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VARIATION OF p -ADIC NEWTON POLYGONS FOR
L-FUNCTIONS OF EXPONENTIAL SUMS ∗

DAQING WAN†

Abstract. In this paper, we continue to develop the systematic decomposition theory [18] for the
generic Newton polygon attached to a family of zeta functions over finite fields and more generally a
family of L-functions of n-dimensional exponential sums over finite fields. Our aim is to establish a
new collapsing decomposition theorem (Theorem 3.7) for the generic Newton polygon. A number of
applications to zeta functions and L-functions are given, including the full form of the remaining 3
and 4-dimensional cases of the Adolphson-Sperber conjecture [2], which were left un-resolved in [18].
To make the paper more readable and useful, we have included an expanded introductory section as
well as detailed examples to illustrate how to use the main theorems.

1. Introduction. Let Fq be the finite field of q elements with characteristic p.
For each positive integer k, let Fqk be the finite extension of Fq of degree k. Let
ζp be a fixed primitive p-th root of unity in the complex numbers. For any Laurent
polynomial f(x1, · · · , xn) ∈ Fq[x1, x

−1
1 , · · · , xn, x

−1
n ], we form the exponential sum

S∗
k(f) =

∑
xi∈F∗

qk

ζTrkf(x1,··· ,xn)
p ,

where F∗
qk denotes the set of non-zero elements in Fqk and Trk denotes the trace map

from Fqk to the prime field Fp. This is an exponential sum over the n-torus Gn
m over

Fqk . A question of fundamental importance in number theory is to understand the
sequence S∗

k(f) (1 ≤ k < ∞) of algebraic integers, each of them lying in the p-th
cyclotomic field Q(ζp).

By a theorem of Dwork-Bombieri-Grothendieck, the following generating L-
function is a rational function:

L∗(f, T ) = exp
( ∞∑

k=1

S∗
k(f)

T k

k

)
=

∏d1
i=1(1 − αiT )∏d2
j=1(1 − βjT )

, (1)

where the finitely many numbers αi (1 ≤ i ≤ d1) and βj (1 ≤ j ≤ d2) are non-zero
algebraic integers. Equivalently, for each positive integer k, we have the formula

S∗
k(f) = βk

1 + βk
2 + · · · + βk

d2
− αk

1 − αk
2 − · · · − αk

d1
.

Thus, our fundamental question about the sums S∗
k(f) is reduced to understanding

the reciprocal zeros αi (1 ≤ i ≤ d1) and the reciprocal poles βj (1 ≤ j ≤ d2). When
we need to indicate the dependence of the L-function on the ground field Fq, we will
write L∗(f/Fq, T ).

Without any smoothness condition on f , one does not even know exactly the
number d1 of zeros and the number d2 of poles, although good upper bounds are
available, see [4]. On the other hand, Deligne’s theorem on the Riemann hypothesis
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[5] gives the following general information about the nature of the zeros and poles.
For the complex absolute value | |, this says

|αi| = qui/2, |βj | = qvj/2, ui ∈ Z ∩ [0, 2n], vj ∈ Z ∩ [0, 2n],

where Z ∩ [0, 2n] denotes the set of integers in the interval [0, 2n]. Furthermore, each
αi (resp. each βj) and its Galois conjugates over Q have the same complex absolute
value. For each �-adic absolute value | |� with prime � �= p, the αi and the βj are
�-adic units:

|αi|� = |βj |� = 1.

For the remaining prime p, it is easy to prove

|αi|p = q−ri , |βj |p = q−sj , ri ∈ Q ∩ [0, 2n], sj ∈ Q ∩ [0, 2n],

where we have normalized the p-adic absolute value by |q|p = q−1. Deligne’s integral-
ity theorem implies the following improved information:

ri ∈ Q ∩ [0, n], sj ∈ Q ∩ [0, n].

Strictly speaking, in defining the p-adic absolute value, we have tacitly chosen an
embedding of the field Q̄ of algebraic numbers into an algebraic closure of the p-adic
number field Qp. Note that each αi (resp. each βj) and its Galois conjugates over Q
may have different p-adic absolute values.

