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GENERICITY OF CAUSTICS AND WAVEFRONTS

ON AN r-CORNER∗

TAKAHARU TSUKADA†

Abstract. We investigate genericities of reticular Lagrangian maps and reticular Legendrian
maps in order to give generic classifications of caustics and wavefronts generated by a hypersurface
germ without or with a boundary in a smooth manifold. We also give simpler proofs of main results
in [9],[10].
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1. Introduction. Lagrangian and Legendrian singularities can be found in
many problems of differential geometry, calculus of variations and mathematical
physics. One of the most successful their applications is the study of singularities
of caustics and wavefronts. For example, the particles incident along geodesics from
a smooth hypersurface in a Riemannian manifold to conormal directions define a La-
grangian submanifold at a point in the cotangent bundle and define a Legendrian
submanifolds at a point in the 1-jet bundle. The caustic generated by the hypersur-
face is regarded as the caustic of the Lagrangian map defined by the restriction of the
cotangent bundle projection to the Lagrangian submanifold and the wavefront gener-
ated by the hypersurface is regarded as the wavefront of the Legendrian map defined
by the restriction of the 1-jet bundle projection to the Legendrian submanifold. There-
fore the studies of the caustics and wavefronts generated by smooth hypersurfaces are
reduced to the studies of Lagrangian and Legendrian singularities.

Fig. 1. the caustic F+
4 and the wavefront C+

3

∗Received May 14, 2007; accepted for publication June 18, 2010.
†College of Humanities & Sciences, Department of Mathematics, Nihon University, Higashijujo

3-1-16 Kita-ku, Tokyo 114-0001 Japan (tsukada@math.chs.nihon-u.ac.jp).

335



336 T. TSUKADA

In [9] and [10] we investigated the more general cases when the hypersurface has
a boundary, a corner, or an r-corner. In these cases particles incident from all edges
of the hypersurface give a symplectic regular r-cubic configuration at a point of the
cotangent bundle which is a generalization of the notion of Lagrangian submanifolds
and particles incident from all edges of the hypersurface give a contact regular r-cubic

configuration at a point of the 1-jet bundle which is a generalization of the notion
of Legendrian submanifolds. The caustic generated by the hypersurface germ with
an r-corner is given by the caustic of the symplectic regular r-cubic configuration
which is a generalization of the notion of quasicaustics given by S.Janeszko (cf., [7]).
In these papers we investigated the stabilities of caustics and wavefronts generated
by the hypersurface germ with an r-corner by studying the stabilities of reticular

Lagrangian, Legendrian maps which are generalizations of the notions of Lagrangian,
Legendrian maps for our situations.

In this paper, we investigate the genericities of caustics and wavefronts generated
by a hypersurface with an r-corner. In order to realize this purpose, we shall investi-
gate the genericities of reticular Lagrangian, Legendrian maps. In these processes, we
shall need to prove the equivalences of the stabilities and the transversal stabilities of
reticular Lagrangian, Legendrian maps respectively. We shall use G.Ishikawa’s meth-
ods (cf., [5, Section 5]) for our situation (see also [5, Corollary 1.2]). They are simpler
than the proofs of the assertions (1)⇔(5) of Theorem 5.5 in [9, p.587] and Theorem
7.4 in [10, p.123] respectively.

The main results in this paper are the generic classifications of caustics generated
by the hypersurface germ with an r-corner on an n dimensional manifold in the cases
n ≤ 5, r = 0 and n ≤ 3, r = 1 and wavefronts in the cases n ≤ 6, r = 0 and
n ≤ 4, r = 1. In order to realize this, we shall classify generic reticular Lagrangian,
Legendrian maps for the above cases.

By our theory, we have that: A generic caustics is one of the
types A2, A

±
3 , A4, A

±
5 , A6, D±

4 , D
±
4 , D

±
6 , E

±
6 in the case n ≤ 5, r = 0 and

B±
2 , B

±
3 , B

±
4 , C

±
3 , C

±
4 , F

±
4 in the case n ≤ 3, r = 1. A generic wavefront is one

of the types A1, A2, A3, A4, A4, A6, D
±
4 , D5, D

±
6 , E6 in the case n ≤ 6, r = 0 and

B2, B3, B4, C
±
3 , C4, F4 in the case n ≤ 4, r = 1.

In history, our theory in the case r = 0 is known as Lagrangian and Legendrian
singularities (cf., [2]). The important theorems (cf., [2, p.325 Theorem, p.333
Theorem]) claim the equivalences of the stabilities of Lagrangian and Legendrian
maps and their generating families respectively. They are based on [1], but their
proofs are omitted. G. Ishikawa has given his theory (cf., [5]) of isotropic mappings

which contains the explicit proof of [2, p.325 Theorem]. He calls it Arnol’d, Tsukada
theorem (cf., [5, p.125 Theorem 1.1]) because the author has given its explicit proof
in [9] and he has referred it in his paper. In [9],[10], the author formulated our theory
including the explicit proofs of the above theorems by the methods which are partly
different from Ishikawa’s method. Our theory in the case r = 1 has been studied by
I.G.Scherbak(cf., [8]). She has introduced the notion of Lagrangian andLegendrian
pairs which is corresponding to the notion of regular 1-cubic configurations. But they
are not strictly formulated and no proof is given. The figures of generic caustics are
given in [2]. They do not distinguish between X+ and X− types and the figures of
generic wavefronts are given in neither [2] nor [8]. We give all figures of the generic
caustics and wavefronts in the above cases. In the cases r ≥ 2, our methods are not
available for generic classifications because of modalities of generating families. We
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shall give an idea for a classification of generic caustics in the case r = 2 at the last
section.

This paper consists of two parts. In Part I we recall the theory of reticular
Lagrangian and Legendrian maps and give some modifies for our purpose. In part 4
we investigate the genericities of reticular Lagrangian and Legendrian maps and give
the generic classifications of caustics in the cases r = 0, n ≤ 5 and r = 1, n ≤ 3,
wavefronts in the cases r = 0, n ≤ 6 and r = 1, n ≤ 4 respectively.

Part I. Review of reticular Lagrangian and Legendrian singularities.

We give a review of [9] and [10]. Details of their definitions and theories, see each
paper.

2. Stabilities of unfoldings. Let H
r = {(x1, . . . , xr) ∈ R

r|x1 ≥ 0, . . . , xr ≥ 0}
be an r-corner. We denote by E(r; k1, s; k2) the set of all germs at 0 in H

r × R
k1 of

smooth maps H
r×R

k1 → H
s×R

k2 and set M(r; k1, s; k2) = {f ∈ E(r; k1, s; k2)|f(0) =
0}. We denote E(r; k1, k2) for E(r; k1, 0; k2) and denote M(r; k1, k2) for M(r; k1, 0; k2).

If k2 = 1 we write simply E(r; k) for E(r; k, 1) and M(r; k) for M(r; k, 1). We also
write E(k) for E(0; k) and M(k) for M(0; k). Then E(r; k) is an R-algebra in the usual
way and M(r; k) is its unique maximal ideal.

Let Ir = {1, 2, . . . , r} and (x, y) = (x1, . . . , xr, y1, . . . , yk) be a fixed coordinate
system of (Hr × R

k, 0). We denote by B(r; k) the group of diffeomorphism germs on
(Hr × R

k, 0) of the form:

φ(x, y) = (x1φ
1
1(x, y), . . . , xrφ

r
1(x, y), φ

1
2(x, y), . . . , φ

k
2(x, y)).

We also denote by Bn(r; k+ n) the group of diffeomorphism germs on (Hr ×R
k+n, 0)

of the form:

φ(x, y, u)

= (x1φ
1
1(x, y, u), . . . , xrφ

r
1(x, y, u), φ

1
2(x, y, u), . . . , φ

k
2(x, y, u), φ1

3(u), . . . , φ
n
3 (u)).

We denote J l(r + k, 1) the set of l-jets at 0 of germs in M(r; k) and let
πl : M(r; k) → J l(r + k, 1) be the natural projection. We denote jlf(0) the l-jet of
f ∈ M(r; k). We also denote φ(x, y, u) = (xφ1(x, y, u), φ2(x, y, u), φ3(u)) and denote
other notations analogously. In this paper all maps and all map germs are supposed
to be smooth.

We say that f, g ∈ E(r; k) are reticular R-equivalent if there exists φ ∈ B(r; k)
such that g = f ◦φ. We say that f, g ∈ E(r; k) are reticular K-equivalent if there exist
φ ∈ B(r; k) and a unit a ∈ E(r; k) such that g = a · f ◦ φ.

We recall the stabilities of unfoldings under the reticular R+(K)-equivalences

which are developed in [9] and [10]. In order to distinguish equivalence relations
between function germs in M(r; k) and their unfoldings, we denote this equivalence
relation by the reticular P-R+(K)-equivalence in this paper.

