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OPTIMAL CONTINGENT CLAIMS1

By Andrius Jankunas

Goldman, Sachs & Co.

Given a particular market variable, which could be finite dimensional
(e.g., a price vector of a collection of stocks) or infinite dimensional (e.g.,
a price trajectory of some security over some period of time), we find the
unique optimal European claim contingent on that variable in the sense
that, for a given price and risk tolerance level, this claim has the highest
expected return possible. The optimal contingent claims seem to be attrac-
tive investment instruments and are proposed for trade in derivatives
markets.

1. Introduction. In recent years, derivatives markets achieved an
extremely high level of flexibility. Derivative securities (or contingent claims)
with virtually any contingency relation to their underlying assets can be pur-
chased or synthesized from other derivatives. There is an extensive literature
on how to price various derivative securities in the arbitrage-free manner
under certain assumptions and market dynamics models; see, for example
[1, 3, 6, 7]. However, the problem of an optimal (in some sense) choice of a
derivative security for an investment has not received as much attention. Con-
sider an investor willing to invest V dollars and having no hedging or other
interests which would make him look for a derivative security with a partic-
ular payoff function on particular underlying assets. There is a huge choice
of derivative securities with the same price V but quite different properties,
such as risk and expected return. Therefore, the investor is facing a rather
difficult problem of choosing the best security in some sense for the given
price V. The “good” properties of a security are high expected return and low
risk. Since these properties clearly contradict each other, a natural investor’s
choice would be a derivative security with the highest expected return, price
not exceeding V, and risk (measured in some particular way) not exceeding
some tolerance level. Some kind of restriction on the risk is not only natural
but also necessary for this problem to be meaningful because one can buy or
synthesize a security with an arbitrarily high expected return (and also high
risk) and zero price; see Remark 2.3.

In this paper we consider a special case of this problem when the investor
has decided on a contingent claim of the European type paying g�X� dollars
at a maturity time T, where X is an � -valued market variable whose value
is known by the maturity time T, �� ��� is a measurable space, and g� � →
� is a measurable contingency relation function. Typical examples of the
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underlying market variableX are a price of a particular stock or index at time
T�� = �0�∞��, a vector of values of n securities at times before T �� = �n�, a
trajectory of an n-dimensional price process observed by time T �� = ��n��0�T�
and � is the Borel sigma algebra with respect to the product topology), for
example, Asian option. The problem consists of finding a measurable function
g∗V�Z � � → �, maximizing the expected payoff Eg�X�, over the set of all
measurable functions g� � → � with property that the price of the corre-
sponding contingent claim does not exceed V, and the risk measured by the
payoff standard deviation

√
Var�g�X�� does not exceed some tolerance level

Z ≥ 0. Under natural and usual assumptions in the literature, we show in this
paper that such an optimal payoff function exists, is unique and find it in an
explicit form. Since such an optimal contingent claim often can be synthesized
from other derivatives already available in the market (see, e.g., [3], Chapter
8), this result can be viewed as an optimal design of a portfolio consisting
of assets with the same underlying market variable. On the other hand, this
result can be viewed as a proposal of a new class of contingent claims for trade
in derivatives markets.

In Section 2, we derive the general result. In Section 3, we look into the
structure of European contingent claims, and introduce the notion of an opti-
mal forward contract. In Section 4, we consider the case when optimal contin-
gent claims are not traded in derivatives markets, and construct an optimal
portfolio from a finite number of derivative securities available in the market.
In Sections 5 and 6, we present examples when X is a stock price and a tra-
jectory of a stock price, respectively. At the end of Section 6, some comments
on American options are also given.

2. General case. Let �	�� � ��t�0≤t≤� �P� be a complete filtered proba-
bility space underlying all market variables under consideration, where the
filtration ��t�0≤t≤� on �	�� � is such that �t contains all events that happen
on or before time t ∈ �0�� �, and � < ∞ is a sufficiently big time hori-
zon beyond all transaction dates of our interest. Let rt, 0 ≤ t ≤ � , be the
�t-adapted short rate process, and denote

βt
def= exp

(∫ t

0
rs ds

)
�(2.1)

that is, βt is the unit rolled-up money market account. In this paper, we make
the following assumption, usual in the literature of mathematical finance (see,
e.g., [1, 3, 6]).

