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COHOMOLOGY OF SL(2, C) CHARACTER VARIETIES OF SURFACE

GROUPS AND THE ACTION OF THE TORELLI GROUP∗

GEORGIOS D. DASKALOPOULOS† ,

RICHARD A. WENTWORTH‡ , AND GRAEME WILKIN§

Abstract. We determine the action of the Torelli group on the equivariant cohomology of the
space of flat SL(2, C) connections on a closed Riemann surface. We show that the trivial part of
the action contains the equivariant cohomology of the even component of the space of flat PSL(2, C)
connections. The non-trivial part consists of the even alternating products of degree two Prym
representations, so that the kernel of the action is precisely the Prym-Torelli group. We compute the
Betti numbers of the ordinary cohomology of the moduli space of flat SL(2, C) connections. Using
results of Cappell-Lee-Miller we show that the Prym-Torelli group, which acts trivially on equivariant
cohomology, acts non-trivially on ordinary cohomology.
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1. Introduction. The Torelli group acts trivially on the equivariant cohomology
of the space of flat unitary connections on a Riemann surface. This follows from
the fact that the inclusion of the subset of flat connections into the space of all
unitary connections induces a surjection on equivariant cohomology (see [1, 6, 22]
and Theorem 2.2 below). The latter result may be viewed as an infinite dimensional
analogue of a general theorem on symplectic quotients that has become known as
Kirwan surjectivity (see [16]). The moduli space of flat SL(2, C) connections has a
gauge theoretic construction due to Hitchin and Donaldson (see [15, 8]). A recent
result [7] shows that Kirwan surjectivity actually fails in this case. In this paper, we
show that this failure is detected by the action of the Torelli group.

To state the results more precisely, recall the notion of a character variety (see
[5, 19] for background). Let M be a closed oriented surface of genus g ≥ 2, and let
p ∈ M be a point which will remain fixed throughout. We set π = π1(M, p). Let
Hom(π, SL(2, C)) denote the set of homomorphisms from π to SL(2, C). This has the
structure of an affine algebraic variety. Let

X0(π) = Hom(π, SL(2, C))
//

SL(2, C)

denote the character variety, where the double slash indicates the invariant theo-
retic quotient by overall conjugation of SL(2, C). Then X0(π) is an irreducible affine
variety of complex dimension 6g − 6. There is a surjective algebraic quotient map
Hom(π, SL(2, C)) → X0(π), and this is a geometric quotient on the open set of irre-
ducible (or simple) representations. Points of X0(π) are in 1-1 correspondence with
conjugacy classes of semisimple (or reductive) representations, and every SL(2, C)
orbit in Hom(π, SL(2, C)) contains a semisimple representation in its closure. The
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mapping class group Mod(M) is the group of components of orientation preserving dif-
feomorphisms of M . Since Mod(M) acts by outer automorphisms of π, there is a nat-
urally induced action on X0(π), and hence also on the cohomology H∗(X0(π)).1 Since
X0(π) is a categorical quotient it is also natural to consider the SL(2, C)-equivariant
cohomology

(1.1) H∗
eq.(X0(π)) := H∗

SL(2,C)(Hom(π, SL(2, C))).

With a slight abuse of terminology we will often refer to H∗
eq.(X0(π)) as the equivariant

cohomology of X0(π). The action of Aut(π) on H∗
eq.(X0(π)) in fact descends to an

action of Mod(M) (inner automorphisms act trivially; see Section 3.2).
Next, let

(1.2) Γ2 = H1(M, Z/2) ≃ Hom(π, {±1}).

Then Γ2 acts on Hom(π, SL(2, C)) by (γρ)(x) = γ(x)ρ(x). This action commutes with
conjugation by SL(2, C), and hence it defines an action on X0(π) and on the ordinary
and equivariant cohomologies. We denote the Γ2 invariant parts of the cohomology
by H∗(X0(π))Γ2 and H∗

eq.(X0(π))Γ2 .
The Torelli group I(M) is the subgroup of Mod(M) that acts trivially on the

homology of M . In particular, the action of Γ2 commutes with the action of I(M).
The kernel of γ ∈ Γ2 ≃ Hom(π, {±1}), γ 6= 1, defines an unramified double cover
Mγ → M with involution σ. Let W+

γ (resp. W−
γ ) denote the 2g (resp. 2g − 2)

dimensional +1 (resp. −1) eigensubspaces of H1(Mγ) for σ. A lift of a diffeomorphism
of M representing an element of I(M) that commutes with σ may or may not be in
the Torelli group of Mγ ; although it acts trivially on W+

γ it may act non-trivially on
W−

γ . Since the two lifts differ by σ, there is thus defined a representation

(1.3) Πγ : I(M) −→ Sp(W−
γ , Z)

/
{±I},

which is called the (degree 2) Prym representation of I(M) associated to γ. An
element in kerΠγ has a lift which lies in I(Mγ). By a theorem of Looijenga [18], the
image of Πγ has finite index for g > 2. Note that the representations for various
γ 6= 1 are isomorphic via outer automorphisms of I(M). Πγ induces non-trivial
representations of I(M) on the exterior products

(1.4) V (q, γ) = ΛqW−
γ

when q is even. Finally, we define the (degree 2) Prym-Torelli group

(1.5) PI(M) =
⋂

16=γ∈Γ2

kerΠγ .

With this background, we may summarize the first result of this paper as follows:

Theorem 1.1.
1. I(M) acts trivially on H∗

eq.(X0(π))Γ2 .

2. For q ∈ S = {2j}g−2
j=1 the action of I(M) splits as

H6g−6−q
eq. (X0(π)) = H6g−6−q

eq. (X0(π))Γ2 ⊕
⊕

16=γ∈Γ2

V (q, γ).

1Unless otherwise stated, cohomology will always be taken with rational coefficients.
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In particular, PI(M) acts trivially and I(M) acts non-trivially on H∗
eq.(X0(π))

for g > 2. The splitting of the sum of V (q, γ)’s is canonically determined by
a choice of homology basis of M .

3. I(M) acts trivially on H6g−6−q
eq. (X0(π)) for q 6∈ S.

The proof of Theorem 1.1 uses the singular version of infinite dimensional Morse
theory developed in [7] to build the equivariant cohomology from a Morse-Bott type
stratification. We will view H∗

eq.(X0(π)) via gauge theory as follows. Let Bss
0 (2, 0)

denote the space of semistable Higgs bundles of rank 2 with fixed trivial determinant
on M , let G0 denote the group of special unitary gauge transformations, and let GC

0

be its complexification. By the results of Hitchin, Corlette, Donaldson, and Simpson
(see [15, 4, 8, 23]), we have an identification of real analytic spaces

X0(π) ≃ M0(2, 0) := Bss
0 (2, 0)

//
GC

0 .

Combining this with recent work of Wilkin [24] we will prove the following

Theorem 1.2. H∗
eq.(X0(π)) ≃ H∗

G0
(Bss

0 (2, 0)).

Roughly speaking, this result expresses the fact that both sides compute the
equivariant cohomology of a hyperkähler quotient (see Section 2). As a consequence,
we have from [7, Corollary 1.2] the following

Corollary 1.3. The Poincaré polynomial for the SL(2, C)-equivariant cohomol-
ogy is

P
SL(2,C)
t (Hom(π, SL(2, C))) = PG0

t (Ass
0 (2, 0)) + C(t, g),

where

PG0

t (A0(2, 0)) =
(1 + t3)2g − t2g+2(1 + t)2g

(1 − t2)(1 − t4)
,

and

C(t, g) = −t4g−4 +
t2g+2(1 + t)2g

(1 − t2)(1 − t4)
+

(1 − t)2gt4g−4

4(1 + t2)
(1.6)

+
(1 + t)2gt4g−4

2(1 − t2)

(
2g

t + 1
+

1

t2 − 1
− 1

2
+ (3 − 2g)

)

+ (1/2)(22g − 1)t4g−2
(
(1 + t)2g−2 + (1 − t)2g−2 − 2

)
.

In the statement above, Ass
0 (2, 0) is the space of semistable rank 2 bundles with

fixed trivial determinant, and the computation of the Poincaré polynomial for its
G0-equivariant cohomology is in [1].

Returning to the identification in Theorem 1.2 and the action of the Torelli group,
note that diffeomorphisms that do not preserve the complex structure of M do not act
in any natural way on Bss

0 (2, 0). However, by the contractibility of the Teichmüller
space of M there is nevertheless a canonical action of Mod(M) on the G0-equivariant
cohomology H∗

G0
(Bss

0 (2, 0)), and this corresponds via Theorem 1.2 to the action on
H∗

eq.(X0(π)) described above (see Section 3.2). The Γ2 action on Bss
0 (2, 0) given by

tensoring with 2-torsion line bundles commutes with GC
0 , and hence defines an action

on M0(2, 0) and on the G0-equivariant cohomology H∗
G0

(Bss
0 (2, 0)) of Bss

0 (2, 0). The
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proof of Theorem 1.1 proceeds by analyzing the splitting of the corresponding long
exact sequences in Morse theory over the action by Γ2 and using the fact that this
splitting is preserved by I(M).