We call a function germ f ∈ M(r; k) is R(K)-simple if the following holds: For
a sufficiently larger integer l, there exists a neighborhood N of jlf(0) in J l(r + k, 1)
such that N intersects with a finite number of R(K)-orbits. By [2, §17.4,p.279] we
have that:
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Theorem 2.1. An R-simple function germ in M(1; k)2 is stably R-equivalent to

one of the following function germs:

B±
l : ±xl (l ≥ 2), C±

l : xy ± yl (l ≥ 3), F±
4 : ±x2 + y3.

Theorem 2.2. (cf., [10, p.123]) A K-simple function germ in M(1; k)2 is stably
K-equivalent to one of the following function germs:

Bl : xl (l ≥ 2), Cε
l : xy + εyl (εl−1 = 1, l ≥ 3), F4 : x2 + y3.

Theorem 2.3. (cf., [9, Theorem 4.5],[10, Theorem 6.5]) Let G = R+ or K and

F ∈ M(r; k+n) be an unfolding of f ∈ M(r; k). Then the following are all equivalent.

(1) F is reticular P-G-stable.

(2) F is reticular P-G-versal.

(3) F is reticular P-G-infinitesimally versal.

(4) F is reticular P-G-infinitesimally stable.

(5) F is reticular P-G-homotopically stable.

3. Reticular Lagrangian singularity. We define L0
σ = {(q, p) ∈

(T ∗
R

n, 0)|qσ = pIr−σ = qr+1 = · · · = qn = 0, qIr−σ ≥ 0} for σ ⊂ Ir . Let
L = {(q, p) ∈ T ∗

R
n|q1p1 = · · · = qrpr = qr+1 = · · · = qn = 0, qIr

≥ 0} be the
representative as a germ of the union of L0

σ for σ ⊂ Ir . We call a map germ

(L, 0)
i

−→ (T ∗
R

n, 0)
π

−→ (Rn, 0)

a reticular Lagrangian map if there exists a symplectic diffeomorphism germ S on
(T ∗

R
n, 0) such that i = S|L.

We call a symplectic diffeomorphism germ φ on (T ∗
R

n, 0) a reticular diffeo-

morphism if φ(L0
σ) = L0

σ for σ ⊂ Ir. We say that reticular Lagrangian maps
π ◦ i1, π ◦ i2 : (L, 0) → (T ∗

R
n, 0) → (Rn, 0) are Lagrangian equivalent if there ex-

ist a reticular diffeomorphism φ and a Lagrangian equivalence Θ of π such that the
following diagram is commutative:

(L, 0)
i1−→ (T ∗

R
n, 0)

π
−→ (Rn, 0)

φ|L ↓ Θ ↓ g ↓

(L, 0)
i2−→ (T ∗

R
n, 0)

π
−→ (Rn, 0),

where g is the diffeomorphism of the base space of π induced by Θ.
We remark that there is not the condition that a reticular diffeomorphism is a

symplectic diffeomorphism in the definition in [9]. But a reticular diffeomorphism
defined in [9] consists of a restriction to L of compositions of two symplectic diffeo-
morphism and a Lagrangian equivalence, it follows that a reticular diffeomorphism in
[9] is automatically a restriction to L of symplectic diffeomorphism. So our definition
is equivalent to the one in [9].

We say that a function germ H on (T ∗
R

n, 0) is fiber preserving if H has the form
H(q, p) =

∑n

j=1 hj(q)pj + h0(q).

We recall the following theorem which is proved in [9].
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Theorem 3.1. (cf., [9, p.587 Theorem 5.5]) Let π ◦ i : (L, 0) → (T ∗
R

n, 0) →
(Rn, 0) be a reticular Lagrangian map with a generating family F (x, y, q) ∈ M(r; k +
n)2. Then the following are all equivalent.

(u) F is a reticular R+-stable unfolding of F |q=0.

(hs) π ◦ i is homotopically stable.

(is) π ◦ i is infinitesimally stable.

(a) For any function germ f on (T ∗
R

n, 0), there exists a fiber preserving function

germ H on (T ∗
R

n, 0) such that f ◦ i = H ◦ i.
(s) π ◦ i is stable.

The definition of the infinitesimally stability of reticular Lagrangian maps in [9]
seem to be different from our one. But these are equivalent by Lemma 6.1. The
assertion that (u), (hs),(is) and (a) are all equivalent is proved in [9]. But the proof of
(u)⇔(s) is slightly complicated. So we shall prove this assertion by another method
in Section 6.

4. Reticular Legendrian singularity. We define L̃0
σ = {(q, z, p) ∈

(J1(Rn,R), 0)|qσ = pIr−σ = qr+1 = · · · = qn = z = 0, qIr−σ ≥ 0} for each σ ⊂ Ir. Let
L̃ = {(q, z, p) ∈ J1(Rn,R)|q1p1 = · · · = qrpr = qr+1 = · · · = qn = z = 0, qIr

≥ 0} be a
representative as a germ of the union of L̃0

σ for all σ ⊂ Ir. We call a map germ

(L̃, 0)
i

−→ (J1(Rn,R), 0)
π̃

−→ (Rn × R, 0)

a reticular Legendrian map if there exists a contact diffeomorphism germ C on
(J1(Rn,R), 0) such that i = C|

L̃
.

We define the equivalence relation of reticular Legendrian maps. We call a contact
diffeomorphism germ φ on (J1(Rn,R), 0) a reticular diffeomorphism if φ(L̃0

σ) = L̃0
σ for

σ ⊂ Ir. We say that reticular Legendrian maps π̃◦i1, π̃◦i2 : (L̃, 0) → (J1(Rn,R), 0) →
(Rn × R, 0) are Legendrian equivalent if there exist a reticular diffeomorphism φ and
a Legendrian equivalence Θ of π̃ such that the following diagram is commutative:

(L̃, 0)
i1−→ (J1(Rn,R), 0)

π̃
−→ (Rn × R, 0)

φ|
L̃
↓ Θ ↓ g ↓

(L̃, 0)
i2−→ (J1(Rn,R), 0)

π̃
−→ (Rn × R, 0),

where g is the diffeomorphism of the base space of π̃ induced by Θ.

We say that a function germ H on (J1(Rn,R), 0) is fiber preserving if H has the
form H(q, z, p) =

∑n
j=1 hj(q, z)pj + h0(q, z).

Theorem 4.1. (cf., [10, p.123 Theorem 7.4]) Let π̃◦i : (L̃, 0) → (J1(Rn,R), 0) →
(Rn × R, 0) be a reticular Legendrian map with a generating family F (x, y, q, z) ∈
M(r; k + n+ 1). Then the following are all equivalent.

(u) F is a reticular P-K-stable unfolding of F |q=z=0.

(hs) π̃ ◦ i is homotopically stable.

(is) π̃ ◦ i is infinitesimally stable.

(a) For any function germ f on (J1(Rn,R), 0), there exists a fiber preserving function

germ H on (J1(Rn,R), 0) such that f ◦ i = H ◦ i.
(s) π̃ ◦ i is stable.

We shall prove the assertion (u)⇔(s) by the simpler method than that of [10] in
Section 7.
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Part II. Genericities of reticular Lagrangian, Legendrian maps. In this
part, we shall investigate finite determinacies of reticular Lagrangian and Legendrian
maps. We shall reduce our investigation to finite dimensional jet spaces of symplectic
and contact diffeomorphism germs and give the generic classifications of caustics and
wavefronts in the cases r = 0, r = 1 respectively.

5. Finite determinacy of reticular Lagrangian, Legendrian maps. Def-

inition 5.1. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a reticular Lagrangian map
and l be a non-negative number. We say that π◦ i is l-determined if the following con-
dition holds: For any extension S of i, the reticular Lagrangian map π ◦S′|L and π ◦ i
are Lagrangian equivalent for any symplectic diffeomorphism germ S′ on (T ∗

R
n, 0)

satisfying jlS(0) = jlS′(0).

Lemma 5.2. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a reticular Lagrangian

map. Let S1, S2 be symplectic diffeomorphism germs on (T ∗
R

n, 0) such that S1|L =
S2|L = i. Then there exists a reticular diffeomorphism germ φ such that S1 = S2 ◦ φ.

Proof. Set φ = (S2)
−1 ◦ S1. Then we have that φ|L = id and S1 = S2 ◦ φ.

By this lemma we have that the finite determinacy of reticular Lagrangian maps
do not depend on choices of extensions of their reticular Lagrangian embeddings.

Theorem 5.3. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a reticular Lagrangian

map. If π ◦ i is infinitesimally stable then π ◦ i is (n+ 1)-determined.

