by letting &, =%, for ¢ > 1 and we then let Z;* = Z{ for ¢ > 1.
Recall also that a process (X,),c(o 1; is a local martingale if it is a local
martingale with respect to F = (%), g, when extended to a process on R, by
letting X, = X, for ¢ > 1. Equivalently, (X,), .o ; is a local martingale if
there exists a sequence of stopping times T, 11 P-a.s. such that P(T, > 1) —
1. Throughout this section we shall think of F as a filtration on R, and of the
Z*s as processes on R,. We let & denote the predictable o-algebra on
Q X R, corresponding to F and consider on % the Doléans measure M’
associated to the Brownian motion stopped at time 1, that is, MP(A) =
Ep (51w, 8)1,_,ds = Ep[f14(w, s)ds for A € 2. We denote by L2(M?) the
L*-space on the measure space (O X R,, 2, M?) and we let L°(M?”) and
L*(M?) denote, respectively, all “-measurable functions and all bounded
P-measurable functions modulo MP’-equivalence. Finally let L>°°(M?T) de-
note the set

{H € L°(M")[3 stopping times T, 1, P-a.s. such that H,1,_, € L2(MP)}

and note that

L2,1oc(MP) — {H = LO(MP)

[ H? du < =, P-a.s.}.
0

Hence if @ is a P-equivalent probability measure on = V, g % =% and
we define M9 analogously to M?, then L*»"¢(M?) = L>"°°(M?) and so we
shall simply write L*!°,

First we determine what the positive, continuous semimartingales and
local martingales on [F look like. If R is a continuous semimartingale we let
&(R), denote the Doléans-Dade exponential of R, that is, £(R), = exp(R, —
R, — {(R);/2). Alternatively, &(R), is the unique solution to dY, =Y, dR,
with Y, = 1 from which we see that £(R) €.#'°°(P) if and only if R €.#°°(P).
Observe that if X is a positive, continuous semimartingale then X, =
X,&(R%X),, where RX = [{1/X,dX, is also a continuous semimartingale,
hence decomposes as RX = AX + M for a continuous adapted finite varia-
tion process A* with A¥ = 0 and M* €.#/°(P). Since M¥ is constant after
time 1 it is also a local martingale on the natural filtration generated by
(B,);cr, and from the Brownian representation theorem [Revuz and Yor
(1991), Theorem 3.5, page 188], one easily deduces that M¥ is of the form
MX =Y [taX(i)dB}, ,, where o X(i) € L*'° (i = 1,..., d). To summarize
our findings, an arbitrary positive, continuous semimartingale on F is of
the form X, = X,&(AX + ¢, [;0%()dB! , ,),, where A% is a continuous
adapted finite variation process with AY = 0 and o *(i) € L** (i = 1,...,d).
Furthermore, X €.#"°¢(P) if and only if A% = 0. In particular, the price
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processes Z“ are of the form

(5.1) Zi=Zs&(R%),,

where

(5.2) Ry =AY + 2[ (i) dB: , ,,

o%(i) e L¥"* (i = 1,...,d) and the A%’s are continuous adapted finite varia-

tion processes with Aj = 0, @ € A. The process R* has the economic inter-
pretation as the return on asset «.

Consider next a P-equivalent probability measure @ on ¥ = V, g & = 7.
The corresponding density process Z9 is a strictly positive element of M(P)
with Z¥ =1 and so the last paragraph implies that it is of the form
Z89 = g(LQ)t, where

(5.3) LY = Zf 0,2(i) dB}

for 09(i) € L2 (; = 1,..., d) and in particular

dQ = &(L%), dP.
Let
Wl tl/\1_<Bi9LQ>t/\1
for i = 1,...,d. It readily follows from Revuz and Yor [(1991), Theorem 1.12,
page 306], that W, = (W), is (F, @)-BM stopped at time 1 and (5.2) may be
written as

d d
(5.4) RY=A"+ 2 ftAlau“(i)d<Bi,LQ>u + Z [”aua(i) AW,

We deduce from here that L9 corresponding to @ € M satisfies the
equation

d
Ag+ ¥ [Mas(i) d(B, L9, = 0
i=1°0
and hence (5.4) becomes
d . A
(5.5) Ry =Y [a2(i) dW,.
i=1"0
In the present setting, the orthogonality condition (vii) of Theorem 3 can
be expressed in terms of the coefficients o “ used in modelling the Z“’s to

obtain the following lemma.

