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In modeling particle transport through a medium, the path of a par-
ticle behaves as a transient Markov chain. We are interested in charac-
teristics of the particle’s movement conditional on its starting state, which
take the form of a “score” accumulated with each transition. Importance
sampling is an essential variance reduction technique in this setting, and
we provide an adaptive (iteratively updated) importance sampling algo-
rithm that converges exponentially to the solution. Examples illustrating
this phenomenon are provided.

1. Introduction and motivation. The motivation for this work involves
modeling the behavior of particles (primarily neutrons and photons) as they
move within a medium. Applications include such wide ranging areas as well
logging for oil exploration, heat generation calculations for nuclear reactors,
radiation dosage calculations for exposures to medical X-rays, development of
radiation detection devices, design of radiation shielding, criticality safety cal-
culations for storage of nuclear materials and assessment of nuclear weapons
performance. Because it is vastly more expensive to perform the related phys-
ical experiments than to pursue computer simulation for these applications,
it is common to use simulation software such as the Monte Carlo particle
transport code MCNP [Briesmeister (1993)].

We give, as background, a brief and necessarily superficial description of
particle transport physics [further information on the subject and discussion
on the computer simulation thereof can be found in the texts of Carter and
Cashwell (1975), Kalos and Whitlock (1986) and Lux and Koblinger (1991)].
Once a particle is emitted from a source, its subsequent behavior is inherently
stochastic. Particles move in random directions, collide with atoms in their
paths and interact in various ways upon collision. The movement of a particle
through a medium can be simulated through a series of (1) path lengths,
that is, the distance until the next collision, and (2) types of interactions upon
collision with atoms in the material; for example, the particle may be absorbed
or may continue on with possibly altered energy and direction. Such particle
motions are often well modeled by a Markov chain with states which include
location of a collision (or source for the initial state), and either absorption or
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escape, or direction and energy if the particle continues. The Markov chain is
transient in that either the particle is eventually absorbed during a collision or
leaves the region of interest and is presumed never to return (backscattering
is ignored).

From a particle’s simulated history, a “score” is obtained. In practice, the
score denotes some physical quantity of interest and the objective of the sim-
ulation is to estimate the expected score as a function of the initial state.
Simple examples related to the above applications include estimating: (1) the
proportion of particles emitted from a particular source that are prevented
(“shielded”) from passing through a specified volume, (2) the energy released
within a specified region (i.e., the summed differences between the before-
and-after energies of all collisions within the region), and (3) the proportion
of particles entering a specified location which are in a certain energy range.

Obtaining results from so-called “analog” simulations that use nature’s
transition probabilities can be extremely time-consuming. For many problems
involving complex material geometries, simulating a single particle history is
nontrivial, and only a small fraction of those histories may contribute nonzero
scores. Such situations are ideally suited for importance sampling (sometimes
called “biasing the random walk”). Several other variance reduction techniques
have been proposed in the literature and successfully implemented in current
transport code; see Hammersley and Handscomb (1964), Lux and Koblinger
(1991) and Briesmeister (1993) for details. These methods, while vastly more
efficient than analog Monte Carlo, still only achieve a “constant” speedup in
that the variance of such procedures still decreases as O�n−1�, where n is the
number of histories simulated.

This rate is built into the procedures through the use of independent sam-
ples; the outcome of one realization does not affect another. To improve on this
rate, then, we must use intelligently chosen dependent samples. The “intelli-
gent choice” investigated here corresponds to allowing the process to learn and
adapt at various stages, a notion which has been termed sequential or adap-
tive Monte Carlo. Early work in the field (on a two-stage procedure) includes
that of Marshall (1956), which was soon followed by the more general and
extensive efforts of Halton (1962). More recently, work by Booth (1985, 1986,
1988, 1989) on guiding various Monte Carlo methods towards zero-variance
solutions highlighted adaptive methods once again. Booth found cases where,
using adaptive Monte Carlo methods, empirical convergence to the solution
was not merely O�n−1�, but rather O�e−θn� for some positive constant θ. We
refer to this as “exponential convergence.” Kollman (1993) later proved that
such convergence was possible, albeit in a setting that requred histories start-
ing from every state in the state space.

The purpose of this work is to prove that under certain conditions [which
extend those in Kollman (1993)] adaptive importance sampling for discrete
Markov chains with scoring converges exponentially. Examples presented here
show that this exponential convergence can occur with a reasonably small
number of simulation runs. These assumptions include (1) the state space is
finite, (2) the vector m of expected scores conforms to a linear model Xb and
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(3) there are sufficiently many replications of the initial states used in the
simulation.

In Section 2, we set out the basic mathematical model. We also discuss
importance sampling for Markov chains, establish the existence of a zero-
variance chain and introduce the adaptive importance sampling algorithm. In
Section 3, we prove that this algorithm achieves exponential convergence. In
Section 4, we examine some examples showing the empirical performance of
the algorithm in simulations and illustrating various features of the theory
developed here. Finally, in Section 5 we discuss several practical issues.

2. Description of the method. Consider a Markov chain �Xn�∞n=0 with
state space �1; : : : ; d; 1� where 1 is the cemetery or death state. Denote the
transition probability matrix for the nonabsorbing states �1; : : : ; d� by P, with
the �i; j� entry denoted pij. We assume that eventual death is certain, so

lim
n→∞

Pn = 0:(1)

Of course p11 = 1.
When the particle moves from state i to state j, a “score” sij ≥ 0 is incurred.

