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NOTES ON NON-COMMUTATIVE IWASAWA THEORY*

YOSHITAKA HACHIMORIT AND TADASHI OCHIAT!

Abstract. We discuss two topics in non-commutative Iwasawa theory. One is on the ranks
of the dual of the Selmer groups over Iwasawa algebras. Another is a new proof for a result of
Ochi-Venjakob.
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1. Introduction. Let E be an elliptic curve defined over a number field k of
finite degree and p an odd prime number. Let ko /k be a Galois extension and denote
the Galois group Gal(ks/k) by G. We assume that ko /k is unramified outside a
finite set of primes of k£ and G is a compact p-adic Lie group. We are interested in
the case when G is non-commutative. We investigate the Selmer group of E over ko,

Sel(E ko) := ker <H1(koo, Ep™)) — [[ B (ksow, E) [p°°]>

and its Pontrjagin dual
Sel(E/ko)” := Homy, (Sel(E/kuo), Qp/Zy).
We can endow this group with a natural left action of the Iwasawa algebra

A(G) = 1 Z,[G/U]
U

of G. Here, U runs over the set of normal open subgroups of G. It is known that
Sel(E/koo)Y is finitely generated over A(G).

In this paper, we first give a result on the A(G)-rank of Sel(E/k)Y in the case
when G is uniformly powerful and soluble (Theorem 2.3 in §2). Then, in §3, we
will give a new (and simple) proof for a result of Ochi-Venjakob (cf. [OV1]) on the
non-existence of non-trivial pseudo-null submodule of Sel(E/kqo)V.

2. A(G)-ranks of Selmer groups. Let E/k, p, koo and G be as in §1. In this
section, we assume always that G is a pro-p group without p-torsion elements. This
assumption assures that A(G) is a Noetherian ring which has no non-zero zero-divisor,
and hence that A(G) has a skew field of fraction Q(G). For a finitely generated left
A(G)-module M, we define its A(G)-rank by

ranky )M = dimge) Q(G) @xq) M.
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We denote by S7° the set of primes of k above p where E has potentially supersingular
reduction and put

S(E/k) =Y [ky: Q).

vESES

Let kcyc be the cyclotomic Z,-extension of k. With these notations, we have the
following conjecture.

CONJECTURE 2.1. If ks contains kcyc, then

ranky ) Sel(E/ks )" = s(E/k).

Recall the following fact:

PROPOSITION 2.2. (cf. [OV2]) Assume E has good reduction at all primes above
p, and koo contains keyc. Then rankycySel(E/ko)Y > s(E/k).

Although this is well known, let us review an outline of the proof briefly. Let .S
be a finite set of k& which contains all infinite primes, all primes dividing p, all primes
which are ramified in ko /k and the primes where E/k has bad reduction. Denote
by ks the maximal extension of k unramified outside S. Note that k., C kg. For a
prime v of k, let

Jo(E/ko) = h_n}@Hl(Fuv E(k,))[p™].
Foulv

Here, F runs over all finite subextensions in ks /k. Then we have an exact sequence

(2.1) 0 = Sel(E/koo) — H' (ks koo, E[p™]) 5 @D Jo(E/ ko).
veS

Proposition 2.2 follows from the following two facts:

(2.2) ranky gy H' (ks/kso, E[p™])" — rankyg) H? (ks /koo, E[p™])" = [k : Q]
and

ky : if d 58
(2.3) rankA(G)Jv(E/koo)V _ [ Qy] ifvlp a.n v Sy
0 otherwise.