LEMMA 5.1. Assume MY+ & and that NA holds. Then the market is
complete if and only if

d
(Y(i)i-y € (L(MP))" L (D)o (i) =0, Mr-ae.Vaca| = (0).
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Proor or LEMMA 5.1. We show that

d
(v, e (IF(MP))| Y y (i) =0, MP-ae.Vac A} = {0}
i-1
is equivalent to (vii) of Theorem 3. Let @ € I'*° and let L9 be as in (5.3). In
particular, L9 is continuous and dP = £(—L® + (L?)), dQ. Hence

n EX"(P) & n&(—L9 + (L?)) ex'(Q)
and so
(5.6) A(Q) = {n&(—L? + (LY))Ip ex’(P)}.

It follows from (5.3) that £(—L® + (L9)) is continuous and since all the
elements of .#'°°(P) are also continuous (having an integral representation)
we conclude from (5.6) that all the elements of .#'°°(Q) are continuous. Hence
if ¢ e#°(Q) we can apply Girsanov’s theorem [Revuz and Yor (1991),
Theorem 1.7, page 305] to get that

g — (&, —L9 + (L)) et °(P).

Using the Brownian representation theorem [Revuz and Yor (1991), Theorem
3.5, page 188] we can then find o ¢(i) € L*>!° (i = 1,...,d) such that

d
&~ (£, -LO+ (LY = ¥ ['0fdB],,

i=170
d

='§

i=1

d
[l dw; + ¥ [T (i) d(B, L.
0 i=1"0
Hence
4 e ; a4 .
&~ L [af(i)dW; = (&, ~L® + (L) + ¥ ['0f(i) d(B, L),
i=170 i=1°0

and from here we see that ¢ — ¢, [{a,f(i) dW, is a predictable (continuous

in fact) finite variation process in .#,°°(®) and so is identically zero. There-
fore

d
(5.7) L= Y fotof(i) dw,’.

To summarize, we have shown that all the elements of .Z,°*(Q) are continu-
ous and have a predictable integral representation with respect to W =
(WHZL . It should be noted that .#,°°(@) refers to the filtration F and this
filtration can be strictly larger than the natural filtration generated by
W= (WHL .

Since all the elements of .Z°(Q) are continuous, we have .Z°(Q) C
Z21°°(Q) and it follows that (vii) of Theorem 3 is equivalent to

(5.8) {¢e22(Q) |[¢,Z] e A(Q) and [¢£,Z9]" =0V « € A} = {0}.
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From (5.7) we obtain

af(i) e IX(M?) (i=1,...,d)}.

d . ‘
(5.9) 7(Q) = { Y [of(i) dw;
i=1°0
Also,
(5.10) E=0 < gf(i)=0, 1=1,...,d.

Consider now ¢ €.7,2(Q), say, ¢ = X%, [La,f(i) dW/!. Since ¢ is continuous,
the same is true for [ £, Z¢]. Hence [ £, Z¢] € A°(Q) and using (5.1) and (5.5)
we get

[§>Za]f:<§7za>t
d . .
~ (i) dW;, Zg + [ Zg dR®
<i_21_/;)0-u(l) u>’ 0+]0 u >

d . ) . d ' .
= <i_21/0<rf(z)dW,j,fOZu(i_Zlau (z)) qu>

¢ d Ny
= fozu(i;aj(z)au (z)) du.

t

Therefore,
d
[£,Z°]) =0 » Z;( Y aﬁ(i)atﬂ(i)) =0, MQae.
(5.11) S
e Y of(i)o (i) =0, M®Pae.
i=1

From (5.9), (5.10) and (5.11) it follows that the condition in (5.8) which we
know to be equivalent to completeness holds if and only if

