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It has recently been observed that wide-sense self-similar processes
have a rich linear structure analogous to that of wide-sense stationary pro-
cesses. In this paper, a reproducing kernel Hilbert space (RKHS) approach
is used to characterize this structure. The RKHS associated with a self-
similar process on a variety of simple index sets has a straightforward
description, provided that the scale-spectrum of the process can be fac-
tored. This RKHS description makes use of the Mellin transform and lin-
ear self-similar systems in much the same way that Laplace transforms
and linear time-invariant systems are used to study stationary processes.

The RKHS results are applied to solve linear problems including pro-
jection, polynomial signal detection and polynomial amplitude estimation,
for general wide-sense self-similar processes. These solutions are applied
specifically to fractional Brownian motion (fBm). Minimum variance unbi-
ased estimators are given for the amplitudes of polynomial trends in fBm,
and two new innovations representations for fBm are presented.

1. Introduction. This paper is concerned with the linear problems asso-
ciated with wide-sense self-similar processes, that is, with processes whose
first and second moments are essentially scale-invariant. In the linear prob-
lems we are referring to, the solution is constrained to be a linear functional
of an observed random process, and the criterion of optimality is such that the
solution is determined by the first and second moments of the observed pro-
cess. Examples include linear projection with the mean-square error metric,
maximum signal-to-noise ratio signal detection and minimum-variance unbi-
ased linear estimation. For Gaussian processes, these linear solutions are still
optimal when the linearity constraint is removed.

The main finding of this paper is that wide-sense self-similar processes have
essentially the same structure as wide-sense stationary processes, and that
concepts such as autocorrelation and spectral density, used to study stationary
processes, have simple analogs useful in the study of self-similar processes.
The connection between these two classes was first made by Lamperti (1962),
who pointed out a simple invertible transformation that connects any self-
similar process with a stationary counterpart, and which is a central idea
in this paper. Other recent work making use of Lamperti’s transformation
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includes Albin (1998), Burnecki, Maejima and Weron (1997), Wornell (1991),
Yazici and Kashyap (1997), Nuzman and Poor (2000) and Nuzman (2000).

Self-similar processes are used to model phenomena in a variety of disci-
plines. Hurst’s investigations of variations of river water levels pioneered the
use of such models; other areas of application include burst noise [Mandelbrot
(1965)], heart-rate variability [Goldberger and West (1987)], synthetic aper-
ture radar [Stewart, Moghaddam, Hintz and Novak (1993)], packet network
traffic [Leland, Taqqu, Willinger and Wilson (1994)] and financial data
[Willinger, Taqqu and Teverovsky (1999)]. The most commonly used model
is the fractional Brownian motion (fBm). This paper includes general results
for wide-sense self-similar processes as well as specific applications to the fBm.

In the next section, the class of wide-sense self-similar processes is defined,
and the concept of a reproducing kernel Hilbert space (RKHS) is reviewed.
In Section 3, the RKHS formalism is used to describe the special structure
of wide-sense self-similar processes. Self-similar systems and scale spectral
factorization are seen to be essential elements of this structure. These results
are applied in Section 4, which gives general solutions for linear problems
associated with self-similar processes. Finally, some of these problems are
solved explicitly for fBm in Section 5.

2. Background.

2.1. Wide-sense self-similarity. A random process {Y (¢),¢ > 0} is consid-
ered to be wide-sense self-similar with parameter H if there is a real H such
that the following properties are satisfied:

() E{Y ()%} < 00, ¥ ¢ > 0;
(i) E{Y(t)} = a"E{Y(t/a)},VY a,t > 0;
(111) E{Y(tl)Y(t2)} = aZHE{Y(tl/a)Y(tz/a)}, A4 a, tl, t2 > 0.

The parameter H is often referred to as the Hurst parameter. This definition
may be contrasted with the definition of (strict) H-self-similarity, which is
that the processes {Y(¢)} and {a”Y(#/a)} have the same finite-dimensional
distribution for every a > 0. The wide-sense definition is more general, in the
sense that only the second moments are considered. However, it excludes self-
similar processes with infinite second moments, such as non-Gaussian stable
processes. Unless otherwise stated, H-self-similarity (denoted H-ss) will be
taken to hold in the wide sense.

Given a wide-sense (resp. strict-sense) H-ss process Y, it is possible to form
a wide-sense (resp. strict-sense) stationary process X via the transformation

X(t) = e 1Y ().

The process Y is premultiplied by ¢ ¥ to form a 0-ss process, after which
a change of variable turns the operation of scaling in time into time shift-
ing. The linear, invertible mapping that takes {Y (¢),¢ € I} to {X(¢),¢t € In I}
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is referred to as Lamperti’s transformation with parameter H and is denoted
in the following by L ;. The stationary process LY is the stationary generator
of Y.