(A) There exists an equivalent martingale measure P̃ over �	�� �
��t�0≤t≤� , P� with respect to the numeraire βt. In other words, there exists
a probability measure P̃ over �	�� �, such that P̃ and P are equivalent, the
density (Radon–Nikodym derivative) ξ�ω� = dP̃

dP
�ω� is square-integrable with

respect to P,

Eξ2 =
∫
	
ξ2�ω�dP�ω� <∞(2.2)
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and for any �t-adaptive price process Yt,

Ẽ
(
Yt/βt � �s

) = Ys/βs ∀0 ≤ s ≤ t ≤ � �(2.3)

Here and further Ẽ and E are expectations with respect to P̃ and P,
respectively.

This assumption implies that the price of a unit zero coupon bond with
maturity t at time zero is

bt = Ẽβ−1t �(2.4)

Consider a measurable space �� ��� and an �T-measurable market vari-
able X� 	→ � , where T ∈ �0�� �. Define F� � → �0�1� to be the probability
measure on �� ��� induced by P and X; that is, F�B� = P�X−1�B�� for all
B ∈ �, and let F̃� � → �0�1� be the analogous probability measure induced
by P̃ and X. Obviously, the density

ϕ�x� def= dF̃

dF
�x� = E�ξ �X = x��(2.5)

Let us consider a claim contingent on X with payoff g�X� at maturity T,
where g� � → � is measurable. If the assumption (A) is fulfilled, then the
value of this contingent claim at time zero is

v�g� def= Ẽ
(
g�X�β−1T

) = bTẼ
(
g�X�b−1T β−1T

)
= bTÊg�X� = bT

∫
� g�x�dF̂�x��

(2.6)

where Ê is the expectation with respect to the measure P̂ on �	�� � which is
absolutely continuous with respect to P, and the density

dP̂

dP
�ω� = b−1T β−1T �ω�

dP̃

dP
�ω� = b−1T β−1T �ω�ξ�ω��(2.7)

F̂� � → �0�1� is the probability measure on �� ��� induced by P̂ and X.
Obviously, F̂ is absolutely continuous with respect to F and has the density

ψ�x� def= dF̂

dF
�x� = b−1T Ẽ�β−1T �X = x�ϕ�x��(2.8)

Remark 2.1. It is easy to check (see, e.g., [7], Section 7.5) that P̂ is an
equivalent martingale measure over �	�� � ��t�0≤t≤T�P� with respect to the

numeraire β̂t
def= Ẽ�βt/βT � �t�, the price of a unit zero coupon bond with

maturity T at time t.

Remark 2.2. In some important cases,X and β−1T are P̃-independent. For
example, if X is a price of a stock or a trajectory of a stock price process, then
it is common to assume that the short rate process rt is deterministic (see,
e.g., [1, 3]). In such a case, we have ψ�x� = ϕ�x�.
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The contingent claim with payoff g�X� at maturity T has the expected
payoff (or return)

p�g� def= Eg�X� =
∫
�
g�x�dF�x��(2.9)

and the variance of the payoff

z2�g� def= Var�g�X�� =
∫
�
g2�x�dF�x� −

(∫
�
g�x�dF�x�

)2

�(2.10)

Notation. For any two probability measures µ0 and µ1 on a measurable
space �� ���, any numbers α ∈ � and γ ≥ 0, we denote by G�µ0� µ1� α� γ� the
set of all measurable functions g� � → �, such that∫

�
g�x�dµ1�x� ≤ α

and ∫
�
g2�x�dµ0�x� −

(∫
�
g�x�dµ0�x�

)2

≤ γ2� ✷

In this paper, we consider the following problem. Given a price V ∈ � and
a risk tolerance level Z ≥ 0, we want to find a claim contingent on X with
as big expected payoff as possible. In other words, we want to find g∗V�Z ∈
G�F� F̂�V/bT�Z�, such that p�g∗V�Z� ≥ p�g� for all g ∈ G�F� F̂�V/bT�Z�.