Here, %V denotes the Pontrjagin dual. See [HV] Proposition 7.4 for a proof of (2.2).
For (2.3), we first see that

JU(E/kOO)V = A(G)®A(GU)(H1(kOO,wv E(k_v))[poo])v

and hence ranky(q)Jy(E/kso)¥ = ranky(q,)(H" (koo,w, E(ky))[p™])". Here, w is a
prime above v and G, = Gal(kso,w/kv). Note that dim G, > 1 for all v and that
if v|p then v is deeply ramified in ko /k, since koo D koye. For v { p, we have
ranka(c,) (H" (koso,uw, E(ky))[p*>])¥ = 0 (cf. [OV1] Theorem 4.1). For v|p,

H (koo,w, E(k0))[p™] 2 H' (Koo,w, Eu[p™])
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([CG] Proposition 4.3, 4.8). Here, E, denotes the reduction of £ modulo v. From

ere,
this, we have H' (koo,w, E(ky))[p>] = 0 for v € S5. For v ¢ S5°, we have

2
Z(_nirank,\(cv)ﬂi(km,w, E,[p™®])Y = —[ky : Q]
1=0

by the same method as the proof for [HV] Proposition 7.4. Since dim G, > 1, we have
ranky ¢, ) H' (koo,uws Eu[p™])¥ = 0 for i = 0 and 2 and hence we have (2.3).

Now we state our result. We need the following three assumptions:
(Al) koo contains keyec.
(A2) G is uniformly powerful (see [DAMS] for the definition).
(A3) G is soluble.

Note G is pro-p with no torsion elements by the assumption (A2). Put I' :=
Gal(kcyc/k) and denote by A(I") the Iwasawa algebra of T'.

THEOREM 2.3. Let E/k be an elliptic curve which has good reduction at all primes
above p. Assume that koo [k and G satisfy the above assumptions (A1),(A2) and (A3).
Then, we have ranky(c)Sel(E/ks )" = s(E/k) if ranky ) Sel(E /keye)¥ = s(E/k).

REMARK 2.4. In the case when Gal(keo/keye) = Zy, Theorem 2.3 is proven in
[HV]. The condition rankyySel(E/keyc)" = s(E/k) is known to be true if E is
defined over Q and k/Q is an abelian extension by Kato, Rubin and Rohrlich.

Let us give a proof of the Theorem. By Proposition 2.2, it is enough to show the
other inequality. Put H := Gal(kso/kcyc). Then G satisfies the following condition:

(A4) G contains a closed normal subgroup H satisfying I' = G/H 2 Z,.

It is shown by a standard argument in Iwasawa theory combined with [Hr] Lemma
2.5.1 that the kernel and cokernel of the natural restriction map

Sel(E/keye) — Sel(E ko)

are cofinitely generated Z,-modules (cf. [HV] Theorem 3.1). This implies that
ranky ) (Sel(E/k)")g = rankyrySel(E/keye)”.  Here, Mpy denotes the H-
coinvariant of M for a A(H)-module M. Thus, it is enough to show the following
Lemma:

LEMMA 2.5. Let G be a group satisfying (A2), (A3) and (A4). For a finitely
generated A(G)-module M, we have ranky gy M < ranky Mg .

The proof of this lemma heavily depends on the results in [BH]. First we show:

LEMMA 2.6 (Balister-Howson [BH]). Assume the same assumptions on G as
Lemma 2.5. If My is A(T')-torsion then M is A(G)-torsion.

Proof. This fact is not explicitly stated but almost the whole of the proof can be
found in [BH]. We review the proof briefly. We prove the assertion by the induction
on the dimension of G. There is nothing to prove when dimG = 1 since H = {1}
and G = I'. Let dimG > 1 and suppose the lemma holds for any G’ satisfying
dim G’ < dim G and the assumptions (A2), (A3) and (A4). We claim that there
exists a closed normal subgroup N of G satisfying
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(i) N = Z; for some r > 0,
(ii) G/N is uniformly powerful and soluble where dim G/N < dim G, and
(iii) N C H.
Here, an important point is that N can satisfy (iii). This is the only fact which is not
explicitly written in [BH]. If this claim holds, G/N is uniformly powerful and soluble
with a subgroup H/N satisfying (G/N)/(H/N) = T'. This means that G/N satisfies
dim G/N < dim G and the assumptions (A2), (A3) and (A4). Thus we have My is
A(G/N)-torsion if (M) n = My is A(T')-torsion. By tracing the proof of the last
Theorem in [BH] almost words by words, we can prove the following fact: If My is
A(G/N)-torsion then M is A(G)-torsion. This proves the Lemma.