The concept of scoring arises naturally in particle physics, and there are also
applications to queueing theory [Glasserman (1993a, b)]. We assume s11 = 0,
so no score is accumulated after death. Denoting the transition at which death
occurs by τ, the total score for a particle history is

YP =
τ∑
n=1

sXn−1;Xn
:

We are interested in estimating

µi ≡ E
[
YP

∣∣X0 = i
]
;

the expected total score for a particle starting in state i. To indicate a practical
application, if sij is the energy loss of a particle in going from state i to j
resulting from a collision, then µi is the average energy released per particle
for particles starting in state i. Combined with a distribution of sources and
a particle density, this can be used to compute the total energy released in
a region. For another example, let sij = 0 for all j 6= 1, and si1 = 1 for i in
a certain region. Then µi is the probability of absorption or escape in that
region. Scores of this type are frequently used in reactor safety calculations.

We assume that mT = �µ1; : : : ; µd� is given by a linear model

m = Xb;(2)

where X is a known d × p matrix of column rank p and b is an unknown
p-vector. This of course includes the case where m ranges over all of Rd: take
b = m and X the d × d identity matrix. This case, which is simultaneously
the least presumptive and the most computationally intensive (as it requires
running the algorithm for more starting values; see Section 2.2 below), was
addressed by Kollman (1993).
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2.1. Importance sampling on Markov chains. Instead of simulating parti-
cle movement under nature’s transition probabilities �pij�, we can often ben-
efit by simulating with different (well chosen) transition probabilities �qij�.
To keep the expected scores unbiased, each score is weighted by the likelihood
ratio between P and Q. For all times up to death �n ≤ τ�, this ratio is given by

Ln =
n∏
i=1

pXi−1;Xi

qXi−1;Xi

:

For Ln to be well defined, we require that Q dominates P, denoted Q � P,
which means that pij > 0 implies qij > 0, even if j = 1. Note that Q � P
guarantees that the chain is transient under Q (i.e., Qn → 0) because of the
finite state space. When sampling from Q, the total (weighted) score is

YQ =
τ∑
n=1

sXn−1;Xn
Ln:

It is easily shown that the expectation of YQ given X0 = i is µi. The im-
portance sampling scheme introduced here is an example of filtered Monte
Carlo introduced in Glasserman (1993b). Under conditions given in Section 3
of Glasserman (1993a), the variance of YQ is less than that of the classical
importance sampling estimator

∑τ
n=1 sXn−1;Xn

Lτ.
Now, let vi = Var�YQ�X0 = i�. By the Markov property,

E�YQ�X0 = i; X1 = j� =
pij

qij
�sij + µj�

and

Var�YQ�X0 = i; X1 = j� =
(
pij

qij

)2

vj:

From the variance decomposition

Var�YQ�X0� = Var�E�YQ�X0;X1��X0� +E�Var�YQ�X0;X1��X0�;
we obtain

vi = qi1
(
pi1si1
qi1

)2

+
d∑
j=1

[
qij

(
pij

qij

)2

�sij + µj�2
]
− µ2

i +
d∑
j=1

[
qij

(
pij

qij

)2

vj

]
:

Noting that E�Var�YQ�X0 = 1�� = 0,

vi =
(
p2
i1s

2
i1

qi1
+
∑
j

[
p2
ij�sij + µj�2

qij

]
− µ2

i

)
+
∑
j

p2
ij

qij
vj;

(with 0/0 = 0 is defined). If we let

fi =
p2
i1s

2
i1

qi1
+
∑
j

[
p2
ij�sij + µj�2

qij

]
− µ2

i ;(3)
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and define R to be the matrix whose �i; j�th element is given by

rij =
{
p2
ij/qij; if qij > 0;

0; if qij = 0;

then in matrix form the variance equation becomes

v = f +Rv:(4)

Note that when

qij�m� =
pij�sij + µj�

pi1si1 +
∑d
k=1pik�sik + µk�

and

qi1�m� =
pi1si1

pi1si1 +
∑d
k=1pik�sik + µk�

;

we get

fi =
(
p2
i1s

2
i1

pi1si1
+

d∑
j=1

p2
ij�sij + µj�2
pij�sij + µj�

)(
pi1si1 +

d∑
k=1

pik�sik + µk�
)
− µ2

i ;

which reduces to

fi =
(
pi1si1 +

d∑
j=1

pij�sij + µj�
)(
pi1si1 +

d∑
k=1

pik�sik + µk�
)
− µ2

i = 0:

This choice of Q gives v = 0 by (4) and, as can also be shown by an induction
on the value of τ, a zero-variance importance scheme. That is, YQ = µi if
X0 = i. This choice of Q depends on the unknown solution m. However, it
suggests an adaptive procedure, described next.

2.2. The adaptive algorithm. For m̃ ∈ Rd with µ̃j > 0 for 1 ≤ j ≤ d, define

qij�m̃� =
pij�sij + µ̃j�

pi1si1 +
∑d
k=1pik�sik + µ̃k�

;

where of course µ̃1 = 0 and qi1�m̃� = 1 −∑d
j=1 qij�m̃�. This gives a transition

probability matrix Q�m̃� with Q�m̃� � P. Similarly, define f�m̃� to be the f of
(3) for Q�m̃�; that is, the ith component of f�m̃� is given by

fi�m̃� =
(
pi1si1 +

d∑
j=1

p2
ij�sij + µj�2
pij�sij + µ̃j�

)(
pi1si1 +

d∑
k=1

pik�sik + µ̃k�
)
− µ2

i :

In a similar way, define v�m̃� and R�m̃�. The idea behind the algorithm is to
simulate under Q�m̂� where the vector m̂ is an estimate of m from previous
simulations.
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We must be careful to ensure that Q�m̂� � P. Note that if there exists a
δ > 0 such that si1 ≥ δ for all i then µi ≥ δ for all i; that is, the particle is
assured of scoring at least δ since it eventually dies. Because µi ≥ δ, we can
take the maximum of δ and the estimate without increasing the error. This
ensures that µ̂i ≥ δ and hence Q�m̂� � P. If such a value for δ is unknown,
we can easily alter the problem by adding a known δ > 0 to each si1. Since
every particle dies exactly once, this just adds δ to each µi. We can subtract
δ from each µ̂i at the end of the simulation to return to the original problem.
Thus, without loss of generality, there exists a known δ > 0 such that µi ≥ δ
for all i 6= 1.