Remark 2.3. From (2.6) and (2.9) we see that any g ∈ L2�F� orthogonal
to ψ and not orthogonal to 1, with respect to the inner product in L2�F�, can
give rise to a contingent claim with an arbitrarily high expected return and
zero price. For example, if we take gn�x� = n�ψ−1�x� − 1�, then

v�gn� = bT �gn�ψ�L2�F� = bT

∫
�
gn�x�ψ�x�dF�x� = 0

and

p�gn� = �gn�1�L2�F� =
〈
gn�ψ

−1〉
L2�F̂� = nÊ�ψ−1�X� − 1�2 →∞

as n→∞. Therefore, some kind of restriction on the risk, such as z�g� ≤ Z, of
payoff functions under consideration is necessary to make our maximization
problem meaningful.

The following lemma is the key to the solution of the problem.

Lemma 2.4. Let µ0 and µ1 be two probability measures on a measurable
space �� ���, such that µ1 is absolutely continuous with respect to µ0, and

the Radon-Nikodym derivative ζ�x� = dµ1
dµ0
�x� is square integrable with respect

to µ0:

Qµ0� µ1

def=
∫
�
ζ2�x�dµ0�x� <∞�(2.11)
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For any α ∈ � and γ ≥ 0 define

gα�γ�x� def= α+ γ√
Qµ0� µ1

− 1

[
Qµ0� µ1

− ζ�x�]�(2.12)

Then gα�γ ∈ G�µ0� µ1� α� γ�, and∫
�
g�x�dµ0�x� ≤

∫
�
gα�γ�x�dµ0�x� = α+ γ

√
Qµ0� µ1

− 1(2.13)

for all g ∈ G�µ0� µ1� α� γ�. Moreover, the inequality is strict unless g = gα�γ
almost sure with respect to µ0.

Proof. By an elementary calculation one can show that∫
�
gα�γ�x�dµ1�x� = α

and ∫
�
g2
α� γ�x�dµ0�x� −

(∫
�
gα�γ�x�dµ0�x�

)2

= γ2�

Therefore, gα�γ ∈ G�µ0� µ1� α� γ�.
Now, let us fix some g ∈ G�µ0� µ1� α� γ�. We can view g and ζ as random

variables on the probability space �� ��� µ0�. Obviously, Eζ = 1, Var�ζ� =
Qµ0� µ1

− 1, E�gζ� ≤ α and Var�g� ≤ γ2. Therefore, by the Schwarz inequality,∫
�
gα�γ�x�dµ0�x� −

∫
�
g�x�dµ0�x� = γ

√
Qµ0� µ1

− 1+ α−Eg

≥
√
Var�g�Var�ζ� + Cov�g� ζ� ≥ 0�

(2.14)

The first inequality is strict unless Var�g� = γ2 and E�gζ� = α. The second
inequality is strict unless g = C−Dζ almost sure for some C ∈ � and D ≥ 0.
Therefore, both inequalities in (2.14) turn into equalities if and only if g = gα�γ
almost sure with respect to µ0. ✷

Remark 2.5. The nonconstructive form of the Lemma 2.4 proof was chosen
for it’s simplicity, conciseness, and independence of any references to the infi-
nite dimensional optimization literature. The reader could easily derive the
same result in a constructive way using Lagrange multipliers in the corre-
sponding infinite dimensional linear-quadratic optimization problem belong-
ing to the theory of mean variance analysis.

Denote

Q
def= QF�F̂ =

∫
�
ψ2�x�dF�x��(2.15)
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From (2.1) we see that β−1t ∈ �0�1� for all t ≥ 0. Therefore, by (2.8), (2.5) and
assumption (A) we have

Q ≤ b−2T Eϕ2�X� = b−2T E
(�E�ξ �X��2) ≤ b−2T E

(
E�ξ2 �X�)

= b−2T Eξ2 <∞�
(2.16)

The following theorem is the main result of this paper.

Theorem 2.6. Suppose that assumption (A) holds. Given a price V ∈ �
and a risk tolerance level Z ≥ 0, define

g∗V�Z�x� def= V/bT +
Z√
Q− 1

�Q− ψ�x���(2.17)

Then v�g∗V�Z� = V, z�g∗V�Z� = Z and

p�g∗V�Z� = V/bT +Z
√
Q− 1�

Moreover, for any measurable payoff function g� � → � with price v�g� ≤ V
and risk z�g� ≤ Z, we have

p�g� ≤ p�g∗V�Z��
and the inequality is strict unless g = g∗V�Z almost sure with respect to F.