{(of(i))i e (L(M9))!| L af(i) a2 (i) = 0,

(5.12) - 1

M®-ae.Vac A} = {0}.
Replacing (o ¢(i))_, € (LA(M?)?\{0} by
o (i ')
[(occintal

we see that the condition in (5.12) is equivalent to

d

” II((rf(i))?lll>o) < (Lm(MQ))d\{O},

i=1

i of(i)o (i) =0, MPae. Va EA} = {0}

i=1

{(af(i))h e (L/(M9))*
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or finally to

d
{(af(i))f1 e (L (MP))* ._Zlaf(i)cru“(i) -0, MP-ae.Va eA} — {0}

since MY ~ M9 0O

Finally, suppose that |A| < © and let 3, denote the predictable | A| X d-
matrix process whose row vectors are (¢,%(i))?_,, « € A. We will sometimes
write 2(w, t) in place of 3, if it is necessary to emphasize the dependence of
3, on w and t. Here the condition of Lemma 5.1 takes the form

(5.13) {(v(0)L1 (T (M) [5(3(0))iy = 0 (in(L0(M7))*)} = {0},

Clearly this should be equivalent to “rank 3, = d M-a.e.” That is the content
of Theorem 4 which we now prove.

ProOF OF THEOREM 4. If the rank condition holds then for MP-a.e. (w, u)
€ O X R,, 3w, u): R4 - R? is surjective or equivalently 3(w,Iu): R —»
R/4! is injective. But then the condition in (5.13), and hence completeness,
holds. We now suppose that the rank condition fails, that is, rank %, = d
MP-a.e. is false. Intuitively, one can then choose on a set of positive M"-mea-
sure unit vectors which are orthogonal to the row vectors of 3, and we simply
have to make sure that the vectors can be chosen so as to “piece together” to
a predictable (R%-valued) process to conclude that (5.13) fails. To this end we
use the section theorem from the general theory of stochastic processes. To
apply it, we define

D= {(w,u,x) e QX R, X Rd|||x|| =landx € [Im(Et(w,u))]l}.

Let I1;: R > R denote the projection onto the ith coordinate and that II,
can be considered as a # X Z(R%)-measurable function (i = 1,..., d). Since
o “(i) is predictable, it can also be considered as a .2 X .Z(R%)-measurable
function (i = 1,...,d; a € A). Writing

D = {(w,u,x) € QX R, x R

'=21 (Hi(x))2 = 1}

ac€A

d
ﬁ{ N {(w,u,x) €O XR, xR ; I,(x)oc“(i)(w,u) =O}},

we see that D € 2 X ZR?). If we let II: O X R, X R? > O X R, denote the
projection which “forgets” the R?-coordinate then we have
I(D) = {(w,u) € QX R, |rank 3(w, u) <d}.

The section theorem [Dellacherie and Meyer (1975), Section 84, pages 219
and 220, Vol. A] implies that II(D) belongs to the (universal) completion of .2
and since the rank condition fails, MP(II(D)) > 0. The section theorem
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further gives the existence of a #-measurable map ¢ taking values in
R? U {} with the property that

MF(;eR?) = MP(II(D)) >0
and
(w,u,{(w,u)) €D whenever {(w,u) € R%.

It follows that {1, . g« is a nonzero element of

d
Y v.(i)o,2(i) =0, MP-ae.Va EA}

i=1

{(v(i))éil e (L(M"))’
= (v e (@) |50y = 0 (in (£2(7)) )}

Hence the condition in (5.13) fails and we do not have completeness. O

REMARK 5.1. If @ ~ P then M? ~ M? and consequently the statements
of Lemma 5.1 and Theorem 4 are invariant under change to an equivalent
probability measure.

6. Price processes driven by a multivariate point process. The
basic reference furnishing the probability background for this section is Jacod
and Shiryaev (1987). We take as given a probability space (2, Z, P) and a
Polish space (E, &). For the most part E will actually be finite and & the
power set of E. First we need a definition.

DEeFINITION 5. An E-valued multivariate process u is a family of positive
measures on the space (R, X E, Z(R,) X &) indexed by w € Q and satisfy-
ing:

@D wlw; A)eNU{x}, AcsBR,) XE&;
() ww;{t} XxE)<1,teR,;
(Gi1) w(w;{0} X E) = 0;
(iv) w(w;[0,¢] X E) <o, t € R,.