We describe how outcomes of simulation runs started in various states are
used to estimate m. Let D denote a fixed base design with nD initial states,
that is, D = �i1; : : : ; inD� and each ij 6= 1. Given Q, we obtain data yT =
�Y1Q; : : : ;YnDQ�, where YjQ is the total weighted score from simulation of the
chain having initial state X0 = ij and using transition kernel Q. Of course,
the components of y are mutually independent conditional on the current
estimate of m. We use the ordinary least squares estimator of b given by

b̂D =
(
XT
DXD

)−1XT
Dy;

where XD is the nD×p matrix of column rank p whose jth row is the ijth row
of X. The corresponding estimator of m is m̂ = Xb̂D. The case where X is the
d × d identity matrix [as considered in Kollman (1993)] requires, obviously,
the largest (minimum) base design D in order to estimate m.

We now describe the design that is used in each iteration of the algo-
rithm. Assume the base design D, which is fixed throughout the algorithm, is
such that XD has full rank p, and let Dr be the design obtained by replicat-
ing D r times. Exponential convergence is assured if the number of replica-
tions exceeds a (nonconstructive) lower bound given in the proof of the main
theorem.

The algorithm is as follows.

I. Obtain an initial estimate m̂�0�, for example, one based on previous expe-
rience with similar problems or based on a simulation using the analog
transition probabilities pij.

II. Given that m iterations of the algorithm have produced the estimate m̂�m�,
iterate the following steps to convergence:
1. Using the design Dr, run independent replications of the chain with

Q�m̂�m�� as the transition matrix.
2. For a given replication in 1, let τ be the transition at which death occurs

and Y =∑τ
n=1 sXn−1;Xn

Ln, where the �Xn� and �Ln� are obtained from
the given simulation run.

3. Using the linear model mD = XDb, use the �i;Y� pairs (i is the start-
ing value) to estimate b̂�m+1� = �XT

DXD�−1XT
Dȳ�m+1� by ordinary least

squares.
4. Define m̂�m+1� by µ̂�m+1�

i = max��Xb̂�m+1��i; δ�, i = 1; : : : ; d.
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Note that this last step of the algorithm ensures that µ̂�m+1�
i ≥ δ, 1 ≤ i ≤ d.

Moreover, the computational burden can be reduced for very large problems
(where only a fraction of the states are visited in each iteration) by computing
qij�m̂�m�� only when needed.

We mention two modifications of the algorithm. The first involves utilizing
what we call “path information.” When a state i is visited, we may think
of it as an initial state and begin accumulating a total weighted score. The
computations needed to do this are basically the same as those associated
with the actual (first) initial state of the history of that path, plus a little
bookkeeping. However, there is now dependence between the total weighted
scores from any paths that share a common history. Path information was
considered for the case where X is the identity matrix in Kollman (1993),
where only the first visit to i is allowed in the estimation (so that for a given
initial state, all histories are independent), and it was proved that it improves
convergence in theory for the case where X is the identity.

The second modification is the use of previous m estimates, which we refer to
as “incorporating previous information.” It will also be necessary for technical
reasons to assume a known upper bound H on µi. We modify step 4 of the
algorithm to

µ̂
�m+1�
i =wmin

{
max��Xb̂�m+1��i; δ�;H

}
+�1−w�µ̂�m�i ; i = 1; : : : ; d;(5)

where the weightw ∈ �0;1� can be chosen. We show in Proposition 1 below that
one obtains exponential convergence with this algorithm as well. By choosing
the weight w properly, convergence can be improved over the choice w = 1
corresponding to the original algorithm.

3. Proof of exponential convergence. We have made three assump-
tions about the problem.

Assumption 1. limn→∞Pn = 0.

Assumption 2. There exists a known δ > 0 such that µi ≥ δ for every i.

Assumption 3. The mean total score m is given by the linear model Xb
in (2).

Denote the usual norm on Euclidean d-space by �z� = �zTz�1/2. Let D
be a given base design as in the previous section and note that for M =
tr�XT

DXD�−1�XTX�,

E
[
�Xb̂D − m�2

]
≤Mmax

i
Var�YQ�X0 = i�(6)

for all importance sampling transition matrices Q, where b̂D is the least
squares estimator of b based on data with design D. For the r-fold repli-
cated design Dr, YQ in the previous display is replaced by the average of the
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r independent replicates of YQ at the same design point, and

E
[
�Xb̂Dr

− m�2
]
≤ M
r

max
i

Var�YQ�X0 = i�:(7)

It should be understood when we write b̂�m+1� that this estimate is derived
from theYQ�m̂�m�� values utilizing the designDr; that is, it is b̂Dr

for the current
iteration.

Theorem. Under the assumptions stated above, given a design D there
exist deterministic constants θ > 0 and R such that if the adaptive algorithm
is run with design Dr where r ≥ R; then with probability 1; eθm�m̂�m�−m� → 0
as m→∞.

Before presenting the proof we need to derive some preliminary results. We
use I�· · ·� to denote the indicator of an event specified by �· · ·�.

Lemma 1. There exists a matrix A and an ε > 0 such that

1Tv�m̃� ≤ �m̃− m�TA�m̃− m�;

whenever �m̃− m� < ε, where 1 denotes a vector of ones.