The precise version of various types of Riemann hypothesis for the L-function
in (1) is then to determine the important arithmetic invariants {ui, vj , ri, sj}. The
integer ui (resp. vj) is called the weight of the algebraic integer αi (resp. βj). The
rational number ri (resp. sj) is called the slope of the algebraic integer αi (resp. βj)
defined with respect to q. Without any smoothness condition on f , not much more
is known about these weights and the slopes, since one does not even know exactly
the number d1 of zeros and the number d2 of poles. Under a suitable smoothness
condition, a great deal more is known about the weights {ui, vj} and the slopes
{ri, sj}, see Adolphson-Sperber [2], Denef-Loesser [6] and Wan [18].

The object of this paper is to continue our investigation of the slopes {ri, sj} and
their variation as f and p vary. In the classical case that f is a diagonal polynomial
such as a Fermat polynomial, the αi (resp. the βj) are roots of products of Gauss
sums and the slopes can be obtained using the classical Stickelberger theorem. For
non-diagonal f , the problem is much harder. The idea of our decomposition theory
is to try to reduce the slope problem from harder non-diagonal f to easier diagonal
f . Our main result is a new collapsing decomposition theorem which is much more
flexible to use. It gives significantly better and often optimal information about the
slopes in many cases. We shall illustrate this with a number of interesting examples
in Section 3. In the rest of this introduction section, we describe precisely our basic
questions, previous known results and our new theorems.

1.1. Newton polygon and generic Newton polygon. A Laurent polynomial
f is a finite sum of monomials:

f =
J∑

j=1

ajx
Vj , aj �= 0,
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where each Vj = (v1j , · · · , vnj) is a lattice point in Zn and the power xVj simply
means the product xv1j

1 · · ·xvnj
n . Let ∆(f) be the convex closure in Rn generated by

the origin and the lattice points Vj (1 ≤ j ≤ J). This is called the Newton polyhedron
of f . If δ is a subset of ∆(f), we define the restriction of f to δ to be the Laurent
polynomial

fδ =
∑
Vj∈δ

ajx
Vj .

Without loss of generality, we always assume that ∆(f) is n-dimensional.

Definition 1.1. The Laurent polynomial f is called non-degenerate if for each
closed face δ of ∆(f) of arbitrary dimension which does not contain the origin, the n
partial derivatives

{∂f
δ

∂x1
, · · · , ∂f

δ

∂xn
}

have no common zeros with x1 · · ·xn �= 0 over the algebraic closure of Fq.

Note that the non-degenerate definition of f depends only on the monomials of f
whose exponents are on the closed faces of ∆(f) not containing the origin. Let g be
another Laurent polynomial such that ∆(g) is contained in ∆(f) and such that ∆(g)
does not intersect the closed faces of ∆(f) not containing the origin. It is clear that
the sum f + g, which may be viewed as a deformation of f , is also non-degenerate
whenever f is non-degenerate. This is the case, for example, if ∆(g)−{0} is contained
in the interior of ∆(f).

Assume now that f is non-degenerate (a smooth condition on the “leading form”
of f) with respect to ∆(f). Then, the L-function L∗(f, T )(−1)n−1

is a polynomial
(not pure in general) of degree n!V(f) by a theorem of Adolphson-Sperber [2] proved
using p-adic methods, where V(f) denotes the volume of ∆(f). The complex absolute
values (or the weights) of the n!V(f) zeros can be determined explicitly by a theorem
of Denef-Loeser [6] proved using �-adic methods. They depend only on ∆, not on the
specific f and p as long as f is non-degenerate with ∆(f) = ∆. Hence, the weights
have no variation as f and p varies. As indicated above, the �-adic absolute values
of the zeros are always 1 for each prime � �= p. Thus, there remains the intriguing
question of determining the p-adic absolute values (or the slopes) of the zeros. This is
the p-adic Riemann hypothesis for the L-function L∗(f, T )(−1)n−1

. Equivalently, the
question is to determine the Newton polygon of the polynomial

L∗(f, T )(−1)n−1
=

n!V(f)∑
i=0

Ai(f)T i, Ai(f) ∈ Z[ζp], (2)

Recall that the Newton polygon of (2), denoted by NP(f), is the lower convex closure
in R2 of the points

(k, ordqAk(f)), k = 0, 1, · · · , n!V(f).