The theorem follows from (2.16) and Lemma 2.4 with α = V/bT and γ = Z.

3. Optimal forward contracts. We call a derivative security a forward
contract if it has zero price. Any European contingent claim with payoff g�X�
at maturity T can be viewed as a portfolio consisting of v�g�/bT unit zero
coupon bonds with maturity T and a forward contract with payoff q�X� =
g�X� − v�g�/bT at maturity T. Therefore, price and risk can be separated,
and one can adopt the view that European derivatives markets consist only
of zero coupon bonds (nonzero price, zero risk) and forward contracts (zero
price, nonzero risk). Thus, the problem considered in Section 2 is equivalent
to finding a forward contract payoff function q∗� � → �, v�q∗� = 0, with unit
risk (z�q∗� = 1) and maximal expected return; that is,

p�q∗� ≥ p�q� ∀q� � → �� v�q� = 0� z�q� = 1�

By Theorem 2.6,

q∗�x� = Q− ψ�x�√
Q− 1

(3.1)

and

p�q∗� =
√
Q− 1�

For any γ > 0, the forward contract payoff function γq∗ is optimal in the sense
that it provides most expected return per unit of risk.
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Given a price V ∈ � and risk tolerance level Z ≥ 0, we have

g∗V�Z�x� = V/bT +Zq∗�x��
that is, the optimal contingent claim can be synthesized by investingV dollars
into zero coupon bonds with maturity T and entering into Z optimal unit
forward contracts defined by (3.1). Thus, in order to make optimal contingent
claims available in the market, it is not necessary to trade them for every
price V and risk tolerance level Z. Trading of optimal forward contracts is
sufficient.

For any measurable payoff function g� � → �, z�g� > 0, define

R�g� def= p�g� − v�g�/bT
z�g�

√
Q− 1

�(3.2)

Obviously, R�g� = p�q�/p�q∗�, where q is the unit forward contract corre-
sponding to g. Therefore, R�g∗V�Z� = 1 for any V ∈ �, Z > 0, and R�g� ∈
�−1�1� if g is not optimal for any price and risk. The criterion R�·� can be
used as a performance measure of contingent claims.

4. Optimal finite portfolios. For any given price and risk tolerance
level, Theorem 2.6 provides the most attractive claim contingent on the mar-
ket variable X. If this claim or optimal forward contract q∗ were traded in
derivatives market, it would be a natural investor’s choice. However, usually
only a finite set of more traditional contingent claims is available. In such a
case, an investor can approximate the optimal contingent claim by solving a
finite dimensional optimization problem of finding an optimal portfolio of the
available contingent claims. Let hi� � → �, i = 1� � � � � n, be measurable pay-
off functions of available in the market contingent claims with maturity T.
Then one can construct a portfolio consisting of c zero coupon bonds and ai
contingent claims with index i, i = 1� � � � � n. The payoff function of such a
portfolio is

g�x � c� a� = c+
n∑
i=1

aihi�x� = c+ h��x�a�

where a
def=�a1� � � � � an��, and h�x�

def=�h1�x�� � � � � hn�x���. Denote

H
def= Eh�X�� Ĥ

def= Êh�X��(4.1)

M
def= Cov�h�X�� h�X�� = E�h�X�h��X�� −HH��(4.2)

Obviously,

v�c� a� def= v�g�· � c� a�� = bT�c+ Ĥ�a��(4.3)

p�c� a� def= p�g�· � c� a�� = c+H�a(4.4)
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and

z2�c� a� def= z2�g�· � c� a�� = a�Ma�(4.5)

Now let us formulate an analog of Theorem 2.6 for finite portfolios.

