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BILINEAR STOCHASTIC SYSTEMS WITH FRACTIONAL
BROWNIAN MOTION INPUT1

By E. Iglói and Gy. Terdik

Lajos Kossuth University of Debrecen

The partial derivatives with respect to time and the fractional Brown-
ian motion of a particular class of stationary processes are defined. Al-
though the fractional Brownian motion is not semimartingale, the bilinear
SDE with fractional Brownian motion input is considered and solved. The
solution is explicitly given in both the frequency and time domains in the
case when the coefficient of the bilinear term is pure imaginary. The sta-
tionary Stratonovich solution of the bilinear SDE with white noise input
is also considered.

1. Introduction. The applications of long-range dependent models in-
volve several fields of science and economics such as geophysics, hydrology,
turbulence, weather and so on. Good lists of references for this field are given
in [1] and [9]. The basic stochastic process of this kind is the fractional Brown-
ian motion defined in [5]. The fractional Brownian motion is given as a par-
ticular fractional operator on the standard Brownian motion. The Gaussian
parametric models of long-range dependent phenomena are usually considered
as either linear stochastic differential equations (SDE) with fractional Brown-
ian motion input or linear stochastic differential equations with Brownian
motion input and with a fractional operator on the output. Actually, these
two types of processes are equivalent. Several linear models with long-range
dependence are discussed in [7]. Most of the observations are not Gaussian,
so there is a need for nonlinear modelling for long-range dependence. One of
the possibilities for keeping the Gaussian input and at the same time get-
ting rid of Gaussianity is the application of bilinear models. The easy way to
get a long-range non-Gaussian process is to put the fractional operator on a
non-Gaussian process, for example, on the solution of the bilinear SDE. This
procedure can be carried out without difficulties. It requires more care if one
considers a bilinear SDE with fractional Brownian motion input, because sev-
eral difficulties arise. This might be the reason why no one has considered any
nonlinear model with fractional noise input either in discrete or in continuous
time.

In this paper we start with the bilinear SDE with white noise input and
list some basic ideas leading to the stationary Itô solution, given in both the
time domain and chaotic frequency domain forms. The first step in studying
fractional Brownian motion as an input of bilinear SDE is to understand its
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basic properties in the frequency domain and introduce the integral of some
deterministic functions with respect to it. We use the Itô calculus extensively
in the frequency domain for the definition of the partial derivatives of a partic-
ular class of stationary processes with respect to time and fractional Brownian
motion. One of the basic problems one has to pay attention to is that fractional
Brownian motion is not semimartingale. Based on these derivatives, the bi-
linear SDE with fractional Brownian motion input is considered and solved.
In the case when the coefficient of the bilinear term is pure imaginary, the
solution of the bilinear SDE is explicitly given in both the frequency and time
domains. It is shown that, in spite of using the Itô calculus in the frequency
domain, the result is that the solution of the SDE follows the ordinary chain
rule; therefore it is a Stratonovich solution. The main reason for this is that
the quadratic variation of the fractional Brownian motion is zero. The station-
ary Stratonovich solution of the bilinear SDE with white noise input is also
considered.

2. Brownian motion input.

2.1. Time domain. Throughout this paper a single scalar-valued input pro-
cess will be considered. At the same time the output process will be complex-
valued because of the complex constants of the equations. Let us start with
the stochastic differential equation

dyt = �µ+ αyt�dt+ �β+ γyt�dwt;(1)

where wt is Brownian motion with variance σ2. The σ2 is considered to be
1, otherwise one can use the transformation wt/σ , σβ, σγ. Equation (1) is a
linear differential equation. Nevertheless, it is called bilinear in system theory
to distinguish between the situations when γ is zero and nonzero, that is, when
the solution is Gaussian and non-Gaussian, in other words, when the model is
linear and nonlinear. The Itô solution of (1) is well known (see [3], page 111):

yt= exp
((
α− γ

2

2

)
t+γwt

)(
y0+�µ−βγ�

∫ t
0

exp
(
−
(
α− γ

2

2

)
s−γws

)
ds

+β
∫ t

0
exp

(
−
(
α− γ

2

2

)
s−γws

)
dws

)
:

When γ = 0, Reα < 0 and β 6= 0, this provides the stationary Gauss-
ian Ornstein–Uhlenbeck process. We are interested in the stationary non-
Gaussian solution of (1); therefore, it is necessary to assume that �µ�2+�β�2 > 0,
γ 6= 0 and not only Reα < 0 but 2 Reα + �γ�2 < 0 as well. The starting value
y0 is also well defined and then the stationary physically realizable solution
of (1) is

yt = �µ− βγ�
∫ t
−∞

exp
((
α− γ

2

2

)
�t− s� + γ�wt −ws�

)
ds

+ β
∫ t
−∞

exp
((
α− γ

2

2

)
�t− s� + γ�wt −ws�

)
dws:

(2)
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Note that µγ 6= αβ must hold; otherwise (1) has only the degenerate solution
yt = −β/γ = −µ/α. From now on we shall assume that β = 0 and µ 6= 0;
that is, there is no second term in (2). This assumption can be fulfilled by the
following transformation:

ỹt =
γµ

γµ− αβyt +
β

γ
:(3)

The stochastic differential equation (1) without any restriction of generality
becomes

dyt = �µ+ αyt�dt+ γyt dwt;(4)

and this equation will be the subject of our investigation. The expectation of
yt can be calculated from (4) as

Eyt = −
µ

α
:

One can easily get the autocovariance function R�t� = E �yt−Eyt��y0 − Ey0�
of yt directly from (4) if t 6= 0 and for the variance R�0� from (2),

R�t� = R�0�eαt = −�µ�2�γ�2
�α�2�2 Reα+ �γ�2�e

αt; t > 0;

R�t� = R�−t�; t ≤ 0:

(5)

2.2. Frequency domain. Suppose there exists a stationary physically real-
izable solution of (4) which is subordinated to the integrator process wt. The
frequency domain representation theorem says (see [2]) that all such solutions
can be changed into the so-called chaotic spectral representation form

yt =
∞∑
k=0

∫
Rk

exp�it6ω�k��fk�ω�k��W�dω�k��;(6)

where ω�k� = �ω1;ω2; : : : ; ωk�, 6ω�k� =
∑k
j=1ωj and W�dω�k�� is the k-

dimensional multiple Wiener–Itô spectral measure according to the Wiener
process wt. The representation (6) is unique up to the permutation of the
variables of the transfer functions fk. One of the main tools of the multiple
Wiener–Itô integral technique is the diagram formula, which in general
expresses the product of multiple integrals in terms of a linear combination
of multiple integrals; see [4]. In this paper the diagram formula is used
for the following particular case. Let g ∈ L2�R� and f ∈ L2�Rk� be Fourier
transforms of some real-valued functions and let f be symmetric, then

∫
R
g�ω�W�dω�

∫
Rk
f�ω�k��W�dω�k��

=
∫
Rk+1

f�ω�k��g�ωk+1�W�dω�k+1��

+ k
∫
Rk−1

∫
R
ḡ�ωk�f�ω�k��dωkW�dω�k−1��:

(7)
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Now under the assumption that we are looking for the stationary Itô solution
(2) of (4), that is, by putting by definition the principal value for the integral

1
2π

∫
R

1− exp�−itω�
iω

dω
:= 0;

it follows from the diagram formula that the following recursion is valid for
the transfer functions fk (see [10]):

f0 = −
µ

α
; fk�ω�k�� =

γfk−1�ω�k−1��
i6ω�k� − α

; k ≥ 1:(8)

To make it easier to understand (32), which concerns the transfer functions
according to the fractional Brownian motion input, we remark that the sym-
metrized version f̃k = symfk of these transfer functions can be written in the
form

f̃k�ω�k�� = µ
γk

k!

∫ ∞
0

exp�αu�
k∏
j=1

1− exp�−iuωj�
iωj

du:(9)

We recall here that the symmetrized version f̃ of f by the vector ω�k� is the
average of those values of f which are taken by all possible permutations of
entries of ω�k�: The spectrum of yt can be calculated from the autocovariance
function (5); that is,

ϕ�ω� = 1
2π

∫
R
e−itωR�t�dt = − R�0�Reα

π�iω− α�2 ; ω ∈ R:

It should be noted that there is no difference between the spectrum of an
Ornstein–Uhlenbeck process and ϕ�ω�; therefore, it is necessary to consider
higher order spectra for bilinear processes.