Proof. We establish that v�m̃� is twice continuously differentiable in a
neighborhood of m. Since v�m� = 0 is a global minimum of v, the result then
follows by application of Taylor’s formula.

When all the components of m̃ are positive, Q�m̃� � P and both rij�m̃� and
fi�m̃� [see discussion following (4)] are infinitely differentiable in m̃. Thus,
in view of (4) we need only show that �I − R�m̃��−1 exists and is infinitely
differentiable in a neighborhood of m to complete the proof.

By Assumption 2 we know that m ≥ δ1, which implies that Q�m� � P. If
pij > 0, then qij�m� > 0 and the elements of R�m� satisfy

rij�m� =
p2
ij

qij�m�
=
p2
ij�pi1si1 +

∑d
l=1pil�sil + µl��

pij�sij + µj�
= pijµi

sij + µj
≤ pijµi

µj
:

Let r�n�ij �m� and p�n�ij denote the �i; j�th elements of Rn�m� and Pn, respectively.

An induction argument shows that r�n�ij �m� ≤ p
�n�
ij µi/µj for all n. Since the

state space is finite, Assumption 1 implies that
∑∞
n=0 Pn <∞ and thus

∑∞
n=0

Rn�m� <∞. Consequently,

�I−R�m��−1 =
∞∑
n=0

Rn�m�;

and the requisite differentiability of �I−R�m̃��−1 follows. 2
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Lemma 2. There exist a constant c ∈ �0;1�, an R1 > 0, an ε > 0 and a
ν > 0 such that if the learning algorithm is run with �m̂�0� − m� < ε and a
design consisting of r ≥ R1 replications of D, then

Pr
{
�m̂�m� − m� ≤ cm�m̂�0� − m�; ∀ m

∣∣ m̂�0�
}
I��m̂�0� − m� < ε�

≥ νI
[
�m̂�0� − m� < ε

]
:

Proof. By Assumption 2 and steps 3 and 4 of the algorithm, we have

E
[
�µ̂�m+1�

i − µi�2
∣∣m̂�m�

]
≤ E

[
�xTi b̂�m+1� − µi�2

∣∣m̂�m�
]

≤ M
r

max
i
vi
(
m̂�m�

)
;

by (7), where xTi is the ith row of X and M is given in (6). Let ε and A be as
in Lemma 1. Then

E
[
�m̂�m+1� − m�2I

[
�m̂�m� − m� < ε

] ∣∣ m̂�m�
]

=
d∑
i=1

E
[
�µ̂�m+1�

i − µi�2
∣∣m̂�m�

]
I
[
�m̂�m� − m� < ε

]

≤ b�m̂�m� − m�2;

(8)

where, using the fact that the maximum of the vi�m̂�m�� is less than or equal
to 1Tv�m̂�m��,

b ≡ dMr−1 sup
�φ�=1

�Aφ�:

Choose R1 > 0 so that r ≥ R1 implies b < 1.
Let T = inf�m ≥ 0x �m̂�m� − m� ≥ ε� and define l�m� as

l�m� ≡
{

m̂�m� − m; m ≤ T;
0; m > T:

Note that if m̂�m�−m = 0 for some m, then m̂�m
?�−m = 0 for all m? > m by the

zero-variance property. One can then check that

l�m+1� = �m̂�m+1� − m�I�0 < �l�m�� < ε�:
Thus

E
[
�l�m+1��2

∣∣ �m̂�n��mn=0

]

= E
[
�m̂�m+1� − m�2I�0 < �l�m�� < ε�

∣∣ �m̂�n��mn=0

]

= E
[
�m̂�m+1� − m�2I��m̂�m� − m� < ε�

∣∣�m̂�n��mn=0

]
I�0 < �l�m�� < ε�(9)

≤ b�m̂�m� − m�2I�0 < �l�m�� < ε�(10)

≤ b�l�m��2:(11)
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In the above, (9) follows because �0 < �l�m�� < ε� ⊂ ��m̂�m� −m� < ε�, (10) by
(8) and (11) by definition of l�m�. By induction, this yields

E
[
�l�m��2

∣∣�m̂�n��m−1
n=0

]
≤ bmE

[
�l�0��2

∣∣m̂�0�
]

∀ m ≥ 1:(12)

Now, choose a value c such that b < c2 < 1, and define events

Fm =
{
��l�0�� < ε�; if m = 0;
��l�m�� ≤ cm�l�0���; if m > 0:

Using Markov’s inequality and (12), for m ≥ 1,

P

(
Fc
m ∩

m−1⋂
j=0

Fj

∣∣∣m̂�0�
)

= P
({
�l�m��2 > c2m�l�0��2

}
∩
m−1⋂
j=0

Fj

∣∣∣m̂�0�
)

= E
(
P
[
�l�m��2 > c2m�l�0��2

∣∣�m̂�j��m−1
j=0

]
I

[m−1⋂
j=0

Fj

]∣∣∣m̂�0�
)

≤ E
(
E��l�m��2��m̂�j��m−1

j=0 �
c2m�l�0��2

I

[m−1⋂
j=0

Fj

]∣∣∣m̂�0�
)

≤ E
(
bm�l�0��2
c2m�l�0��2

I

[m−1⋂
j=0

Fj

]∣∣∣m̂�0�
)

=
(
b

c2

)m
P

(m−1⋂
j=0

Fj

∣∣∣m̂�0�
)

and hence

P

( m⋂
j=0

Fj

∣∣∣m̂�0�
)
≥
[
1−

(
b

c2

)m]
P

(m−1⋂
j=0

Fj

∣∣∣m̂�0�
)
:(13)

So

P

( ∞⋂
j=0

Fj

∣∣∣m̂�0�
)
= lim

m→∞
P

( m⋂
j=0

Fj

∣∣∣m̂�0�
)
≥ νI�F0�;

where ν > 0 is given by

ν ≡
∞∏
m=1

[
1−

(
b

c2

)m]
:

Note that ν > 0 since
∑∞
m=1�b/c2�m <∞ [see Theorem 12-52 of Apostol (1957)].