Lamperti’s transformation suggests that techniques developed for station-
ary processes might be useful in the study of self-similar processes. For exam-
ple, to predict one self-similar process from another, one could first apply
Lamperti’s transformation to both processes, hence obtaining the well-studied
problem of predicting one stationary process from another. In the next sec-
tion, we use the reproducing kernel Hilbert space formalism to show how this
approach works for general linear problems. Before doing so, we briefly review
the RKHS concept.

2.2. Reproducing kernel Hilbert spaces. A Hilbert space S of functions on
an index set I is called a reproducing kernel Hilbert space if there exists a
doubly indexed function R(%,v) on I x I which satisfies the following condi-
tions:

1. R(t,-) e S for each t € I;
2. {f,R(t,"))s=f(¢t) foreach f e Sand t € I.

The function R is called the reproducing kernel of S.

The linear space L%(Y, I) of a finite-variance random process {Y (¢),t € I}
is the closure under the mean-square norm of the set of all finite linear com-
binations

N
> arY (%), tpel.
k=1

This linear space is a Hilbert space, where the inner product between any
two elements Z,, Z, € L?(Y,I) is given by Cov(Z, Z,). Strictly speaking,
the elements of this Hilbert space are equivalence classes of random variables
such that E{(Z; — Z,)?} = 0 for random variables in the same class.

The utility of RKHS’s in the study of random processes stems from the fact
that the linear space L2(Y, I) of the process is isomorphic to a deterministic
RKHS, denoted S(Y, I), for which the reproducing kernel R is simply the
covariance function

R(t,v) = E{Y ()Y (v)} — E{Y ()} E{Y (v)}.
The isomorphism  from L2(Y, I) to functions in S(Y, I) is given by
J(Z)=Cov(Y ("), Z).

The RKHS associated with a random process provides a natural and elegant
way to describe and prove results about the linear space of a random process.
The answers to various linear problems can be expressed in RKHS terms, so
that fully characterizing the RKHS of a process is equivalent to solving all of
the associated linear problems. For example, for detection of a deterministic
signal m in Gaussian noise Y, the problem is nonsingular if and only if m €
S(Y, I), in which case the likelihood ratio is given by exp(J~1(m)— (m, m)g).
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In this and other problems, the essential problems are finding representations
for J~! and for the RKHS inner product. A recent review of this approach can
be found in Kailath and Poor (1998), and other useful sources include Parzen
(1963) and Kailath (1971), and other papers collected in Weinert (1982). In
Barton and Poor (1988), an RKHS characterization was used to study signal
detection in fractional Brownian motion.

3. Reproducing kernel Hilbert spaces associated with self-similar
processes. The relationship between the RKHS of a self-similar process and
that of its stationary generator is given in the following theorem.

THEOREM 3.1.  Suppose that {Y (¢)} is a second-order process on I C RT
and that {X(7)} is the process on Inl defined by X = LyY. Denote by
Jy: L2(Y,I) - S(Y,I) and Jx: L3(X,InI) — S(X,InI) the RKHS iso-
morphisms associated with each process. Then L?(Y,I) = L?>(X,InI) and, for
each Z € LAY, I), Jy(Z) = L7 Jx(Z).

As illustrated in Figure 1, the processes {Y(¢),¢ € I} and {X(7),7 € InI}
lie in a common linear space. If the Hilbert space isomorphism J x is known,
then the corresponding isomorphism for Y is simply Jy = LﬁlJ x- Thus the
RKHS of a self-similar process is trivially related to that of its stationary
generator.

A proof of this theorem is provided in Appendix A. Note that we need not
necessarily restrict ourselves to I ¢ R*. The theorem also holds, with essen-
tially the same proof, for more general index sets, such as {1,2,..., N} x R™,
that arise in the study of jointly self-similar processes.

The following corollary shows that the RKHS associated with a self-similar
process is itself self-similar in a sense.

COROLLARY 3.2. Suppose that Y is an H-ss process on R™ and that g €
S(Y,I) for some I C R*. Then, for each v € R*, the rescaled function

L2(Y,1) S8
Sorey N N {CO R
/ Yy <. ‘
:‘ Ly A i Ly
\\ /I JX - b .

x@y L@

2 -———-7 S

L3(X,InT) S(X,In1)

F1G. 1. Relationships between the spaces in Theorem 3.1.
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g,(t)=vHg(t/v)isin S(Y,vI) and
g lly, vt = l8ly, 1

PROOF. This result follows from a shift-invariance property for the RKHS
associated with a stationary process. The scaled function g, is chosen so that

LHgV|t = LHg|tfan

is just a shifted version of Lz g. Then
”gV”Y,vI = ||LHgV||X,lnI+lnv = ”LHg”X,lnI = ”g”Y,I- O

3.1. Definitions. To develop the consequences of Theorem 3.1 for the struc-
ture of self-similar processes, it is helpful to define analogs of some of the usual
stationary tools. Several of these definitions are due to Yazici and Kashyap
(1997). For an H-self-similar process Y on R™ with covariance function R, the
scale-autocorrelation is

p(t) 2t HR(¢, 1) = (tv?) HR(tv,v), t> 0.