Proof. Let S be an extension of i. Since the infinitesimally stability of reticular
Lagrangian maps is invariant under Lagrangian equivalences, we may assume that the
canonical relation PS associated with S has the form:

PS = {(Q,−
∂H

∂Q
(Q, p),−

∂H

∂p
(Q, p), p) ∈ (T ∗

R
n × T ∗

R
n, (0, 0))}

for some function germ H(Q, p) ∈ M(2n)2. Then the function germ F (x, y, q) =
H0(x, y) + 〈y, q〉 ∈ M(r;n + n)2 is a generating family of π ◦ i, where H0(x, y) =
H(x1, . . . , xr, 0, . . . , 0, y1, . . . , yn) ∈ M(r;n)2. Since π ◦ i is infinitesimally stable,
it follows that F is a reticular P-R+-infinitesimally versal unfolding of H0(x, y) by
Theorem 3.1. This means that E(r;n)/〈x∂H0

∂x
, ∂H0

∂y
〉E(r;n) is at most (n+1)-dimension.

It follows that

M(r;n)n+1 ⊂ 〈x
∂H0

∂x
,
∂H0

∂y
〉E(r;n).

Therefore we have that

M(r;n)n+3 ⊂ M(r;n)(〈x
∂H0

∂x
〉 + M(r;n)〈

∂H0

∂y
〉).

This means that H0 is reticular R-(n+ 2)-determined by [9, p.583, Lemma 4.1]. Let
a symplectic diffeomorphism germ S′ on (T ∗

R
n, 0) satisfying jn+1S(0) = jn+1S′(0)

be given. Since ∂p◦S
∂p

(0) = ∂p◦S′

∂p
(0), it follows that there exists a function germ

H ′(Q, p) ∈ M(2n)2 such that

PS′ = {(Q,−
∂H ′

∂Q
(Q, p),−

∂H ′

∂p
(Q, p), p)}.
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Then the function germ G(x, y, q) := H ′
0(x, y) + 〈y, q〉 ∈ M(r;n + n)2 is a generat-

ing family of π ◦ S′|L, where H ′
0(x, y) = H ′(x, 0, y) ∈ M(r;n)2. Since jn+1S(0) =

jn+1S′(0), it means that jn+1 ∂H
∂Q

(0) = jn+1 ∂H′

∂Q
(0), jn+1 ∂H

∂p
(0) = jn+1 ∂H′

∂p
(0).

Therefore we have that jn+2H(0) = jn+2H ′(0) and hence jn+2H0(0) = jn+2H ′
0(0).

Thus there exists Φ(x, y) ∈ B(r;n) such that H0 = H ′
0 ◦ Φ. We set G′(x, y, q) :=

G(Φ(x, y), q) ∈ M(r;n + n)2. Then G and G′ are reticular P-R-equivalent, and F
and G′ are reticular P-R+-infinitesimal versal unfoldings of H0(x, y). It follows that
F and G are reticular P-R+-equivalent. Therefore π ◦ i and π ◦ S′|L are Lagrangian
equivalent.

We consider contact diffeomorphism germs on (J1(Rn,R), 0). Let (Q,Z, P ) be
canonical coordinates on the source space and (q, z, p) be canonical coordinates of the
target space. We define the following notations:
ı : (J1(Rn,R) ∩ {Z = 0}, 0) → (J1(Rn,R), 0) be the inclusion map on the source
space.

C(J1(Rn,R), 0) = {C : (J1(Rn,R), 0) → (J1(Rn,R), 0)|C : contact diffeomorphism}

Cθ(J1(Rn,R), 0) = {C ∈ C(J1(Rn,R), 0)| C preserves the canonical 1-form }

CZ(J1(Rn,R), 0) = {C ◦ ı |C ∈ C(J1(Rn,R), 0)}

Cθ
Z(J1(Rn,R), 0) = {C ◦ ı |C ∈ Cθ(J1(Rn,R), 0)}.

Definition 5.4. Let π̃ ◦ i : (L̃, 0) → (J1(Rn,R), 0) → (Rn × R, 0) be a reticular
Legendrian map. We say that π̃◦i is l-determined if the following condition holds: For
any extension C ∈ C(J1(Rn,R), 0) of i, the reticular Legendrian map π̃◦C′|

L̃
and π̃◦i

are Legendrian equivalent for any C′ ∈ C(J1(Rn,R), 0) satisfying jlC(0) = jlC′(0).

Lemma 5.5. (cf., [10, p.116 Lemma 7.2]) Let {Lσ}σ⊂Ir
be a contact regular

r-cubic configuration in (J1(Rn,R), 0) defined by C ∈ C(J1(Rn,R), 0). Then there

exists C′ ∈ Cθ(J1(Rn, R), 0) that also defines {Lσ}σ⊂Ir
.

By Lemma 5.5 we may consider the following other definition of finite determinacy
of reticular Legendrian maps:
(1) The definition given by replacing C(J1(Rn,R), 0) to Cθ(J1(Rn,R), 0).
(2) The definition given by replacing C(J1(Rn,R), 0) to CZ(J1(Rn,R), 0).
(3) The definition given by replacing C(J1(Rn,R), 0) to Cθ

Z(J1(Rn,R), 0).
Then the following holds:

Proposition 5.6. Let π̃ ◦ i : (L̃, 0) → (J1(Rn,R), 0) → (Rn ×R, 0) be a reticular

Legendrian map. Then

(A) If π̃ ◦ i is l-determined of the original definition, then π̃ ◦ i is l-determined of the

definition (1).
(B) If π̃ ◦ i is l-determined of the definition (1), then π̃ ◦ i is l-determined of the

definition (3).
(C) If π̃ ◦ i is l-determined of the definition (3), then π̃ ◦ i is (l+ 1)-determined of the

definition (2).
(D) If π̃ ◦ i is l-determined of the definition (2), then π̃ ◦ i is l-determined of the

original definition.

Proof. (A) Let C ∈ Cθ(J1(Rn,R), 0) be an extension of i. Let C′ ∈
Cθ(J1(Rn,R), 0) satisfying jlC(0) = jlC′(0) be given. Since C,C′ ∈ C(J1(Rn,R), 0),
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we have that π̃ ◦ C′|
L̃

and π̃ ◦ i are Legendrian equivalent.
(B) Let C ∈ Cθ

Z(J1(Rn,R), 0) be an extension of i. Let C′ ∈ Cθ
Z(J1(Rn,R), 0)

satisfying jlC(0) = jlC′(0) be given. We define C1, C
′
1 ∈ Cθ(J1(Rn,R), 0) by

C1(Q,Z, P ) := (qC(Q,P ), Z + zC(Q,P ), pC(Q,P )), C′
1(Q,Z, P ) := (qC′(Q,P ), Z +

zC′(Q,P ), pC′(Q,P )). Then C1 is an extension of i and we have that jlC1(0) =
jlC′

1(0). Therefore we have that π̃ ◦C′
1|L̃ = π̃ ◦C′|

L̃
and π̃ ◦ i are Legendrian equiva-

lent.
(D) Let C ∈ C(J1(Rn,R), 0) be an extension of i. Let C′ ∈ C(J1(Rn,R), 0) satisfying
jlC(0) = jlC′(0) be given. We set C1 := C|Z=0, C

′
1 := C′|Z=0 ∈ CZ(J1(Rn,R), 0)

and we have that jlC1(0) = jlC′
1(0). Therefore π̃ ◦ C′

1|L̃ = π̃ ◦ C′|
L̃

and π̃ ◦ i are
Legendrian equivalent.
(C) Let C ∈ CZ(J1(Rn,R), 0) be an extension of i. Let C′ ∈ CZ(J1(Rn,R), 0)
satisfying jl+1C(0) = jl+1C′(0) be given. Then there exist function germs
f(Q,P ), g(Q,P ) ∈ E(2n) such that C∗(dz−pdq) = −fPdQ,C

′∗(dz−pdq) = −gPdQ.
Indeed f is defined by that fPj = − ∂zC

∂Qj
+ pC

∂qC

∂Qj
for j = 1, . . . , n. We define the dif-

feomorphism germs φ, ψ on (J1(Rn,R)∩{Z = 0}, 0) by φ(Q,P ) = (Q, fP ), ψ(Q,P ) =
(Q, gP ). We set C1 := C ◦ φ−1, C′

1 := C′ ◦ ψ−1 ∈ Cθ
Z(J1(Rn,R), 0) Then jlφ(0) and

jlψ(0) depend only on jl+1C(0), therefore we have that jlC1(0) = jlC′
1(0). Since

π̃ ◦ i and π̃ ◦ C1|L̃ are Legendrian equivalent, it follows that π̃ ◦ C1|L̃ and π̃ ◦ C′
1|L̃

are Legendrian equivalent. Therefore we have that π̃ ◦ i and π̃ ◦ C′|
L̃

are Legendrian
equivalent.

Theorem 5.7. Let π̃ ◦ i : (L̃, 0) → (J1(Rn,R), 0) → (Rn × R, 0) be a reticular

Legendrian map. If π̃ ◦ i is infinitesimally stable then π̃ ◦ i is (n+ 3)-determined.