3. Stochastic differential equations with fractional Brownian mo-
tion integrator process.

3.1. Fractional Brownian motion. The definition of the fractional Brown-
ian motion with parameter h ∈ �− 1

2 ;
1
2� due to [5] is the following:

w
�h�
t

:= 1
0�1+ h�

{∫ 0

−∞
��t− s�h − �−s�h�dws +

∫ t
0
�t− s�h dws

}
;

t ∈ R. Formally w�h�t can be expressed with the help of the fractional integral
operator I�h�x �f� defined as

I
�h�
x �f� =

1
0�h�

∫ x
−∞
�x− y�h−1f�y�dy;
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namely, the hth fractional integral process of the Brownian motion, adjusted
to zero at zero; that is,

w
�h�
t =

1
0�1+ h�

∫ t
−∞
�t− s��1+h�−1w′s ds−

1
0�1+ h�

∫ 0

−∞
�−s��1+h�−1w′s ds

= I�1+h�t �w′� − I�1+h�0 �w′�

= I�h�t �w� − I
�h�
0 �w�:

Clearly, w�0�t = wt.
We shall consider only the case 0 < h < 1

2 because of the following motiva-
tions. First, the long memory or long-range dependence property that we are
interested in appears only for a positive h. It is widely known from experience
that fractional Brownian motion with a negative h hardly occurs in practice.
Furthermore, the latter case would need very different considerations and
even the object of this paper would reach a deadlock at some point. Again, we
shall assume in the sequel that 0 < h < 1

2 .

The most important properties of w�h�t (see [5]) are the following:

1. w�h�0 = 0;
2. w�h�t is mean square continuous and continuous with probability 1;
3. it has stationary increment processes;
4. in any t ∈ R, w�h�t is not differentiable with probability 1;
5. it is self-similar with self-similarity parameter h + 1

2 ; that is, the vectors

�w�h�ct1 ; : : : ;w
�h�
ctk
� and ��c�h+1/2w

�h�
t1
; : : : ; �c�h+1/2w

�h�
tk
� have the same distribu-

tion;
6. its first and second order moments are

Ew�h�t = 0;

Cov
(
w
�h�
t ;w

�h�
s

)
= κ�h�

2

(
�t�2h+1 + �s�2h+1 − �t− s�2h+1);(10)

Varw�h�t = κ�h��t�2h+1;(11)

where

κ�h� := 1
2π

∫
R

∣∣∣∣
eiω − 1
iω

∣∣∣∣
2

�ω�−2h dω:(12)

In the rest of the paper, the constant κ�h� will frequently appear. In the
Appendix, Lemma A.2, it is expressed in terms of the gamma function as
well.

It is evident that we have at least as many difficulties integrating with re-
spect to w�h�t as integrating by wt in the simple case. What is more, w�h�t is not
semimartingale since its quadratic variation process is zero; see Lemma A.1
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in the Appendix. That fact makes it necessary to create a new stochastic in-
tegration concept.

The spectral domain representation of w�h�t has already been mentioned in
[5] and [8], but not exactly in the form that follows.

Theorem 3.1. Let the spectral domain representation of the Brownian mo-
tion wt be

wt =
∫
R

eitω − 1
iω

W�dω�;

where W�dω� is a complex Gaussian white noise spectral measure and

E �W�dω��2 = �1/2π�dω. Then the spectral domain representation of w
�h�
t is

w
�h�
t =

∫
R

eitω − 1
iω

�iω�−hW�dω�:(13)

From (13) we get the formal representation of the “derivative process,”
which exists only in the sense of Schwarz distribution (see [5]):

dw
�h�
t

dt
= �w�h�t �′ =

∫
R
eitω�iω�−hW�dω�:

The next result is the invertibility of w�h�t . For that reason we define the inte-
gration of a nonrandom function with respect to w�h�t . Formally,

∫
R
f�t�dw�h�t =

∫
R
f�t��w�h�t �′ dt =

∫
R
f�t�

∫
R
eitω�iω�−hW�dω�dt

=
∫
R

∫
R
eitωf�t�dt�iω�−hW�dω�:

This idea is given a precise meaning by the definition.

Definition 3.1. Let fx R→ R, f ∈ L2�R� and

∫
R

∣∣∣∣
∫
R
eitωf�t�dt

∣∣∣∣
2

�ω�−2h dω <∞:

Then
∫
R
f�t�dw�h�t

:=
∫
R

∫
R
eitωf�t�dt�iω�−hW�dω�:

The use of this definition is seen in the following theorem.

Theorem 3.2.

wt=
1

0�1− h�
∫ t
−∞

{
��t− s�−h−�−s�−h�χ�−∞;0��s�+ �t− s�−hχ�0; t��s�

}
dw
�h�
s :



52 E. IGLÓI AND GY. TERDIK

Definition 3.2. We shall denote the σ-algebras generated by the pasts of
the processes wt and w�h�t by F w

�−∞; t� and F w�h�
�−∞; t�, respectively.

It is not difficult to show that in Theorem 3.2 the integrand is not only in
L2�R�, but in L1�R� as well. So one can apply Lemma A.3 in the Appendix to
obtain from Theorem 3.2 the following theorem

Theorem 3.3. F w
�−∞; t� = F w�h�

�−∞; t�:

The spectral domain approach, the idea of which arises from [10], is espe-
cially useful in our situation. It has the advantage that we can exploit the
simplicity with which the spectral representation form of the processes un-
der consideration depends on time. It is based on the technique of spectral
domain representation of square integrable stationary functionals of the frac-
tional Brownian motion; see [2].

Definition 3.3. Let us denote the space of all complex-valued stationary
processes yt which are measurable with respect to the σ-algebra F �w�h�� :=
σ�w�h�t ; t ∈ R� by S2�w�h��, that is,

S2�w�h��
:=
{
yt ∈ L2�F �w�h���x yt is second-order stationary

}
:

It is clear that by Theorem 3.3, S2�w�h�� = S2�w�. Thus, every yt ∈ S2�w�h��
can be transformed into the spectral domain chaotic representation form

yt =
∞∑
k=0

∫
Rk

exp�it6ω�k��fk�ω�k��
k∏
1

�iωj�−hW�dω�k��;(14)

where

E �yt�2 =
∞∑
k=0

k!
�2π�k

∫
Rk
�fk�ω�k���2

k∏
1

�ωj�−2h dω�k� <∞;

and every yt of that form is in S2�w�h��. Since S2�w�h�� does not depend on h;
from now on we shall use the notation S2

:= S2�w�h��:
By transfer functions we shall mean the functions fk. An essential property

of the representation (14) is that the transfer functions fk are unique, at least
up to permutation of their variables. To reach more symmetrical formulas
we assume in advance that the transfer functions are symmetric functions,
that is,

fk�ω�k�� = sym
ω�k�

fk�ω�k��:

3.2. Stochastic integration and differential equations with respect to frac-
tional Brownian motion. We would like to give meaning to the stochastic
linear differential form

dyt = ξt dt+ ηt dw
�h�
t :(15)
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Equation (15) is for the shortened form of the integral equation

yT = y0 +
∫ T

0
�ξt dt+ ηt dw

�h�
t �;(16)

where the processes ξt, ηt ∈ S2. For the form (16) to be well defined on the
one hand and unique on the other, one needs to make some assumptions for ξt
and ηt. Assume that the representations of ξt and ηt are as (14) with transfer
functions f�ξ�k �ω�k�� and f�η�k �ω�k��, respectively.

The assumptions for ξt and ηt are

�A1�
∫
R

∣∣f�η�k+1�ω�k�; λ�
∣∣�λ�−2hdλ <∞; k = 0;1;2; : : : ; ω�k� ∈ Rk;

�A2�

∞∑
k=1

k!
�2π�k

∫
Rk

1
�6ω�k��2

∣∣∣∣f
�ξ�
k �ω�k�� + sym

ω�k�
f
�η�
k−1�ω�k−1��

+ �k+ 1�
2π

∫
R
f
�η�
k+1�ω�k�;ω��ω�−2h dω

∣∣∣∣
2

×
k∏
1

�ωj�−2h dω�k� <∞:

An intuitive definition of the stochastic integral

∫ T
0
�ξt dt+ ηt dw

�h�
t �(17)

is as follows. Apply the diagram formula [see (7)] for multiplying ηt by �w�h�t �′,
add it to ξt and integrate from 0 to T. If one carries out this algebra, one has
the spectral domain chaotic representation for (17),

∫ T
0

(
ξt dt+ ηt dw

�h�
t

)
= T

(
f
�ξ�
0 +

1
2π

∫
R
f
�η�
1 �ω��ω�−2h dω

)

+
∞∑
k=1

∫
Rk
(
exp�iT6ω�k�� − 1

)
gk�ω�k��

×
k∏
1

�iωj�−hW�dω�k��;

(18)

where

gk�ω�k�� =
1

i6ω�k�

(
f
�ξ�
k �ω�k�� + sym

ω�k�
f
�η�
k−1�ω�k−1��

+ �k+ 1�
2π

∫
R
f
�η�
k+1�ω�k�;ω��ω�−2h dω

)
; k ≥ 1:

(19)
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Since �w�h�t �′ does not exist in L2��� and because of the change of order of the
various types of integrations,

∑
k

;
∫
Rk
dW�ω�k��;

∫ T
0
dt;

that method would not be a priori justified without assumptions (A1) and (A2).