For n € N, define T,(w) = infl¢| w(w;[0,¢] X E) > n}. Then T, 1 and T,
<T, ., on{T, <=} Let D, = {(w, ) wlw;{t} X E) =1} ={(w, )3 n st. t =
T, ()} and note that there exist X,: ) — E such that

mw(w;dt, dx) =} 17 () <201, (0), X,(wp( dE, dx).
n

We let G =(%,),cg, be the natural filtration generated by u, that is,
g, =4 Vv o(w(0,s] X B)ls <t, B &), where .#" denotes the null sets of
P. Considered on this filtration, u is a multivariate point process in the sense
of Jacod and Shiryaev (1987) and their assumption 1.25, page 135, holds.
Since our time interval is [0, 1], we work with the filtration F = (%)), .o

defined by %, = &, for t < 1 and we consider it as a filtration on the time
interval R, by setting %, =, for ¢ > 1. The filtration G is right continuous
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[see Remark 1.31, page 136 of Jacod and Shiryaev (1987)] and P-complete,
hence the same is true for the filtration F. We shall refer to F as the filtration
generated by the multivariate point process u stopped at time 1. Unless
explicitly mentioned otherwise, the term local martingale will refer to the
filtration F. We set 5= V,.g 7 =7. We let & and 2(G) denote the
predictable o-algebraon O X R, correspondlng to the filtrations F and G. On
QO X R, X E we consider the a—algebras P =X & and P(G) =PG) X &.
Clearly P c2(G) and 2 c2(G) and on 2(G) the Doléans measure M[ of u
is defined by M, = Ep[jp oyxz 1a(o, u, X)u(w; du, dx), A € #(G). We let v
denote the P- compensator (or dual predictable projection) of the optional and
P(G)-o-finite random measure u and M! the associated Doléans measure.
Random measures and their Doléans measures are defined on P(G), al-
though we will consider them only as measures on % € 2(G) and representa-
tions of measures which follow below implicitly refer to the o-algebra 2. If no
confusion can arise, we henceforth suppress the dependence of processes,
P(G)-measurable functions and random measures on .

So far we have a general filtered probability space (0, 7,F = (7),cgr, P)
with the filtration generated by the multivariate point process u stopped at
time 1. We consider a family of price processes 7= {(Z), (o, 1} c 4 U {1} and
the following assumptions are made:

1. The Z*’s defined by Z;* = Z{* for ¢t > 1 are semimartingales on the filtra-
tion F. Furthermore, having the interpretation of price processes, they are
assumed to be positive. More precisely, P-a.s. Z* > 0 and Z > 0 for all
t € R,. As in Section 5, if R is a semimartingale then £(R), denotes the
Doléans-Dade exponential, that is, the unique solution to dY, =Y, dt
with Y, = 1, but now R is not continuous. Because of the positivity of Z¢,
one may write Z* = Z§{&(R*),, where R} = [{1/Z%_dZ® has the inter-
pretation as the return process on asset «.

2. (AR%), (= (AZ*),/Z) is bounded, say, by C* € R. In particular, R* is a
special semimartingale which means that the finite variation part in the
semimartingale decomposition can be chosen (uniquely) as a predictable
process. We let R® = A + M7, where M* €.#,°°(P) and A“ is predictable
of finite variation with A§ = 0, be the canonical decomposition.

3. The drifts A* of R* have bounded jumps, say, (AA*),| < D* for D* € R.

4. The compensator v of u is continuous in the sense that v(d¢ X E) < dt,
P-as.

In assumption (1), if M+ &, then Z* > 0 follows automatically from
Z2 > 0. Assumption (2) states that for any given asset, the price jump as a
percentage of the prejump price is bounded. Note that the strict positivity of
Z“ already implies that (AR®), > —1. Assumption (2) also ensures that the
Z* are locally bounded. Assumption (4) implies that we can find a Z-mea-
surable function ¢ such that v(d¢ X E) = ¢, dt and since (E, &) is Polish (in
particular, Blackwell), we can disintegrate [Jacod and Shiryaev (1987), 1.2,
page 65] v as v(dt,dx) = a(t; dx)v(dt X E), where a(t; dx) is a transition
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kernel from (Q X R_, %) into (E, &). Setting K,(dx) = a(t; dx)¢,, we can
write v(d¢, dx) = K,(dx) dt. This is the representation of v which will be the
most useful for our purposes. Finally, if the local martingale parts M of R
are locally square integrable and one assumes the existence of an equivalent
local martingale measure with locally square integrable density process, then
the drifts A* are in fact absolutely continuous so that (3) automatically holds.