We show the claim mentioned above. If G is abelian, we may take N = H. Thus,
we assume G is not abelian. Set D(O)(G) := G and D"+t1)(G) := [D™)(G), D) (G)].
Then D™*D(G) = 0 but D™ (G) # 0 for some m > 1 since G is soluble and
non-abelian. Let

N:={geqG| gpk e D'™(@Q) for some k}.

Then the proof of (3) of the first Proposition in §4 of [BH] shows N satisfies (i) and
(ii). (iii) is shown as follows: Note that D™ (G) ¢ DW(G) ¢ H. Take an element
g in N. Then gpk is contained in D™ (@), hence in H. This means that the image
of g in G/H is p-torsion. But G/H is p-torsionfree, the image of g in G/H should be
zero, i.e. g€ H. Hence N C H. O

We return to the proof of Lemma 2.5. Assume r = ranky gy M > ranky My =
s. Take s elements 1,22, -+ , x5 in My which generates Q(I') @y Mpg. Take their
lifts y1,y2, - ,ys in M. Then we have the exact sequence

AR - M —C—0

by sending e; to y; where {eq,ea,---es} is the canonical basis of A(G)®*. Then we
can see that ranky)C' > 7 — s > 0 but that rank,)Cy = 0. This contradicts to
Lemma 2.6 and proves Lemma 2.5.

REMARK 2.7. We stress that Lemma 2.6 (hence Lemma 2.5) does not hold in
general if G is not soluble. See the arguments in [BH].

3. Non-existence of pseudo-null submodules. Let E/k, p, ko and G be
again as in §1. In this section, we need not to assume that G = Gal(koo/k) is pro-p.
We assume only that G has no p-torsion elements. This assures that A(G) is a left
and right Noetherian Auslander regular ring with the global dimension dim G 41 (cf.
[V] Theorem 3.26). For a left (or right) A(G)-module M and an integer ¢ > 0, we put
E‘(M) := Extj ) (M, A(G)). If M is a left (resp. right) A(G)-module, then E'(M)
has a natural structure of a right (resp. left) A(G)-module.

DEFINITION 3.1. A left A(G)-module M is pseudo-null if E°(M) = E*(M) = 0.

Note that for general rings, we use a different definition from this (cf. [CSS]), but
the above definition is equivalent to that if the ring is Auslander regular (cf. [CSS]
Lemma 2.4, [V] Proposition 3.5). The following properties are known:

(1) Any A(G)-module M has a unique maximal pseudo-null submodule M’ (cf. [V]).
Any pseudo-null submodule M” of M is contained in M’.
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(2) Any submodules and quotient modules of a pseudo-null module are pseudo-null.

(3) For an exact sequence
0— My - My — M3 — 0,

Mo is pseudo-null if so are M7 and Ms.

The condition E°(M) = Homp ) (M, A(G)) = 0 is equivalent to the condition
that M is A(G)-torsion, i.e., every element m in M is killed by some element in
A(G) which is not a zero-divisor. For such A(G)-torsionness, it is well known that
the similar properties as (1), (2) and (3) above hold. (Replace “pseudo-null” with
“A(G)-torsion”.)

For a prime v of k, denote by E, the modulo v reduction of E. By fixing a prime
w of ke over v, we put G, = Gal(koo w/kv) C G and let Koo, be the residue field of
koo,w- Now we state a theorem of Ochi and Venjakob. We assume p is an odd prime.
We assume the following five assumptions (i) to (v):

(i) dim(Gy) > 2 for any bad prime v of E,
(ii) all primes above p are deeply ramified in koo /k,

(iii) dim(G,) > 2 or dim(G,) = 2 and $F,(Keow)[p™] < oo for any prime v|p of k
which has good ordinary reduction,

(iv) the Weak Leopoldt’s conjecture H?(ks/koo, E[p™]) = 0 holds,
(v) the map ¢ in (2.1) is surjective.