The non-singular moduli space M0(2, 1) of stable Higgs bundles with a fixed
determinant of degree 1 introduced in [15] corresponds to representations of a central
extension of π, and below we state the analogue of Theorem 1.1 (see Theorem 3.7).
In this case, the result essentially follows from [15], where Hitchin computed the
cohomology of M0(2, 1) using the existence of a circle action. The perfection of the
Morse-Bott function associated to the circle action follows from a result of Frankel.

We observe that Hitchin’s method for computing the ordinary cohomology of
the odd degree moduli space works as well for M0(2, 0), where the moduli space is
singular. Let N0(2, k) denote the moduli space of semistable bundles on M of rank 2
and fixed determinant of degree k, and let

R0(π) = Hom(π, SU(2))/SU(2).

By the result of Narasimhan-Seshadri [21] there is a real analytic equivalence
N0(2, 0) ≃ R0(π). We will prove

Theorem 1.4. The circle action on the singular variety M0(2, 0) gives rise to a
perfect Morse-Bott stratification whose minimum stratum retracts onto N0(2, 0). In
particular, the natural inclusions R0(π) →֒ X0(π) and R

irr.
0 (π) →֒ X

irr.
0 (π) induce

surjections on rational cohomology.

Here and throughout, the superscript irr. stands for irreducible representations.
A consequence of this result is a computation of the Betti numbers of X0(π). The
Poincaré polynomial of R0(π) was computed in [3, Thm. 2.2].

Pt(R
irr.
0 (π)) = PG0

t (A0(2, 0)) − (1 + t)2g(1 + t2) + (1 − t)2g(1 − t2)

2(1 − t4)

(1.7)

+

g∑

k=2

{(
2g

k

)
−

(
2g

k − 2

)}
t2k−ǫ(2,k) (1 − tk+ǫ(2,k))(1 − t2g−2k+2)

(1 − t)(1 − t4)

(1.8) Pt(R0(π)) = Pt(R
irr.
0 (π)) − (1/2)t((1 + t)2g + (1 − t)2g) +

(1 − t2g+2)

(1 − t)
,

where ǫ(2, k) is 0 or 1, depending on whether k is even or odd, respectively. Using
Theorem 1.4 and adding contributions from the other strata we obtain the following

Theorem 1.5. The Poincaré polynomials of X0(π) and X
irr.
0 (π) are

• Pt(X0(π)) = Pt(R0(π)) + C(t, g).
• Pt(X

irr.
0 (π)) = Pt(R

irr.
0 (π)) + C(t, g).

In [3], Cappell, Lee, and Miller also showed that the Torelli group acts non-
trivially on the ordinary cohomology of R0(π). Using this and the second statement
of Theorem 1.4, we find the following result, which stands in contrast to that of
Theorem 1.1.

Corollary 1.6. For g > 3, PI(M) acts non-trivially on the ordinary cohomology
H∗(X0(π)) and H∗(Xirr.

0 (π)).
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The action of Γ2 on the cohomology of the moduli of space of vector bundles has
been an important theme in the subject. The triviality of the action on H∗(N0(2, 1))
was first proved in [12, Thm. 1] by number theoretic methods. It was reinterpreted
by Atiyah-Bott in [1] where it is also shown that Γ2 acts trivially on equivariant
cohomology H∗

G0
(Ass(2, 0)) [1, Sects. 2 and 9]. The non-triviality of the action of

Γ2 on H∗(M0(2, 1)) was observed by Hitchin [15] and it was further exploited in
[14]. The non-triviality of the action of Γ2 on H∗

G0
(Bss(2, 0)) was discussed in [7] in

connection with the failure of Kirwan surjectivity. It follows from Theorem 1.4 that
Γ2 acts non-trivially on the ordinary cohomology H∗(M0(2, 0)) as well. We will also
prove the following version of the result of Harder-Narasimhan for the singular moduli
space (see Section 4.2).

Theorem 1.7. The action of Γ2 on ordinary cohomology H∗(N0(2, 0)) is trivial.

Finally, we consider the corresponding representation varieties for PU(2) and
PSL(2, C). Via the action of Γ2 on the moduli spaces M0(2, 0) and M0(2, 1) we
have the following identifications. Let

X̂(π) = Hom(π, PSL(2, C))
//

PSL(2, C).

Then X̂(π) = X̂e(π) ∪ X̂o(π), where

(1.9) X̂e(π) ≃ M0(2, 0)
/
Γ2 , X̂o(π) ≃ M0(2, 1)

/
Γ2,

and the union is disjoint. The even component X̂e(π) consists of representations that

lift to SL(2, C), and the odd component X̂o(π) consists of representations that do not
lift. A similiar description holds for PU(2) representations:

R̂(π) = Hom(π, PU(2))
/
PU(2) = R̂e(π) ∪ R̂o(π)

R̂e(π) ≃ N0(2, 0)
/
Γ2 , R̂o(π) ≃ N0(2, 1)

/
Γ2.(1.10)

By considering the Γ2-invariant cohomology of M0(2, 0) and M0(2, 1) we deduce the
following result for the action of Torelli on the space of projective representations.

Corollary 1.8. The Torelli group I(M) acts trivially on the cohomology of

R̂o(π) and X̂o(π). For g > 3, I(M) acts non-trivially on the cohomology of R̂e(π)

and X̂e(π). It also acts non-trivially on the subspaces of irreducible representations.

This paper is organized as follows. In Section 2 we define the moduli spaces of
bundles and Higgs bundles, state the correspondences with representation varieties,
and prove the equivalence Theorem 1.2. We also discuss the results of [7] on equivari-
ant Morse theory and tie this in with the Γ2-action. We conclude the section with the
relationship between the fixed and non-fixed determinant cases. In Section 3 we show
how to define the action of the Torelli group on equivariant cohomology, and using
the results from Section 2 we prove the main result Theorem 1.1. We also discuss the
case of odd degree. Finally, in Section 4, we prove Theorem 1.4 and deduce the Betti
numbers of the SL(2, C) character variety. We also use this to prove the assertions
of the remaining results stated above. Table 1 summarizes the action of the Torelli
group on the rational cohomology and equivariant cohomologies of the representation
varieties for G = SU(2), U(2), PU(2), SL(2, C), GL(2, C), and PSL(2, C).

Acknowledgment. The authors thank Bill Goldman and Dan Margalit for dis-
cussions.
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2. Cohomology of Higgs bundles and character varieties.

2.1. Definitions and equivariant cohomology. As in the Introduction, let
M be a compact Riemann surface of genus g ≥ 2. Fix p ∈ M and let O[p] denote
the holomorphic line bundle with divisor p. Let E → M be a complex vector bundle
of rank 2 and degree k = 0, 1 and fixed hermitian metric H . We denote by A(2, k)
(resp. Ass(2, k)) the space of hermitian (resp. semistable hermitian) connections on
E, and by B(2, k) (resp. Bss(2, k)) the spaces of Higgs bundles (resp. semistable Higgs
bundles) on E, i.e. a holomorphic bundle with a holomorphic 1-form Φ with values
in the endomorphism bundle of E (the Higgs field). The spaces A0(2, k), B0(2, k),
Ass

0 (2, k), Bss
0 (2, k) will denote the corresponding subspaces where the induced holo-

morphic structure on detE is fixed to be trivial if k = 0, and isomorphic to O[p] if
k = 1, and the Higgs field is traceless.

Let G (resp. GC) denote the group of real (resp. complex) gauge transformations
acting on the spaces above by precomposition, and G0 (resp. GC

0 ) the corresponding
fixed determinant groups. We use the following notation for the moduli spaces of
semistable bundles and semistable Higgs bundles.

N(2, k) = Ass(2, k)
//

GC

N0(2, k) = Ass
0 (2, k)

//
GC

0

M(2, k) = Bss(2, k)
//

GC

M0(2, k) = Bss
0 (2, k)

//
GC

0 ,

(2.1)

where the double slash indicates the identification of s-equivalent orbits. By the
results of Narasimhan-Seshadri, Hitchin, Corlette, Donaldson, and Simpson, we have
the following identifications of real analytic spaces (see [21, 15, 4, 8, 23]).

R(π) := Hom(π, U(2))
/
U(2) ≃ N(2, 0)

R0(π) := Hom(π, SU(2))
/
SU(2) ≃ N0(2, 0)(2.2)

X(π) := Hom(π, GL(2, C))
//

GL(2, C) ≃ M(2, 0)

X0(π) := Hom(π, SL(2, C))
//

SL(2, C) ≃ M0(2, 0),

where the double slash indicates the identification of orbits of reducibles with orbits
of their semisimplifications. Define the equivariant cohomologies of these spaces as in
(1.1).

H∗
eq.(R(π)) := H∗

U(2)(Hom(π, U(2)))

H∗
eq.(R0(π)) := H∗

SU(2)(Hom(π, SU(2)))

H∗
eq.(X(π)) := H∗

GL(2,C)(Hom(π, GL(2, C)))

H∗
eq.(X0(π)) := H∗

SL(2,C)(Hom(π, SL(2, C))).