As was pointed out in Section 3, the filtration F (being constant after time
1) has the property that all local martingales are constant after time 1. Hence
the M*’s are also (G, P)-local martingales and we easily deduce from Theo-
rem 4.37 of Jacod and Shiryaev [(1987), page 177], that there exist %-mea-
surable o “ such that

Mta=f o—“(u,x){y,(du,dx) — V(duydx)}
[0,t1XE
for
[ loe(u,x)|u(du, dx) € A™(P)
[0,t]XE
or equivalently
[ oo, x)lv(du, dx) € A=(P).
[0,t]xXE

The continuity assumption (4) on v implies that AM*(w,t) # 0 only if
(o,t) € D,, that is, ¢ = T,(w) for some n in which case it equals
0w, T(0), X,(w)). Since

[(AM=),| <|(AA%),| +|(AR®),| < C* + D*,

it follows that |o *(w, ¢, x)| < C* + D“ Mf-a.e. In summary, our price pro-
cesses are of the form

Zta = Z(?g(Ra)t’

where

(6.1) Ry=A7 + [ o(u, x){ w(du,dx) — v(du, dx))
[0,t]xE

and

(6.2) lo*(w,t,x)| <C*+D*, Ml-ae.

Let now @ be a probability measure on = V,_ g & =% which is
equivalent to P and let _ZQ denote the associated density process. We let Y @
be the M f -a.e. unique Z-measurable function such that

VA
Ep [ W(u, )Y ?(u, 2) w(du, dx) = Ep W(u, x)—g—n(du, dx)
[0,2)XE [0,)XE A

for all nonnegative %-measurable functions W. Then Y > 0 M:’ -a.e. since
Z9 is a strictly positive element of .#(P) and Girsanov’s theorem for random
measures [see, e.g., Theorem 3.17, page 157 of Jacod and Shiryaev (1987)]
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tells us that
(6.3) v9(dt,dx) = Y¢, x)v(dt,dx) = KR(dx) dt,

where K2(dx) = Y9(¢t, x)K,(dx), is a version of the @-compensator of .
Next note that @ € M if and only if R* €.#'°(Q) for all « € A and if
Q € M then Jr0,e1x 6l “(u, )| p(du, dx) € Al°(Q) in view of (6.2) which
allows us to obtain

R¢ —f o“(u, x){u(du,dx) — v®(du, dx)}
[0,t]1xE
—Az+ [ o (u, 0){Y(u, ) - Tu(du, dx)
[0,t]XE

from (6.1). But then Ay + fio x50 “(u, x{Y %y, x) — 1}v(du, dx) is a pre-
dictable element of .7 °°(Q), hence identically zero. Thus for @ € M, Y
satisfies

(6.4) Ar=[ o (u, x){1 - Y9u, x)}v(du, dx)
[0,t]1XE

and under @ we have the representation

(6.5) Ry = [ o *(u, x){ w(du, dx) — v®(du, dx)).
[0,t]1XE

As in Section 5, we let M” (no subscript) denote the Doléans measure on
Z associated with Brownian motion stopped at time 1, that is, MP(A) =
Ep[i1,(w,u) du, A €2 and recall that the @-compensator v? of u is given
by (6.3). The orthogonality condition, which by Theorem 3 is equivalent to
completeness, can be used here to obtain the following characterization of
completeness.

LEMMA 6.1. Assume that NA holds and the MY+ &, say, @ € M.
Then the market is complete if and only if

{y eyf‘ny(t, x)o(t,x)K&(dx) =0, MP-a.e.V a EA} = {0},

where T = {y|y(t, x) is P-measurable s.t. Jo.x6 1, 0l u(dt, dx) € A°(Q)}.