For self-similar processes, the Mellin transform plays a role analogous to the
role of the Laplace transform for stationary processes. The Mellin transform
of a function f will be denoted f and is defined by

fo)= [ foe=at.

Although the sign of s in the integrand is positive in the usual definition of the
Mellin transform, we use the opposite convention to simplify the connection
with the Laplace transform, namely, that the Mellin transform of f is the
Laplace transform of L f. The scale-spectrum of Y is the Mellin transform g
of the scale-autocorrelation, that is, the Laplace spectrum of the stationary
generator of Y.

We say that an H;-ss process Y; and H,-ss process Y, are jointly self-
similar if R,5(t, v) = Cov(Y 1(%), Yo(v)) satisfies

Ryo(t,v) = a2 R o (t/a, v/a), t,v,a >0,
in which case the scale-cross-correlation is
p1o(t) = tH1R (¢, 1) = 72 R15(1, 1/¢t) = pyy(1/1).

A concept of spectral factorization can be defined for self-similar processes,
analogous to the usual stationary concept [see, e.g., Wong (1971)]. If the scale-
spectrum satisfies the Paley—Wiener condition

dow < 00,

> |log p(iw)|
(1) /—oo 1+ wz

then it admits a factorization p(s) = p*(s)p*(—s), where the inverse transform
pt(t) is supported on [1, co). Functions supported on [1, co) will be referred
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to as Mellin-causal, because scale-convolution with such a function is a causal
operation. The scale-convolution operator © is defined by

(Foa = [ fE/megydv,

and the Mellin transform of f © g is simply fg.

Finally, we introduce the concept of an («, B8)-ss system. For a scale-invariant
system ®, the input—output relationship y(¢) = ®[x(¢)] implies that y(at) =
®[x(at)] for all @ > 0. Note that the scale-convolution implements such a
system. Complex powers of the form ¢° are eigenfunctions of such systems, and
the corresponding eigenvalues form the frequency response f (s) = t*P[¢°].
An (a, B)-ss system is then defined by the relationship y(¢) = tP®[¢~*x(t)].
The frequency response of an («a, B)-ss system is defined to be that of the
underlying scale-invariant system. In the Mellin domain, the input—output
relationship is

J(s+ B) = f(8)%(s + ).

The motivation for this construction is that feeding an a-ss process X into
such a system produces a 3-ss process Y with scale-spectrum

py(s) = f(s)f(—8)px(s).

The H-ss systems defined in Wornell (1991) and Yazici and Kashyap (1997)
correspond in our notation to (—H, 0)-ss and (0, H)-ss systems, respectively.

3.2. Reproducing kernel Hilbert space structure on (0,T]. The RKHS of
any stationary process on a semiinfinite interval such as (—oco,InT] has a
simple description, provided that the spectrum satisfies the Paley—Wiener
condition. In view of Theorem 3.1, the RKHS of an H-ss process on (0, T']
or [T, 0o0) can also be simply described. For specificity, we focus on the former
index set.

THEOREM 3.3. Suppose that Y is an H-ss process on R™ and that its

scale-spectrum has a Mellin-causal factorization p(s) = pt(s)pT(—s). Then
the RKHS S(Y, (0, T']) consists of all functions of the form

@) g(t)=1" /0 t p*(t/v)v! w4 (v) dv/v,

where w, is square integrable on (0, T]. For any f, g € S(Y, (0, T]) the inner
product is given by

T
®) (F.8)v.0m = [ wiOwy(0)dr.

There exists a process W on R™ with the second-order structure of Brownian
motion such that

4) Y () = ¢ /Ot p*(t/v)v Y2 AW (v)
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and
T
(5) JN(g) = /0 w4 (v) AW (v).

PROOF. This theorem can be derived by applying Theorem 3.1 to an appro-
priate RKHS representation for stationary processes. Once the theorem is
stated, however, it can be proved directly from the RKHS integral represen-
tation theorem given, for example, in Kailath (1971) and Parzen (1963). The
covariance function of R can be decomposed as

R(t,u) = tTu p(t/u)

="yt /Ooo pT(t/v)pT(u/v)dv/v

= [T ffuw)de,

where f,(v) = tf p*(¢/v)v~1/2. Having noted this integral representation, the
theorem follows directly. O

As Figure 2 illustrates, Theorem 3.3 has a simple interpretation in terms
of (a, B)-ss systems. The functions in S(Y, (0, T']) are obtained by passing
square-integrable functions through a (—1/2, H)-ss system with impulse
response pT(s). The process itself can be produced by passing white noise (the
increments of W) through the same system, or equivalently, by feeding a Brow-
nian motion W through a (1/2, H)-ss system with response (s + 1/2)5%(s).

In the above theorem, the random variable J~!(g) is expressed in terms
of w, and W, although linear problems are typically framed in terms of g
and Y. It is easy to see that the inverse of an («, B)-ss system with frequency
response f(s) is a (B, a)-ss system with response 1/f(s), so that w, and W can
be obtained from g and Y using self-similar systems. The following theorem
uses this idea to define a self-similar system for generating J~1(g) directly

FOD L, s00m

~

Cow® — A L a0 )

.