(2.3)

The construction of N(2, k) and N0(2, k) as infinite dimensional symplectic quo-
tient varieties is well-known (cf. [1, 17]). We briefly review the aspects of Hitchin’s
construction of M0(2, k) that will be needed in the sequel (the details for M(2, k) are
similar). We furthermore focus on the case k = 0 since that is directly related to
representations of π. We view the cotangent bundle as follows:

T ∗A0 =
{
(A, Ψ) : A ∈ A0(2, 0) , Ψ ∈ Ω1(M,

√
−1 ad0 E)

}
,
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where ad0(E) denotes the bundle of traceless skew-hermitian endomorphisms of E.
According to [15], T ∗A0 is a hyperkähler manifold, and the action of the gauge group
G0 has associated moment maps

(2.4) µ1(A, Ψ) = FA + 1
2 [Ψ, Ψ] , µ2(A, Ψ) =

√
−1 dAΨ , µ3(A, Ψ) =

√
−1 dA(∗Ψ).

Then M0(2, 0) is the hyperkähler quotient

M0(2, 0) = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)

/
G0.

This is typically regarded as a reduction in steps in two different ways. The first point
of view (e.g. Hitchin and Simpson) is

(2.5) M0(2, 0) = µ−1
1 (0) ∩ B0(2, 0)

/
G0.

The second point of view (e.g. Corlette and Donaldson) is as the quotient

(2.6) X0(π) = µ−1
3 (0) ∩ (T ∗A0)

flat
/
G0,

where

(T ∗A0)
flat = {(A, Ψ) ∈ T ∗A0 : D = A + Ψ is a flat SL(2, C) connection} .

In Theorem 2.2 below, we will show that the two descriptions (2.5) and (2.6) give rise
to the same equivariant cohomology.

To begin, let

(2.7) BH
0 = µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0) = µ−1
1 (0) ∩ B0(2, 0) = µ−1

3 (0) ∩ (T ∗A0)
flat

denote the space of solutions to the Hitchin equations. Let G0(p) = {g ∈ G0 : g(p) = I}
denote the gauge group based at the point p. We denote the holonomy map

(2.8) holp : (T ∗A0)
flat

/
G0(p) −→ Hom(π, SL(2, C)).

Note that holp is SU(2)-equivariant with contractible fibers GC
0 (p)

/
G0(p). Restricted

to BH
0

/
G0(p), holp is a proper embedding. We denote the image

H(M) := holp
(
BH

0

/
G0(p)

)
⊂ Hom(π, SL(2, C)),

where we have included M in the notation to emphasize the dependence of H(M)
on the Riemann surface structure. Also, note that H(M) consists of semisimple
representations (cf. [15, Thm. 9.13]).

Proposition 2.1. The inclusion H(M) →֒ Hom(π, SL(2, C)) is an SU(2)-
equivariant deformation retract.

Proof. The proof uses the method in [4, 8] adapted to the case of non-irreducible
representations. The idea is to use the harmonic map flow to define a flow on the
space of representations. Convergence was shown in [4, 8], and here we prove that in
fact this defines a deformation retract. Let H2 and H3 denote the 2 and 3 dimensional
hyperbolic spaces, with π acting on H2 by a Fuchsian representation with quotient
M . Fix a lift p̃ of p, and a point z ∈ H3 so that PU(2) is identified with the stabilizer
of z in the isometry group PSL(2, C) of H3. Given ρ ∈ Hom(π, SL(2, C)), choose
D ∈ (T ∗A0)

flat with holp(D) = ρ. The hermitian metric gives a unique ρ-equivariant
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lift f : H2 → H3 with f(p̃) = z. Let ft, t ≥ 0, denote the harmonic map flow with
initial condition f . There is a unique continuous family ht ∈ SL(2, C), h∗

t = ht, such

that h0 = I, and htft(p̃) = z. Notice that a different choice of flat connection D̃

with holp(D̃) = ρ will be related to D by a based gauge transformation g. The flow

corresponding to D̃ is f̃t = g ·ft, and since g(p̃) = I, h̃t = ht. Hence, ht is well-defined
by ρ. The flow we define is ρt = htρh−1

t .

Set f̂t = htft, and notice that ft is ρt-equivariant. It follows from the Bochner
formula of Eells-Sampson [9] that the f̂t are uniformly Lipschitz. Hence, there is a

subsequence so that ftj
converges to a harmonic map f̂∞ : H2 → H3 with f̂∞(p̃) = z.

Moreover, f̂∞ is equivariant with respect to some isometric action of π on H3, and this
lifts to a homomorphism ρ∞ : π → SL(2, C), with the algebraic convergence ρtj

→ ρ∞

as tj → ∞. The harmonicity of f̂∞ implies that a flat connection D∞ = A∞ + Ψ∞

with holp(D∞) = ρ∞ satisfies µ3(A∞, Ψ∞) = 0, and so ρ∞ ∈ H(M). We will show
in the next paragraph that the limit ρ∞ is uniquely determined by ρ. Hence, we have
defined a map

(2.9) r : Hom(π, SL(2, C)) −→ H(M) : r(ρ) = ρ∞ = lim
t→∞

ρt.

To prove uniqueness of the limit, suppose hj = htj
, ρj = hjρh−1

j , ρj → σ, is a
convergent sequence along the flow. Assume first that ρ is not semisimple so that ρ
fixes a line L ⊂ C2. Since the representations in H(M) are semisimple the hj must
be unbounded, since otherwise we could extract a convergent subsequence hj → h
with σ = hρh−1. Hence, there is a sequence of unitary frames {vj , wj}, which we may
assume converges, with respect to which

hj =

(
λj 0
0 λ−1

j

)
, λj → ∞.

Fix α ∈ π, and using the frame {vj , wj} write

ρj(α) =

(
aj bj

cj dj

)
, ρ(α) =

(
mj nj

pj qj

)
.

Since ρj = hjρh−1
j we have

(
aj λ2

jbj

λ−2
j cj dj

)
=

(
mj nj

pj qj

)
,

and since ρj and the frame converge whereas λj → ∞, we find bj → 0 and pj → 0.
This is true for every α ∈ π. Since the limit σ is semisimple, it must be the case that
cj → 0 as well. In particular, we conclude that σ fixes L, and so σ is the just the
semisimplification of ρ. If ρ is semisimple there exists a ρ-equivariant harmonic map.
While this may or may not be unique, using the result of Hartman [13], we conclude
that the hj are bounded, and they and the associated maps converge uniquely.

Next, we claim that the map r is continuous. Fix ρ ∈ Hom(π, SL(2, C)), and
let ρj → ρ, σj = r(ρj), σ = r(ρ). Without loss of generality, we may assume
the ρj are irreducible. Choose smoothly converging flat connections Dj → D with
holp(Dj) = ρj and holp(D) = ρ. Then the associated equivariant maps fj → f . In
particular, the fj have uniformly bounded energy. We have σj-equivariant harmonic
maps uj : H2 → H3 with uj(p̃) = z. We also have a σ-equivariant harmonic map
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u : H2 → H3 with u(p̃) = z. Since the uj ’s have uniformly bounded energy (less
than the fj ’s), they form a uniformly Lipschitz family of maps. Hence, there is a
subsequential limit uj → û, where û is harmonic and equivariant with respect to
some σ̂ ∈ H(M) and σj → σ̂. We need to show σ̂ = σ. For each ρj , let ρj,t denote the
time t flow with initial condition ρj . Define ρt with initial condition ρ similarly. By
uniqueness of the harmonic map flow, for each fixed t, ρj,t → ρt as j → ∞. Hence,
we may choose a subsequence {jk} such that ρjk,k → σ. On the other hand, since ρj

is irreducible, there exist hk, h∗
k = hk, such that hkσjk

h−1
k = ρjk,k. We now consider

two cases. First, suppose the hk are bounded. Then we may assume without loss
of generality that hk → h∞ as k → ∞, where h∞ is hermitian, and h∞σ̂h−1

∞ = σ.
Now h∞û and u are σ-equivariant harmonic maps. By Hartman’s uniqueness theorem
[13], either they are equal, or they both map to a geodesic fixed by the action of σ.
In the former case, z = u(p̃) = h∞û(p̃) = h∞z, so h∞ is unitary. But h∞ is also
hermitian, so h∞ = I. In the latter case, σ and σ̂ are reducible. Assuming σ(γ) is not
central for some γ, then h∞ carries the orthogonal splitting of σ̂ to that of σ. Hence,
h∞h∗

∞ = h2
∞ is diagonal with respect to this splitting. But then so is h∞, and hence

it commutes with σ̂. We conclude in either case that σ̂ = σ. If the hk are unbounded,
then argue the same way as above. Namely, there is a sequence of unitary frames
{vk, wk}, which we may assume converges, with respect to which

hk =

(
λk 0
0 λ−1

k

)
, λk → ∞.

Fix α ∈ π, and using the frame {vk, wk} write

σjk
(α) =

(
ak bk

ck dk

)
, ρjk,k(α) =

(
mk nk

pk qk

)
.