Proor or LEMMA 6.1. As we pointed out after listing the assumptions on
the price processes, the Z“’s are locally bounded and so with the hypotheses
of the Lemma, Theorem 3 and a localization argument show that complete-
ness is equivalent to

(66) {¢cay(Q)|[£,2°] e A™(Q)and [£,Z°]" =0V a € A} = {0}.
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By Theorem 4.37 of Jacod and Shiryaev [(1987), page 177] we have
(6.7) #,%(Q) = {f y(u, x){n(du, dx) — VQ(du,dx)}‘y 67}.
[0,-1XE
If £ e *°(Q), say,
(6.8) &= yé(u, x){w(du, dx) — v(du, dx)}
[0,t]XE

for y¢ €.7, then
[£,2°], = X (A6),(AZ%), = X (A€),(AR®),Z; .

u<t u<t
In view of (6.5) and (6.8) and since v9(dt X E) < dt P-a.s., Aé(w,u) and
AR“(w, u) are nonzero only if (v, u) € D,, that is, u = T,(®) for some n in
which case they are respectively equal to y%(w, T (w), X,(w)) and
0“0, T(0), X,(0)). Thus
[ fa Za]t = Z ’yg(Tru Xn)o-a(Tn’ Xn)Zanf

T,<t

= y&(u, x)o*(u, x) 22 u(du, dx)
[0,¢]XE

and this process is in A°°(Q) because of (6.2), the fact that Z¢ is locally
bounded and y?¢ € .. Therefore

[&,2°]7 =/ vé(u, x)o"(u, x)Z% v9(du, dx)
[0,¢t]XE

=/:'/;E,yé(u,x)g-“(u’x)za_KL?(dx) du

and so
[£,2°]"=0 o [ y%(u,x)o(u, x)Z{_K2(dx)
E
(6.9) =0, MPa.e.
o fyf(u,x)aa(u,x)KL?(dx)
E
=0, MPae.

using Z%_> 0 for the last equivalence. Finally,
2
£=0 o [&¢].- L(+4(T, X)) =0, Pas.
(6.10) n
= yi=0, Mlae.

and it follows from (6.7), (6.9) and (6.10) that the statement in (6.6), and
hence completeness, is equivalent to

{y E,/T/Ey(u,x)a“(u,x)K,?(dx) =0, MP-ae Va EA} ={0}. O
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Finally we suppose that |A| + |E| < «. In this case, if y is a #-measurable
function then for fixed w and ¢, y may be viewed as an |E|-dimensional
vector. When we want to emphasize this view of y we will write (y,(x)), c g,
as always suppressing the dependence on w. We let 3, denote the predictable
| Al X | El-matrix process whose row vectors are (0, x)), c z, « € A. Then 3,
may be interpreted as the volatility matrix of the risky assets. Theorem 5
asserts that completeness in this setting is equivalent to a rank condition on
3, and we now supply the proof.

PROOF OF THEOREM 5. Let @ € M and from (6.3) we have K2({x}) =
Y,2%(x)K,({x}). Now Y2 >0 MP-ae. is equivalent to Y,2 >0 MS-a.e. The
continuity assumption on v and the fact that M”-ae. K,({x})) >0V x € E
imply that MP-a.e. Y,%(x) > 0V x € E, so we also have that M*-a.e. K2({x})
> 0V x € E. Since |A| + |E| < =, the condition of Lemma 6.1 takes the form

Y y(x)o(x)K2({x}) =0 MP-ae. Va EA} = {0}.

x€E
If y € 9\{0} satisfies
Y y(x)o(x)K2({x}) =0, MP-ae VacA,

xeE

{'y eg

then

(5/ (x)) _ (yt(x)K?({x})leeEyt(x)K,Q((x})>0)
neen L.cpln(2)KL({a})l eE
is an element of (L*(, M*)El and ¥ . z¥,(x)o,%(x) =0 MF-ae. V a € A.
Furthermore, ¥ # 0 since y # 0 and M%-a.e. K8({x}) >0V x € E.
On the other hand, if (7,(x)), c y € (L*(2, MP))FI\{0} is such that
Y y(x)o(x) =0, MFPaeVacA,

xeE

then
( B ( (%) )
Ye)ver = KtQ({x}) s
is well defined since M"-a.e. K¢({x}) > 0V x € E. Also, y # 0 and
Y v(x)o (x)K2({x}) =0, MP-ae VacA.

x€E

Finally, y is %-measurable and

t i’u(x)
ly(u, x)|v9(du, dx) = Y = |K2({x}) du < ) ||7(x)]|¢
f[O,tJXE ( A ) /(-)er K2({x}) ({=h) xeE (=)
where || - || refers to the L*(%, M*)-norm and we conclude that y €.7.