Definition 3.4. Let us suppose that the processes ξt, ηt ∈ S2 fulfill as-
sumptions (A1) and (A2). Then the stochastic integral (17) is defined by (18)
and (19).

Remark 3.1. For every fixedT ∈ R, the stochastic integral (18) is a random
variable with a finite second moment.

The following theorem is also an obvious consequence of (18) and (19).

Theorem 3.4. Let us suppose that the processes ξt, ηt ∈ S2 fulfill assump-
tions (A1), (A2) and

�A3� f
�ξ�
0 = −

1
2π

∫
R
f
�η�
1 �ω��ω�−2hdω

holds. Then there exists a process yt ∈ S2 which satisfies (16) such that yt
is unique in S2 apart from its expectation. The kth �k > 0� order transfer
functions of yt are those in (19).

We have given meaning to the stochastic differential and integral forms
(15) and (16). But if we also require the uniqueness of the representation (16)
of yT − y0, we need to make another assumption, namely, that

�A4�

∫
R

∣∣∣∣
∫
R
f
�η�
k+1�ω�k−1�; λ; µ��µ�−2h dµ

∣∣∣∣
2

�λ�−2h dλ <∞;

k ∈ N; ω�k−1� ∈ Rk−1:

Let us define the space of the integral processes yt. By Theorem 3.4, the
integral processes yt are functionals of proper processes ξt, ηt ∈ S2 and of
complex constants, that is, yt = 8�ξ;η;f

�y�
0 �, where Eyt = f

�y�
0 .

Definition 3.5.

S2I�w�h��
:=
{
ytx yt satisfies (16); Eyt ∈ C; ξt; ηt ∈ S2;

(A1), (A2), (A3), (A4) hold
}
:

It is clear that S2I�w�h�� is a linear subspace of S2, since the representa-
tion (16) of complex linear combinations of the elements of S2I�w�h�� inherits
assumptions (A1), (A2), (A3), (A4).
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Theorem 3.5. The representation (16) of any yt ∈ S2I�w�h��, is unique.

Because of the uniqueness of (16), we can define the partial derivatives of
any yt ∈ S2I�w�h��.

Definition 3.6. If yt ∈ S2I�w�h�� has the representation

dyt = ξt dt+ ηt dw
�h�
t ;

then the partial derivatives are defined as

∂tyt
:= ξt; ∂

w
�h�
t
yt

:= ηt:

Remark 3.2. Let us define for any t1; t2 ∈ R the operator 1t1; t2 on S2I�w�h��
by

1t1; t2y
:=
∫ t2
t1

��∂sys�ds+ �∂w�h�s ys�dw
�h�
s �

:=
∫ t2

0
��∂sys�ds+ �∂w�h�s ys�dw

�h�
s � −

∫ t1
0
��∂sys�ds+ �∂w�h�s ys�dw

�h�
s �:

Then 1t1; t2 coincides with the ordinary difference operator, that is, 1t1; t2y =
yt2 − yt1 .

Remark 3.3. Because of (A2) and (A3), ξt and ηt are connected with one
another.

∫ T
0 ξt dt and

∫ T
0 ηt dw

�h�
t are not defined one-by-one. Though each of

them could be defined without the other one, it could happen that neither of
them would give the difference of a stationary process; only the sum of them
would. We are constrained to work in the space S2 to avoid the time depen-
dence of the transfer functions. That is the reason why we have defined only
the “common” integral

∫ T
0 �ξt dt+ ηt dw

�h�
t �. By the way, one might introduce

∫ T
0
ηt dw

�h�
t

:=
∫ T

0
�ξt dt+ ηt dw

�h�
t � −

∫ T
0
ξt dt;

but this is not of primary importance; the common integral comes before.

Example 3.1 (Stationary Ornstein–Uhlenbeck process with fractional
Brownian motion input). Let us consider the stochastic differential equation

dyt = αyt dt+ βdw
�h�
t :(20)

It is shown (see the Appendix) that the partial derivatives of yt are

∂tyt =
∫
R
eitωf

�ξ�
1 �ω��iω�−hW�dω�;

∂
w
�h�
t
yt = β;
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with the transfer function

f
�ξ�
1 �ω� = αβ

1
iω− α:

Therefore the unique solution of (20) is

yt =
∫
R
eitω

β

iω− α�iω�
−hW�dω�:

Remember that we have defined the integral of proper nonrandom functions
with respect to w�h�t ; see Definition 3.1. Now, we are able to represent yt in
the time domain as well. Assume that Reα < 0. Then

yt =
∫
R
eitω

β

iω− α�iω�
−hW�dω�

=
∫
R
eitωβ

∫ ∞
0
eαu−iuω du�iω�−hW�dω�

=
∫
R

∫ t
−∞

eisωβeα�t−s� ds�iω�−hW�dω� = β
∫ t
−∞

eα�t−s� dw
�h�
s :

(21)

Another type of the time domain integral representation form of yt is

yt = β
∫
R

∫ t
−∞

eisωeα�t−s� ds�iω�−hW�dω�

= −αβ
∫
R

∫ t
−∞

eα�t−s�
eitω − eisω

iω
ds�iω�−hW�dω�

= −αβ
∫ t
−∞

eα�t−s��w�h�t −w
�h�
s �ds;

(22)

where the last integral is an L2-integral.
If Reα > 0, then yt has time domain integral representation forms sim-

ilar to (21) and (22) depending on the future of w�h�t , that is, the domain of
integration is �t;∞�. The spectrum of yt can be easily derived from the spec-
tral representation of the process and shows its long-range dependence. It is
worth noting here that because of the linearity of (20) there is no difference
between taking the fractional integral operator I�h�t on an ordinary Ornstein–
Uhlenbeck process and the solution of equation (20) with fractional Brownian
motion input.

Example 3.2 (Stationary Hermite degree 2 bilinear process with fractional
Brownian motion input). Consider the pair of stochastic differential equa-
tions

dxt = α1xt dt+ βdw
�h�
t ;

dyt = α2yt dt+ γxt dw
�h�
t ;

(23)

where α1; α2; β; γ ∈ C, Reα1 6= 0, Reα2 6= 0. The unique solution xt of the
first equation is the stationary Ornstein–Uhlenbeck process with fractional
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Brownian motion input, given in Example 3.1. Now we give the yt component
of the unique solution (see the Appendix for the proof):

yt =
2∑
k=0

∫
Rk

exp�it6ω�k��f
�y�
k �ω�k��

2∏
j=1

�iωj�−hW�dω�k��;

with f�y�0 = f
�ξ�
0 /α2 and

f
�y�
1 �ω� = 0; f

�y�
2 �ω�2�� = βγ sym

ω�2�

1
iω1 − α1

1
i�ω1 +ω2� − α2

:

The partial derivatives of yt are

∂tyt = f
�ξ�
0 +

∫
R2

exp�it6ω�2��f
�ξ�
2 �ω�2���iω1�−h�iω2�−hW�dω�2��;

with

f
�ξ�
0 =

1
2π

∫
R

−βγ
iω− α1

�ω�−2h dω

= −βγ�−α1�−2h

π
0�2h�0�1− 2h� cos

(
π

2
�1− 2h�

)

and

f
�ξ�
2 �ω�2�� =

α2βγ

i6ω�2� − α2
sym
ω�2�

1
iω1 − α1

;

∂
w
�h�
t
yt = γxt:

In case α2 = α1 = α, Reα < 0, the time domain integral representation form
of the solution yt is

yt = −αβγ
∫ t
−∞

eα�t−s�
�w�h�t −w

�h�
s �2

2
ds:

Now there is a major difference between considering (23) with fractional
Brownian motion input and taking the fractional integral operator I�h�t on
the solution of (23) with standard Brownian motion input. The latter has the
following spectral representation:

∫
R2

exp�it6ω�2��
γβ

�iω1 − α1��i�ω1 +ω2� − α2�
�i�ω1 +ω2��−hW�dω�2��:

It is seen here that the fractional weight is �i�ω1 + ω2��−h instead of
�iω1�−h�iω2�−h and the expectation of this process is zero.