Now
∞⋂
m=0

Fm ⊆ �T = ∞� = �l�m� = m̂�m� − m ∀ m�:
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That is, the l and m̂ processes never decouple on the event
⋂∞
m=0Fm. So,

P
{
�m̂�m� − m� ≤ cm�m̂�0� − m� ∀ m

∣∣ m̂�0�
}
I��m̂�0� − m� < ε�

≥ P
{ ∞⋂
m=0

Fm

}
≥ νI��m̂�0� − m� < ε�:

This completes the proof. 2

We must start the initial estimate, m̂�0�, close enough to m for the probability
bound of Lemma 2 to hold. However, even if we start with �m̂�0� − m� ≥ ε we
can wait to see if �m̂�m∗� − m� < ε for some m∗. If this happens, the strong
Markov property implies

�m̂�m� − m� < cm−m∗�m̂�m∗� − m� ∀ m ≥m∗

holds with probability at least ν. That is, every time the process �m̂�m��∞m=0
enters the ε-neighborhood of m, there is probability at least ν of exponential
convergence. If such entry occurred infinitely often, then exponential conver-
gence would be certain. We are now ready to complete the proof.

Proof of Theorem. Let ȳ�m�=�Ȳ�m�1 ; : : : ; Ȳ
�m�
nD � denote the nD-dimensional

vector of the averages of the r values of Yj;Q�m̂�m�� at each design point ij in D
at the mth iteration (i.e., Ȳ�m�j is the average of the r replicates of Yj;Q�m̂�m��).
The average total scores Ȳ�m�j are nonnegative and have finite mean µij , so by
Markov’s inequality,

Pr
{
Ȳ
�m+1�
j > kµij

∣∣m̂�m�
}
≤ 1
k
;

for j = i1; i2; : : : ; inD . Conditional on m̂�m�, the rnD chains of iteration m + 1
are independent, and hence

Pr
{
Ȳ
�m+1�
j ≤ kµij ∀ j

∣∣m̂�m�
}
≥
(

1− 1
k

)nD
:

Choose k such that �1− 1/k�nD > 1/2.
Denote by mT

D = �µi1; : : : ; µinD � the vector of component m values corre-
sponding to the states in D. Let �0; kmD� be the rectangle set in RnD where
0 ≤ yj ≤ kµij , 1 ≤ j ≤ nD and let

H = sup
y∈�0; kmD�

max
1≤i≤d

∣∣xTi �XT
DXD�−1XT

Dy
∣∣:(14)

Then

Pr
{
m̂�m+1� ≤H1

∣∣m̂�m�
}
≥ 1

2 :(15)

Let U denote the set of vectors in Rd having all positive components. For
a vector m̃ in U let Li�·�m̃� denote the probability law (distribution) of YQ�m̃�
when simulating under Q�m̃� and starting at X0 = i. That is, for sets A ⊆ R,

Li�A�m̃� = Pr
{
YQ�m̂�m�� ∈ A

∣∣X0 = i; m̂�m� = m̃
}
:
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Note that the right-hand side of the above equation does not depend on m.
The transition probabilities qij�m̃� are continuous functions of m̃. For m̃ ∈ U,
Q�m̃� � P, so the likelihood ratios Ln and total scores YQ�m̃� are continu-
ous functions of m̃. It follows that the map m̃ 7→ Li�·�m̃� is continuous in the
topology of weak convergence; that is,

if m̃n→ m̃; then Li�·�m̃n� ⇒ Li�·�m̃�:
Let Em̃�·� denote expectation under Li�·�m̃�. Fix α > 0. Suppose that we have
a sequence of vectors �m̃n� in U with m̃n → m̃. Then the distributions for the
random variables YQ�m̃n�I�YQ�m̃n� ≤ α� under Q�m̃n� converge in distribution to
the distribution of YQ�m̃�I�YQ�m̃� ≤ α�. By bounded convergence,

Em̃n�YQ�m̃n�I�YQ�m̃n� ≤ α�� → Em̃�YQ�m̃n�I�YQ�m̃n� ≤ α��:

That is, Em̃�YQ�m̃n�I�YQ�m̃n� ≤ α�� is a continuous function of m̃ for each fixed α.
For any m̃ ∈ U, Em̃�YQ�m̃�� = µi, which is a constant and hence a continuous
function of m̃. So, on U,

Em̃�YQ�m̃�I�YQ�m̃� > α�� = Em̃�YQ�m̃�� −Em̃�YQ�m̃�I�YQ�m̃� ≤ α��
is continuous in m̃.

Because YQ�m̃� has finite mean,

lim
α→∞

Em̃
(
YQ�m̃�I�YQ�m̃� > α�

)
= 0:

If we restrict m̃ to �m̃x δ1 ≤ m̃ ≤H1� then we can think of Em̃�YQ�m̃n�I�YQ�m̃n� >
α�� as a family of continuous functions of m̃ on a compact set indexed by
α. These functions tend monotonically to zero pointwise as α → ∞, so the
convergence is uniform by Dini’s theorem. That is,

lim
α→∞

sup
δ1≤m̃≤H1

Em̃�YQ�m̃n�I�YQ�m̃n� > α�� = 0(16)

so that the family of probability measures �Li�·�m̃�x δ1 ≤ m̃ ≤H1� is uniformly
integrable. By Parzen (1954), this implies that the weak law of large numbers
holds uniformly over �m̃x δ1 ≤ m̃ ≤H1�. Let ε be as in Lemma 2. Then

lim
r→∞

sup
δ1≤m̃≤H1

Pr
{
�xTi b̂�m+1� − µi� >

ε√
d

∣∣∣ m̂�m� = m̃

}
= 0:(17)

This is where the assumption µi ≥ δ ∀ i is critical. We must have a compact
subset of m̃’s in U in order for (16) to hold and so m̃ must be bounded away
from 0.