Since hkσjk
h−1

k = ρjk
we have

(
ak λ2

kbk

λ−2
k ck dk

)
=

(
mk nk

pk qk

)
,

and since σjk
and ρjk,k converge whereas λk → ∞, we find bk → 0 and pk → 0. This

is true for every α ∈ π. Since the limits σ̂ and σ are both semisimple, it must be the
case that ck → 0 and nk → 0 as well, and hence σ̂ = σ. This proves the continuity of
r.

The following contains Theorem 1.2 as one case.

Theorem 2.2. The identifications (2.2) induce the following isomorphisms of
equivariant cohomologies:

H∗
eq.(R0(π)) ≃ H∗

G0
(Ass

0 (2, 0)) H∗
eq.(R(π)) ≃ H∗

G(Ass(2, 0))

H∗
eq.(X0(π)) ≃ H∗

G0
(Bss

0 (2, 0)) H∗
eq.(X(π)) ≃ H∗

G(Bss(2, 0)).

Proof. We shall see below that the equivariant cohomology in the fixed and
non-fixed determinant cases are related (see (2.19), (2.20), and Proposition 2.8). It
therefore suffices to prove the result for the fixed determinant cases. Consider flat
connections A

flat
0 (2, 0) on a rank 2 bundle with trivial determinant. The holonomy

holp gives an SU(2)-equivariant homeomorphism

A
flat
0 (2, 0)

/
G0(p) ≃ Hom(π, SU(2)),
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so H∗
G0

(Aflat
0 ) ≃ H∗

eq.(R0(π)). On the other hand, by the result in [6, 22], the inclusion

A
flat
0 (2, 0)

/
G0(p) →֒ Ass

0 (2, 0)
//

G0(p)

is an SU(2)-equivariant deformation retraction, and so H∗
G0

(Aflat
0 ) ≃ H∗

G0
(Ass

0 (2, 0)).

Since GC
0 /G0 is contractible, the equivalence for SU(2) representation varieties follows.

Now consider the case of representations to SL(2, C). By [24], the inclusion

(2.10) BH
0

/
G0(p) →֒ Bss

0 (2, 0)
/
G0(p)

is an SU(2)-equivariant deformation retract, so that H∗
G0

(Bss
0 (2, 0)) ≃

H∗
SU(2)(B

H
0

/
G0(p)). On the other hand, by Proposition 2.1 it follows that

H∗
SU(2)(B

H
0

/
G0(p)) ≃ H∗

SU(2)(H(M)) ≃ H∗
SU(2)(Hom(π, SL(2, C))).

Since SL(2, C)/SU(2) and GC
0

/
G0 are contractible, the result follows in this case as

well.

2.2. Equivariant Morse theory. There is an inductive procedure to build the
equivariant cohomology of Bss(2, k) and Bss

0 (2, k), analogous to the one used in [1]
for the equivariant cohomology of Ass(2, k) and Ass

0 (2, k). First, let C temporarily
denote either A(2, k) or B(2, k), C0 either A0(2, k) or B0(2, k), and Css, Css

0 the
corresponding subspaces of semistable bundles. Note that the spaces C, C0 are all
contractible. Hence, the map C ×G EG → BG (resp. C0 ×G0

EG0 → BG0) induces an
isomorphism

(2.11) AG : H∗(BG) −→ H∗
G(C)

(
resp. AG0

: H∗(BG0) −→ H∗
G0

(C)
)
.

Composing AG (resp. AG0
) with the inclusions ı : Css →֒ C (resp. ı0 : Css

0 →֒ C0)
induces a map

kG : H∗(BG) ≃ H∗
G(C) −→ H∗

G(Css) : kG = ı∗ ◦ AG(2.12)
(
resp. kG0

: H∗(BG0) ≃ H∗
G0

(C0) −→ H∗
G0

(Css
0 ) : kG0

= ı∗0 ◦ AG0

)
.

We refer to the maps kG and kG0
as the Kirwan maps. When these are surjective we

refer to this as Kirwan surjectivity.
Theorem 2.3 ([1]). Kirwan surjectivity holds for H∗

G(Ass(2, k)) and
H∗

G0
(Ass

0 (2, k)).

The situations for B(2, k) and B0(2, k) are somewhat different. To describe this
we recall the relevant results from [7]. Consider the functional

YMH(A, Ψ) = ‖FA + 1
2 [Ψ, Ψ]‖2

L2

on the space of holomorphic pairs B0(2, k) (resp. B(2, k)), where the Higgs field Φ
is related to Ψ by Ψ = Φ + Φ∗. The minimal critical set η0 is identified with the
Hitchin space (i.e. BH

0 (2.7) for k = 0), whereas the non-minimal critical sets ηd,
d = 1, 2, . . ., are Hitchin spaces of split bundles parametrized by the degree d of the
maximal destabilizing line subbundle. Let Yd denote the stable manifold of ηd, and
note that Y0 = Bss

0 (2, 0) (resp. Bss(2, 0)). It is shown in [24] that the L2-gradient
flow of YMH gives an equivariant retraction of Yd onto ηd. Denote by Xd = ∪d′≤dYd′ .
The main difficulty addressed in [7] is that unlike the situation in [1], Yd does not
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have a normal bundle in Xd, and the stable manifolds Yd are singular in general.
Nevertheless, it is shown in [7, Sect. 4] that for B(2, k) the long exact sequences of
the pair (Xd, Xd−1),

(2.13) · · · −→ Hp
G
(Xd, Xd−1)

αp

−→ Hp
G
(Xd)

βp

−→ Hp
G
(Xd−1)

γp

−→ · · ·

split (i.e. kerαp is trivial) into short exact sequences for all d. In particular, the
Kirwan map kG is surjective for H∗

G(Bss(2, k)).
It was also shown in [7] that the analogous sequence (2.13) does not split in

general for the fixed determinant case B0(2, k). An explicit description of the failure
of exactness goes as follows. Consider the following diagram from [7, eq. (29)].

(2.14) ...

δp−1

��

· · · γp−1

// Hp
G0

(Xd, Xd−1)

∼=

��

αp

// Hp
G0

(Xd)
βp

// Hp
G0

(Xd−1)
γp

// · · ·

Hp
G0

(ν−
d , ν′

d)

ζp

��

Hp
G0

(ν−
d , ν′′

d )

λp

��

Hp
G0

(ν′
d, ν

′′
d )

δp

��

...

For our purposes, the precise definitions of ν−
d , ν′

d, and ν′′
d are not important (see [7,

Def. 2.1] for more details). We will only use the following facts.

H
∗
G0

(Xd, Xd−1) ∼= H
∗
G0

(ν−
d , ν

′
d) [7, Prop. 3.1](2.15)

H
∗
G0

(ν−
d , ν

′′
d ) ∼= H

∗−2µd(ηd) ∼= (H(J0(M)) ⊗ H(BU(1)))∗−2µd [7, eqs. (12) and (27)]

(2.16)

H
∗
G0

(ν′
d, ν

′′
d ) ∼= H

∗−2µd(eS2g−2−2d
M) [7, eq. (13) and Sect. 4.2](2.17)

ker α
p ∼= ker ζ

p [7, Prop. 4.14](2.18)

where µd = g − 1 + 2d and S̃nM is the pull-back of the symmetric product fibration
SnM → Jn(M) by the Γ2 covering Jn(M) → Jn(M).

We now explain the relationship between this stratification and Prym represen-
tations. First, recall the definition (1.2) of Γ2. Let Γ̂2 = Hom(Γ2, {±1}). Fixing an
homology basis {ei}2g

i=1 for H1(M, Z) gives a dual generating set {γi}2g
i=1 of Γ2 defined

by γi(ej) = 1 − 2δij . There is then an isomorphism Γ2
∼→ Γ̂2 given by γ 7→ ϕγ where

ϕγ(γj) = γ(ej). We shall use this identification throughout the paper. Next, using
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the action of Γ2 on S̃nM we have

H∗(S̃nM) =
⊕

ϕ∈bΓ2

H∗(S̃nM)ϕ =
⊕

ϕ∈bΓ2

H∗(SnM, Lϕ),

where the subscript indicates the ϕ-isotypical subspace, and Lϕ → SnM is the flat line
bundle determined by ϕ. Let Lγ → M denote the flat line bundle on M determined
by γ. For γ 6= 1 we have (see [15, p. 98])

Hp(SnM, Lϕγ
) =

{
0 p 6= n

ΛnH1(M, Lγ) p = n.

Now H1(M, Lγ) = W−
γ , where W−

γ , as defined as in the Introduction, is the (−1)-
eigenspace of H1(Mγ), where Mγ is the double cover of M defined by γ. Using (2.17),
we have the following

Lemma 2.4 (cf. [7, Lemma 4.18]). Given a choice of homology basis there are
isomorphisms

H∗
G0

(ν′
d, ν

′′
d )Γ2 = H∗−2µd(S2g−2−2dM),

and for γ 6= 1,

H6g−6−q
G0

(ν′
d, ν

′′
d )ϕγ

=

{
0 q 6= 2g − 2 − 2d

V (q, γ) q = 2g − 2 − 2d.