3.3. Bilinear stochastic differential equation with fractional Brownian
motion integrator process. The bilinear stochastic differential equation with
fractional Brownian motion is analogous to (1):

dyt = �αyt + µ�dt+ �γyt + β�dw
�h�
t :(24)
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This equation is interpreted in accordance with the previous subsection. If
Reγ 6= 0; then we suspect that (24) has no stationary solution, but it does if
γ is purely imaginary. Therefore consider the stochastic differential equation

dyt = �αyt + µ�dt+ �iγyt + β�dw
�h�
t ;(25)

where α;µ;β ∈ C, Reα < 0, 0 6= γ ∈ R. From now on we shall assume that
β = 0 and µ 6= 0; otherwise apply the linear transformation (3), as is done in
the nonfractional case. So our problem is to solve the stochastic differential
equation

dyt = �αyt + µ�dt+ iγyt dw
�h�
t ;(26)

in the set of processes
{
yt ∈ S2I�w�h��x (A1), (A2), (A3), (A4) hold

for ∂tyt = αyt + µ and ∂
w
�h�
t
yt = iγyt

}
:

Applying (26) we get from assumption (A3) and from (19) the following infinite
system of equations for the transfer functions of yt having the form (14):

0 = αf0 + µ+ iγ
1

2π

∫
R
f1�ω��ω�−2h dω;

fk�ω�k�� =
1

i6ω�k�

[
αfk�ω�k�� + iγ

(
sym
ω�k�

fk−1�ω�k−1��

+ �k+ 1�
2π

∫
R
fk+1�ω�k�;ω��ω�−2h dω

)]
; k ∈ N:

(27)

In that case, assumptions (A1), (A2) and (A4) are
∫
R

∣∣fk+1�ω�k�; λ�
∣∣�λ�−2hdλ <∞; k = 0;1;2; : : : ; ω�k� ∈ Rk;(28)

∞∑
k=1

k!
�2π�k

∫
Rk

1
�6ω�k��2

∣∣∣∣αfk�ω�k�� + iγ
(

sym
ω�k�

fk−1�ω�k−1��

+ k+ 1
2π

∫
R
fk+1�ω�k�;ω��ω�−2h dω

)∣∣∣∣
2

×
k∏
1

�ωj�−2h dω�k� <∞;

(29)

∫
R

∣∣∣∣
∫
R
fk+1�ω�k−1�; λ; µ��µ�−2h dµ

∣∣∣∣
2

�λ�−2hdλ<∞; k∈N; ω�k−1� ∈Rk−1:(30)

We shall frequently use the following function so we define the notation as

K�u� := exp
(
αu− γ

2

2
κ�h�u2h+1

)
; u ≥ 0:(31)
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Theorem 3.6. The following system of transfer functions

fk�ω�k��=µ
�iγ�k
k!

∫ ∞
0
K�u�

k∏
1

1− exp�−iuωj�
iωj

du; k=0;1;2; : : : ;(32)

where we used the conventional notations f0�ω�0�� = f0 and
∏0

1 = 1; fulfills
equations (27) and assumptions (28), (29) and (30). Thus the stationary process

yt =
∞∑
k=0

∫
Rk

exp�it6ω�k��fk�ω�k��
k∏
1

�iωj�−hW�dω�k��; t ∈ R(33)

is a solution of the stochastic differential equation (26). Moreover, yt has the
time domain representation

yt = µ
∫ t
−∞

exp�α�t− s� + iγ�w�h�t −w
�h�
s ��ds; t ∈ R;(34)

where the integral is an L2-integral.

Remark 3.4. From a certain point of view, the following model can mo-
tivate the previous theorem. Consider the system of stochastic differential
equations

dy0; t = �µ+ αy0; t�dt;

dy1; t = αy1; t dt+ γy0; t dw
�h�
t ;

dy2; t = αy2; t dt+ γy1; t dw
�h�
t ;

:::

dyN; t = αyN; t dt+ γyN−1; t dw
�h�
t ;

(35)

N ≥ 1, where µ;α; γ ∈ C, Reα < 0. Then y1; t is a stationary Ornstein–
Uhlenbeck process with fractional Brownian motion input and y2; t is a sta-
tionary Hermite degree 2 process with fractional Brownian motion input. See
Examples 3.1 and 3.2 in the previous subsection. One can prove that for all
N ∈ N there is a unique solution yN; t ∈ S2I�w�h�� and the transfer functions
in the frequency domain chaotic representation of yN; t are the following:

f
�N�
k �ω�k�� = µ

γk

k!

∫ ∞
0

exp�αu���γ
2/2�κ�h�u2h+1��N−k�/2
��N− k�/2�!

×
k∏
1

1− exp�−iuωj�
iωj

du;

(36)

if 0 ≤ k ≤N and k has the same evenness as N; otherwise f�N�k �ω�k�� = 0.
Using the inversion formula for the Hermite polynomials,

xN

N!
=

N∑
k=0

′ �t/2��N−k�/2
��N− k�/2�!Hk�x; t�;
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where
∑′ means summing for all k having the same evenness as N, and

by Lemma A.6 in the Appendix, one can get the time domain L2-integral
representation form

yN; t =
γN

N!

∫ t
−∞

eα�t−s�
(
w
�h�
t −w

�h�
s

)N
ds:(37)

In this remark, γ was an arbitrary complex number. From now on, let γ be
purely imaginary or, as we do from (25), denote it with iγ, where γ ∈ R. So let
us replace γ with iγ in each of the previous formulas in this remark.

Now, first summing the equations of (35) and letting N → ∞ or, equiva-
lently, summing the Nth equations for N = 0;1;2; : : : ; we get the bilinear
stochastic differential equation (26). Second, for a fixed k; by summing the
kth order transfer functions in (36) for N = 0;1;2; : : : ; we obtain (32). Third,
by summing the equations in (37) for N = 0;1;2; : : : ; we get (34).

We do not follow this idea in the proof of Theorem 3.6 as a more direct
argument can be found.

Remark 3.5. It is an open problem whether the solution of the bilinear
stochastic differential equation (26) given in Theorem 3.6 is unique. In other
words, do the parameters µ, α, γ in (26) determine the solution uniquely or
not? Obviously, the question is whether the homogeneous equation, that is,
equation (26) with µ = 0, has the only solution yt = 0.

Remark 3.6. The solution yt, given in Theorem 3.6, of the bilinear stochas-
tic differential equation (26) has an almost surely bounded and continuous
modification. The reason is that � exp�iγ�w�h�t −w

�h�
s ��� = 1 in (34).

In the following theorem we present the expectation, the autocovariance
function and the spectral density function of the solution yt, given in Theorem
3.6, in the form of simple and twofold integrals.

Theorem 3.7. The expectation, the autocovariance function and the spec-
trum of the solution (32)-(33)-(34) are

Eyt = µ
∫ ∞

0
K�u�du;

R�t� = E �yt − Eyt��y0 − Ey0�

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

×
(

exp
(
−γ

2

2
κ�h�

(
�t�2h+1 − �t− u1�2h+1 − �t+ u2�2h+1

+ �t− u1 + u2�2h+1
))
− 1

)
du1 du2;
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ϕ�λ�= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

(
exp�∗�γ2A�u1; u2����λ�−1

)
du1 du2;(38)

respectively, where

A�u1; u2��ω� = 1
2π

1− exp�−iu1ω�
iω

(
1− exp�−iu2ω�

iω

)
�ω�−2h

and

e∗g�ω� :=
∞∑
j=0

1
j!
g∗j�ω� :=

∞∑
j=0

1
j!

g

1
^

∗g
2
^

∗ · · · ∗ g
j
^

�ω�

is the convolution exponential of a function g ∈ L1�R�.

Remark 3.7. The solution yt, given in Theorem 3.6, of the bilinear stochas-
tic differential equation (26) is a long-range dependent or long memory process.
We can justify this as follows. From (38),

ϕ�λ� =
∞∑
j=1

�µ�2γ2j

j!

∫ ∞
0

∫ ∞
0
K�u1�K�u2��A�u1; u2��∗j�λ�du1 du2:(39)

In the infinite sum in (39) each term is nonnegative because for each j the
jth term is the spectrum of the jth order chaotic component in (33). The first
term is

�µ�2γ2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�A�u1; u2��λ�du1 du2

= �µ�
2γ2

2π

∣∣∣∣
∫ ∞

0
K�u�1− e

−iuλ

iλ
du

∣∣∣∣
2

�λ�−2h:

It follows from Lebesgue’s dominated convergence theorem that

lim
λ→0

∫ ∞
0
K�u�1− e

−iuλ

iλ
du =

∫ ∞
0
K�u�udu 6= 0:

Thus the limit of the first term in (39) is infinite as λ→ 0. Hence, ϕ�λ� is not
bounded. This fact implies that the autocovariance function R�t�, of yt, is not
integrable, and this is just the definition of long-range dependence.