Theorem 4.1. Suppose that assumption (A) holds, and the matrix M is
positive definite. Given a price V ∈ � and a risk tolerance level Z ≥ 0, define

a∗V�Z
def= Z

M−1�H− Ĥ�√
�H− Ĥ��M−1�H− Ĥ�

�(4.6a)

c∗V�Z
def= V/bT − Ĥ�a∗V�Z�(4.6b)

Then v�c∗V�Z� a∗V�Z� = V, z�c∗V�Z� a∗V�Z� = Z and

p�c∗V�Z� a∗V�Z� = V/bT +Z

√
�H− Ĥ��M−1�H− Ĥ��

Moreover, for any portfolio �c� a� �= �c∗V�Z� a∗V�Z� with price v�c� a� ≤ V and
risk z�c� a� ≤ Z, we have

p�c� a� < p�c∗V�Z� a∗V�Z��

Proof. From (4.3) and (4.5), one easily gets v�c∗V�Z� a∗V�Z� = V, z�c∗V�Z,
a∗V�Z� = Z and p�c∗V�Z� a∗V�Z� = V/bT +Z

√
�H− Ĥ��M−1�H− Ĥ�.

Now, let us fix some portfolio �c� a� ∈ �×�n with price v�c� a� ≤ V and risk
z�c� a� ≤ Z. Obviously,

p�c∗V�Z� a∗V�Z� − p�c� a�

≥
√
a�Ma

√
�H− Ĥ��M−1�H− Ĥ� − �H− Ĥ��a(4.7)

≥ a�M1/2M−1/2�H− Ĥ� − �H− Ĥ��a = 0�

The first inequality is strict unless v�c� a� = V and z�c� a� = Z. The sec-
ond inequality follows from the Schwarz inequality for the inner product in
Euclidean space and is strict unless a = γM−1�H−Ĥ� for some γ ≥ 0. There-
fore, both inequalities in (4.7) turn into equalities if and only if c = c∗V�Z and
a = a∗V�Z. ✷

Remark 4.2. For any u ∈ �n \ �0�, we have u�Mu = Var �u�h�X��. Thus,
M is positive definite unless there exist u ∈ �n \ �0� and γ ∈ �, such that
u�h�x� = γ almost everywhere with respect to the measure F.
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Remark 4.3. Let us fix some price V ∈ � and risk tolerance level Z ≥ 0.
By an elementary calculation one can show that for any measurable g�� → �
with price v�g� = V and risk z�g� = Z,

�g∗V�Z − g�2L2�F� =
∫
�
�g∗V�Z�x� − g�x��2 dF�x�

= ε2V�Z�g� +
2Z√
Q− 1

εV�Z�g��
(4.8)

where εV�Z�g� def= p�g∗V�Z�−p�g� ≥ 0 is the expected return deficiency of g as
compared to the optimal claim g∗V�Z given by Theorem 2.6. In particular,

εV�Z�g�· � c∗V�Z� a∗V�Z�� = Z

(√
Q− 1−

√
�H− Ĥ��M−1�H− Ĥ�

)
�

From (4.8) it follows that

�c∗V�Z� a∗V�Z� = arg min
�c� a��v�c� a�=V�z�c� a�=Z

�g∗V�Z − g�· � c� a��L2�F��

that is, the maximum expected return is achieved by the portfolio with priceV
and risk Z whose payoff function is closest to g∗V�Z in L2�F� space.

5. Optimal claim contingent on a stock price. In this section, we
consider an example when � = �0�∞�, � is the Borel sigma algebra and
X = ST, where St, 0 ≤ t ≤ T, is a price process of some no dividend paying
stock described by the Black–Scholes stochastic differential equation (see, e.g.
[1, 3]) in the sense of Itô:

dSt = µtSt dt+ σtStdWt�

whereWt is a standard Brownian motion on �	�� � ��t�0≤t≤T�P�. The growth
coefficient µt, volatility σt �= 0 and the short rate process rt are assumed to
be deterministic. Without a loss of generality we may assume that S0 = 1. It
is well known (see [3, 1]) that for this Black–Scholes model there exists an
equivalent martingale measure P̃, that is, condition (A) is fulfilled, and

dSt = rtStdt+ σtStdW̃t�

where W̃t =
∫ t
0�µs − rs�σ−1s ds+Wt is a standard Brownian motion on �	�� ,

��t�0≤t≤T� P̃�. Moreover, it is well known (see, e.g., [3, 1]) that in this case
both distributions F and F̃ are lognormal, and their densities, with respect to
the Lebesgue measure over �0�∞�, are