Hence we have shown that in the present setting, the condition of Lemma
6.1 which characterizes completeness is equivalent to
{’y e (L(2, M"))*'| ¥ y,(x)0“(x) = 0, MP-ae.Va e A} - {0}

xekE
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or in linear algebra notation to

| 2(7(%))cx = 0 (in (£2(2, 7))} = {0).

The last condition is seen to be equivalent to the rank condition on X, by
arguing as in the proof of Theorem 4. O

|E|

{ve @ z.um)

We continue to assume that |A|+ |E| <> and MP-ae. K,{x}) >0V
x € E. We consider returns R* of the form R} = [, , x50 “(u, x)u(du, dx),
that is, Af = fi; ;1xz0 “(u, ¥)v(du, dx). If we assume W, ,+ T, say, Q €
¢, ., then (6.4) here takes the form

f oc(u,x)Y%u,x)v(du,dx) =0 VacA
[0,¢1XE
or equivalently

/: Y o (x)KQ({x})du=0 VacA,

xeE

which holds if and only if
(6.11) Y o(x)K2({x}) =0 VaeAMP-ae.

x€E

In linear algebra notation (6.11) may be written as
(6.12) 3,(K2((x))),cp =0 (in (L(2, M7))")

In the proof of Theorem 5 we saw that M”-a.e. K®({x}) >0V x € E and so
(6.12) shows that the existence of an equivalent martingale measure implies
that the rank condition on 3, fails and hence by Thoerem 5 we cannot have
completeness.

We conclude with the simple but important case where u is a homoge-
neous Poisson random measure, that is, a random measure u(w; dt, dx) with
compensator v of the form v(dt, dx) = F(dx)A, d¢, where F(dx) is indepen-
dent of w and ¢ and A, > 0 is independent of w and x. We can alternatively
describe p by counting processes (N,*), . defined by N = u([0,¢] X {x}).
Then N/ are independent Poisson processes of intensity EN,* = En([0, ¢t] X
{x}) = f{xP[iA, du. Here N;* counts the number of events of type x which
have occurred by time ¢. The condition on K,(dx) appearing in Theorem 5
here amounts to F({x}) > 0 V x € E, that is, only events having positive
probability of occurring are listed in E.

ExAaMPLE 6.1. We consider an economy in which one of two events may
occur at random times. More precisely, with notation as in the last para-
graph, we take E = {1,2}, A, = Aand F({1}) = p, F{2}) = 1 — p for p € (0, 1).
We then have the independent Poisson processes N,' and N, with respective
intensities pAt and (1 — p)At. There are two stocks (i = 1,2) with price
processes Z! growing at a fixed rate g, and responding to events 1 and 2 by
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fixed percentage price jumps of ¢;(1) > —1 and 0;(2) > —1, respectively.
Hence assuming without loss of generality that Z; = 1 we have
Z; = exp(g;t)(1+ ‘Ti(l))N}(l + ‘Ti(2))Nz2
or
Z! =&(R"), where R =gt + o,(1)N! + 0,(2) N2.
The canonical decomposition of R! is therefore given by R! = Al + M; with

Aé = {gi + 0;(1) pr + 0;(2)(1 _p)/\}t
and

M} = o;(1){N}! — pAt} + 0;(2){N? — (1 — p) At}

Here the matrix process 2 appearing in Theorem 5 is independent of w and ¢
and is given by

s = (1)  oy(2)

05(1)  05(2)

In this case and after simplifying, (6.4) says that if @ € "¢ then
o(1)  oy(2) pAY2(1) —&1 P

Q =\ _ , M"-a.e.
o3(1)  05(2) || (1 - p)AY,2(2) 82
First we consider the case when the stock prices stay unchanged unless

one of the two events occurs, in other words the growth rates are zero and we
show that:

(6.13) [

(a) The existence of an equivalent martingale measure implies that com-
pleteness does not hold.

(b) If the rank condition holds then there are arbitrage opportunities and
the market is complete.