The result we will need is

Proposition 2.5. Let S = {2j}g−2
j=1 .

1. (a) For q 6∈ S, the Kirwan map surjects onto H6g−6−q
G0

(Xd) for all d.
(b) For q ∈ S, p = 6g−6−q, there is precisely one d = dq, 2dq = 2g−2−q,

for which the horizontal long exact sequence in (2.14) fails to be exact.
2. Let q ∈ S.

(a) For d > dq, the Kirwan map is surjective onto H6g−6−q
G0

(Xd−1).
(b) For d = dq we have

0 −→ker γ6g−6−q −→ H6g−6−q
G0

(Xdq−1) −→ kerα6g−6−q+1 −→ 0

‖
β6g−6−q

(
H6g−6−q

G0
(Xdq

)
)

,

where kerα6g−6−q+1 is identified with
⊕

16=γ∈Γ2
V (q, γ).

(c) For d < dq, the sequence

0 −→ H6g−6−q
G0

(Xd, Xd−1)
α6g−6−q

−→ H6g−6−q
G0

(Xd)
β6g−6−q

−→ H6g−6−q
G0

(Xd−1) −→ 0

is exact.

Proof. First, we claim that kerαp+1 vanishes for all but one degree. Since exact
sequences are preserved upon restriction to isotypical pieces (cf. [7, Lemma 4.15]),
it suffices to prove this individually for (kerαp+1)Γ2 and (kerαp+1)ϕ, ϕ 6= 1. Now
(kerαp+1)Γ2 vanishes by [7, Cor. 4.17]. Similarly, the result for γ 6= 1 is a consequence
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of the second statement in Lemma 2.4. Since H6g−6−q(Bd,ε, B
′′
d,ε) → ker δ6g−6−q is

surjective, (2.16) implies that Γ2 acts trivially on ker δ6g−6−q. Now consider the exact
sequence

0 −→ ker δ6g−6−q −→ H6g−6−q(ν′
d, ν

′′
d ) −→ ker ζ6g−6−q+1 −→ 0.

By Lemma 2.4 it follows that

(ker ζ6g−6−q+1)ϕγ
≃ H6g−6−q(ν′

d, ν
′′
d )ϕγ

≃ V (q, γ).

Since kerα6g−6−q+1 ≃ ker ζ6g−6−q+1 by (2.18), the decomposition in part (b) follows.
This completes the proof.

We conclude this section by pointing out the following

Lemma 2.6. The action of Γ2 on kerβp in (2.14) is trivial for all p.

Proof. Consider the exact sequences

0 // kerαp

≀

��

// Hp(Xd, Xd−1)

≀

��

// kerβp

��

// 0

0 // ker ζp // Hp(ν−
d , ν′

d)
// kerλp // 0.

It follows that kerβp ≃ kerλp, and this is equivariant with respect to action of Γ2.
But kerλp ⊂ Hp(νd, ν

′′
d ), and by (2.16) the Γ2 action is trivial.

2.3. Fixed and non-fixed determinant. The equivariant cohomology for
fixed and non-fixed determinant spaces are related through the action of Γ2 =
H1(M, Z/2).

Proposition 2.7 (cf. [1, Sect. 9] and [7, Sect. 4.2]). Under the action of Γ2, we
have

H∗
G(Ass(2, k)) ≃ H∗

G0
(Ass

0 (2, k))Γ2 ⊗ H∗(Jk(M)) ⊗ H∗(BU(1))(2.19)

H∗
G(Bss(2, k)) ≃ H∗

G0
(Bss

0 (2, k))Γ2 ⊗ H∗(Jk(M)) ⊗ H∗(BU(1)).(2.20)

A similar relationship holds for the equivariant cohomology of the representation
varieties. For example, we have a Γ2-cover given by

Hom(π, SU(2)) × Hom(π, U(1)) −→ Hom(π, U(2)) : (ρ, σ) 7→ ρ · σ.

Moreover, the action of Γ2 on the left commutes with conjugation by SU(2) and acts
trivially on the cohomology of Hom(π, U(1)), so

H∗
SU(2)(Hom(π, U(2))) ≃ H∗

SU(2)(Hom(π, SU(2)))Γ2 ⊗ H∗(Hom(π, U(1)).

This works as well for SL(2, C) ⊂ GL(2, C). Since conjugation by the center is trivial
and J0(M) ≃ Hom(π, U(1)), we conclude

Proposition 2.8. The following hold:

H∗
eq.(R(π)) ≃ H∗

eq.(R0(π))Γ2 ⊗ H∗(J0(M)) ⊗ H∗(BU(1))

H∗
eq.(X(π)) ≃ H∗

eq.(X0(π))Γ2 ⊗ H∗(J0(M)) ⊗ H∗(BU(1)).
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3. Action of the Torelli group on equivariant cohomology.

3.1. General construction. Let P → M be a principal bundle with compact
structure group G. The gauge group G = AutP , may be regarded as the space of G-
equivariant maps P → G. From [1] we have the following description of the classifying
space of G.

BG = MapP (M, BG)(3.1)

EG = MapG(P, EG),(3.2)

where the subscript P indicates the component of maps which pull-back EG to P ,
and G indicates G-equivariant maps.

Let AP denote the affine space of G-connections on P , and T ∗AP its cotangent
space. In the following, let CP be either AP or T ∗AP . The gauge group G acts on
CP , and the map CP ×G EG → BG induces an isomorphism as in (2.11),

(3.3) AG : H∗(BG) −→ H∗
G(CP ).

Suppose now that φ : M → M is a diffeomorphism with a G-equivariant lift
φ̃ : P → P . We then have the following induced maps.

φC : CP −→ CP : ω 7→ φ̃∗(ω)(3.4)

φB : BG −→ BG : f 7→ f ◦ φ(3.5)

φE : EG −→ EG : f̃ 7→ f̃ ◦ φ̃(3.6)

φG : G −→ G : g 7→ g ◦ φ̃,(3.7)

where in the (3.5) and (3.6) we have used (3.1) and (3.2). Note that φB gives an
isomorphism on cohomology. Combining (3.4), (3.6), and (3.7), we have maps

φ̂C : CP ×G EG → CP ×G EG : (c, e) 7→ (φC(c), φE(e))

φ̂E : EG ×G EG → EG ×G EG : (e1, e2) 7→ (φE(e1), φE(e2)).

The following result is well-known (cf. [11]). We include the proof here for the
sake of completeness.

Proposition 3.1. For the action on cohomology we have: AG ◦ φ∗
B = φ̂∗

C ◦ AG.

Proof. The universal connection Ω on EG (cf. [20]) gives a map

(3.8) u : EG = MapG(P, EG) −→ CP : f̃ 7→ f̃∗(Ω),

which is surjective onto AP ⊂ CP . The map u is clearly G-equivariant. Moreover, it
induces an isomorphism on G-equivariant cohomology. Indeed, by G-equivariance, the
map

û : EG ×G EG −→ CP ×G EG : (e1, e2) 7→ (u(e1), φE(e2))

must, by the contractibility of EG and CP , give an isomorphism on cohomology. We
claim that u ◦ φE = φC ◦ u. Indeed,

u(φE(f̃)) = u(f̃ ◦ φ̃) = (f̃ ◦ φ̃)∗(Ω) = φ̃∗(f̃∗(Ω)) = φC(u(f̃)).
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It follows that

(3.9) û ◦ φ̂E = φ̂C ◦ û.

On the other hand, we also have that φE preserves G-orbits and covers the action
φB of φ on BG. For if f ∈ EG, g ∈ G, then φE(gf) = φG(g)φE(f). The map
[f ] : M → BG is defined [f ](s) = [f(s̃)] for any lift s̃ of s to P . Then the induced
map on BG therefore sends [f ] to

[φE(f)](s)] = [φE(f)(s̃)] = [f(φ̃(s̃))] = [f(φ̃(s))] = [f ](φ(s)) = φB(f)(s).

Hence,

(3.10) π ◦ φ̂E = φB ◦ π,

where π : EG ×G EG → BG is projection to the second factor. Equations (3.9) and

(3.10) imply û∗ ◦ AG ◦ φ∗
B = û∗ ◦ φ̂∗

A ◦ AG. Since û∗ is an isomorphism, the result
follows.

3.2. Action on moduli spaces. We apply the construction of the previous
section to the equivariant cohomology of the moduli spaces. First, recall that Mod(M)
is the group of components of isotopy classes of diffeomorphisms. For p ∈ M , choose
a fixed disk neighborhood D of p. We define Mod(M, D) to be the subgroup of the
group of components of isotopy classes of diffeomorphisms that are the identity on D
(where the isotopies are through diffeomorphisms that are the identity on D). Since
any diffeomorphism has a representative fixing D, the forgetful map Mod(M, D) →
Mod(M) is surjective. We define the subgroup I(M, D) of the Torelli group I(M)
similarly. For the trivial SU(2) bundle P → M , representatives φ of elements of
Mod(M) trivially lift to bundle maps φ̃ of P . For a bundle with Chern class 1, we
may fix trivializations on D and on the complement of D, and then define lifts for
representatives of elements in Mod(M, D).