By (17), we can choose R2 large enough so that r ≥ R2 implies

sup
δ1≤m̃≤H1

Pr
{
�xTi b̂�m+1� − µi� >

ε√
d

∣∣∣ m̂�m� = m̃

}
<

1
2d
:(18)

If the algorithm is run with r > R2, then a union bound yields

Pr
{
�m̂�m+1� − m� < ε

∣∣ m̂�m�
}
≥ 1

2I
[
δ1 ≤ m̂�m� ≤H1

]
:(19)
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Let R1, c, and ν be as in Lemma 2, and suppose that the algorithm is run
with number of replications r ≥ R = max�R1;R2�. The sequence �m̂�m��∞m=0 is
Markov, so step 4 of the algorithm, (15) and (19) imply that

Pr
{
�m̂�m+2� − m� < ε

∣∣ m̂�m�
}

≥ Pr
{
�m̂�m+2� − m� < ε

∣∣ δ1 ≤ m̂�m+1� ≤H1
}
P�δ1 ≤ m̂�m+1� ≤H1�m̂�m��

≥ 1
4 :

Thus, regardless of the value m̂�m�, if the algorithm is run with r ≥ R there is
at least 1/4 probability of m̂�m+2� being within an ε-neighborhood of m. Letting

ηl = P
{
�m̂�l+2� − m� < ε � m̂�l�

}
;

then
∑
l ηl diverges, and by the conditional Borel–Cantelli lemma [Corollary

5.29 of Brieman (1968)],

Pr
{
�m̂�m� − m� < ε infinitely often

}
= 1:(20)

We have shown that, if m̂ starts within an ε-neighborhood of m, there is
a positive probability of exponential convergence occurring by Lemma 2, and
have now shown that if m̂ leaves this ε-neighborhood, it returns to it with prob-
ability 1. We now combine the two to complete the proof. Define two sequences
of stopping times �Un� and �Wn� inductively as follows:

W0 = 0;

Un = inf
{
m >Wn−1x �m̂�m� − m� < ε

}
; n ≥ 1;

Wn = inf
{
m > Unx �m̂�m� − m� > cm−Un�m̂�Un� − m�

}
; n ≥ 1:

The Wn mark the transitions at which exponential convergence fails after
each Un, and the Un+1 mark the transitions thereafter that �m̂�m�� enters the
ε-neighborhood of m. By Lemma 2, the strong Markov property, and (20),

Pr
{
Wn = ∞

∣∣Un <∞
}
≥ ν;(21)

Pr
{
Un <∞

∣∣Wn−1 <∞
}
= 1:(22)

Let Gn = �Wn−1 <∞ and Wn = ∞�. The Gn are obviously disjoint. Note that

n−1⋂
l=1

Gc
l =

n−1⋂
l=1

�Wl <∞�:

By the Markov property, (21) and (22),

Pr
{
Gn

∣∣∣
n−1⋂
l=1

Gc
l

}
= Pr

{
Gn

∣∣Wn−1 <∞
}

≥ Pr
{
Un <∞

∣∣Wn−1 <∞
}

Pr
{
Wn = ∞

∣∣Un <∞
}

= 1ν = ν:
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It follows by the conditional Borel–Cantelli lemma that

Pr
{ ∞⋃
n=1

Gn

}
= 1:

Now, Gn = �Wn−1 < ∞ and Un = ∞� ∪ �Un < ∞ and Wn = ∞�. By (22), the
event on the left has probability zero, so

P

{ ∞⋃
n=1

�Un <∞ and Wn = ∞�
}
= 1:(23)

Recall from Lemma 2 that c < 1 and hence − loge�c� > 0. Choose 0 < θ <
− loge�c� and note �emθ�m̂�m� − m� → 0� ⊃ �Un < ∞ and Wn = ∞� for all n.
Thus, by (23),

P
{
emθ�m̂�m� − m� → 0

}
≥ P

{ ∞⋃
n=1

�Un <∞ and Wn = ∞�
}
= 1

and the theorem is proved. 2

We close this section with a proof that exponential convergence is preserved
under the modified algorithm which uses previous information [i.e., (5) re-
places step 4]. To obtain this result, we assume there is a known upper bound
on the true m. This holds in many situations, for example, when m is a prob-
ability. We also give some discussion indicating that the exponential rate can
be improved by good choice of the weight w in (5).

Proposition 1. Under the same assumptions as the theorem, the same con-
clusions hold for the modified algorithm with (5) in place of step 4.