9(s) = py(s — H)g(s — H — 1/2)

1/2 H

W(t) —(s+1/2)p¢(s) [ Y(¥)

) = 7= v (5) = F5)f(=5)pw(s)

FI1G. 2. Self-similar system interpretation for Theorem 3.3.
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from Y. In the following, the notation [£(s)],.. indicates the Mellin transform
of the truncation f(¢)1,.,(¢) of a function f.

THEOREM 3.4. Suppose that Y is H-ss on (0,T] and that the scale-
spectrum p has no spectral nulls and admits a Mellin-causal spectral factoriza-
tion. Suppose that a given function g € S(Y, (0, T]) has Mellin transform g,
and let Z , be the 0-ss process obtained by passing Y through an (H,0)-ss
system with frequency response

L [redti=a]

p*(s) pr(—s)
Then the inverse mapping J 1 can be expressed as

I g) = Z (T).

PROOF. Since the system mapping w, to g(¢) is causal, we can set w () = 0
for t > T without loss of generality. We define my ,(¢) = (T/t)l/zwg(T/t) and
define Z, as the result of passing W through a (1/2, 0)-ss system

Z,(t) = /0 my, (/v 2 AW (v)
t
- /0 (T/8)?w (Tv/t) AW (v)
with impulse response myp ,(¢). At time 7', we get

T
zg(T):/0 w,(v) AW (v) = JY(g).

To represent Z, in terms of Y, we use the (H, 1/2)-ss whitening filter to
produce W from Y, then the (1/2, 0)-ss system to produce Z, from W. The

1/2 H H 1/2
Ry . 1 .
W(t)—(s + 1/2)py(s) Y(t) CTiDRG w(t)
1/2 0 foT
W (t)—1(s + 1/2)ng,4(s) [ Z4(t) JY(g)

FI1G. 3. Self-similar systems in Theorem 3.4.
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concatenation of the two systems, illustrated in Figure 3, is an (H, 0)-ss sys-
tem with causal frequency response
mp o(s) T wy(-1/2—s)
pr(s) pt(s)

T [ §(H - )
B ﬁ*(S)[ pt(—s) Lm
- 76 [T_S gffi—_sj)L’

which completes the proof. O

A simpler expression for J~1 can be obtained in the limit 7' — oco. To see
this, let X ,(¢) = Z,(T'¢t) so that J(g) = X ,(1). Then J*(g) is obtained by
feeding Y into an (H, 0)-ss system with response

1 [é(H - 8)}
pr(s)L pt(—s) 1/T+’
and sampling the output at time ¢ = 1. Taking the limit as 7' — oo of the
frequency response, the truncation disappears, and it follows that, for g €
S(Y, RT), the inverse mapping is J 1(g) = X 4(1), where X is produced using
the simple frequency response §(H — s)/p(s).

3.3. Reproducing kernel Hilbert space structure of jointly self-similar
processes. In this section, we consider sets of N jointly H-ss processes. Here,
the concept of matrix spectral factorization can be used to describe the RKHS
in terms of a matrix of self-similar systems. In matrix notation, the results
below are very similar to those of the previous section. However, a matrix spec-
tral factorization is generally much harder to perform than a one-dimensional
factorization. Useful techniques for 2 x 2 spectral factorization are discussed
later in this section.

If{Y(¢), ¢t > 0} is an N-vector of jointly self-similar processes, its covariance
matrix function satisfies

R(t, v) £ E{Y(¢)Y(0)"}
= a?"R(t/a, v/a)
= v % p(t/v),

where p is the scale-autocorrelation matrix of Y. Taking the Mellin transform
of each element of this matrix yields the spectral matrix p. By a causal matrix
spectral factorization, we mean a factorization of the form

B(s) = b ()P (=)

in which every element of p*(¢) is Mellin causal.
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THEOREM 3.5. Suppose that {Y(¢),t > 0} is a vector of N jointly H-ss
processes with scale-spectral matrix p. If the spectrum has a completely causal
factorization

p(s)=p*(s)p*(—s)",

then the RKHS S(Y, (0, T']) consists of all vector functions of the form

g(t) = ¥ /Ot pt(t/v)wg(v)o~ 2 dv,

where wg is an N-vector of square-integrable functions on (0, T'|. Further, for
any £,g € S(Y, R"), the inner product is given by

T
(f.g)s = [ wit)wg(n)dr.

There exists a vector W of N mutually uncorrelated processes with the second-
order structure of Brownian motion such that

t
Y(t) = tH / pH(t/v)0~ Y2 dW(v)
0
and such that

JL(g) = /T w, ()T dW(v).
0 g

PrROOF. By virtue of the matrix spectral factorization, the covariance matrix
has the integral representation

R(t,u) = tTup(t/u)
="y /OOO p(t/v)pT(u/v) dv/v.