Finally we mention a fact regarding a special feature of the stochastic in-
tegral with respect to w�h�t .

Remark 3.8. It is not surprising that, for each of the solution processes
we have mentioned in the examples and in Theorem 3.6, it is not the Itô
differential rule but the usual deterministic chain rule that holds. That is,
the ordinary differential operators coincide on the above processes with the
differential operators ∂t and ∂

w
�h�
t

described in Definition 3.6. This is in line
with the fact that the quadratic variation process, which causes the extra term
in the Itô formula in the time domain, is zero for our integrator process w�h�t .
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4. Stratonovich solution of bilinear stochastic differential equa-
tions with Brownian motion input. The simplest example showing the
difference between the Itô and Stratonovich calculus is the integral

∫ T
0
wt dwt:

Let us turn it into frequency domain; by using the diagram formula (7) and
Lemma A.6 in the Appendix, we get

∫ T
0
wt dwt =

1
2

∫
R2

exp�iTω1� − 1
iω1

exp�iTω2� − 1
iω2

W�dω�2��

+
∫ T

0

(
1

2π

∫
R

1− exp�−itω�
iω

dω

)
dt

= w
2
T −T

2
+
∫ T

0

(
1

2π

∫
R

1− exp�−itω�
iω

dω

)
dt:

Now the problem is that the integral

1
2π

∫
R

1− e−itω
iω

dω;

is not well defined. If one takes the principal value, that is, 0; then the Itô
calculus follows, and taking either Abelian or Gaussian mean, that is, 1/2;
the Stratonovich rule is implied. There was no such type of decision in the
case of fractional noise input since all the integrals were well defined. Let
us denote the solution (32)-(33)-(34) by y�h�t ; that is, we are going to point to
the dependence on h. We have not admitted the case h = 0 but we may ask
whether the solution y

�h�
t converges if h → 0. It follows easily, for example,

by (34) and by Theorem 3.1, that l: i:m:h→0y
�h�
t = y

�0�
t in L2, where y�0�t is (34)

with 0 in place of h in it. It is not surprising, again because of the validity of
the deterministic chain rule, that y�0�t is the solution of the bilinear stochastic
differential equation in the Stratonovich sense.

We shall now consider the stationary Stratonovich solution for the general
bilinear equation (4):

dyt = �αyt + µ�dt+ γyt dwt;
instead of considering only the pure imaginary coefficient γ: It is easy to see
that

yt = µ
∫ t
−∞

exp�α�t− s� + γ�wt −ws��ds; t ∈ R;(40)

is the stationary Stratonovich solution given in the time domain. In the fre-
quency domain we suppose that the solution is given by the multiple Wiener–
Itô spectral representation

yt =
∞∑
k=0

∫
Rk

exp�it6ω�k��fk�ω�k��W�dω�k��; t ∈ R;
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where the transfer functions are given by the following system of equations:

0 = αf0 + µ+ γ
1

2π

∫
R
f1�ω�dω;

fk�ω�k�� =
1

i6ω�k�

[
αfk�ω�k�� + γ

(
sym
ω�k�

fk−1�ω�k−1��

+ �k+ 1�
2π

∫
R
fk+1�ω�k�;ω�dω

)]
; k ∈ N:

(41)

If we define by either the Abelian or Gaussian mean the integral

1
2π

∫
R

1− e−itω
iω

dω
:= 1

2
;

instead of taking its principal value, then the solution of the equations (41)
gives the transfer functions according to the Stratonovich solution. It is easy
to see that the solution of the equations (41) is given by the following system
of functions:

fk�ω�k�� = µ
γk

k!

∫ ∞
0

exp
((
α+ γ

2

2

)
u

)

×
k∏
1

1− exp�−iuωj�
iωj

du; k = 0;1;2; : : : :
(42)

The proof of the following theorem comes by a straightforward easy calcula-
tion.

Theorem 4.1. The bilinear stochastic equation (4) has a stationary Strato-
novich solution if and only if Reα + �Reγ�2 < 0: In that case, the solution
is given by (40) in the time domain and by the transfer functions (42) in the
frequency domain. Then Eyt = −µ/�α+ γ2/2�; the covariance function of yt is

R�t� = R�0� exp
((
α+ γ

2

2

)
t

)

= −�µ�2�γ�2
2�α+ γ2/2�2�Reα+ �Reγ�2� exp

((
α+ γ

2

2

)
t

)
; t > 0;

and the spectrum is

ϕ�ω� = −R�0�Re�α+ γ2/2�
π�iω− α− γ2/2�2 ; ω ∈ R:

APPENDIX

Lemma A.1. The quadratic variation process of w
�h�
t is zero and what is

more,

lim
n→∞

E
n−1∑
k=0

(
w
�h�
t��k+1�/n� −w

�h�
t�k/n�

)2 = 0; t ∈ R:
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Proof. The process w�h�t has stationary increments, so by (11),

lim
n→∞

E
n−1∑
k=0

(
w
�h�
t��k+1�/n� −w

�h�
t�k/n�

)2 = lim
n→∞

(
nκ�h�

( �t�
n

)2h+1)
= 0: 2

Lemma A.2.

κ�h� = 0�1− 2h�
h�2h+ 1�π cos

(
π

2
�1− 2h�

)
;

where κ�h� was defined in (12).

Proof.

1
2π

∫
R

∣∣∣∣
exp�iω� − 1

iω

∣∣∣∣
2

�ω�−2h dω

= 1
2π

∫
R

∣∣∣∣
∫ 1

0
exp�ivω�dv

∣∣∣∣
2

�ω�−2h dω

= 1
π

Re
∫
R

∫ 1

0

∫ v1

0
exp�i�v1 − v2�ω�dv2 dv1�ω�−2h dω

= 1
π

lim
N→∞

∫ 1

0

∫ u1

0

∫ u2N

−u2N
exp�iλ��λ�−2h dλu2

2h−1 du2 du1:

(43)

By [6], formula 2.3.3.1.,

lim
M→∞

∫ M
−M

eiλ�λ�−2h dλ =
∫ ∞
−∞

eiλ�λ�−2h dλ = 20�1− 2h� cos
(
π

2
�1− 2h�

)
;

so ∣∣∣∣
∫ u2N

−u2N
e−iλ�λ�−2h dλu2

2h−1

∣∣∣∣ ≤ cu2
2h−1

with some constant c > 0. Thus we can apply Lebesgue’s dominated con-
vergence theorem in (43) to change the order of limN→∞ and

∫ 1
0

∫ u1
0 . In this

manner we have

1
2π

∫
R

∣∣∣∣
eiω − 1
iω

∣∣∣∣
2

�ω�−2h dω = 0�1− 2h�
h�2h+ 1�π cos

(
π

2
�1− 2h�

)
: 2

Proof of Theorem 3.1. By the well-known theorem about the spectral
representation of linear L2-functionals of the Brownian motion,

w
�h�
t =

1
0�h+ 1�

∫ ∞
−∞

[
χ�−∞;0��s���t− s�h − �−s�h�

+ χ�0; t��s��t− s�h
]
dws

=
∫
R

1
0�h+ 1�

[∫ 0

−∞
eisω��t− s�h − �−s�h�ds

+
∫ t

0
eisω�t− s�h ds

]
W�dω�:

(44)
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Let us introduce the notation

ϕ�t;ω� := 1
0�h+ 1�

[∫ 0

−∞
eisω��t− s�h − �−s�h�ds+

∫ t
0
eisω�t− s�h ds

]
:

For a fixed t ∈ R, ϕ�t;ω� is an inverse Fourier transform. We assume that
ω > 0 as one may conjugate for ω < 0.