Proof. The steps in the proof of the theorem are equally valid for the
modified algorithm, except for (8), (15) and (20). To deal with (8), note that
the same argument shows

E
[
�m̂�m+1� − m�2I��m̂�m� − m� < ε�

∣∣ m̂�m�
]

≤
{
w2b�m̂�m� − m�2 + �1−w�2�m̂�m� − m�2

}
I��m̂�m� − m� < ε�

=
[
w2b+ �1−w�2

]
�m̂�m� − m�2I��m̂�m� − m� < ε�:

Then (8) holds but with b replaced by

b? = w2b+ �1−w�2:(24)

Since 0 < w ≤ 1, it follows that 0 < b? < 1.
A simple way to establish (15) is to bound each m̂�m� from above. Redefining

H as a credible upper bound for the solution m, such truncation ensures the
compactness used in (16). Truncated in this fashion, the modified algorithm
conforms to (15).
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To establish a version of (20), first let

Em =
{
�xTi b̂�m� − µi� ≤

ε

2
√
d
; 1 ≤ i ≤ d

}
:

Now (18) holds for r sufficiently large, and we take r large enough that by
subadditivity,

sup
δ1≤m̃≤H1

Pr
[
Em+1

∣∣m̂�m� = m̃
]
≥ 1

2 :(25)

For any N > 0,

µ̂
�m+N�
i = �1−w�Nµ̂�m�i +w

N∑
n=1

�1−w�N−n min
{
max

{
�Xb̂�m+n��i; δ

}
;H

}
:

As 0 < w ≤ 1, we can choose N sufficiently large that �1−w�N < ε/�4H
√
d�,

and then if m̂�m� ≤H1, we have 0 < �1−w�Nµ̂�m�i < ε/�4
√
d�. We also assume

�1−w�Nµi < ε/�4
√
d�. If in addition,

∣∣min
{
max��Xb̂�m+n��i; δ�;H

}
− µi

∣∣ < ε

2
√
d

for n = 1;2; : : : ;N;

then
∣∣µ̂�m+N�i − µi

∣∣ ≤ �1−w�N
∣∣µ̂�m�i − µi

∣∣

+w
N∑
n=1

�1−w�N−n
∣∣min

{
max��Xb̂�m+n��i; δ�;H

}
− µi

∣∣

≤ ε

2
√
d
+ �1− �1−w�N� ε

2
√
d

≤ ε√
d
;

and we conclude that

{
�m̂�m+N� − m� < ε

}
⊃
{
m̂�m� ≤H1

}
∩

N⋂
n=1

Em+n:

Note that the newly defined �m̂�m�x m = 1;2; : : :� is still a Markov chain. By
the Markov property, (15) and (25),

Pr
{
�m̂�m+N+1� − m� < ε

∣∣m̂�m�
}
≥ 2−�N+1�:

The result (20) now follows by the conditional Borel–Cantelli lemma, which
completes the proof of the proposition. 2

If one assumes that an exact exponential rate applies to the original al-
gorithm (rather than as an upper bound, as the theorem asserts), then it is
possible to obtain a more or less optimal weight w for the modified algorithm.
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Fig. 1. Plot of the logarithm of the error versus iteration number for Example 1.

By an “exact exponential rate,” we mean something like: there exists 0 < κ < 1
such that

E
[
�m̂�m+1� − m�2

∣∣m̂�m�
]
≈ κ�m̂�m� − m�2:

Our simulation results suggest this may well be the case (see Figure 1). Then,
as in (24), the modified algorithm satisfies the same approximation but with
κ replaced by κ?. The approximately optimal weight factor is

w ≈ 1/�κ+ 1�;(26)

giving κ? ≈ κ/�κ+ 1�. For κ close to 1, this reduces the exponential factor by
roughly 1/2. This heuristic discussion is corroborated by computational results
in Section 4.

4. Examples. We now illustrate various features of the algorithm in some
simple examples.

Example 1. Consider the problem of counting the number of steps to ab-
sorption in a simple system. A particle “moves” on the integers �1;2; : : :� ac-
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cording to the transition probability matrix P having entries

pij =





0:5j−i+1; if i ≤ j and i < 20;
1; if i ≥ 20 and j = 1y
0; otherwise,

which is a random walk with geometric steps except for when the particle
moves beyond 19, when it is absorbed. With the score function sij = 1 for all
i and j, i 6= 1, µi is the expected number of steps until absorption.

The memoryless property of the geometric distribution implies that µi =
21 − i. We used the linear model µi = β0 + β1i with six replications of the
four-point design �1;7;13;19�. The results are shown in Figure 1. Conver-
gence is measured in two ways. First, by the quantity �m̂�m� − m�2 as in the
main theorem and also by the “internal” variance Am = �ȳ�m� − m̂

�m�
D �2. The

latter estimate could be used in practice when m is unknown. Note that the
two quantities track each other quite well, which suggests a simple stopping
criterion for the algorithm: stop when Am is deemed sufficiently small. The
accuracy in the example levels off at machine precision in about 30 iterations.
The roughly linear (in log scale) decrease prior to leveling off exemplifies “ex-
ponential convergence.”

Example 2. To illustrate the use of previous information as in Propo-
sition 1, we consider a situation where convergence is slower. We “over-
fit” the mean function for the geometric step model of Example 1 with a
fourth degree polynomial using a single replication of the seven-point de-
sign �1;4;7;10;13;16;19�. Using seven simulated scores to estimate five
parameters at each iteration slows convergence: a histogram of the iteration-
to-iteration slopes in the log-sum-of-squares plot observed over 100 simulated
runs is shown in the top panel of Figure 2. The slopes were estimated by
fitting a simple linear regression to log �m̂�m� − m�2 as a function of m. The
slopes are clustered about −1 (the observed mean is −0:99) so κ̂ ≈ e−1 and,
correspondingly, an estimated optimal weight as in (26) is ŵ = e/�1 + e�.
An additional 100 simulations were then run, this time using ŵ to weight
contributions from the preceding iterations. A histogram of the slopes is given
in the bottom panel of Figure 2, showing a clustering about −1:3. We expect
to see κ̂? = 1/�1 + e� and a corresponding slope of − log�1 + e� = −1:31,
matching the observed data fairly well. Note that the extra factor of e−0:3

in the exponential convergence rate means that one obtains an order of
magnitude reduction in error for each eight iterations with virtually no extra
effort.