Consider the space (T ∗A0)
flat. Given an element φ ∈ Diff(M), the result of

the previous section gave a homeomorphism φ̂ of (T ∗A0)
flat ×G0

EG0. Recall that
(T ∗A0)

flat is the space of flat SL(2, C) connections. Then (T ∗A0)
flat ×G0

EG0 is

invariant by φ̂. Isotopic diffeomorphisms φ give isotopic homeomorphisms φ̂. Hence,
we have defined an action of Mod(M) on H∗

G0
((T ∗A0)

flat). Now

H∗
G0

((T ∗A0)
flat) = H∗

SU(2)((T
∗A0)

flat
/
G0(p)) ≃ H∗

eq.(X0(π)),

where the second identification comes from the holonomy map holp (see (2.8)). Hence,
there is an action of Mod(M, D) on H∗

eq.(X0(π)). If φ ∈ Diff(M, D) and D is a
flat connection, then holp(φ

∗D) = holp(D) ◦ φ∗, where φ∗ denotes the action on π.
Hence, the action of Mod(M, D) agrees with the canonical action on H∗

eq.(X0(π)) by
automorphisms of π. In particular, automorphisms in the kernel of the surjection
Mod(M, D) → Mod(M) act trivially, and so there is a well-defined action of Mod(M)
on X0(π).

Mapping classes that do not preserve a complex structure on M do not act in any
natural way on Bss

0 (2, 0). On the other hand, let T(M) denote the Teichmüller space
of M . Let

B
ss
0 (2, 0) =

{
(E, Φ, J) : J complex structure on M,

(E, Φ) → (M, J) semistable Higgs bundle
}
.
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Let Diff0(M) be the group of diffeomorphisms of M isotopic to the identity, with the
action on Bss

0 (2, 0) given by pulling back. Projection to the J-factor gives a locally
trivial fibration

{Bss
0 (2, 0) × EG0}

/
Diff0(M) ⋉ G0 → T(M),

with fiber homeomorphic to Bss(2, 0)×G0
EG0. By the contractibility of T(M),

H∗
G0

(Bss
0 (2, 0)) ≃ H∗

G0
(Bss

0 (2, 0)).

The mapping class group Mod(M) acts on the left hand side and so defines an action
on the equivariant cohomology H∗

G0
(Bss

0 (2, 0)).

Proposition 3.2. The action of Mod(M) on H∗
G(Bss

0 (2, 0)) agrees with the
action on H∗

eq.(X(π)).

Proof. It suffices to check the action of Diff(M, D). Clearly, this is equivariant
with respect to the embeddings (2.10) and (2.9), and it commutes with the action of
SU(2). The result then follows from Theorem 2.2.

A similar construction holds for the non-fixed determinant cohomology
H∗

G(Bss(2, 0)). For k = 1, notice that the condition of determinant O[p], p ∈ D,
is preserved by Diff0(M, D). Consider the universal space of semistable Higgs pairs:

B
ss
0 (2, 1) =

{
(E, Φ, J) : J complex structure on M, (E, Φ) → (M, J) a semistable

Higgs bundle, detE = O[p]
}
.

Projection to the J-factor gives a locally trivial fibration

{B
ss
0 (2, 1) × EG0}

/
Diff0(M, D) ⋉ G0 → T̃, (M)

with fiber homeomorphic to Bss
0 (2, 1)×G0

EG0. Here, T̃(M) fibers over T(M) with fiber

Diff0(M)/Diff0(M, D). Since T̃(M) is also contractible, the analogue of Proposition
3.2 holds in this case as well. A similar construction holds for the non-fixed determi-
nant cohomology H∗

G(Bss(2, 1)).
Clearly, the fiberwise action of Γ2 commutes with the action of I(M) defined

above. Also, let J0(M) → T(M) denote the universal Jacobian variety and T ∗
v J0(M)

the vertical cotangent space. The trace map T described in [7, Sect. 4.2] extends
fiberwise to give a fibration

{Bss(2, 0) × EG}
/
Diff0(M, D) ⋉ G0

��

T
// T ∗

v J0(M)

π

��

T(M)
∼

// T(M),

with fiber over ℓ given by
(
{Bss

0 (2, 0) × EG0}
/
Diff0(M, D) ⋉ G0

)∣∣
π(ℓ)

. Then T is

equivariant with respect to the action of Mod(M) defined above, and the action
by pull-back on T ∗

v J0(M). A similar construction holds for k = 1. The following is
immediate (cf. (2.20)).

Proposition 3.3. The action of I(M) (resp. I(M, D)) preserves the decomposi-
tion in (2.20).
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We now draw some consequences from this set-up. First, we have

Proposition 3.4. The action of I(M) (resp. I(M, D)) on H∗
G(Bss(2, 0)) ≃

H∗
eq.(X(π)) (resp. H∗

G(Bss(2, 1))) is trivial.

Proof. Let ı : Bss(2, 0) →֒ T ∗A(2, 0) denote the inclusion. By Proposition 3.1,
the Kirwan map kG = ı∗ ◦ AG is equivariant. On the other hand, by [7, Thm. 4.1],
it is also surjective (see the discussion following Theorem 2.3 above). Hence, the
triviality comes from the triviality of the action on the cohomology of BG (see [1])
and Proposition 3.1.

The next result follows from (2.20) and Propositions 3.4 and 3.3.

Corollary 3.5. The action of I(M) (resp. I(M, D)) is trivial on the Γ2-
invariant part of H∗

G0
(Bss

0 (2, 0)) (resp. H∗
G0

(Bss
0 (2, 1))).

3.3. Proof of Theorem 1.1. As in Section 2.2, we assume a homology basis is
fixed so that we have an identification Γ2 ≃ Γ̂2. We may universalize the description
of the stratification in Section 2.2 over Teichmüller space. In particular, the critical
sets ηd, stable manifolds Xd, and the spaces ν−

d , ν′
d, and ν′′

d , as the complex structure
of M varies, are all invariant by the action of the mapping class group described in
the previous section. Hence, as above this gives an action of the mapping class group
on the equivariant cohomology of these spaces. Moreover, this action commutes with
the action of Γ2. With this understood, we have the following (cf. Proposition 2.5
(b)).

Lemma 3.6. For q ∈ S and γ ∈ Γ2, (kerα6g−6−q+1)ϕγ
≃ V (q, γ) as representa-

tions of I(M).

Part (1) of Theorem 1.1 is the precisely the statement in Corollary 3.5. For
part (2), fix q ∈ S and 1 6= γ ∈ Γ2. Consider the horizontal long exact se-
quence in (2.14). By Proposition 2.5 (2a), [1], and Proposition 3.1, it follows that
H6g−6−q(Xd)ϕγ

= {0} for d ≥ dq. By Proposition 2.5 (2b) and Lemma 3.6, it follows
that H6g−6−q(Xdq−1)ϕγ

≃ V (q, γ). Finally, for d < dq, (2.14) is exact by Proposition
2.5 (2c). Also, by Lemma 2.6, Γ2 acts trivially on the image of α6g−6−q, and so

H6g−6−q(Xd)ϕγ
≃ H6g−6−q(Xd−1)ϕγ

.

It follows that H6g−6−q(Xd)ϕγ
≃ V (q, γ) for all d < dq. This proves part (2). Finally,

part (4) follows from Proposition 2.5 (1), [1], and Proposition 3.1.

3.4. Odd degree Hitchin space. Let 0 → Z → π̃ → π → 1 be the universal
central extension of π = π1(M). In terms of a symplectic basis {ai, bi}g

i=1, we have
the following presentations.

π =
〈
ai, bi, i = 1, . . . , g :

g∏

i=1

[ai, bi] = 1
〉

π̃ =
〈
ai, bi, c, i = 1, . . . , g :

g∏

i=1

[ai, bi] = c , c central
〉
.

Set

Ro(π̃) = {ρ : π̃ → SU(2) : ρ(c) = −I}
/
SU(2)

Xo(π̃) = {ρ : π̃ → SL(2, C) : ρ(c) = −I}
/
SL(2, C).
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Then we have the following identifications of smooth real analytic varieties (cf. [1, 15]).

(3.11) Ro(π̃) = N0(2, 1) , Xo(π̃) = M0(2, 1).

The group I(M, D) acts by outer automorphisms on π, and this action lifts to π̃.
Hence, there is an action of I(M, D) on Ro(π̃) and Xo(π̃), and one can verify that with
respect to the identifications above this corresponds to the actions on the equivariant
cohomology of the spaces Ass

0 (2, 1) and Bss
0 (2, 1), respectively.

There is a free action of Γ2 on Ro(π̃) and Xo(π̃) as before, and it is clear that
the orbit of a representation under Γ2 consists of all possible lifts of the associated
projective representation. Hence,

(3.12) R̂o(π) = Ro(π̃)
/
Γ2 , X̂o(π) = Xo(π̃)

/
Γ2

(see (1.9)).
Consider an unramified double cover Mγ → M as in the Introduction. Suppose

without loss of generality that D is covered by disjoint disks D̃i, i = 1, 2, in Mγ . Then

for f ∈ I(M, D) there is a unique lift to Mγ that is the identity on the D̃i. Hence,

the Prym representation (1.3) gives a well-defined homomorphism Π̃γ : I(M, D) −→
Sp(W−

γ , Z). We also have induced representations of I(M, D) on (1.4), now for the
case where q is odd as well. As in (1.5) we define

(3.13) PI(M, D) =
⋂

16=γ∈Γ2

ker Π̃γ .