f�x� = 1√
2πTσx

exp

{
− 1
2Tσ2

[
lnx−

(
µ− σ2

2

)
T

]2}
and

f̃�x� = 1√
2πTσx

exp

{
− 1
2Tσ2

[
lnx−

(
r− σ2

2

)
T

]2}
�
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respectively, where

µ = 1
T

∫ T

0
µt dt� r = 1

T

∫ T

0
rt dt and σ2 = 1

T

∫ T

0
σ2
t dt�(5.1)

By Remark 2.2, we have

ψ�x� = ϕ�x� = f̃�x�
f�x� = x−�µ−r�/σ

2
e

T

2σ2
�µ−r��µ+r−σ2��

and Theorem 2.6 implies that, given a price V ∈ � and a risk tolerance level
Z ≥ 0, the maximum expected return is achieved by the payoff function

g∗V�Z�x� = VerT + Z√
Q− 1

[
Q− f̃�x�

f�x�
]
= C1 −C2x

−�µ−r�/σ2
�(5.2)

where

Q =
∫ ∞
0

f̃2�x�
f�x� dx = eT�µ−r�

2/σ2
�

C1 = VerT + ZQ√
Q− 1

and C2 =
Z√
Q− 1

e
T

2σ2
�µ−r��µ+r−σ2��

and the maximal expected return p�g∗V�Z� = VerT +Z
√
Q− 1.

One might be interested in comparing the expected return of a popular
in the market contingent claim, such as put or call option, to the expected
return of the optimal contingent claim with the same price and risk. Denote by
hc�K�x� = max�x−K�0� and hp�K�x� = max�K−x�0� the payoff functions of
the European call and put options, respectively, with a strike priceK > 0. The
relative to the optimal claim performance of these options can be measured
by the payoff ratios PR�hi�K� = p�hi�K�/p�g∗v�hi�K�� z�hi�K�� ∈ �0�1�; i = c�p. In
Figure 1, the payoff ratios PR�hc�K� and PR�hp�K� are drawn as functions of

Fig. 1. Relative performance of the European call and put options measured by their expected
return divided by the expected return of the optimal contingent claim with the same price and risk.
Here T = 5, r = 0�06, µ = 0�15 and σ = 0�3.
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Fig. 2. Performance of the European call and put options measured by the criterion R�·� defined
in (3.2). Here T = 5, r = 0�06, µ = 0�15 and σ = 0�3.

the strike price K for particular values of T, r, µ and σ . In view of Section 3,
the drawback of PR�·� as a performance measure is the confounding of returns
generated by the risk free (zero coupon bond) and risky (forward contract)
parts of a contingent claim. This is the reason why PR�hp�K� is close to 1 for
big values of K. Since the essential part of a European contingent claim is
the corresponding forward contract, it seems that R�·� is the most natural
measure of claim performance. In Figure 2, the performance values R�hc�K�
and R�hp�K� are drawn as functions of the strike price K.

The optimal payoff function g∗V�Z might seem somewhat “scary” because
limx→+0 g

∗
V�Z�x� = −∞; that is, if something went absolutely wrong with the

underlyingstock, the investorwouldoweahugeamountofmoney.However,since
limx→+0 g

∗
V�Z�x�f�x� = limx→+0 g

∗
V�Z�x�f̃�x� = limx→+0�g∗V�Z�x��2f�x� = 0,

the truncated payoff function ḡV�Z�M�x� = max�−M�g∗V�Z�x�� with a suffi-
ciently large M > 0 yields approximately the same price, risk and expected
return as the optimal functiong∗V�Z, and therefore can be used instead.