It causes us some trouble that the function which is the subject of the
inverse Fourier transform is not in L1�R�, though it is in L2�R�. To ensure
integrability, we shall calculate ϕ�t; z� for z = ω + iλ, λ < 0, then take the
limit as λ→ 0. Hence,

ϕ�t; z� = 1
0�h+ 1�

[∫ 0

−∞
eizs��t− s�h − �−s�h�ds+

∫ t
0
eizs�t− s�h ds

]

= 1
0�h�

1
iz
�eizt − 1�

∫ ∞
0
e−izuuh−1 du;

(45)

where we have used integration by parts and transformed the integration
intervals to �0;∞�. By [6], formula 2.3.3.1.,

∫ ∞
0
e−izuuh−1 du = 0�h��iz�−h;

since Re z = λ < 0. Thus we have

ϕ�t; z� = e
itz − 1
iz
�iz�−h:

Now,

lim
λ→0

ϕ�t;ω+ iλ� = e
itω − 1
iω

�iω�−h:

On the other hand, taking the limit in the L2�R�-sense in the first row of (45),
we have

l: i:m:
λ→0

ϕ�t;ω+ iλ�

= 1
0�h+ 1�

[∫ 0

−∞
eiωs��t− s�h − �−s�h�ds+

∫ t
0
eiωs�t− s�h ds

]
:

This can be justified easily by applying Lebesgue’s dominated convergence
theorem for the L2-norm of the differences. So, we have

ϕ�t;ω� = e
itω − 1
iω

�iω�−h; ω 6= 0;

and taking into account (44), the proof is complete. 2
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Proof of Theorem 3.2. First of all it is not difficult to see that the func-
tion that we have to integrate is in L2�R�. For t > 0, by the definition,
∫ t
−∞

{
��t− s�−h − �−s�−h�χ�−∞;0��s� + �t− s�−hχ�0; t��s�

}
dw
�h�
s

=
∫
R

{∫ 0

−∞
��t− s�−h − �−s�−h�eisω ds+

∫ t
0
�t− s�−heisω ds

}
�iω�−hW�dω�

=
∫
R

{∫ ∞
0
u−he−iuω dueitω −

∫ ∞
0
u−he−iuω du

}
�iω�−hW�dω�

= 0�1− h�
∫
R

eitω − 1
iω

W�dω� = 0�1− h�wt:

The case t = 0 is trivial and the case t < 0 requires similar treatment. 2

Lemma A.3. Let fx R → R, f ∈ L1�R�⋂L2�R�. Then
∫ t
−∞ f�s�dw

�h�
s is

F w�h�
�−∞; t�-measurable.

Proof. One can apply the usual technique, that is, approximation by step
functions. It is simple to verify the fact that for a step function the integral is
F w�h�
�−∞; t�-measurable.
On the other hand, any f ∈ L1�−∞; t�⋂L2�−∞; t� can be approximated, in

the norm �f�1;2 = �f�1+�f�L2 , by step functions. So,
∫ t
−∞ f�s�dw

�h�
s can be ap-

proximated by F w�h�
�−∞; t�-measurable random variables of the form

∑
j c
�n�
j �w

�h�
sj+1−

w
�h�
sj �.
Namely, if

c�n��s� =
∑
j

c
�n�
j χ�s�n�j ; s

�n�
j+1�
�s�;

then

∑
j

c
�n�
j �w

�h�
sj+1 −w

�h�
sj � =

∫ t
−∞

c�n��s�dw�h�s

and

E
∣∣∣∣
∫ t
−∞

f�s�dw�h�s −
∫ t
−∞

c�n��s�dw�h�s
∣∣∣∣
2

= 1
2π

∫ 1

−1

∣∣∣∣
∫ t
−∞
�f�s� − c�n��s��eisω ds

∣∣∣∣
2

�ω�−2h dω

+ 1
2π

∫
R\�−1;1�

∣∣∣∣
∫ t
−∞
�f�s� − c�n��s��eisω ds

∣∣∣∣
2

�ω�−2h dω

= I1 + I2;
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where

I1 ≤
1

2π

(∫ t
−∞

∣∣f�s� − c�n��s�
∣∣ds

)2 ∫ 1

−1
�ω�−2h dω→ 0 as n→∞

since c�n�→ f in L1�−∞; t� as n→∞. Moreover,

I2 ≤
1

2π

∫
R\�−1;1�

∣∣∣∣
∫ t
−∞
�f�s� − c�n��s��eisω ds

∣∣∣∣
2

dω

≤ 1
2π

∫
R

∣∣∣∣
∫ t
−∞
�f�s� − c�n��s��eisω ds

∣∣∣∣
2

dω

= 1
2π

∫ t
−∞
�f�s� − c�n��s��2 ds→ 0 as n→∞

since c�n�→ f in L2�−∞; t� as n→∞. 2

Proof of Theorem 3.4. Because of the linearity of the stochastic integral,
it is enough to prove that ξt = ηt = 0 follows from

0 =
∫ T

0
�ξtdt+ ηt dw

�h�
t �:

For the transfer functions this means that

0 = f�ξ�k �ω�k�� + sym
ω�k�

f
�η�
�k−1��ω�k−1�� +

�k+ 1�
2π

∫
R
f
�η�
�k+1��ω�k�;ω��ω�−2h dω

for k ≥ 1. The first and third terms on the right-hand side are in space
L2�R; �ωk�−2h�, the third one because of assumption (A4). So the second
term must be in L2�R; �ωk�−2h�, too. But such an “oversymmetrized” function
can only be in L2�R; �ωk�−2h� if it is zero. Thus all the transfer functions
f
�η�
k �ω�k��; k = 0;1;2; : : : are zero. Therefore all the f�ξ�k �ω�k�� must be zero,

too. This means that ξt = ηt = 0. 2

Lemma A.4. For u > 0,

1
2π

∫
R

1− e−iuω
iω

�ω�−2h dω = κ�h�
2
�2h+ 1�u2h

= κ�h�
2

d

du
u2h+1;

where the constant κ�h� was defined in (12).

Proof.

1
2π

∫
R

1− e−iuω
iω

�ω�−2h dω = lim
N→∞

1
2π

∫ N
−N

1− e−iuω
iω

�ω�−2h dω

= lim
N→∞

1
2π

∫ u
0

∫ vN
−vN

e−iλ�λ�−2h dλv2h−1 dv:

(46)
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By [6], formula 2.3.3.1 (see Lemma A.2),

lim
M→∞

∫ M
−M

e−iλ�λ�−2h dλ =
∫ ∞
−∞

e−iλ�λ�−2h dλ

= 20�1− 2h� cos
(
π

2
�1− 2h�

)

= 2πh�2h+ 1�κ�h�;
hence

∣∣∣∣
∫ vN
−vN

e−iλ�λ�−2h dλv2h−1

∣∣∣∣ ≤ cv
2h−1

with some constant c > 0. Thus we can apply Lebesgue’s dominated conver-
gence theorem to change the order of limN→∞ and

∫ u
0 in (46). Therefore

1
2π

∫
R

1− e−iuω
iω

�ω�−2h dω = 1
2π

∫ u
0

∫
R
e−iλ�λ�−2h dλv2h−1 dv

= h�2h+ 1�κ�h�
2h

u2h;

from which we obtain the statement of the lemma. 2

Lemma A.5.

k sym
ω�k�

k−1∏
1

1− e−iuωj
iωj

= i
k∑
1

ωj

k∏
1

1− e−iuωj
iωj

+ d

du

k∏
1

1− e−iuωj
iωj

:

Proof.

d

du

k∏
1

1− exp�−iuωj�
iωj

= k sym
ω�k�

(
exp�−iuωk�

k−1∏
1

1− exp�−iuωj�
iωj

)

= k
k∏
1

1− exp�−iuωj�
iωj

k∑
1

iωj

1− exp�−iuωj�
exp�−iuωj�

= −i
k∑
1

ωj

k∏
1

1− exp�−iuωj�
iωj

+ k sym
ω�k�

k−1∏
1

1− exp�−iuωj�
iωj

: 2

The following lemma is known as the Itô formula; see [4] Theorem 4.2.

Lemma A.6. Let Hk be the kth Hermite polynomial

Hk�x; t�
:= �−t�

k

k!
exp

(
x2

2t

)
dk

dxk
exp

(
−x

2

2t

)
; x ∈ R; t > 0;
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for k = 0;1;2; : : : and

ξ
:=
∫
R
ϕ�ω�W�dω�;

whereW�dω� is a complex Gaussian white noise spectral measure, E�W�dω��2=
�1/2π�dω, and ϕ is some square integrable function. Define σ2 := E �ξ�2. Then

Hk�ξ; σ2� = 1
k!