With this understood, we state the following analogue of Theorem 1.1.

Theorem 3.7.
1. I(M, D) acts trivially on H∗(Xo(π̃))Γ2 .

2. For q ∈ S̃ = {2j − 1}g−1
j=1 the action of I(M) splits as

H6g−6−q(Xo(π̃)) = H6g−6−q(Xo(π̃))Γ2 ⊕
⊕

16=γ∈Γ2

V (q, γ).

In particular, PI(M, D) acts trivially and I(M, D) acts non-trivially on
H∗(Xo(π̃)). The splitting of the sum of V (q, γ)’s is canonically determined
by a choice of homology basis of M .

3. I(M, D) acts trivially on H6g−6−q(Xo(π̃)) for q 6∈ S̃.

The proof uses the stratification in [7] as in the even degree case. We omit the
details.

4. Topology of the character variety and further results.

4.1. Morse theory. In this section we point out that Hitchin’s method for
computing the cohomology of M0(2, 1) applies to the singular case M0(2, 0) as well.
Recall that the circle action on M0(2, 0) is given by eiθ(A, Φ) = (A, eiθΦ). The
associated Morse function is

f(A, Φ) = 2i

∫

M

Tr ΦΦ∗ = ‖Φ‖2
L2.

The fixed points of the circle can be computed as in [15, Prop. 7.1] and correspond
either to Φ ≡ 0 or to splittings

E = L ⊕ L∗ , deg L = d = 1, . . . , g − 1 , Φ =

(
0 0
ϕ 0

)
, ϕ ∈ Ω0(M, L2 ⊗ K).
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In particular, since the singularities of M0(2, 0) correspond to splittings

E = L ⊕ L∗ , deg L = 0 , Φ =

(
ϕ1 0
0 ϕ2

)
, ϕi ∈ Ω0(M, K),

it follows that the fixed points of the S1 action not in the minimum of f are contained
within the non-singular locus M

s
0(2, 0) of stable Higgs bundles. We summarize this

as follows.

Proposition 4.1. The fixed point set for the circle action on M0(2, 0) is para-
metrized by connected components Cd, d = 0, . . . , g − 1.

• C0 is homeomorphic to N0(2, 0).
• Cd, d = 1, . . . , g − 1, is contained in the non-singular locus M

s
0(2, 0). Each

Cd is diffeomorphic to the Γ2 covering S̃2g−2d−2M of the symmetric product
S2g−2d−2M .

Recall that a rank 2 unstable holomorphic vector bundle (E, ∂̄E) has a Harder-
Narasimhan type (d,−d), d > 0, where d is the maximal degree of a line subbundle
of E. We stratify M0(2, 0) by subsets

U0 =
{
(∂̄E , Φ) : ∂̄E semistable

}
, Ud =

{
(∂̄E , Φ) : ∂̄E has HN type (d,−d)

}
.

Setting Us
0 = U0∩M

s
0(2, 0), Us

0 and Ud, d ≥ 1, also define a stratification of M
s
0(2, 0).

Proposition 4.2.
1. U0 is open in M0(2, 0) and Ud is a locally closed submanifold of M

s
0(2, 0) of

real codimension 2µd = 2g+4d−2, d = 1, . . . , g−1. Moreover, Ud ⊂
⋃

d′≤d

Ud.

2. For d = 0, . . . , g − 1, the map Ψ : R+ × Ud −→ Ud given by Ψt(∂̄E , Φ)) =
(∂̄E , e−tΦ) defines a deformation retract of Ud to the critical set Cd.

Remark 4.3. In fact, we can show more. Namely, Ψ is the gradient flow of f ,
2µd is the index of f at the critical set Cd viewed as a Morse function on M

s
0(2, 0), and

Ud is the stable manifold of ∇f associated to Cd (this statement may not be true for
higher rank). The proof of this is analogous to [2, Prop. 4.1] where the corresponding
statements are proved for stable pairs instead of Higgs bundles.

Proof of Proposition 4.2. (1) follows as in [6, Prop. 3.7]. To show (2), if (∂̄E , Φ) ∈
U0, then ∂̄E is semistable, and (∂̄E , e−tΦ) → (∂̄E , 0) ∈ C0. If (∂̄E , Φ) ∈ Ud, d ≥ 1,
let L be a destabilizing line bundle of degree d, and set ∂̄0 = ∂̄L ⊕ ∂̄L∗ and write
β ∈ Ω0,1(L2) for the second fundamental form of ∂̄E . Also, write Φ = Φ0 +Φ1, where

Φ0 =

(
0 0
ϕ 0

)
, ϕ ∈ H0(M, L2 ⊗ K),

and Φ1 preserves L. For gt =

(
e−t/2 0

0 et/2

)
, we have

Ψt(∂̄E , Φ) = (∂̄E , e−tΦ) = (gt · ∂̄E , e−tgtΦg−1
t ) =

(
∂̄0 +

(
0 e−tβ
0 0

)
, Φ0 + Φ1(t)

)
,

and Φ1(t) → 0 as t → ∞. It follows that Ψt(∂̄E , Φ) → (∂̄0, Φ0) ∈ Cd as t → ∞. Since
Cd is fixed by Ψt, it follows that Cd is a deformation retract of Ud.
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The next result is the analogue of Frankel’s theorem [10] in the context of the
singular variety M0(2, 0).

Theorem 4.4. The long exact sequence in cohomology with rational coefficients
for the pairs (∪d≤d0

Ud,∪d<d0
Ud) splits into short exact sequences

0 −→ H∗ (∪d≤d0
Ud,∪d<d0

Ud) −→ H∗ (∪d≤d0
Ud) −→ H∗ (∪d<d0

Ud) −→ 0.

In particular, the inclusion maps Cd →֒ M0(2, 0) induce surjections in cohomology

H∗(M0(2, 0)) −→ H∗(Cd) −→ 0.

The same result holds for the stratification of M
s
0(2, 0).

Proof. The proof follows the outline in [1] and [16]. Let U≤d0
= ∪d≤d0

Ud and
U<d0

= ∪d<d0
Ud. The S1-equivariant stratification Ud, d = 0, 1, . . . , g − 1 induces a

long exact sequence in cohomology

· · · −→ Hq−1
S1 (U<d0

)
δq−1

−→Hq
S1 (U≤d0

, U<d0
)

αq

−→Hq
S1 (U≤d0

)
βq

−→Hq
S1 (U<d0

) −→ · · ·

that splits into short exact sequences due to the fact that the S1-equivariant Euler
class of the normal bundle of Ud in U≤d0

induces injections

αq : Hq
S1 (U≤d0

, U<d0
) ≃ Hq−2µd

S1 (Ud) ≃ Hq−2µd

S1 (Cd) →֒ Hq
S1 (U≤d0

)

(cf. [1, Prop. 13.4] and [16, Lemma 2.18]). The same is true for the stratification
Us

0 , Ud, d = 1, . . . , g − 1. The point is that by Proposition 4.1 all the singularities of
M0(2, 0) are contained in the open stratum, and therefore a normal neighborhood of
Ud can be chosen in the smooth locus.

Next, notice that for any G, the map  : X ≃ X × EG → X ×G EG induces a
map ∗ : H∗

G(X) → H∗(X). Consider now the exact sequences

Hq−1
S1 (U<d0

)

γq−1

d0−1

��

δq−1

// Hq
S1 (U≤d0

, U<d0
)

ζq

��

αq

// Hq
S1 (U≤d0

)

γq

d0

��

βq

// Hq
S1 (U<d0

)

γq

d0−1

��

Hq−1 (U<d0
)

δ̄q−1

// Hq (U≤d0
, U<d0

)
ᾱq

// Hq (U≤d0
)

β̄q

// Hq (U<d0
) .

We will show by induction on d0 that ᾱq is injective and γq
d0−1 is surjective. For

d0 = 0, U<d0
= ∅, hence both assertions trivially hold. Assume the claim for all

d < d0. If ᾱq(w̄) = 0, write w̄ = δ̄q−1(ū), where by induction ū = γq−1
d0−1(u) for some

u. If w = δq−1u, then αqw = αqδq−1u = 0, so by the injectivity of αq, w = 0, and
therefore

0 = ζqw = ζqδq−1u = δ̄q−1γq−1
d0−1u = δ̄q−1ū = w̄.

This proves the injectivity of ᾱq. To show that γq
d0

is surjective, let w̄ ∈ Hq (U≤d0
).