Proof. It is enough to prove π̃ ◦ i is (n+ 2)-determined of Definition 5.4 (3) and
this is proved by an analogous method of Theorem 5.3. We write the sketch of the
proof. Let C ∈ Cθ

Z(J1(Rn,R), 0) be an extension of i. Then we may assume that PC

has the form

PC = {(Q,−
∂H

∂Q
(Q, p);H(Q, p) − 〈

∂H

∂Q
(Q, p), p〉,−

∂H

∂p
(Q, p), p)}

for some function germ H(Q, p) ∈ M(2n)2. Then F (x, y, q, z) = H0(x, y)+〈y, q〉−z ∈
M(r;n+n+1) is a generating family of π̃ ◦ i, where H0(x, y) = H(x, 0, y) ∈ M(r;n)2.
Then F is a reticular P-K-infinitesimally stable unfolding of H0(x, y). It follows
that H0 is reticular K-(n + 2)-determined. Let C′ ∈ Cθ

Z(J1(Rn,R), 0) satisfying
jn+2C(0) = jn+2C′(0) be given. There exists a function germ H ′(Q, p) ∈ M(2n)
such that

PC′ = {(Q,−
∂H ′

∂Q
(Q, p);H ′(Q, p) − 〈

∂H ′

∂Q
(Q, p), p〉,−

∂H ′

∂p
(Q, p), p)}.

SinceH = z−qp on PC andH ′ = z−qp on PC′ , we have that jn+2H0(0) = jn+2H ′
0(0),

where H ′
0(x, y) = H ′(x, 0, y) ∈ M(r;n)2. The function germ G(x, y, q, z) = H ′

0(x, y)+
〈y, q〉−z ∈ M(r;n+n+1) is a generating family of π̃◦C′|

L̃
. Then there exist Φ(x, y) ∈

B(r;n) and a unit a ∈ E(r;n) such that H0 = a · H ′
0 ◦ Φ. We set G′(x, y, q, z) =

a(x, y)G(Φ(x, y), q, z) ∈ M(r;n+n+1). Then G and G′ are reticular P-K-equivalent
and F and G′ are reticular P-K-infinitesimal stable unfoldings of H0(x, y). It follows
that F and G are reticular P-K-equivalent. Therefore π̃◦i and π̃◦C′|

L̃
are Legendrian

equivalent.
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In order to prove Theorem 6.5 and Theorem 7.4, we require the following lemma:

Lemma 5.8. (cf., [3, p.53 Lemma 4.6]) Let V,W be smooth manifolds with Q a

submanifold of W , F be a topological space. We equip C∞(V,W ) with the Whitney

C∞-topology. Let j : F → C∞(V,W ) be a map (not necessary continuous). We
suppose that: For each f ∈ F , there exist a manifold E, e0 ∈ E, and a continuous
map φ : E → F, φ(e0) = f such that the map Φ : E × V →W, Φ(e, x) = j(φ(e))(x),
is smooth and transversal to Q. Then the set

T = {f ∈ F | j(f) is transversal to Q}

is dense in F .

6. Genericity of reticular Lagrangian maps. Let J l(2n, 2n) be the set of l-
jets of map germs from (T ∗

R
n, 0) to (T ∗

R
n, 0) and Sl(n) be the Lie group in J l(2n, 2n)

consists of l-jets of symplectic diffeomorphism germs on (T ∗
R

n, 0).
We consider the Lie groupLl(2n)×Ll(2n) acts on J l(2n, 2n) as coordinate changes

of the source and target spaces. We also consider the Lie subgroup rLal(n) of Ll(2n)×
Ll(2n) consists of l-jets of reticular diffeomorphisms on the source space and l-jets of
Lagrangian equivalences of π on the target space:

rLal(n) = {(jlφ(0), jlΘ(0)) ∈ Ll(2n) × Ll(2n) | φ is a reticular diffeomorphism on

(T ∗
R

n, 0),Θ is a Lagrangian equivalence of π}.

The group rLal(n) acts on J l(2n, 2n) and Sl(n) is invariant under this action. Let
S be a symplectic diffeomorphism germ on (T ∗

R
n, 0) and set z = jlS(0). We denote

the orbit rLal(n) · z by [z]. Then

[z] = {jlS′(0) ∈ Sl(n) | π ◦ i and π ◦ S′|L are Lagrangian equivalent}.

In this section we denote by Xf the Hamiltonian vector field on (T ∗
R

n, 0) for a
function germ f on (T ∗

R
n, 0). That is

Xf =

n∑

j=1

(
∂f

∂pj

∂

∂qj
−
∂f

∂qj

∂

∂pj

).

We denote by V IS the vector space consists of infinitesimal symplectic transfor-
mations of S and denote by V I0

S the subspace of V IS consists of germs which vanishes
on 0. We denote by V LT∗Rn by the vector space consists of infinitesimal Lagrangian
equivalences of π and denote by V L0

T∗Rn by the subspace of V LT∗Rn consists of germs
which vanishes at 0.

We denote by V 0
L

the vector space consists of infinitesimal reticular diffeomor-
phisms on (T ∗

R
n, 0) which vanishes at 0:

V 0
L

= {ξ ∈ X(T ∗
R

n, 0) | ξ is tangent to L0
σ for all σ ⊂ Ir, ξ(0) = 0}.

From now on, we denote by ET∗Rn the ring of smooth function germs on (T ∗
R

n, 0)
and denote by MT∗Rn its maximal ideal. We also denote other notations analogously.
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Lemma 6.1. (1) A vector field germ v on (T ∗
R

n, 0) along S belongs to V IS if

and only if there exists a function germ f on (T ∗
R

n, 0) such that v = Xf ◦ S,

(2) A vector field germ η on (T ∗
R

n, 0) belongs to V LT∗Rn if and only if there exists

a fiber preserving function germ H on (T ∗
R

n, 0) such that η = XH .

(3) A vector field germ ξ on (T ∗
R

n, 0) belongs to V 0
L

if and only if there exists

a function germ g ∈ B0 such that ξ = Xg, where B0 = 〈q1p1, . . . , qrpr〉ET∗Rn +
MT∗Rn〈qr+1, . . . , qn〉 is a submodule of ET∗Rn .

By this lemma we have that:

V I0
S = {v : (T ∗

R
n, 0) → (T (T ∗

R
n), 0) | v = Xf ◦ S for some f ∈ M

2
T∗Rn},

V L0
T∗Rn

= {η ∈ X(T ∗
R

n, 0) | η = XH for some fiber preserving function germ H ∈ M
2
T∗Rn},

V 0
L

= {ξ ∈ X(T ∗
R

n, 0) | ξ = Xg for some g ∈ B0}.

We define the homomorphism tS : V 0
L

→ V I0
S by tS(v) = S∗v and define the

homomorphism wS : V L0
T∗Rn → V I0

S by wS(η) = η ◦ S.

Lemma 6.2. Let S be a symplectic diffeomorphism germ on (T ∗
R

n, 0) and set

z = jlS(0). Then

Tz(rLa
l(n) · z) = πl(tS(V 0

L
) + wS(V L0

T∗Rn)).

We denote V I l
S the subspace of V IS consists of infinitesimal symplectic transfor-

mation germs of S whose l-jets are 0:

V I l
S = {v ∈ V IS | jlv(0) = 0}.

We consider the surjective projection πl : V IS → Tz(S
l(n)). Since (jlS)∗(

∂
∂qj

) =

πl(S∗
∂

∂qj
), (jlS)∗(

∂
∂pj

) = πl(S∗
∂

∂pj
), it follows that jlS is transversal to [z] if and only

if (jlS)∗(T0(T
∗
R

n)) +Tz[z] = Tz(S
l(n)) and this holds if and only if

(πl)
−1((jlS)∗(T0(T

∗
R

n)) + tS(V 0
L

) + wS(V L0
T∗Rn)) + V I l+1

S = V IS

and this holds if and only if

tS(V 0
L

) + wS(V LT∗Rn)) + V I l+1
S = V IS .

Let N,M be 2n dimensional symplectic manifolds. We denote S(N,M) the space
of symplectic embeddings from N to M with the topology induced by the Whitney
C∞-topology of C∞(N,M). We define that

J l
S(N,M) = {jlS(u0) ∈ J l(N,M) |

S : (N, u0) →M is a symplectic embedding germ, u0 ∈ N}.

Proposition 6.3. S(N,M) is a Baire space.
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This is proved by an analogous method of the assertion that C∞(N,M) is a
Baire space (cf., [3, p.44 Proposition 3.3]).

The following theorem is the special case of [4, p.94 Theorem 0.1]. We consider
the graph maps N → N × M of symplectic diffeomorphisms N → M instead of
isotropic maps X →M in [4]. We give the self-contained proof.

Theorem 6.4. Let N,M be 2n dimensional symplectic manifolds. Let Qj , j =
1, 2, . . . be submanifolds of J l

S(N,M). Then the set

T = {S ∈ S(N,M) | jlS is transversal to Qj for all j ∈ N}

is residual set in S(N,M). In particular T is dense.