The result then follows directly from a matrix version of the integral represen-
tation theorem, given in Nuzman (2000). The matrix version is closely related
to a characterization of jointly stationary processes in Kailath (1971). O

If the elements of the spectral matrix are not all causal, we use the nota-
tion p° instead of p'. In this case, the above theorem still holds, except that
the index set of interest becomes R* rather than (0, T'], and the upper limit
of each of the integrals is infinite. If the factorization is partially causal, as in
the second example below, it may be possible to restrict some components of
Y to (0, T'].

EXAMPLE 3.1 (Self-similar process on [—7', T']). An H-ss process Y defined
on the entire real line can be thought of as a vector of two jointly H-ss pro-

cesses on R*, with components {Y(¢)} = {Y(¢)} and {Yq(¢)} = {Y(-¢t)}. If Y
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-1/2 H

AW (t) — (P11(s) "F/glz(a))+ . %U(t) Yi(t) 2 Y(t)
-1/2 H

awy(t) —~| Ll =Pl gy () —— Ya(t) 2 Y(-t)

FiG. 4. Symmetric self-similar process representation.

is symmetric, in the sense that R(¢, u) = R(—t¢, —u) for all ¢, u € R, then the
spectral matrix p can be written p(s) = AD(s)AT, where

_o-12|1 1 =0y _ | P11(s) + pra(s) 0
A=2 /|:1 _1:|, D(S)_[ B 0 N 511(3)—512(3)}'

If the diagonal elements of D can be individually causally factored to form
D, then one has

pr(s) = AD(s).

In this case, the characterization of Y on (0, T'] given by Theorem 3.5 is really
a characterization of Y on [—T, T']. The corresponding innovations represen-
tation for Y is illustrated in Figure 4. There, independent white noise pro-
cesses are fed into self-similar systems to produce U(¢) = Y (¢) + Y(—¢) and
V(¢) = Y(t) — Y(—t), which are then combined to form Y itself.

ExXAMPLE 3.2 (Self-similar processes on (—oo, T']). Another 2 x 2 spectral
factorization is based on Cholesky matrix factorization. Suppose that Y, has
a (possibly noncausal) spectral factorization g5, and that the function

5o - p12(8)p12(—9)
f(s) = pu(s) — %

has a causal spectral factorization f(s) = f*(s)f*(—s). Then j has a partially
causal factorization

~ f) S
. ft(s) ﬂ#
p°(s) = Pa(—5)
0 Paa(s)
which can be used to characterize Y on R™ and Y on R. The resulting innova-
tion representation for Y is depicted in Figure 5. There are three self-similar
systems, corresponding to the three nonzero elements of p°. Likewise, the

whitening filter for Y is composed of three self-similar systems whose fre-
quency responses are the nonzero elements of (5°)~!. Because the systems
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Yi() £Y(2)

-1/2 H

P12(s)

- [ EnIY)
~1/2 H

sz(t)_'l B5(5) § n(t) £Y(-1)

FiGc. 5. Asymmetric (Cholesky) self-similar process representation.

fed by W, and Y, are causal, the index set for those two processes can be
restricted to (0, T']. Hence, the above structure can characterize the RKHS of
Y on (—oo, T]. Likewise, it is straightforward to obtain representations for
index sets such as R\(0, T") via triangular factorizations.

4. Solutions to linear problems. For many linear problems, the general
solutions have been formulated in RKHS terms. The RKHS characterizations
of the previous section then provide explicit solutions for self-similar processes.
In this section, we examine a few specific applications of this approach in
which special structure is apparent.

4.1. Projection. In the first application, the goal is to project each ele-
ment of an H'-ss process Z onto the linear space of an H-ss process Y. We
assume that Z and Y are jointly self-similar. In general, the projection can be
expressed as

Z(a) = J YE{Z()Y (1)}).

If observations of Y are available on the entire real line, then the discussion
in the last paragraph of Section 3.2 shows that Z(a) is the output at time
t =1 of an (H, 0)-ss system with frequency response g(H — s)/py(s), where

g(t) =a't?pyy(t/a).

Equivalently, Z (@) is the output at time ¢ = a of an (H, H')-ss system with
frequency response p,y(s)/py(s). Hence {Z(a),a > 0} and the error process

{Z(a)- Z(a), a > 0} are themselves H'-ss. The variance of either process can
be obtained from its scale-spectrum, using the identity

t2H 00
Var(Z(1) = 7 py(1) = 5— [ pylio)do.

In a second scenario, suppose that the projection of Z(cT') onto L%(Y, (0, T'])
is desired for some fixed ¢ as T varies. Theorem 3.4 can be applied to show
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that Z (cT) is the output at time T of a causal (H, H')-ss system which is fed
by Y and which has frequency response

ct |:CS Pzy(s) }
~ ~ :
py(s)L py(—=s) 1+
4.2. Signal detection and amplitude estimation. The detectability of a det-
erministic signal m(¢) embedded in a Gaussian process {Y ()} is an increasing

function of the RKHS norm of the signal, and the detection problem is singular
if m is not an element of S(Y, I). The likelihood ratio for detection is given by

/= exp (J—l(m) - 1/2||m||§).