We shall often think of NP(f) as the real valued function on the interval [0, n!V(f)]
whose graph is the Newton polygon. Note that NP(f) is independent of the choice
of the ground field Fq for which f is defined. Thus, the Newton polygon, which is
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by definition an arithmetic invariant, is also a geometric invariant. The question of
determining the Newton polygon is unfortunately very complicated in general. The
necessary complication of the Newton polygon problem is partly due to the fact that
there does not exist a clean general answer or equivalently that the answer varies too
much as f and the prime p vary.

One general property about the Newton polygon is the Grothendieck specializa-
tion theorem for F-crystals [11] or more generally for σ-modules [20]. This result
provides a general algebraic structure theorem about the variation of the Newton
polygon NP(f) when f varies in an algebraic family. Let ∆ be a fixed n-dimensional
integral convex polyhedron in Rn containing the origin. Let V(∆) be the volume of
∆. Let Np(∆) be the parameter space of f over F̄p with fixed ∆(f) = ∆. This is a
smooth affine variety defined over Fp.

Let Mp(∆) be the set of non-degenerate f over F̄p with fixed ∆(f) = ∆. It
is the compliment of a discriminant locus. Thus, Mp(∆) is a Zariski open smooth
affine subset of Np(∆). It is non-empty if p is large, say p > n!V(∆). Thus, Mp(∆) is
again a smooth affine variety defined over Fp. One can show that there is a locally free
overconvergent σ-module E(∆) of rank n!V(∆) on Mp(∆) such that for each closed
point f of Mp(∆), the L-function L∗(f, T )(−1)n−1

is the characteristic polynomial of
the Frobenius acting on the fibre E(∆)f of Mp(∆) at f . That is,

L∗(f, T )(−1)n−1
= det(I − TFrobf |E(∆)f ).

We can ask how NP(f) varies as f varies. The variety Mp(∆) has countably many
closed points, which can be listed as a sequence {f1, f2, · · · }. The Grothendieck
specialization theorem [20] implies that as f varies, the lowest Newton polygon

GNP(∆, p) = inf
f∈Mp(∆)

NP(f) = inf
1≤i<∞

NP(fi)

exists and is attained for all f in some Zariski open dense subset of Mp(∆). This
lowest polygon can then be called the generic Newton polygon, denoted by GNP(∆, p).
Note that GNP(∆, p) depends only on p and ∆. We would like to determine this
generic Newton polygon and its variation with p.

Note that if we restrict to an irreducible curve C ↪→ Mp(∆), then the
Grothendieck specialization theorem implies that the limit (not just lower limit)
limf∈C NP(f) exists and is attained for all but finitely many points f ∈ C.

1.2. A lower bound: Hodge polygon. Another general property is that the
Newton polygon lies on or above a certain topological or combinatorial lower bound,
called the Hodge polygon. This is the Katz type conjecture. In the present setting of
exponential sums, such a lower bound HP(∆) is given by Adolphson-Sperber in terms
of the rational points in ∆. We now describe this combinatorial lower bound HP(∆).

Let ∆ denote the n-dimensional integral polyhedron ∆(f) in Rn containing the
origin. Let C(∆) be the cone in Rn generated by ∆. Then C(∆) is the union of
all rays emanating from the origin and passing through ∆. If c is a real number, we
define c∆ = {cx|x ∈ ∆}. For a point u ∈ Rn, the weight w(u) is defined to be the
smallest non-negative real number c such that u ∈ c∆. If such c does not exist, we
define w(u) = ∞.

It is clear that w(u) is finite if and only if u ∈ C(∆). If u ∈ C(∆) is not the
origin, the ray emanating from the origin and passing through u intersects ∆ in a
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face δ of co-dimension 1 that does not contain the origin. The choice of the desired
co-dimension 1 face δ is in general not unique unless the intersection point is in the
interior of δ. Let

∑n
i=1 eiXi = 1 be the equation of the hyperplane δ in Rn, where

the coefficients ei are uniquely determined rational numbers not all zero. Then, by
standard arguments in linear programming, one finds that the weight function w(u)
can be computed using the formula:

w(u) =
n∑

i=1

eiui, (3)

where (u1, · · · , un) = u denotes the coordinates of u.
LetD(δ) be the least common denominator of the rational numbers ei (1 ≤ i ≤ n).