Proof. We apply for Lemma 5.8 that V = N,W = J l
S(N,M), and F =

S(N,M). We reduce our assertion to local situations by choosing a countable cov-
ering of Qj by sufficiently small compact sets Kj,k’s. Then the sets Tj,k = {S ∈
S(N,M) | jlS is transversal to Qj at Kj,k} are open set by Lemma 5.8 and we have
that T = ∩Tj,k We fix a symplectic embedding S ∈ S(N,M). For each u0 ∈ N there
exist local symplectic coordinate systems of N around u0 and M around S(u0) such
that S is given by (q, p) 7→ (q, p) around 0.

For each j, k we take E by a sufficiently small neighborhood of 0 in P (2n, 1; l+1)
and take a smooth function ρ : T ∗

R
n → [0, 1] such that ρ is 1 on a neighborhood of

0 and zero outside a compact set, where P (2n, 1; l + 1) is the set of not higher than
(l + 1)-degree polynomials on 2n variables.

For eachH ∈ E we define H ′(Q, p) = ρ(Q, p)H(Q, p)−〈Q, p〉 and ψH′(Q, p) = (Q,

−∂H′

∂Q
(Q, p)) for (Q, p) ∈ T ∗

R
n around 0. Then there exists a neighborhood U of 0

in T ∗
R

n such that ψH′ is a embedding on U and equal to the identity map outside a
compact set for any H ∈ E. Therefore there exists a neighborhood U ′ of 0 in T ∗

R
n

such that the map E → C∞(U ′, U), H 7→ (ψ−1
H )|U ′ is well defined and continuous.

Each (ψ−1
H )|U ′ is equal the identity map outside a compact set around 0. We set that

φ(H)(Q,P ) = (−
∂H ′

∂p
(Q, p), p) ◦ (ψH′ )−1(Q,P ) for (Q,P ) ∈ U ′.

Then φ(H) is a symplectic diffeomorphism around u0 which has the canonical relation
with the generating function H ′(Q, p) and equal to S outside a compact set. It follows
that the source space of φ(H) may be extended naturally to E ×N . We also denote
this by φH ∈ S(N,M). Then the map

Φ : E ×N → J l
S(N,M),Φ(H, q, p) = jl(φH)(q, p)

is a submersion around (0, u0) Therefore Φ is transversal to Kj,k. So we have the
result.

For S̃ ∈ S(U, T ∗
R

n) we define the continuous map jl
0S̃ : U → Sl(n) by w to the

l-jet of S̃w at 0. We remark that jlS̃w(0) has the form jlS̃w(0) = (w, S̃(w), jl
0S̃w(0)).

Theorem 6.5. Let U be a neighborhood of 0 in T ∗
R

n, and let Q1, Q2, . . . are

submanifolds of Sl(n). Then the set LU = {(q, p) ∈ U |q = p1 = · · · = pr = 0} and

T = {S̃ ∈ S(U, T ∗
R

n)|jl
0S̃ is transversal to Qj on LU for all j}

is a residual set in S(U, T ∗
R

n).
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Proof. We set Q′
j = LU × T ∗

R
n × Qj ⊂ J l

S(U, T ∗
R

n). We choose a countable
covering of Q′

j by sufficiently small compact sets Kj,k
′s for all j. We apply N =

V,M = T ∗
R

n for Theorem 6.4. We have that

T = {S̃ ∈ S(U, T ∗
R

n)|jlS̃ is transversal to Q′
j on Kj,k for all j, k}.

It follows that T is a residual set in S(U, T ∗
R

n).

We have the following theorem by using Ishikawa’s method (cf., [5, Section 5])
for our situation.

Theorem 6.6. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a reticu-

lar Lagrangian map. Let S be an extension of i and l ≥ n + 1. Let B =
〈q1p1, . . . , qrpr, qr+1, . . . , qn〉ET∗Rn be a submodule of ET∗Rn . Then the following are

all equivalent:

(s) π ◦ i is stable.

(t) jl
0S is transversal to [jl

0S(0)] at 0.
(a’) ET∗Rn/(B + M

l+2
T∗Rn) is generated by 1, p1 ◦ S, . . . , pn ◦ S as an Eq-module via

(π ◦ S)∗.
(a”) ET∗Rn/B is generated by 1, p1 ◦ S, . . . , pn ◦ S as an Eq-module via (π ◦ S)∗.
(is) π ◦ i is infinitesimally stable.

Proof. (s)⇒(t). Let S̃ ∈ S(U, T ∗
R

n) be a representative of S. By theorem 6.5
there exists a symplectic embedding S̃′ around S̃ such that jl

0S̃
′ is transversal to

[jl
0S(0)] at w = (0, . . . , 0, pr+1, . . . , pn) ∈ U . Since π ◦ i is stable, π ◦ i and π ◦ S̃′

w|L
are Lagrangian equivalent. This means that [jl

0S̃
′
w(0)] = [jl

0S(0)] and hence jl
0S is

transversal to [jl
0S(0)] at 0.

(t)⇔(a’). By Lemma 6.1, we have that the condition (t) is equivalent to the condition:
For any function germ f on (T ∗

R
n, 0), there exist a fiber preserving function germ H

on (T ∗
R

n, 0) and a function germ g ∈ B such that πl(Xf ◦ S) = πl(S∗Xg +XH ◦ S).
This is equivalent to the condition: For any function germ f on (T ∗

R
n, 0), there exist

a fiber preserving function germ H on (T ∗
R

n, 0) and a function germ g ∈ B such that
f ◦S−g−H ◦S ∈ M

l+2
T∗Rn . This is equivalent to the condition: For any function germ

f on (T ∗
R

n, 0), there exist a fiber preserving function germ H on (T ∗
R

n, 0) such that
f −H ◦ S ∈ B + M

l+2
T∗Rn . This is equivalent to (a’).

(a’)⇔(a”). We need only to prove (a’)⇒(a”). By Margrange preparation theorem,
the condition (a’) is equivalent that ET∗Rn/ ((π ◦ S)∗MRnET∗Rn + B + M

l+2
T∗Rn) is

generated by 1, p1 ◦ S, . . . , pn ◦ S over R. This means that

M
n+1
T∗Rn ⊂ (π ◦ S)∗MRnET∗Rn +B + M

l+2
T∗Rn .

Since M
l+2
T∗Rn ⊂ M

n+2
T∗Rn , it follows that

M
n+1
T∗Rn ⊂ (π ◦ S)∗MRnET∗Rn +B + M

n+2
T∗Rn .

Therefore we have that

M
n+1
T∗Rn ⊂ (π ◦ S)∗MRnET∗Rn +B.

This means (a”).
(a”)⇔(is). The condition (a”) is equivalent to the condition (a) in Theorem 4.1 and
this is equivalent to (is).
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(t)&(is)⇒(s). Since jl
0S is transversal to [jl

0S(0)], it follows that there exist a rep-
resentative S̃ ∈ S(U, T ∗

R
n) of S and a neighborhood WS̃ of S̃ such that for any

S̃′ ∈ WS̃ there exists w ∈ U such that jl
0S̃

′ is transversal to [jl
0S(0)] at w. Since

jl
0S̃

′
w(0) ∈ [jl

0S(0)], it follows that there exists a symplectic embedding germ S′′ on
(T ∗

R
n, 0) such that π◦i and π◦S′′|L is Lagrangian equivalent and jl

0S
′′(0) = jl

0S̃
′
w(0).

Since π ◦ i is infinitesimally stable, it follows that π ◦ i is l-determined by Theorem
5.3. Therefore we have that π ◦S′′|L is also l-determined. It follows that π ◦S′′|L and
π ◦ S̃′

w|L is Lagrangian equivalent. This means that π ◦ i is stable.

Let S be a symplectic diffeomorphism germ on (T ∗
R

n, 0), F (x, y, q) ∈ M(r; k +
n)2, and f(x, y) ∈ M(r; k)2. We denote [S], [F ], [f ] by the equivalence classes of
S, F, f under the Lagrangian equivalence, the stable reticular P-R+-equivalence, and
the stable reticular R-equivalence respectively. Then the following holds:

Lemma 6.7. Let π ◦ ij : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be stable reticular La-

grangian maps with generating families Fj(x, y, q) ∈ M(r; kj + n)2, and Sj be exten-

sions of ij for j = 1, 2. Then [S1] = [S2] if and only if [F1] = [F2] and this holds if

and only if [F1|q=0] = [F2|q=0].

Proof. [S1] = [S2] if and only if reticular Lagrangian maps π ◦ i1 and π ◦ i2 are
Lagrangian equivalent by Lemma 5.2, and this holds if and only if [F1] = [F2] by
[9, p.577, Theorem 3.2(3)], and if this holds then [F1|q=0] = [F2|q=0]. Conversely
suppose that [F1|q=0] = [F2|q=0]. Since F1 and F2 are reticular P-R+-stable unfold-
ings of [F1|q=0] and [F2|q=0] respectively and F1|q=0 and F2|q=0 are stably reticular
R-equivalent, it follows that [F1] = [F2].