Whether or not Y is Gaussian, J~!(m) maximizes the signal-to-noise ratio

ELfY)} - Eo{f(Y)}?
Var(f(Y))

over all linear functionals f(Y) of the observed process, where E;{-} and Eq{-},
respectively, denote expectation with and without the signal present. The max-
imum signal-to-noise ratio is |m|%. If Y is H-ss and if the index set is (0, T'],
problems of Gaussian or maximum signal-to-noise ratio signal detection are
solved by Theorems 3.3 and 3.4.

If m is of the special form ¢* for some a € R, these computations become
straightforward. In general, the function w,, is obtained by passing m through
an (H,—1/2)-ss system with response 1/p7(s). Because the signal ¢* is an
eigenfunction of the underlying linear scale-invariant system, we have

pa—H-1/2
-1
wm(t) I")’+(a _ H) O,T(t)

so that, if a > H,
T20—2H

2 — 2 _
”ta”S(Y,(O,T]) - ”wm”L2 - (2a _ 2H)[)+(a _ H)Z'

In general, a causal spectral factor 57 (s) has no poles or zeros for Re(s) > 0
[see, e.g., Wong (1971)], so that detection of a signal ¢* is non-singular if and
only if a > H.

In the proof of Theorem 3.4, it is shown that the frequency response for the
(H, 0)-ss system mapping Y to Z,, can be expressed

T5w,,(—1/2 — s)
pr(s) '
Inserting the explicit expression for w,, in the case of m(¢) = ¢%, the frequency
response becomes

TafH

© 77— Hya—HT )5 ()




1212 C. J. NUZMAN AND H. V. POOR

Equivalently, J ;l(t“) is the output at time 7" of an (H, a — H)-ss system whose
frequency response is obtained by omitting the numerator term from (6). Then
J7H(t%) is an (a — H)-ss process in T, with scale-spectrum
1
pt(a— H)*((a — H)? —s%)
Given that the signal is of the form ¢*, the spectrum of Y affects only the

amplitude of the spectrum of J;'(¢%). o .
losely related to signal detection is the problem of estimating the ampli-

tude of a signal am(t) which is observed in additive noise. In general, the
minimum-variance unbiased linear estimate & is J~(m)/(m, m)g, which has
variance (m, m)gl. In the case of a polynomial signal in H-ss noise, with obser-
vations restricted to (0, T'], the estimate & is obtained by passing Y through
an (H, H — a)-ss system with frequency response
(2a —2H)p*(a — H)
(@—H+9)p(5)

essentially the same response used for detection. Because ap is (H — a)-ss, its
variance decreases as T2(H-9),

If the sum of N signals m; are observed in noise, then the minimum-
variance unbiased linear estimate of the vector of amplitudes can be expressed
in terms of RKHS quantities. In particular, suppose that B is a matrix with
B;; = (m;, m )g, that v is a vector with v; = J'm,; and that the unknown
amplitude of the ith signal is «;. Hajek (1962) states that the optimal esti-
mate is

a=B 1y,
and the covariance matrix of & is B~!. For the sum of two power-law signals
a t™ + agt®, the covariance matrix is
(Zal — 2H)(2a2 —2H)

2a,—2H
B71: (al +a2 _2H)2 % a1+a2—2H A
(a; — ag)? (20, -2H)(2a;-2H) ’
_ 2ay—2H
al +a2—2H

where A is a diagonal matrix with entries A; = TH#~% p*(a; — H). Comparing
with the previous results for N = 1, we see that making the estimator for
a; insensitive to ay always increases the variance of the estimator by the
multiplicative factor (a; + ay — 2H)?/(a; — as)?.

5. Applications to fractional Brownian motion. One of the most wid-
ely used self-similar processes is the fractional Brownian motion, the class of
covariance-continuous H-ss Gaussian processes with stationary increments.
For any given 0 < H < 1, the fBm has covariance

R(t,u) = (|t + |ul*™ — |t — ul*T)/2,

and the case H = 1/2 reduces to ordinary Brownian motion. In this section,
we apply the general results of previous sections to problems involving the
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fBm. An up-to-date introduction to fBm may be found in Samorodnitsky and
Taqqu [(1994), Chapter 7].

To solve problems associated with the fBm, it is sufficient to be able to com-
pute the spectral factorization or matrix spectral factorization, and to be able
to take the resulting inverse Mellin transforms. Some representative results
obtained by this approach are given in the following sections. Some of the
Mellin transforms used in these computations are collected in Appendix B.

5.1. Fractional Brownian motion on (0,T]. The RKHS of fractional
Brownian motion on index sets such as R™ and (0, T'], along with associated
innovations and whitening filters, was described in Barton and Poor (1988),
Decreusefond and Ustiinel (1999) and Moléan and Golosov (1969). In Nuzman
and Poor (2000), scale-spectral factorization was used to confirm these results
and to simplify some of the filter representations. Prediction and interpolation
of fBm were also studied in this latter work.