(a) simply illustrates more concretely the point made earlier [see (6.12)].
Since g, = g, = 0 here, (6.13) shows that if @ € IX'*° then the rank condi-
tion fails because Y,%(1),Y,2(2) > 0 MP-a.e. and (a) now follows from Tho-
erem 5.
As for (b), suppose that the rank condition holds. If Y € L*(#,), then
lim E{YIJOTT" A 1} =Y boundedlyas.,

n— o

where T, denotes the time of the nth jump, and so completeness follows if we
show

(6.14) L*(9; ,,) € Y n (the bar denotes the weak* closure).

We prove only the case n = 1 since a straightforward induction yields it for
arbitrary n. Consider the increasing family of o-algebras £*, k > 1, defined
by

gt =o({X, =i} n{T, €[1/2%, (1 + 1) /2")}[i = 1,251 = 0,...,2% — 1),
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where X, : (} — E indicates which type of jump occurs at time T,; in other
words, u(dt,dx) = ¥,87 x (dt,dx). Since 2 TP a1

lim E{Y|%*} =Y boundedly a.s.

whenever Y € L*(7, , ) and so (6.14) will hold for n = 1 if we show
(g% coy Yk
To this end it is enough to check that
Lixi_ir<1poh S,  i=1,2;1=1,...,2"

Note that this will also establish that there are arbitrage opportunities; we
will have 15 , €% and the strategy which generates this payoff must have
zero initial investment. The rank condition on 2 implies that

1 oy(1) o0y5(1)
1 0y(2) 05(2)
1 0 0
has rank 3 and hence we can find (x, H', H?) such that

1 0y(1) 05(1) X 1)
0].
0

1 0y(2) o0y(2) ||H'| =
1 0 o |\H?
Then the strategy with initial investment x and respective holdings of
H', g n1/0+ and H?1,_p ., 5+ in assets 1 and 2 yields time 1 payoff of
Lix,-1, 7, <12ty Similarly, 1y _o 7 o 98 SH.
Finally we leave the zero growth rate setting and show that if X satisfies
the rank condition, that is, 0(1)04(2) — 0,(1)o1(2) # 0 and

-1
a| _ oy(1)  oy(2) —81
a2 o5(1)  05(2) ~82
has strictly positive components, then there exists an equivalent martingale
measure and the market is complete. It suffices to show the existence of an
equivalent martingale measure because in view of the rank condition com-

pleteness then holds by Theorem 5.
With the given hypotheses we can define the positive process

uil—zp))\)Nf—azt).

We must now merely show that ¢,, Z'¢, and Z?¢, are (genuine) P-martingales
since d@ = &; dP then defines an e.m.m. This follows from the lemma.

& = exp

a
At + (logH)Nf —at + (log

LEMMA 6.2. Let ¢, a;, ay, be constants with ay, ay > 0. Then £, = exp(ct
+ (log a;)N! + (log ay)N?) is a ( positive) P-martingale if and only if ¢ = A
— Apa; — M1 — pla,.
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PrROOF. Using the independence of N and N2, we get
E¢ =exp({c — A + Apay + M1 — p) a,)t)

from which the forward implication is immediate. Suppose conversely that
¢c=A—Apa; — M1 —pla,. It is enough to show that ¢ is a local P-
martingale, since, being positive, it is then a P-supermartingale and having
constant expectation it must be a genuine P-martingale. After some cancella-
tions, It6’s lemma [Jacod and Shiryaev (1987); see, e.g., Theorem 4.57, page
57] yields

&=1+ ¢ cdu+ [€ {(a; — 1) dN} + (ay — 1) dNZ}.
0 0

Compensating the Poisson processes and using ¢ = A — Apa; — M1 — p)a,
gives the desired conclusion. O

REMARK 6.1. Equation (6.4) suggests the following strategy for finding

Q € M. Solve (6.4) for a positive, F#-measurable Y and then find a P-equiv-
alent probability @ such that Y® = Y. The question of constructing such a @
is addressed in Jacod (1975). The @ of the last paragraph could be thought of
as the @ for which Y,%(1) =a,/(Ap) and Y,2(2) = a,/(M1 — p)). Hence
ve(dt,dx) = YO, x)v(dt,dx) = YO, x)F(dx)A dt is deterministic here so
that u is actually a Poisson random measure under @ [Jacod and Shiryaev
(1987), Theorem 4.8, page 104].
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