Corollary 6.8. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a stable reticular

Lagrangian map. Then there exist a neighborhood U of 0 in T ∗
R

n and S̃ ∈ S(U, T ∗
R

n)
with i = S̃0|L ( that is, S̃ is a representative of an extension of i) such that reticular

Lagrangian maps π ◦ S̃w|L are stable for all w ∈ U

Proof. By Theorem 6.6 (a’), the stability of reticular Lagrangian maps are de-
termined by the (n + 1)-jets of π ◦ S̃w for w ∈ U . Therefore we have the result by
shrinking U if necessary.

Let π◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a stable reticular Lagrangian map. We
say that π◦i is simple if there exist a neighborhood U of 0 in T ∗

R
n and S̃ ∈ S(U, T ∗

R
n)

such that i = S̃0|L and {S̃w|w ∈ U} is covered by finite orbits [S1], . . . , [Sm] for
symplectic diffeomorphism germs S1, . . . , Sm on (T ∗

R
n, 0).

Lemma 6.9. Let π ◦ i : (L, 0) → (T ∗
R

n, 0) → (Rn, 0) be a stable reticular

Lagrangian map. Then π ◦ i is simple if and only if there exist a neighborhood Uz of

z = jn+1
0 S(0) in Sn+1(n) and z1, . . . , zm ∈ Sn+1(n) such that Uz ⊂ [z1] ∪ · · · ∪ [zm].

Proof. Suppose that π ◦ i is simple. Then there exists a representative S̃ : U →
T ∗

R
n of an extension of i and symplectic diffeomorphism germs [S1], . . . , [Sm] on

(T ∗
R

n, 0) such that

(1) {S̃w|w ∈ U} ⊂ [S1] ∪ · · · ∪ [Sm].

Since π ◦ i is stable, it follows that jn+1
0 S̃ is transversal to [z] at 0 by Theorem

3.1. This means that there exists a neighborhood Uz of z in Sl(n) such that Uz ⊂
∪w∈U [jn+1

0 S̃(w)]. It follows that Uz ⊂ [jn+1S1(0)] ∪ · · · ∪ [jn+1Sm(0)].
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Conversely suppose that there exist a neighborhood Uz of z in Sn+1(n) and
z1, . . . , zm ∈ Sn+1(n) such that Uz ⊂ [z1] ∪ · · · ∪ [zm]. Since the map jn+1

0 S̃ : U →
Sn+1(n) is continuous, there exists a neighborhood U ′ of 0 in U such that jn+1

0 S̃(w) ∈
Uz for any w ∈ U ′. Then we have that ∪w∈U ′jn+1

0 S̃(w) ⊂ [z1] ∪ · · · ∪ [zm]. Choose
symplectic diffeomorphism germs S1, . . . , Sm on (T ∗

R
n, 0) such that jn+1Sj(0) = zj

for j = 1, . . . ,m. By Corollary 6.8, we may assume that each π ◦Sj|L is stable, there-
fore (n+1)-determined. For any w ∈ U ′ we have that there exists j ∈ {1, . . . ,m} such
that jn+1

0 S̃w(0) ∈ [jn+1Sj(0)]. It follows that reticular Lagrangian maps π ◦ S̃w|L and

π ◦ Sj |L are Lagrangian equivalent. Therefore S̃w ∈ [Sj ]. We have (1).

Lemma 6.10. A stable reticular Lagrangian map π ◦ i is simple if and only if the

function germ F (x, y, 0) ∈ M(r; k)2 is R-simple singularity for a generating family

F (x, y, q) ∈ M(r; k + n)2 of π ◦ i.

Proof. Let S be an extension of i and S̃ ∈ S(U, T ∗
R

n) be a representative of S.
Suppose that F (x, y, 0) is R-simple. The simplicity of reticular Lagrangian maps

is invariant under Lagrangian equivalences, we may assume that the map germ
(Q,P ) 7→ (Q, p◦S(Q,P )) is a diffeomorphism germ on (R2n, 0). We consider symplec-
tic diffeomorphism germs S̃w on (R2n, 0) for w ∈ U near 0. Then there exist function
germs Hw(Q, p) ∈ M(2n)2 such that the canonical relation Pw associated with S̃w

has the form:

Pw = {(Q,−
∂Hw

∂Q
(Q, p),−

∂Hw

∂p
(Q, p), p) ∈ (T ∗

R
n × T ∗

R
n, (0, 0))}.

Then the function germ Fw(x, y, q) = H ′
w(x, y)+ 〈y, q〉 ∈ M(r;n+n)2 is a generating

family of π ◦ S̃w|L, where H ′
w ∈ M(r;n)2 is defined by H ′

w(x, y) = Hw(x, 0, y). Since
F0 is a generating family of π ◦ i, we have that F0(x, y, 0)(= H ′

0(x, y)) is stably R-
equivalent to F (x, y, 0). Therefore we have that H ′

0 is R-simple. Then there exists
f1, . . . , fm ∈ M(r;n) and a neighborhood V of jn+2H ′

0(0) in Jn+2(r+n, 1) such that
V ⊂ [jn+2f1(0)] ∪ · · · ∪ [jn+2fm(0)].

Since the (n + 2)-jet of H ′
S is determined by the (n + 1)-jet of S, there exists a

neighborhood U ′ of 0 in U such that the map germ

U ′ → Jn+2(r + n, 1), w 7→ jn+2H ′
w(0)

is well defined and continuous.
Let U ′′ be the inverse image of V by the above map. Then for any w ∈ U ′′ the

reticular Lagrangian map π ◦ S̃w|L has a generating family which is reticular P-R+-
equivalent to fj(x, y) + 〈y, q〉 ∈ M(r;n+ n)2 for some j because π ◦ S̃w|L is stable by

Corollary 6.8 and hence (n+1)-determined. It follow that {S̃w|w ∈ U ′′} ⊂ [S1]∪· · ·∪
[Sm], where Sj is an extension of a reticular Lagrangian embedding which defines a
reticular Lagrangian map with the generating family fj(x, y) + 〈y, q〉 ∈ M(r;n+ n)2.
This means that π ◦ i is simple.

Conversely suppose that π ◦ i is simple. Let S0 be an extension of i. we may
assume that there exists a function germ H0(Q, p) ∈ M(2n)2 such that the canonical
relation PS0 associated with S0 has the form:

PS0 = {(Q,−
∂H0

∂Q
(Q, p),−

∂H0

∂p
(Q, p), p) ∈ (T ∗

R
n × T ∗

R
n, (0, 0))}.

This means that for a function germ H around H0 there exists a symplectic dif-
feomorphism germ SH on (T ∗

R
n, 0) with the canonical relation PSH

which has the
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form same as PS0 . Then the (n + 1)-jet of SH is determined by the (n + 2)-jet
of H . The function germ H ′

0(x, 0, y) + 〈y, q〉 ∈ M(r;n + n)2 is a generating fam-
ily of π ◦ i, where H ′

0 ∈ M(r;n)2 is defined by H ′
0(x, y) = H0(x, 0, y). Then

there exists a quadratic form T (Qr+1, . . . , Qn, p1, . . . , pn) such that the function germ
H ′′

0 (Q, p) = H ′
0(Q1, . . . , Qr, p) + T (Qr+1, . . . , Qn, p) also defined the symplectic dif-

feomorphism SH′′

0
. Then we have that π ◦ SH′′

0
|L = π ◦ i. Therefore we may assume

that H ′′
0 = H0

We have that H ′
0 is stably reticular R-equivalent to F (x, y, 0). Therefore we need

only to prove that H ′
0 is a simple singularity.

There exists a neighborhood V of jn+2H ′
0(0) such that the map

V → Sn+1(n), jn+2H ′(0) 7→ jn+1
0 SH(0),

where H(Q, p) = H ′(Q1, . . . , Qr, p) + T (Qr+1, . . . , Qn, p) is well defined and continu-
ous.

Since π◦i is simple, there exist finite symplectic diffeomorphism germs S1, . . . , Sm

on (T ∗
R

n, 0) and a neighborhood Uz of z = jn+1S0(0) in Sn+1(n) such that Uz ⊂
[S1] ∪ · · · ∪ [Sm] Let V ′ be the inverse image of Uz by the above map. Then we have
that V ′ ⊂ [z1] ∪ · · · ∪ [zm], where zj = jn+2Hj(0) for a function germ H ′

j ∈ E(r;n)

such that jn+1Sj(0) = jn+1SHj
(0). This means that H ′

0 is simple.