A problem that seems not to have been studied previously is polynomial
amplitude estimation on (0, 7']. One useful example is detrending, in which
the amplitude of a linear trend embedded in fBm is to be estimated. For an
fBm for which the variance at unit time is normalized to unity, the spectral
factorization is

I'l-H +5s)
'(1/2+s)(H +s)

In view of Section 4.2, the minimum variance of an unbiased estimate of the
amplitude of a linear trend, based on observations on (0, T'], is

7 (s) = /sin(w H)T(2H + 1)

Var(ap) = T?#-2(2 — 2H)p* (1 — H)?
_ pen-2(2— 2H)sin(mH)T(2H + DI'(2 - 2H)?

T(3/2 — H)?
_ eH 2634 (2H+1)I(2 - H)
=T 2 T(H) .

The solid curve in Figure 6 plots the normalized variance T22H Var(ay) as
a function of H. It is interesting to note that the normalized variance is very
close to unity for 1/2 < H < 1 and is equal to 1 at the endpoints of that
interval. Hence the simple unbiased estimate

. Y(T)

ap = T 5
with variance T2#-2 is nearly optimal for Hurst parameters in this range.

The optimal estimate is obtained by passing Y through an (H, H — 1)-ss

system with response

I'(3 - 2H)(1/2 + s)

Ht G- mre-H+ts)
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FiG. 6. Minimum variance obtainable by unbiased estimates of linear and quadratic signals in
Bm, as a function of Hurst parameter H. The fBm is observed on (0, 1] and normalized to have

unit variance at time 1.

which can be expressed

(@ =) H Y ()

Gy =
foT(T — p)l2-Hyl/2-H gy

for 1/2 < H < 1.
If we seek to jointly estimate the coefficients of a trend of the form ;¢ +ayt?,

the minimum variance of the linear amplitude is multiplied by the factor
(3 —2H)?, and the minimum variance of the quadratic term is

Var(ay) = T2H-495-4H - H)F(3I‘_(I-I[—I))F(2H + 1)‘

The normalized variances 7% -2 Var(a;) for i = (1, 2) are plotted as functions
of H in Figure 6.

5.2. Fractional Brownian motion on extended index sets. Matrix spectral
factorization can be used to characterize the RKHS of fBm on extended index
sets such as (—oo, T'] and [T, T']. In this section we illustrate this technique
by showing how the standard representation given in Mandelbrot and Van
Ness (1968) fits into this framework, and by giving two new innovations rep-
resentations. The matrix factorizations given below can also be used to solve
other problems such as prediction and amplitude estimation.
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Because of the symmetry of fBm about the time origin, its spectral matrix

is of the form
- p11(8) P12(s)
p(s)=| _ y :
p12(s)  p11(s)
The matrix elements, derived in Nuzman and Poor (2000), are
'l-H+s)I(1-H-5s)
I'(1/2 + s)I'(1/2 — s)(H? — s2)

p11(s) =

and

Pia(s) = COS(WH)T(IW—(;tz)QI)‘(l —H - s)‘

One possible factorization of this matrix is
I'a/24+s) cos(wH)I'(1-H —s)I'(1/2+s)
p°(s) =

1+ H+5s) w(H + s)
'a-H-y5s)
I'(1/2 — s)(H + s)

Using Theorem 3.5 in conjunction with Example 3.2, the fBm on (—o0, T'] can
be expressed

0

v 0 |t—T|H_1/2— |T|H_1/2 t |t—T|H_1/2
(0) = /,oo T(H +1/2) o T(H +1/2)

as given in Mandelbrot and Van Ness (1968). Mellin transforms useful for this
computation are given in Appendix B. The corresponding whitening filter for
Y can be obtained from the inverse matrix of p°.

In the above factorization, the 2, 2 element of 5° is a noncausal factorization
of the scale-spectrum of Y. If the causal spectral factorization is used, we
obtain instead

dW(r) + dw(r),

I'1/2+s) cos(wH)I'(1—H +s)I'(1/2—5s)

o I'(1+ H +5s) 7(H +s)
p°(s) =
0 I'A-H +5s)
I'(1/2+s)(H + s)
In the case H > 1/2, this can be expressed in the time domain as
_ 1 0 H-1/2
Y(t) = —m/; Bl—v/t(H — 1/2, 1 — 2H)U dW(U)

for t < 0 and as

1 ¢ B 3
m/o(t_ )H-12 gW (v) —r(5 - H)

0
x M[ Bt/(t_v><H + 1z 2H)(—u)H—1/2 dW(—v)
ar —00 2

Y(t) =
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for ¢ > 0, where the incomplete beta function is defined as
B.(a,b) = f 11— )ldt, a>00<x<]l.
0