∫
Rk

k∏
1

ϕ�ωj�W�dω�k��:

Proof of Example 3.1. We are going to construct the solution of stochas-
tic equation (20). We define the stationary processes ξt; ηt by their spectral
representations

ξt
:=
∫
R
eitωf

�ξ�
1 �ω��iω�−hW�dω�; f

�ξ�
1 �ω�

:= αβ 1
iω− α;

ηt
:= f�η�0

:= β;

where α;β ∈ C, Reα 6= 0. Then ξt; ηt ∈ S2�w�h�� and assumptions (A1), (A3)
and (A4) are trivially valid. Assumption (A2) is fulfilled too, because

1
2π

∫
R

1
ω2

∣∣f�ξ�1 �ω� + f
�η�
0

∣∣2�ω�−2h dω

= 1
2π

∫
R

∣∣∣∣αβ
1

iω− α + β
∣∣∣∣
2

�ω�−2−2h dω

= 1
2π

∫
R

�β�2
�ω− Imα�2 + �Reα�2 �ω�

−2h dω <∞:

By Theorem 3.4, the integral process

yt
:= y0 +

∫ t
0
�ξs ds+ ηs dw

�h�
s �

is well defined apart from its expectation. By Definition 3.4,

yt = f
�y�
0 +

∫
R
eitωf

�y�
1 �ω��iω�−hW�dω�

with an arbitrary f�y�0 ∈ C and

f
�y�
1 �ω� =

1
iω
�f�ξ�1 �ω� + f

�η�
0 � =

1
iω

(
αβ

iω− α + β
)
= β

iω− α:

Define f�y�0 = 0. Then ξt = αyt; so yt ∈ S2I�w�h�� satisfies the stochastic
differential equation (20), and what is more, that is the only solution of (20) in
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S2I�w�h��, because the respective transfer function equation system has only
one solution. 2

Proof of Example 3.2. Define the stationary processes ξt and ηt as fol-
lows:

ξt
:= f�ξ�0 +

∫
R2

exp�it6ω�2��f
�ξ�
2 �ω�2���iω1�−h�iω2�−hW�dω�2��;

ηt
:= γxt;

where

f
�ξ�
0

:= 1
2π

∫
R

−γβ
iω− α1

�ω�−2h dω;

f
�ξ�
2 �ω�2��

:= α2γβ sym
ω�2�

(
1

iω1 − α1

)
1

i6ω�2� − α2
:

(47)

Then ξt; ηt ∈ S2. It is obvious that assumption (A1) is fulfilled. Assumption
(A3) is just the definition of f�ξ�0 and assumption (A4) is trivial. Let us check
(A2):

f
�ξ�
2 �ω�2�� + sym

ω�2�
f
�η�
1 �ω1�

= sym
ω�2�

1
iω1 − α1

α2γβ

i�ω1 +ω2� − α2
+ sym

ω�2�

γβ

iω1 − α1

= i�ω1 +ω2�
i�ω1 +ω2� − α2

sym
ω�2�

γβ

iω1 − α1
:

Hence,

∫
R2

1
�ω1 +ω2�2

∣∣∣f�ξ�2 �ω�2�� + sym
ω�2�

f
�η�
1 �ω1�

∣∣∣
2
�ω1�−2h�ω2�−2h dω1 dω2

≤ �γβ�2
∫
R2

1
�i�ω1 +ω2� − α2�2

1
�iω1 − α1�2

�ω1�−2h�ω2�−2h dω1 dω2:

(48)

Now,

∫
R

1
�i�ω1 +ω2� − α2�2

�ω2�−2h dω2

≤ 1
�Reα2�2

∫ 1

−1
�ω2�−2h dω2 +

∫
R

1

ω2
2 + �Reα2�2

dω2 <∞:
(49)
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Equation (49) and the Fubini theorem yield the finiteness of (48). Thus as-
sumption (A2) is satisfied, too. By Theorem 3.4, the integral process

yt
:= y0 +

∫ t
0
�ξs ds+ ηs dw

�h�
s �

is well defined apart from its expectation. By Definition 3.4,

yt =
2∑
k=0

∫
Rk

exp�it6ω�k��f
�y�
k �ω�k��

2∏
j=1

�iωj�−hW�dω�k��

with an arbitrary f�y�0 ∈ C and

f
�y�
1 �ω� =

1
iω

(
f
�ξ�
1 �ω� + f

�η�
0 +

2
2π

∫
R
f
�η�
2 �ω;λ��λ�−2h dλ

)
= 0;

f
�y�
2 �ω�2�� =

1
i�ω1 +ω2�

(
f
�ξ�
2 �ω�2�� + sym

ω�2�
f
�η�
1 �ω1�

)

= γβ sym
ω�2�

1
iω1 − α1

1
i�ω1 +ω2� − α2

:

For the latter formula, see (47). Define

f
�y�
0

:= 1
α2
f
�ξ�
0 :

Then ξt = α2yt. Since ηt = γxt, so yt ∈ S2 fulfils the second equation of (23).
Furthermore, it is the unique solution in S2I�w�h��, for the same reason as in
Example 3.1.

Now let α := α1 = α2, Reα < 0. We show the time domain integral repre-
sentation form of the solution yt. First, it is very simple to get by integration
by parts that

sym
ω�2�

1
iω1 − α

1
i6ω�2� − α

= −α
2

∫ t
−∞

exp�α�t− s��
2∏
1

1− exp�−i�t− s�ωj�
iωj

ds:

(50)

Second, one can show, using the method applied in the proof of Lemma A.4
and by partial integration twice, that

1
2πα

∫
R

1
iω− α �ω�

−2h dω = α

4π

∫ t
−∞

eα�t−s�
∫
R

∣∣∣∣
eitω − eisω

iω

∣∣∣∣
2

�ω�−2h dωdu:(51)

Let us substitute (50) and (51) into the frequency domain chaotic representa-
tion of yt, take into account the isometrical isomorphism between the second-
order chaotic space of W and the L2-space of its two-variable transfer func-
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tions and finally use the diagram formula to get the frequency domain chaotic
representation of �w�h�t −w

�h�
s �2. Thus,

yt = f
�y�
0 +

∫
R2

exp�it6ω�2��f
�y�
2 �ω�2��

2∏
1

�iωj�−hW�dω�2��

= −αβγ
∫ t
−∞

exp�α�t− s��
2

(
1

2π

∫
R

∣∣∣∣
exp�itω� − exp�isω�

iω

∣∣∣∣
2

�ω�−2h dω

+
∫
R2

2∏
1

exp�itωj� − exp�isωj�
iωj

×
2∏
1

�iωj�−hW�dω�2��
)
ds

= −αβγ
∫ t
−∞

exp�α�t− s���w
�h�
t −w

�h�
s �2

2
ds: 2

Proof of Theorem 3.6. Let us first verify (28). For k = 0,

∫
R
�f1�λ���λ�−2h dλ ≤ �µγ�

∫
R

∫ ∞
0
�K�u��

∣∣∣∣
1− e−iuλ

iλ

∣∣∣∣du�λ�
−2h dλ:

Since

∫
R

∣∣∣∣
1− e−iuλ

iλ

∣∣∣∣�λ�
−2h dλ = cu2h <∞

for u > 0, with some constant c, therefore
∫
R
�f1�λ���λ�−2h dλ ≤ c�µγ�

∫ ∞
0
�K�u��u2h du <∞:

For k ≥ 1,
∫
R

∣∣fk+1�ω�k�; λ�
∣∣�λ�−2h dλ

≤ �µ� �γ�
k

k!

∫ ∞
0
�K�u��

k∏
1

∣∣∣∣
1− exp�−iuωj�

iωj

∣∣∣∣

×
∫
R

∣∣∣∣
1− exp�−iuλ�

iλ

∣∣∣∣�λ�
−2h dλdu

= c�µ� �γ�
k

k!

∫ ∞
0
�K�u��

k∏
1

∣∣∣∣
1− exp�−iuωj�

iωj

∣∣∣∣u
2h du <∞;

(52)

for almost all ω�k� ∈ Rk. Thus we have proved (28).
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Now, for k ≥ 1,

�k+ 1�
2π

∫
R
fk+1�ω�k�;ω��ω�−2h dω

= µ�iγ�
k+1

k!
κ�h�

∫ ∞
0

1
2
d

du
u2h+1K�u�

k∏
1

1− exp�−iuωj�
iωj

du

follows from Lemma A.4. Thus

iγ�k+ 1�
2π

∫
R
fk+1�ω�k�;ω��ω�−2h dω

= −αfk�ω�k�� − µ
�iγ�k
k!

∫ ∞
0
K�u� d

du

k∏
1

1− exp�−iuωj�
iωj

du

= −αfk�ω�k�� − iγ sym
ω�k�

fk−1�ω�k−1�� + i
k∑
1

ωjfk�ω�k��;

where we used Lemma A.5. Thus,

αfk�ω�k�� + iγ
(

sym
ω�k�

f�k−1��ω�k−1�� +
�k+ 1�

2π

∫
R
fk+1�ω�k�;ω��ω�−2h dω

)

= i
k∑
1

ωjfk�ω�k��:
(53)

Hence, the infinite sum in (29) is

∞∑
k=1

k!
�2π�k

∫
Rk
�fk�ω�k���2

k∏
1

�ωj�−2h dω�k�:

We have to prove the finiteness of that infinite sum:

∞∑
k=1

k!
�2π�k

∫
Rk
�fk�ω�k���2

k∏
1

�ωj�−2h dω�k�

= �µ�2
∞∑
k=1

�γ2�k
k!
�2π�−k

∫
Rk

∫ ∞
0

∫ ∞
0
K�u1�K�u2�

×
k∏
1

[
1− exp�−iu1ωj�

iωj

(
1− exp�−iu2ωj�

iωj

)]
du1 du2

k∏
1

�ωj�−2h dω�k�

= �µ�2
∞∑
k=1

�γ2�k
k!