Theorem 6.11. Let r = 0, n ≤ 5 or r = 1, n ≤ 3. Let U be a neighborhood of 0
in T ∗

R
n. Then there exists a residual set O ⊂ S(U, T ∗

R
n) such that for any S̃ ∈ O

and w = (0, . . . , p0
r+1, . . . , p

0
n) ∈ U , the reticular Lagrangian map π ◦ S̃w|L is stable.

In the case r = 0, n ≤ 5. A reticular Legendrian map π ◦ S̃w|L for any S̃ ∈ O and
w ∈ U has a generating family F which is a reticular P-R+-stable unfolding of one
of A2, A

±
3 , A4, A

±
5 , A6, D

±
4 , D

±
4 , D

±
6 , E

±
6 , that is F is stably reticular P-R+-equivalent

to one of the following list:
A2 : F (y1, q1) = y3

1 + q1y1,
A±

3 : F (y1, q1, q2) = ±y4
1 + q1y

2
1 + q2y1,

A4 : F (y1, q1, q2, q3) = y5
1 + q1y

3
1 + q2y

2
1 + q3y1,

A±
5 : F (y1, q1, q2, q3, q4) = ±y6

1 + q1y
4
1 + q2y

3
1 + q3y

2
1 + q4y1,

A6 : F (y1, q1, q2, q3, q4, q5) = y7
1 + q1y

5
1 + q2y

4
1 + q3y

3
1 + q4y

2
1 + q5y1,

D±
4 : F (y1, y2, q1, q2, q3) = y2

1y2 ± y3
2 + q1y

2
2 + q2y2 + q3y1,

D±
5 : F (y1, y2, q1, q2, q3, q4) = y2

1y2 ± y4
2 + q1y

3
2 + q2y

2
2 + q3y2 + q4y1,

D±
6 : F (y1, y2, q1, q2, q3, q4, q5) = y2

1y2 ± y5
2 + q1y

4
2 + q2y

3
2 + q3y

2
2 + q4y2 + q5y1,

E±
6 : F (y1, y2, q1, q2, q3, q4, q5) = y3

1 ± y4
2 + q1y1y

2
2 + q2y1y2 + q3y

2
2 + q4y1 + q5y2.

In the case r = 1, n ≤ 3. A reticular Legendrian map π ◦ S̃w|L for any S̃ ∈ O
and w ∈ U has a generating family which is a P-R+-stable unfolding of one of
B±

2 , B
±
3 , B

±
4 , C

±
3 , C

±
4 , F

±
4 , that is F is stably reticular P-R+-equivalent to one of the

following list:
B±

2 : F (x, q1) = ±x2 + q1x,
B±

3 : F (x, q1, q2) = ±x3 + q1x
2 + q2x,

B±
4 : F (x, q1, q2, q3) = ±x4 + q1x

3 + q2x
2 + q1x,

C±
3 : F (x, y, q1, q2) = ±xy + y3 + q1y

2 + q2y,
C±

4 : F (x, y, q1, q2, q3) = ±xy + y4 + q1y
3 + q2y

2 + q3y,
F±

4 : F (x, y, q1, q2, q3) = ±x2 + y3 + q1xy + q2x+ q3y.

Proof. We need only to prove the case r = 1, n ≤ 3. Let FX(x, y, q) ∈ M(r; k+n)2
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be a reticular P-R+-stable unfolding of singularity X ∈ M(r; k)2 for

X = B±
2 , B

±
3 , B

±
4 , C

±
3 , C

±
4 , F

±
4 .

Then other unfoldings are not stable since other singularities have reticular R+-
codimension > 3. We choose stable reticular Lagrangian maps π ◦ iX : (L, 0) →
(T ∗

R
n, 0) → (Rn, 0) with generating families FX and SX be extensions of iX for

above list. We set LU = {(q, p) ∈ U |q = p1 = 0} and define that

O′ = {S̃ ∈ S(U, T ∗
R

n) | jn+1
0 S̃ is transversal to [jn+1SX(0)] on LU for all X}.

Then O′ is a residual set. We set

Y = {jn+1S(0) ∈ Sn+1(n) | the codimension of [jn+1S(0)] > 2n}.

Then Y is an algebraic set in Sn+1(n) by Theorem 6.6 (a’). Therefore we can define
that

O′′ = {S̃ ∈ S(U, T ∗
R

n) | jn+1
0 S̃ is transversal to Y }.

Then Y has codimension > 2n because all element in Y is adjacent to one of the
above list which are simple. Then we have that

O′′ = {S̃ ∈ S(U, T ∗
R

n) | jn+1
0 S̃(U) ∩ Y = ∅}.

We define O = O′ ∩O′′. Then O has the required condition.
In the case r = 0, n ≤ 5. Set X = A2, A

±
3 , A4, A

±
5 , A6, D

±
4 , D

±
4 , D

±
6 , E

±
6 and

Y = {jn+1S(0) ∈ Sn+1(n) | the codimension of [jn+1S(0)] > 2n}. Then we have
that the codimension of Y in Sn+1(n) is higher than 2n and the assertion is proved
by the parallel method of the above case.

7. Genericity of reticular Legendrian maps. Let J l(2n+1, 2n+1) be the set
of l-jets of map germs from (J1(Rn,R), 0) to (J1(Rn,R), 0) and Cl(n) be the Lie group
in J l(2n+1, 2n+1) consists of l-jets of contact diffeomorphism germs on (J1(Rn,R), 0).
We consider the Lie subgroup rLel(n) of Ll(2n+ 1) × Ll(2n+ 1) consists of l-jets of
reticular diffeomorphisms on the source space and l-jets of Legendrian equivalences
of π̃ on the target space:

rLel(n) = {(jlφ(0), jlΘ(0)) ∈ Ll(2n+ 1) × Ll(2n+ 1) | φ is a reticular

diffeomorphism on (J1(Rn,R), 0),Θ is a Legendrian equivalence of π̃}.

The group rLel(n) acts on J l(2n+1, 2n+1) and Cl(n) is invariant under this action.
Let C be a contact diffeomorphism germ on (J1(Rn,R), 0) and set z = jlC(0). We
denote the orbit rLel(n) · z by [z]. Then

[z] = {jlC′(0) ∈ Cl(n) | π̃ ◦ i and π̃ ◦ C′|
L̃

are Legendrian equivalent}.

In this section we denote by Xf the Contact Hamiltonian vector field on
(J1(Rn,R), 0) for a function germ f on (J1(Rn,R), 0). That is

Xf =

n∑

j=1

(
∂f

∂qj
+ pj

∂f

∂z
)
∂

∂pj

−
n∑

j=1

∂f

∂pj

∂

∂qj
+ (f −

n∑

j=1

pj

∂f

∂pj

)
∂

∂z
.
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Fig. 2. the caustic B±
3

Fig. 3. the caustics C±
3

We denote by V IC the vector space consists of infinitesimal contact transformation
germs of C and denote by V I0

C the subspace of V IC consists of germs which vanish
on 0. We denote by V LJ1(Rn,R) by the vector space consists of infinitesimal Legen-
drian equivalences on (J1(Rn,R), 0) and denote by V L0

J1(Rn,R) by the subspace of

V LJ1(Rn,R) consists of germs which vanish at 0. We denote by V 0
L̃

the vector space

consists of infinitesimal reticular diffeomorphisms on (J1(Rn,R), 0) which vanishes at
0:

V 0
L̃

= {ξ ∈ X(J1(Rn,R), 0) | ξ is tangent to L̃0
σ for all σ ⊂ Ir, ξ(0) = 0}.

Lemma 7.1. (1) A vector field germ v on (J1(Rn,R), 0) along C belongs to V IC
if and only if there exists a function germ f on (J1(Rn,R), 0) such that v = Xf ◦ C,

(2) A vector field germ η on (J1(Rn,R), 0) belongs to V LJ1(Rn,R) if and only if there

exists a fiber preserving function germ H on (J1(Rn,R), 0) such that η = XH.

(3) A vector field germ ξ on (J1(Rn,R), 0) belongs to V 0
L̃

if and only if there exists
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Fig. 4. the caustics B±
4

Fig. 5. the caustics C±
4

a function germ g ∈ B′
0 such that ξ = Xg, where B′

0 = 〈q1p1, . . . , qrpr〉E
J1(Rn,R)

+

MJ1(Rn,R)〈qr+1, . . . , qn, z〉 is a submodule of EJ1(Rn,R)

By this lemma we have that:

V I0
C = {v : (J1(Rn,R), 0) → (T (J1(Rn,R)), 0) | v = Xf ◦C for some f ∈ M

2
J1(Rn,R)},

V L0
J1(Rn,R) = {η ∈ X(J1(Rn,R), 0) | η = XH

for some fiver preserving function germ H ∈ M
2
J1(Rn,R)},

V 0
L̃

= {ξ ∈ X(J1(Rn,R), 0) | ξ = Xg for some g ∈ B′
0}.
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Fig. 6. the caustics F±
4

We define the homomorphism tC : V 0
L̃

→ V I0
C by tC(v) = C∗v and define the

homomorphism wC : V L0
J1(Rn,R) → V I0

C by wC(η) = η ◦ C.