Remark 5.1. In order to calculate the optimal contingent claim defined
by (5.2), one needs to know the parameters µ, r and σ2. The parameters r
and σ2 can be calculated (implied) from the current bond and call, put, or
other option prices in the market. The drift coefficient µ, corresponding to the
“real world” probability measureF, cannot be implied from the current market
data because the measure F̂ and prices of derivative securities do not depend
on it. If one assumes that µt is approximately constant over time (µt ≡ µ), one
can estimate it from the historical data (see [4, 5] for results on asymptotically
efficient estimation of drift parameters of multidimensional linear stochastic
differential or difference equations which are also applicable to a more gen-
eral case when X is a price vector corresponding to several stocks). If one is
reluctant to assume that stock behavior in the past is similar to its behavior
in the future, one has to make an “educated” guess of µ expressing ones belief
in the future growth of the underlying stock price. Therefore, optimal claims
corresponding to different investors could be different.
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Now, consider a market where the only traded claims contingent onX = ST

with maturity T are call options with strike pricesKi = :�i−1�, i = 1� � � � � n,
: > 0. So, the available contingent claims have payoff functions

hi�x� = max�x− :�i− 1��0�� i = 1� � � � � n�

Since K0 = 0, the first call option is just the stock itself.
By an elementary integration from (4.1) and (4.2) we get

Hi = Ehi�X� = eµT;
(
dµ�Ki

+ σ
√
T
)−Ki;�dµ�Ki

��
Ĥi = Ẽhi�X� = erT;

(
dr�Ki

+ σ
√
T
)−Ki;�dr�Ki

��
Mij =Mji = Cov�hi�X�� hj�X��

= e�2µ+σ
2�T;

(
dµ�Kj

+ 2σ
√
T
)− 2Kje

µT;
(
dµ�Kj

+ σ
√
T
)

+ K2
j;�dµ�Kj

� + �Kj −Ki −Hi�Hj�

where 1 ≤ i ≤ j ≤ n, du�K
def=��u − σ2/2�T − lnK�/�σ√T� and ;�·� is the

cumulative standard Normal distribution function (in particular, du�0 = ∞
and ;�∞� = 1). By Remark 4.2, the n × n matrix M is positive definite, and
Theorem 2.6 is valid.

In Figure 3, the payoff functions g�· � c∗0�1� a∗0�1� of optimal portfolios corre-
sponding to various values of : and n are drawn and compared to the optimal
payoff function g∗0�1 = q∗ for particular choice of T, r, µ and σ . It is well
known (see, e.g., [3], Chapter 8) that, if European call options expiring at
T were available with every strike price, then any payoff function could be
replicated by a portfolio of these options. Therefore, in view of Remark 4.3, it
is clear that for small values of : and big values of n: the optimal portfolio
payoff function g�· � c∗0�1� a∗0�1� must be close to q∗, and the expected payoff
p�c∗0�1� a∗0�1� must be almost as high as p�q∗� =

√
Q− 1.

6. Optimal claim contingent on a price trajectory. In this section, we
consider the same stock price process St, 0 ≤ t ≤ T, as in Section 5. However,
the claims we consider here are contingent not only on the maturity value ST

but on the whole trajectory S�T� = �St�0 ≤ t ≤ T�. So, � = �0�∞��0�T�, and �
is the Borel sigma algebra with respect to the product topology. Obviously, the
set of all measurable functions �g� � → �� contains the set of all functions
depending only on the last point of the trajectory �g�� → � � g�x� = g0�x�T��
for some measurable g0� �0�∞� → ��. Therefore, given a price V and a risk
tolerance level Z, the maximal expected return based on the whole trajec-
tory must be greater or equal to the one based only on the maturity value
of the price process. It is well known (see, e.g., [2], Section 3.12) that for any
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Fig. 3. Payoff functions g�· � c∗0�1� a∗0�1� of optimal portfolios corresponding to various values of
: and n compared to the optimal payoff function q∗ = g∗0�1. The performance of each portfolio
is measured by R�g�· � c∗0�1� a∗0�1�� = p�c∗0�1� a∗0�1�/p�q∗�. Here T = 5, r = 0�06, µ = 0�15 and
σ = 0�3.

x ∈ Supp�F� = Supp�F̃� ⊆ �0�∞��0�T� = � the density

ψ�x� = ϕ�x� = dF̃

dF
�x� = exp

{
1
2

∫ T

0

µ2
t − r2t
σ2
t

dt−
∫ T

0

µt − rt

σ2
t

dxt
xt

}
= exp

{
1
2

∫ T

0

µt − rt

σ2
t

(
µt + rt − σ2

t

)
dt−

∫ T

0

µt − rt

σ2
t

d lnxt

}
�

where the last equality follows from the Itô formula and the fact that x ∈
Supp�F�.