THEOREM 3.2 (cf. [OV1] Theorem 5.5, [HV] Theorem 2.6, [O-y]). Assume E
has good reduction at all primes of k above p. If we assume the assumptions (i)-(v)
above, then Sel(E k)Y has no non-trivial pseudo-null A(G)-submodule.

The purpose of this section is to give a different proof of this Theorem which is
much simpler from the original paper. Let S be the set of primes of k which exactly
contains all the infinite primes, the primes above p, the primes which is ramified in
koo /k and the primes where E/k has bad reduction. Taking the Pontrjagin dual of
the sequence (2.1), we have an exact sequence

0= P Jo(E/k)Y — H' (ks /koo, E[p™])" — Sel(E/koo)” — 0
veS

because of the condition (v). The following is obtained by Ochi-Venjakob and used
also in the original proof.

THEOREM 3.3 (Ochi-Venjakob). (1) ([OV2] Theorem 4.6). Under the assumption
(iv), H(ks/koo, E[p™])Y has no non-trivial pseudo-null submodule.
(2) ([OV2] Lemma 5.4, [HV] Proposition 2.3). Under the assumptions (i), (ii) and
(iil), B eg Jo(E/ko)" is a reflexive module.

Here, a A(G)-module M is said to be reflexive if the natural map M — EYE?(M)
is an isomorphism. Note that a reflexive module has no A(G)-torsion submodule since
E%(N) has no A(G)-torsion for any module N. The following is also by Ochi-Venjakob.

PROPOSITION 3.4 (cf. [OV1] Lemma 3.1, Proposition 3.3). For a finitely gen-
erated left A(G)-module M, W = EEY(M) is a reflexive module. The kernel of the
natural map M — W is the mazimal A(G)-torsion submodule of M and the cokernel
is pseudo-null.
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So the proof of the theorem is done if we show the following Proposition, which
is a new part of the proof:

PROPOSITION 3.5. Let 0 = U — V — M — 0 be an exact sequence of A(G)-
modules. Assume that U is reflexive and V is a module which has mo non-trivial
pseudo-null submodule. Then, M has no nontrivial pseudo-null A(G)-submodule.

Proof. Take any pseudo-null submodule N of M. Let V’ be the inverse image of
N in V. Then

0—-U—-V - N—=0

is exact. Since U is reflexive, it has no A(G)-torsion submodule (see Proposition 3.4).
This implies that the maximal A(G)-torsion submodule of V' must be pseudo-null
because N is pseudo-null. But since V' has no pseudo-null submodules, it should be
0. Proposition 3.4 tells us that there exist a reflexive module W and an injection
V' — W whose cokernel is pseudo-null. Therefore the the cokernel N’ of the map
U — W which is obtained by the composition is again pseudo-null. If we show that
the map U — W is an isomorphism, we see that N is forced to be 0, which proves
the proposition. Now we consider the sequence

0—-U—W—N —0.
We have the long exact sequence
0 — E°(N') — EO(W) — E*(U) — B} (N')

Since N’ is pseudo-null, we have that E°(N’) = EY(N’) = 0 and E(W) — E°(U)
is an isomorphism. Hence E’E®(U) — E’E°(W) is also an isomorphism. But since
both U and V are reflexive, this map is nothing other than the original map U — W.
Therefore the map is an isomorphism, which is what we want. O

This proof simplifies the latter half of the proof of Theorem 5.2 in [OV1] (af-
ter Lemma 5.6 of thar paper). The theorem has been proved by showing that
E'E!(Sel(E/ks)Y) = 0 for all i > 2, which is an equivalent conditon for the non-
existence of pseudo-null submodules in the all previously known proofs. We modify
the proof of the Lemma in p. 123 of [Gr] and adapt it to the new definition of pseudo-
null modules (see also [O-t] Lemma 8.7).
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