Example 3. To illustrate the importance of the number of replications, we
consider another situation where convergence is slow. We again overfit in the
geometric step model with a second degree polynomial and use a three-point
base design (1,5,9). The results of simulations using 10, 20, 40 and 80 replica-
tions of the base design (50 simulations each) are shown in Figure 3, with the
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Fig. 2. Histograms of 50 slope estimates for Example 2. The upper plot is for the standard algo-
rithm and the bottom plot for the algorithm that uses previous information.

Fig. 3. Illustration of required number of replications needed to achieve exponential convergence
in Example 3. Note that the vertical scales are different among the plots.
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true log sum of squares at the design points being plotted against the iteration
number. Note the different ranges of the y-axes. For 10 and 20 replications,
there is very little if any indication of exponential convergence in Figure 3.
The situation with 40 replications is not totally clear, but the results for 80
replications are unequivocal. These results suggest how one might implement
a method for obtaining a requisite replication number to obtain exponential
convergence: keep doubling the number of replications until evidence of expo-
nential convergence is apparent.

Example 4. Next, we consider the gambler’s ruin problem and use it to
illustrate the behavior of the algorithm when the linear model (2) is not ex-
act. A gambler with i dollars bets repeatedly against the house, whose initial
capital is z − i dollars. At stake on each bet is one dollar, and bets are in-
dependent. The gambler has probability p of winning each bet, and betting
continues until either the gambler is reduced to zero dollars (and is “ruined”)
or the gambler’s fortune reaches z dollars (at which point he has “broken the
bank”). Analog transition probabilities are

pij =





p; if j− i = 1; or i = z− 1 and j = 1y
q; if i− j = 1; or i = 1 and j = 1y
0; otherwise.

We are interested in the probability of the gambler’s eventual ruin, which
is m when the scores sij are all zero except s11 = 1. A well known result, the
probability of ruin as a function of the initial fortune i is

µi =
�q/p�z − �q/p�i
�q/p�z − 1

;

when q = 1− p 6= p, and µi = 1− i/z when q = p = 1/2.
Consider estimating the parameter β in the linear model µi = β��q/p�z −

�q/p�i�. Results for the case of z = 20 dollars in the game, p = 0:6 and
δ = 0:05 added to all terminal transitions, using six replications of the four-
point design �1;7;13;19�, are shown in Figure 4. Convergence results using
only the actual norm �m̂�m� − m�2 are shown (the internal variance estimates
track very closely).

Also shown in Figure 4 are the results of three simulations where an error
is deliberately introduced into the model used to fit the data. We do this by
replacing �q/p� with �q/p� + err in the formula for µi given above. The three
values used for err are 10−3, 10−5 and 10−7. Exponential convergence to zero
variance is not possible for adapting to this class of functions because it does
not contain the true m. Nonetheless, exponential convergence to a limiting
accuracy is achieved, after which no further improvement occurs. Of course,
n−1 convergence can be obtained thereafter by averaging the observed m̂�m�.
We conjecture that the behavior in Figure 4 is typical when adapting to classes
of importance functions that do not contain the true solution.
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Fig. 4. Plots of accuracy versus number of iterations for Example 4.

5. Discussion. The main theorem establishes an exponential upper bound
on the rate of convergence under certain conditions (e.g., a linear model for
m and a minimal number of replications r of the base design). We expect
that the upper bound exp�−θm� which can be dug out of the proof is proba-
bly exceedingly conservative and useless in practice. As discussed in Example
1, the accuracy measure Am = �ȳ�m� − m̂

�m�
D �2 can be monitored to evaluate

convergence, and the algorithm terminated when this is sufficiently small.
The theorem provides no explicit value for a minimal r to obtain exponential
convergence. In our experience, insufficient replication is reflected by no im-
provement in the accuracy measure Am during early iterations. Such behavior
was introduced into Example 3 by using a model with too many terms and
a poor base design D. These difficulties were easily overcome by doubling r
until exponential convergence was evident.

The requirement of an (exact) linear model for the solution m in our main
theorem is a limitation. One generalization would be to models nonlinear in
their underlying parameters. As the calculation of variances and distribution
theory for nonlinear least squares estimators is difficult, this issue remains
open. In the majority of applications there is no known parametric form for m.
General qualities of m may be known from physical principles (such as conti-
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nuity of the solution), but these do not explicitly translate into a parametric
model. A linear form for m may be used as an approximation. As illustrated in
Example 4, the better the approximation, the better the performance of adap-
tive importance sampling, which of course will not converge without further
modification (e.g., averaging across iterations). One area we plan to investi-
gate further is the use of linear models based on series approximations which
become more accurate as the order is increased.

Most problems in particle transport involve continuous state spaces. Al-
though the algorithm described herein is easily extended to a general state
space, rigorously establishing its convergence properties in that domain is non-
trivial. Simulation evidence suggests that exponential convergence continues
to hold. There is also the possibility of utilizing adaptive importance sampling
in conjunction with other Monte Carlo variance reduction techniques and de-
terministic algorithms. These techniques may be especially useful in early
iterations of the algorithm when the fitted model Xb̂D is sufficiently far from
the actual m, but we do not explore them further here. When the state space
has small dimension, deterministic methods are probably superior to adaptive
importance sampling. As the dimension of the space grows, comparisons be-
come more problematic—deterministic methods typically scale exponentially
in the number of dimensions, while Monte Carlo methods can often be run
with a limited amount of computer time and provide a solution with some
estimable uncertainty (which may be large). As such, adaptive importance
sampling may become an attractive alternative to deterministic methods and
classical Monte Carlo in these settings.

The potential of the adaptive method is great. It escapes n−1 convergence
by intelligently exploiting dependent data (i.e., by learning) and achieves ex-
ponential variance reduction. The algorithm described here used to attain
such convergence is conceptually straightforward enough to extend to other
problems.
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