∫ ∞
0

∫ ∞
0
K�u1�K�u2�

×
(

1
2π

∫
R

1− exp�−iu1ω�
iω

(
1− exp�−iu2ω�

iω

)
�ω�−2hdω

)k
du1 du2;

(54)
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where the fact that we may change the order of
∫
Rk and

∫∞
0

∫∞
0 can be easily

justified because
∫ ∞

0
�K�u��

∫
R

∣∣∣∣
1− e−iuω
iω

∣∣∣∣�ω�
−2h dωdu

=
∫
R

∣∣∣∣
1− e−iλ
iλ

∣∣∣∣�λ�
−2h dλ

∫ ∞
0
�K�u��u2h du <∞:

(55)

Continuing (54), let us notice that we may use (13) and then (10) to get

∞∑
k=1

k!
�2π�k

∫
Rk
�fk�ω�k���2

k∏
1

�ωj�−2h dω�k�

≤ �µ�2
∫ ∞

0

∫ ∞
0
�K�u1���K�u2��

×
∞∑
k=1

�κ�h��γ2/2��k
k!

(
u2h+1

1 + u2h+1
2 − �u1 − u2�2h+1)k du1 du2

≤ �µ�2
(∫ ∞

0
exp�Reαu�du

)2

− �µ�2
(∫ ∞

0
�K�u��du

)2

<∞;

since Reα < 0. We have finished proving that the transfer functions (32)
satisfy assumption (29).

Let us verify (30). For fixed ω�k−1� ∈ Rk−1,

∫
R

∣∣∣∣
∫
R
fk+1�ω�k−1�; λ; µ��µ�−2h dµ

∣∣∣∣
2

�λ�−2h dλ

≤ c3

∫
R

∫ ∞
0
�K�u��u4h+1

k−1∏
1

∣∣∣∣
1− exp�−iuωj�

iωj

∣∣∣∣du <∞

with some constant c3, where the inequality is based on (52) and the Jensen
inequality. So we have justified (30) too.

Now let us see the system of equations (27). For k > 0 we have already
obtained (27); see (53). So we have to prove only the first equation, that is,
for k = 0. However, that can be easily carried out taking into account that

∏k
1

means 1 for k = 0.
Now we are going to prove the time domain form of the solution. By the

isometrical isometry between L2�W� and the Fock space of W, a consequence
of Lemma A.6 and Theorem 3.1 and the Hermite series expansion of a square
integrable function of a Gaussian random variable, we can see that

yt = µ
∞∑
k=0

∫
Rk
�iγ�k
k!

∫ t
−∞

K�t− s�
k∏
1

exp�itωj� − exp�isωj�
iωj

ds

×
k∏
1

�iωj�−hW�dω�k��
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= µ
∫ t
−∞

K�t− s�
∞∑
k=0

�iγ�kHk�w
�h�
t −w

�h�
s ; κ�h��t− s�2h+1�ds

= µ
∫ t
−∞

exp�α�t− s�� exp�iγ�w�h�t −w
�h�
s ��ds: 2

Proof of Theorem 3.7. From (34),

Eyt = µ
∫ t
−∞

exp�α�t− s��E exp�iγ�w�h�t −w
�h�
s ��ds = µ

∫ ∞
0
K�u�du:

To calculate R�t�, let us use (32) and (33):

R�t� = E
(
yt − Eyt

)(
y0 − Ey0

)

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

(56)

×
∞∑
k=1

γ2k

k!

(
1

2π

∫
R

exp�itω�1− exp�−iu1ω�
iω

×
(

1− exp�−iu2ω�
iω

)
�ω�−2hdω

)k
du1du1

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

∞∑
k=1

γ2k

k!

(
E
((
w
�h�
t −w

�h�
t−u1

)(
−w�h�−u2

)))k
du1du2(57)

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�(58)

×
(

exp
(
−γ

2

2
κ�h�

(
�t�2h+1 − �t− u1�2h+1 − �t+ u2�2h+1

+ �t− u1 + u2�2h+1)
)
− 1

)
du1 du2:

Regarding the change of order of the various types of integrations, we refer to
the Fubini theorem and to (55).

Let us now consider the spectrum. First we prove that the left-hand side
of (38), which we shall denote by ψ�λ�, exists in L1�R�. For any function
g ∈ L1�R�, �g ∗ g�1 ≤ ��g�1�2, thus �g∗k�1 ≤ ��g�1�k. Hence e∗g�ω� :=∑∞
k=0�1/k!�g∗k�ω� really exists in L1�R� since

∥∥∥∥
∞∑
k=0

1
k!
g∗k

∥∥∥∥
1
≤
∞∑
k=0

1
k!

∥∥g∗k
∥∥

1 ≤
∞∑
k=0

1
k!
��g�1�k = exp��g�1�:(59)

Now, using the Cauchy–Schwarz inequality, for fixed 0 < u1, u2 <∞,

∥∥A�u1;u2�
∥∥

1 =
1

2π

∫
R

∣∣∣∣
1− exp�−iu1ω�

iω

∣∣∣∣
∣∣∣∣
1− exp�−iu2ω�

iω

∣∣∣∣�ω�
−2h dω

= κ�h�uh+1/2
1 u

h+1/2
2 :

(60)
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From (59) and (60),
∥∥exp�∗�γ2A�u1;u2����·� − 1

∥∥
1 ≤ exp�γ2κ�h�uh+1/2

1 u
h+1/2
2 � − 1:

Thus,

�ψ�1 ≤ �µ�2
∫ ∞

0

∫ ∞
0
�K�u1���K�u2��

∥∥exp�∗�γ2A�u1; u2����·� − 1
∥∥

1 du1 du2

≤ �µ�2
∫ ∞

0

∫ ∞
0
�K�u1���K�u2��

(
exp�γ2κ�h�uh+1/2

1 u
h+1/2
2 � − 1

)
du1 du2

= �µ�2
∫ ∞

0

∫ ∞
0

exp
(

Reα�u1 + u2� −
γ2

2
κ�h�

(
u2h+1

1 + u2h+1
2

)

+ γ2κ�h�uh+1/2
1 u

h+1/2
2

)
du1 du2

− �µ�2
∫ ∞

0

∫ ∞
0

exp
(

Reα�u1 + u2� −
γ2

2
κ�h��u2h+1

1 + u2h+1
2 �

)
du1 du2

= �µ�2
∫ ∞

0

∫ ∞
0

exp
(

Reα�u1 + u2� −
γ2

2
κ�h��uh+1/2

1 − uh+1/2
2 �2

)
du1 du2

− �µ�2
∫ ∞

0

∫ ∞
0

exp
(

Reα�u1 + u2� −
γ2

2
κ�h��u2h+1

1 + u2h+1
2 �

)
du1 du2

≤ �µ�2
∫ ∞

0

∫ ∞
0

exp�Reα�u1 + u2��du1du2 <∞;

that is, ψ ∈ L1�R�. Now we can apply the Fubini theorem to change the order
of the integrals

∫∞
0

∫∞
0 �·�du1 du2 and

∫
R�·�dλ in the calculation of the inverse

Fourier transform of ψ:
∫
R

exp�itλ�ψ�λ�dλ

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

×
∫
R

exp�itλ��exp�γ2A�u1; u2���λ� − 1�dλdu1 du2

= �µ�2
∫ ∞

0

∫ ∞
0
K�u1�K�u2�

×
(

exp
(∫
R

exp�itλ�γ2A�u1; u2��λ�dλ
)
− 1

)
du1 du2:

(61)

Here the second equality is a consequence of the fact that

N∑
k=1

(
γ2A�u1; u2�)∗k�λ� → exp�∗�γ2A�u1; u2����λ� − 1 as N→∞

in L1-norm and that the inverse Fourier transform converts a convolution into
the product of the inverse Fourier transforms. We have already obtained the
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argument of the exponential function in the third row of (61),
∫
R

exp�itλ�γ2A�u1;u2��λ�dλ

= γ2 1
2π

∫
R

exp�itλ� − exp�i�t− u1�λ�
iλ

(
1− exp�−iu2λ�

iλ

)
�λ�−2h dλ

= γ2E
((
w
�h�
t −w

�h�
t−u1

)(
−w�h�−u2

))

= −γ2
2
κ�h�

(
�t�2h+1 − �t− u1�2h+1 − �t+ u2�2h+1 + �t− u1 + u2�2h+1)y

see (56), (57) and (58). So, the right side of (61) is equal to (58), that is,
∫
R
eitλψ�λ�dλ = R�t�;

hence ψ must be the spectrum ϕ. 2
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