We denote V I l
C the subspace of V IC consists of infinitesimal contact transforma-

tion germs of C whose l-jets are 0:

V I l
C = {v ∈ V IC | jlv(0) = 0}.

We have that jl
0C is transversal to [z] if and only if

tC(V 0
L̃

) + wC(V LJ1(Rn,R))) + V I l+1
C = V IC .

Let N,M be (2n + 1)-dimensional contact manifolds. We denote C(N,M) the
space of contact embeddings from N to M with the topology induced by the Whitney
C∞-topology of C∞(N,M) and define that

J l
C(N,M) = {jlC(u0) ∈ J l(N,M)|C : (N, u0)

→M is a contact embedding germ, u0 ∈ N}.

Proposition 7.2. C(N,M) is a Baire space.

The following theorem is the spacial case of [6, p.156 Proposition 9.5].

Theorem 7.3. Let N,M be (2n+1)-dimensional contact manifolds. Let Qj , j =
1, 2, . . . be submanifolds of J l

C(N,M). Then the set

T = {C ∈ C(N,M) | jlC is transversal to Qj for all j ∈ N}

is residual set in C(N,M). In particular T is dense.
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Theorem 7.4. Let U be a neighborhood 0 in J1(Rn,R), Q1, Q2, . . . are subman-

ifolds of Cl(n). We define LU = {(q, z, p) ∈ U |q = z = p1 = · · · = pr = 0} Then the

set

T = {C̃ ∈ Cθ(U, J1(Rn,R))|jl
0C̃ is transversal to Qj on LU for all j}

is a residual set in Cθ(U, J1(Rn,R)).

We have the following theorem which is proved by a parallel method of Theorem
6.6

Theorem 7.5. Let π̃ ◦ i : (L̃, 0) → (J1(Rn,R), 0) → (Rn × R, 0) be a retic-

ular Legendrian map. Let C be an extension of i and l ≥ n + 2. Let B′ =
〈q1p1, . . . , qrpr, qr+1, . . . , qn, z〉E

J1(Rn,R)
be a submodule of EJ1(Rn,R). Then the follow-

ing are all equivalent:

(s) π̃ ◦ i is stable.

(t) jl
0C is transversal to [jl

0C(0)].
(a’) EJ1(Rn,R)/(B

′ + M
l+2
J1(Rn,R)) is generated by 1, p1 ◦C, . . . , pn ◦C as an Eq,z-module

via (π̃ ◦ C)∗.
(a”) EJ1(Rn,R)/B

′ is generated by 1, p1 ◦C, . . . , pn ◦C as an Eq,z-module via (π̃ ◦C)∗.
(is) π̃ ◦ i is infinitesimally stable.

For C̃ ∈ Cθ(U, J1(Rn,R)) we define the continuous map jl
0C̃ : U → Cl(n) by

w = (q0, z0, p0) to the l-jet of C̃w at 0, where the contact diffeomorphism germ C̃w on
(J1(Rn,R), 0) is given by

x = (q, z, p) 7→ C(w + x) − C(w) + (0,−pC(w)qC(w + x) + pC(w)qC(w) + p0q, 0).

Let π̃◦i : (L̃, 0) → (J1(Rn,R), 0) → Cθ(Rn×R, 0) be a stable reticular Legendrian
map. We say that π̃ ◦ i is simple if there exists a representative C̃ ∈ Cθ(U, J1(Rn,R))
of a extension of i such that {C̃w|w ∈ U} is covered by finite orbits [C1], . . . , [Cm] for
some contact diffeomorphism germs C1, . . . , Cm on (J1(Rn,R), 0).

By an analogous method of Lemma 6.9, Lemma 6.10 and Theorem 6.11 we have
the followings:

Lemma 7.6. Let π̃ ◦ i : (L̃, 0) → (J1(Rn,R), 0) → (Rn ×R, 0) be a stable reticular

Legendrian map. Then π̃ ◦ i is simple if and only if there exist a neighborhood Uz of

z = jn+3
0 C(0) in Cn+3(n) and z1, . . . , zm ∈ Cn+3(n) such that Uz ⊂ [z1] ∪ · · · ∪ [zm].

Lemma 7.7. A stable reticular Legendrian map π̃ ◦ i is simple if and only if for

a generating family F (x, y, q, z) ∈ M(r; k + n+ 1) of π̃ ◦ i, F (x, y, 0, 0) ∈ M(r; k)2 is

K-simple singularity.

Theorem 7.8. Let r = 0, n ≤ 6 or r = 1, n ≤ 4. Let U be a neighborhood of 0 in

J1(Rn,R). Then there exists a residual set O ⊂ Cθ(U, J1(Rn,R)) such that for any

C̃ ∈ O and w = (0, . . . , 0, pr+1, . . . , pn) ∈ U , the reticular Legendrian map π̃ ◦ C̃w|L̃ is

stable.

In the case r = 0, n ≤ 6. A reticular Legendrian map π̃ ◦ C̃w|L̃ for any C̃ ∈ O
and w ∈ U has a generating family which is a reticular P-K-stable unfolding of one
of A1, A2, A3, A4, A4, A6, D

±
4 , D5, D

±
6 , E6, that is F is stably reticular P-K-equivalent

to one of the following list:
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A2 : F (y1, z) = y2
1 + z,

A2 : F (y1, q1, z) = y3
1 + q1y1 + z,

A3 : F (y1, q1, q2, z) = y4
1 + q1y

2
1 + q2y1 + z,

A4 : F (y1, q1, q2, q3) = y5
1 + q1y

3
1 + q2y

2
1 + q3y1 + z,

A5 : F (y1, q1, q2, q3, q4) = y6
1 + q1y

4
1 + q2y

3
1 + q3y

2
1 + q4y1 + z,

A6 : F (y1, q1, q2, q3, q4, q5, z) = y7
1 + q1y

5
1 + q2y

4
1 + q3y

3
1 + q4y

2
1 + q5y1 + z,

D±
4 : F (y1, y2, q1, q2, q3, z) = y2

1y2 ± y3
2 + q1y

2
2 + q2y2 + q3y1 + z,

D5 : F (y1, y2, q1, q2, q3, q4, z) = y2
1y2 + y4

2 + q1y
3
2 + q2y

2
2 + q3y2 + q4y1 + z,

D±
6 : F (y1, y2, q1, q2, q3, q4, q5, z) = y2

1y2 ± y5
2 + q1y

4
2 + q2y

3
2 + q3y

2
2 + q4y2 + q5y1 + z,

E6 : F (y1, y2, q1, q2, q3, q4, q5, z) = y3
1 + y4

2 + q1y1y
2
2 + q2y1y2 + q3y

2
2 + q4y1 + q5y2 + z.

In the case r = 1, n ≤ 4. A reticular Legendrian map π̃ ◦ C̃w|L̃ for any C̃ ∈ O
and w ∈ U has a generating family which is a reticular P-K-stable unfolding of one
of B2, B3, B4, C

±
3 , C4, F4, that is F is stably reticular P-K-equivalent to one of the

following list:
B2 : F (x, q1, z) = x2 + q1x+ z,
B3 : F (x, q1, q2, z) = x3 + q1x

2 + q2x+ z,
B4 : F (x, q1, q2, q3, z) = x4 + q1x

3 + q2x
2 + q1x+ z,

C±
3 : F (x, y, q1, q2, z) = ±xy + y3 + q1y

2 + q2y + z,
C4 : F (x, y, q1, q2, q3, z) = xy + y4 + q1y

3 + q2y
2 + q3y + z,

F4 : F (x, y, q1, q2, q3, z) = x2 + y3 + q1xy + q2x+ q3y + z.

Fig. 7. the wavefronts B2 and B3

8. Classifications for the cases r ≥ 2. In order to classify generic caustics
for the case r = 2, we can not use our equivalence relation. Caustic equivalence
is still too strong. For example, consider the caustics with the generating families:
Fa(x1, x2, q1, q2) = x2

1 + x1x2 + ax2
2 + q1x1 + q2x2. In these figures Q1,I , Q2,I , Qe,2

are in the same positions. Suppose that there exists a diffeomorphism germ g on
(R2, 0) such that Q1,I , Q2,I , Qe,2 are invariant under g. Then g can not map Qe,1

from one to the other. We need to admit that the above caustics are equivalent for
some equivalence relation which is weaker than the caustic equivalence. We suggest
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Fig. 8. the wavefronts C±
3

Fig. 9. the caustics of Fa and Fb ( 1
4

< a < b, I = I2, e = ∅)

the equivalence relation consists on homeomorphism on (Rn, 0) which are smooth on
and preserves all Qτ,σ’s and Cσ’s. The above two caustics are equivalent under this
equivalence relation.
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