By the induction hypothesis for d0 − 1, we may write β̄q(w̄) = γq
d0−1u. The splitting

of the top sequence implies that u = βqw. Therefore,

β̄q(w̄ − γq
d0

w) = β̄qw̄ − γq
d0−1β

qw = γq
d0−1u − γq

d0−1u = 0,
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so w̄ = γq
d0

w + ᾱq v̄. On the other hand, under the Thom isomorphism the map ζq

corresponds to the t = 0 factor:

Hq
S1 (U≤d0

, U<d0
)

ζq

��

≃
⊕

s+t=q−2µd
Hs(Cd) ⊗ Ht(BS1)

��

Hq (U≤d0
, U<d0

) ≃ Hq−2µd(Cd),

which is clearly surjective. Hence, w̄ = γq
d0

w + ᾱqζqv = γq
d0

(w + αqv), and therefore
γq

d0
is surjective, completing the induction.

4.2. Proofs. In this final section we complete the proofs of the remaining asser-
tions in the Introduction.

Proof of Theorems 1.4 and 1.5. Theorem 1.4 is an immediate consequence of
Theorem 4.4. To compute the Betti numbers, we have by Proposition 4.1 and Theorem
4.4 that

Pt(M0(2, 0)) =

g−1∑

d=0

t2µdPt(Cd) = Pt(C0) +

g−1∑

d=1

t2µdPt(Cd)

= Pt(N0(2, 0)) +

g−1∑

d=1

t2µdPt(S̃
2g−2−2dM).

The sum on the right hand side above can be evaluated (see [7], eq. (46)). The result
is precisely C(t, g) in (1.6). The computation for M

s
0(2, 0) follows similarly. This

completes the proof of Theorem 1.5.

Next, we consider Theorem 1.7. Embed U(1) ⊂ SU(2) as eiθ 7→
(

eiθ 0
0 e−iθ

)
,

and let N(U(1)) ⊂ SU(2) denote its normalizer. This induces embeddings A(1, 0) →֒
A0(2, 0) and G(1) →֒ G0. Similarly, the embedding U(1) × U(1) →֒ U(2) as diagonal
matrices induces embeddings A(1, 0)×A(1, 0) →֒ A(2, 0) and G(1)×G(1) →֒ G. With
this understood, we make the following definitions.

Z1 = A(1, 0)
/
Gp(1) ×N(U(1)) E(SU(2))

Ẑ1 = A(1, 0) × A(1, 0)
/
(G(1) × G(1))p ×N(U(1)×U(1)) E(U(2))

Z2 = A0(2, 0)
/
G0(p) ×SU(2) E(SU(2))

Ẑ2 = A(2, 0)
/
G(p) ×U(2) E(U(2)).

The spaces Z1 and Z2 are precisely the spaces Y1b and Y2 in [3, eq. (2.3-4)]. Note

that E(SU(2)) ≃ E(U(2)). The trace map gives a fibration of Ẑ2 → A(1, 0)/Gp(1),

and the inclusion Ẑ1 →֒ Ẑ2 gives a subfibration Ẑ1 → A(1, 0)/Gp(1). Since the fibers
over the trivial connection are Z1 →֒ Z2, the corresponding actions of the monodromy
π1(A(1, 0)/Gp(1)) ≃ π1(J0(M)) on the cohomology of the fibers commute with the
map H∗(Z2) → H∗(Z1) induced by inclusion.

Lemma 4.5. The action of π1(A(1, 0)/Gp(1)) on H∗(Z1) is trivial.
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Proof. We have homotopy equivalences of fibrations

Z1

��

≃ F = J0(M) ×Z/2 E(Z/2)

��

Ẑ1

Tr

��

≃ X = J0(M) × J0(M) ×Z/2 E(Z/2)

det

��

A(1, 0)/Gp(1) ≃ J0(M),

where the action of Z/2 on the Jacobian corresponding to Z1 is L 7→ L∗, and on the

product corresponding to Ẑ1 it is (L1, L2) 7→ (L2, L1). Hence, it suffices to prove that
the action of π1(J0(M)) on H∗(F ) from the fibration X is trivial. Since J0(M) is a
torus this will be true if the corresponding statement holds for the restriction to any
embedded S1 ⊂ J0(M). We may write

X
∣∣
S1

≃ F × [0, 1]
/
(x, 0) ∼ (x, φ(x))

for the monodromy φ : F → F . If j : F →֒ X
∣∣
S1

denotes the inclusion of the fiber
over 0, there is an exact sequence

· · · −→ H∗(X
∣∣
S1

)
j∗−→H∗(F )

1−φ∗

−→H∗(F ) −→ H∗+1(X
∣∣
S1

) −→ · · · .

In particular, to prove that the action of φ∗ is trivial it suffices to show that the
inclusion F →֒ X induces a surjection on cohomology. The Z/2 cover

X̃ = J0(M) × J0(M) × E(Z/2)

is a trivial fibration, since the fibration J0(M)×J0(M) → J0(M) given by (L1, L2) →
L1 ⊗ L2 is trivial. Hence, H∗(X̃

∣∣
S1

) → H∗(F̃ ) is surjective, where the fiber F̃ is a

Z/2 cover of F . Since the cohomology of F and X
∣∣
S1

are the Z/2-invariant parts of

the cohomology of F̃ and X̃
∣∣
S1

, the result follows.

Proof of Theorem 1.7. By [1], Γ2 acts trivially on H∗(Z2) ≃ H∗(BG0). By Lemma
4.5, Γ2 also acts trivially on H∗(Z1). It follows that Γ2 acts trivially on H∗(Z2, Z1).
The proposition now follows by the argument in the proof of [3, Prop. 3.2].

We now have the following

Corollary 4.6. The inclusion R0(π) →֒ X0(π) induces a surjection

H∗ (X0(π))Γ2 → H∗ (R0(π)) in rational cohomology.

Proof. By Theorem 4.4, H∗ (X0(π)) → H∗ (R0(π)) is surjective, and it remains
exact on the Γ2-invariant subspaces. The result now follows by Theorem 1.7.

Proposition 4.7. For g > 3, the Torelli group I(M) acts non-trivially on the
rational cohomology of X(π) and R(π).

Proof. As in Section 2.2, the determinant fibration M(2, 0) → J0(M) gives a
splitting

(4.1) H∗(M(2, 0)) ≃ H∗(M0(2, 0))Γ2 ⊗ H∗(J0(M)).
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Indeed, the map M0(2, 0)×J0(M) → M(2, 0) given by (E, Φ, L) 7→ (E⊗L, Φ) is a Γ2

covering. Applying this construction also to N(2, 0) and using Theorem 1.7, we have

H∗(N(2, 0)) ≃ H∗(N0(2, 0)) ⊗ H∗(J0(M)).

Hence, the non-triviality of the action of I(M) on H∗(N(2, 0)) follows from the non-
triviality of the the action on H∗(N0(2, 0)) [3]. By Corollary 4.6 and (4.1), this also
implies the non-triviality of the action on H∗(M(2, 0)).

Proof of Corollary 1.6. By Theorem 4.4 it suffices to show that PI(M) acts non-
trivially on the rational cohomology of the R0(π). This is true if and only if PI(M, D)
acts non-trivially. By the calculation in [3, Sect. 6], it suffices to show that the induced
map

H1(PI(M, D), Z) −→ H1(I(M, D), Z)

is surjective modulo torsion. On the other hand, by [18, Thm. 2.5] we have an exact
sequence

1 −→ PI(M, D) −→ I(M, D) −→ L −→ 1,

where L has finite index in
∏

06=γ∈Γ2
Sp(W−

γ , Z) (note that I(M, D) surjects onto

I(M)). Since g > 3, dimW−
γ ≥ 6. It follows from the Matsushima vanishing theo-

rem that Hom(L, Z) = {0}, hence, the map H1(I(M, D), Z) → H1(PI(M, D), Z) is
injective. This completes the proof.

Proof of Corollary 1.8. By (3.11) and (3.12), the first statement follows from
surjectivity of the Kirwan map for N0(2, 1) (cf. [1]) and Theorem 3.7 (1), respectively.

The statement for X̂e(π) will follow by showing the corresponding statement for R̂e(π)

and using the fact, Corollary 4.6, that the inclusion R̂e(π) →֒ X̂e(π) induces a surjec-

tion on cohomology. Finally, since R̂e(π) = R0(π)/Γ2, the result will follow from [3]
if we can show that rationally the cohomology of R0(π) is Γ2 invariant. But this is
the content of Theorem 1.7.
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Cohomology group I(M) acts trivially? Reference

H∗
eq.(X(π)) yes Prop. 3.4

H∗
eq.(R(π)) yes [1]

H∗(X(π)) no Prop. 4.7

H∗(R(π)) no Prop. 4.7

H∗
eq.(X0(π)) no Thm. 1.1 (2)

H∗
eq.(R0(π)) yes [1]

H∗(X0(π)) no Cor. 1.6

H∗(R0(π)) no [3, Thm. 1.1]

H∗(X̂o(π)) yes Cor. 1.8

H∗(R̂o(π)) yes Cor. 1.8

H∗(X̂e(π)) no Cor. 1.8

H∗(R̂e(π)) no Cor. 1.8

Table 1
Action of the Torelli group on cohomology of representation varieties (g > 3)

The results in this table also apply to the cohomology of the subspaces of irreducible represen-
tations
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