A similar expression can be obtained for H < 1/2. Although less elegant than
the Mandelbrot representation, this representation has the property that, for
each ¢ <0, Y(¢) depends on {W(u): ¢ < u < 0} rather than {W(u): u < 0}.
The symmetric spectral factorization of Example 3.1 leads to an innovations
representation for fBm on [—T, T']. The spectrum of U(¢) = Y (¢) + Y (—¢) is

I(1— H+s)I(1— H—s)
m(H? — s2)

_ 21PHT((2 - H +5)/2)[((2 - H —5)/2)
T (H2— (1 + H +5)/2)T((1+ H — 5)/2)

and that of V(¢) = Y(¢) — Y(—¢) is

pr(s) = (cos s + cos mH)

. _ 27172HP((1—- H +5)/2)I((1 — H — 5)/2)
WO = ey H 2@+ H-2)

The causal spectral factorizations 57; and py; are obtained by collecting terms
for which the sign of s is positive. When these factorizations are expressed in
the time domain, they lead to the following representations for U and V, for
0<H<1:

2-12-H b oH-1)2
U(t)z mﬁ) v / B]_7V2/t2(H+]_/2,1—H)dW1(V)
2V Tt W avH-12
+mov/_ (t —V)_/dwl(V),
2!/ H " l2-H 2 o oNH-12
V(t) = m o 14 /2= (t —V ) -1/ dWZ(V).

When H > 1/2, the expression for U simplifies to
91/2-H

YO=tm-1

t
/0 vEI2RB L o(H —1/2,1— H)dW,(v).
The corresponding whitening filters can be derived from 1/p;; and 1/ P

6. Conclusions. The scale-invariance of wide-sense self-similar processes
can greatly simplify the analysis of their linear structure. Once the connec-
tion with shift-invariance has been established, the utility of concepts such
as self-similar systems, scale-spectra and scale-spectral factorization become
apparent.

The structure of self-similar processes has been described in this paper
using reproducing kernel Hilbert spaces. For various index sets of interest, the
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RKHS inverse isomorphism J~(m) can be computed by passing an observed
self-similar process through a self-similar system whose frequency response
depends on m. Likewise, the RKHS norm ||m|g can be computed as the L2-
norm of a function w,,, where w,, is obtained by passing m through a self-
similar system defined by the scale-spectrum of the observed process. Once
these RKHS quantities are known, it is straightforward to write down the
solutions to various linear problems.

Using this approach, we have shown that the signal detection and ampli-
tude estimation problems are especially tractable when the signals are of the
form ¢*. We have studied such problems explicitly for fractional Brownian
motion; we also have given some new representations for fBm.

APPENDIX A

PROOF OF THEOREM 3.1. The linear space of Y is composed of finite sums
of the form ) a;Y(¢;) along with their mean-square limits; since each such
finite sum of Y (¢;) can also be expressed as a finite sum of X(7;), and vice
versa, the linear spaces are identical.

We will show that JxJ3! = Ly. Given that L?(X,InI) = L%(Y, I), the
map Q: S(Y,I) — S(X,InI) given by Q(g) = J x(Jy(g)) is a well-defined
Hilbert space isomorphism. First suppose that g(v) is of the form g(v) =
Y a;Ry(v,t;). Then

N N
JxJy'(8) = JXJj_fl(Z a;Ry(:, ti)) = JX<Z aiY(ti)>

=1 =1

N N
:JX(Za,tFX(lntl)> :Zaltlfer(_lntl)
i=1 i=1

N N
=Y a;tfpy(e/t;))=e ™Y a;Ry(e,t;)=Lyg.
i—1 i=1

An arbitrary g(v) € H(Y, I) is the limit in the RKHS norm of a sequence
of functions g,(v), where each g,(v) is a finite sum as above. Since @ is an
isomorphism of Hilbert spaces, we get

Q(g) = Q(lim g,) =1limQ(g,) =limLyg,,

where the limits are limits in RKHS norm. A sequence of functions that is
convergent in norm must also be pointwise convergent [see, e.g., Kailath (1971,
p. 540)]. On a pointwise basis, it is easy to see that limits pass through L,
so that lim Ly g, = Lylim g, = Ly g. Hence Q(g) = Ly g for arbitrary g. O
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TABLE 1
Inverse Mellin transforms

Mellin transform

f(s)= [ ft="1dt

Function

f@)

I'(a+s)
I'(c+s)
—a < Re(s)
I(a+s)
T(c+s)(b+s)
max(—a, —b) < Re(s)

I'(a+s)I'(b—s)
—a <Re(s) <b

I'(a+s)I'(b—s)
cts

ﬁt*“(l —1/t) ¢ ly(Int)

c>a

-b
1"(';7—(1)3171/&6 —a,a—b)u(lnt)
c>a
T(a+b)t(1+1/t)=?
a+b>0

I(a+b)t™*Byy14)(c+b,a—c)

max(—a, —c) < Re(s) < b a+b>0,b+c>0

APPENDIX B

B.1. Inverse Mellin transforms. See Table 1.
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