Theorem 2.6 implies that, given a price V ∈ � and a risk tolerance level
Z ≥ 0, the maximum expected payoff is achieved by the payoff function

g∗V�Z�x� = VerT + Z√
Q− 1

�Q− ϕ�x��

= C1 −C2 exp
{
−
∫ T

0

µt − rt

σ2
t

d lnxt

}
�

(6.1)

where

Q = Eϕ2�S�T�� = exp
{∫ T

0

(µt − rt
σt

)2
dt

}
�

C1=VerT+
ZQ√
Q−1

and C2=
Z√
Q−1

exp
{
1
2

∫ T

0

µt−rt
σ2
t

(
µt+rt−σ2

t

)
dt

}
�
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and the maximal expected payoff p�g∗V�Z� = VerT+Z
√
Q− 1. By the Schwarz

inequality, ∫ T

0

(µt − rt
σt

)2
dt ≥ T

(µ− r

σ

)2
�(6.2)

where µ, r, and σ are defined in (5.1). Inequality (6.2) is strict, and therefore
the expected payoff p�g∗V�Z� is higher than the one received in Section 5,
unless

µt − rt = ασ2
t(6.3)

for some α ∈ � almost everywhere with respect to the Lebesgue measure over
�0�T�. If (6.3) holds (this happens when µt ≡ µ, rt ≡ r and σ2

t ≡ σ2, e.g.),

then g∗V�Z�x� = C1−C2x
−�µ−r�/σ2

T , and we return to the situation of Section 5.
In other words, if and only if (6.3) holds, then the optimal claim is contingent
on the stock price process trajectory only through the stock price at maturity
(the rest of the trajectory is disregarded).

Another peculiar consequence of (6.3) is that European contingent claims
are preferable to American ones. Indeed, consider an American option paying
g�t�St� dollars if exercised at time t ≤ T, where g� �0�T� × �0�∞� → � is a
measurable function. It is well known (see, e.g. [1, 6]) that the price of this
option is

va�g� = Ẽ
(
β−1τ g�τ�Sτ�

) = bTÊ
(
βTβ

−1
τ g�τ�Sτ�

)
�

where τ is the stopping time corresponding to the optimal exercise policy.
We can view this American option as a European contingent claim paying
βTβ

−1
τ g�τ�Sτ� at maturity T. The stopping time τ is �T-measurable, and can

be viewed as a measurable function of the whole trajectory, τ = τ�S�T��. Since
βt is deterministic, we can define a function ga� � = �0�∞��0�T� → � by

ga�x� = βTβ
−1
τ�x�g

(
τ�x�� xτ�x�

)
�

Theorem 2.6 implies that

p�ga� < p
(
g∗v�ga�� z�ga�

)
�(6.4)

where gv�z is defined in (6.1). So, an American option on a stock is less attrac-
tive than the optimal European claim contingent on the whole stock price
trajectory and having the same price and risk. Even more, if (6.3) holds, then
from the previous discussion it follows that (6.4) also holds for g∗v� z defined
in (5.2); that is, the optimal European claim contingent on a stock value at
maturity T is preferable not only to any other European claim, but also to any
American option with the same price, risk and maturity.

Remark 6.1. Even if the short rate process rt is stochastic, any American
contingent claim, with maturity T, underlying price process Yt ∈ � , 0 ≤
t ≤ T, measurable payoff function g� �0�T� × � → � (here �� ��� � is some
measurable space), and optimal exercise stopping time τ = τ�Y�T�� β�T��, can
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be viewed as a European claim contingent on the extended market variable
�Y�T�� β�T�� with payoff

ga
(
Y�T�� β�T�

) = βTβ
−1
τ�Y�T�� β�T��g

(
τ
(
Y�T�� β�T�

)
�Yτ�Y�T�� β�T��

)
at maturity T, and, therefore, is inferior to the optimal contingent claim given
by Theorem 2.6 with � = �Y�T�� β�T��.
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