It follows from (3) that for a lattice point u in C(δ), we have

w(u) ∈ 1
D(δ)

Z≥0. (4)

It is easy to show that there are lattice points u ∈ C(δ) such that the denominator of
w(u) is exactly D(δ). That is, the denominator in (4) is optimal. Let D(∆) be the
least common multiple of all the D(δ):

D(∆) = lcmδD(δ),

where δ runs over all the co-dimensional 1 faces of ∆ which do not contain the origin.
Then by (4), we deduce

w(Zn) ⊆ 1
D(∆)

Z≥0 ∪ {+∞}, (5)

where Z≥0 denotes the set of nonnegative integers. The integer D = D(∆) is called
the denominator of ∆. It is the smallest positive integer for which (5) holds.

For an integer k, let

W∆(k) = card{u ∈ Zn | w(u) =
k

D
}.

be the number of lattice points in Zn with weight k/D. This is a finite number for
each k. Let

H∆(k) =
n∑

i=0

(−1)i

(
n

i

)
W∆(k − iD).

This number is the number of lattice points of weight k/D in a certain fundamental
domain corresponding to a basis of the p-adic cohomology space used to compute the
L-function. Thus, H∆(k) is a non-negative integer for each k ∈ Z≥0. Furthermore,

H∆(k) = 0, for k > nD

and

nD∑
k=0

H∆(k) = n!V(∆).
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Definition 1.2. The Hodge polygon HP(∆) of ∆ is defined to be the lower convex
polygon in R2 with vertices

( m∑
k=0

H∆(k),
1
D

m∑
k=0

kH∆(k)
)
, m = 0, 1, 2, · · · , nD.

That is, the polygon HP(∆) is the polygon starting from the origin and has a side of
slope k/D with horizontal length H∆(k) for each integer 0 ≤ k ≤ nD.

The numbers H∆(k) coincide with the usual Hodge numbers in the toric hypersur-
face case, see [3] for general results in this direction. This explains the term “Hodge
polygon”. Note that in the geometric situation of zeta functions, one has D = 1
because one really considers the exponential sum of the new polynomial x0f(x) in
order to study the zeta function of the hypersurface defined by f .

The lower bound of Adolphson and Sperber [2] says that if f ∈ Mp(∆), then

NP(f) ≥ HP(∆).

The Laurent polynomial f is called ordinary if NP (f) = HP (f). Combining with
the defining property of the generic Newton polygon, we deduce

Proposition 1.3. For every prime p and every f ∈ Mp(∆), we have the in-
equalities

NP(f) ≥ GNP(∆, p) ≥ HP(∆). (6)

This proposition gives rise to three possible inequalities. We are interested in
classifying the polytopes ∆ and the primes p for which one of the inequalities becomes
an inequality. We will not study all the three questions in this paper, but only two of
them involving the last polygon HP(∆).

1.3. Main results. The first question is when the generic Newton polygon co-
incides with the Hodge polygon. That is, when GNP(∆, p) = HP(∆)? By a simple
ramification argument and the theory of σ-modules, one finds that the vertices of
GNP(∆, p) have denominators dividing p − 1. On the other hand, the vertices of
HP(∆) have denominators dividing D. In many cases, the denominator D for HP(∆)
cannot be improved. In such a case, a necessary condition for GNP(∆, p) = HP(∆) is
clearly p ≡ 1(mod D). The converse is the following conjecture of Adolphson-Sperber
on generic Newton polygon.

Conjecture 1.4. (AS). If p ≡ 1 (mod D), then GNP(∆, p) = HP(∆).

Remark. If the parameter space Mp(∆) happens to be empty, we simply define
GNP(∆, p) = HP(∆) so that the conjecture is true in the empty case. For each ∆,
the space Mp(∆) is always non-empty for large p, say if p > n!V(∆).

In the special case that ∆ is the convex polytope of the homogeneous polynomial
x0(xd

1 + xd
2 + · · ·+ xd

n), the AS conjecture implies the conjecture of Mazur [13] on the
generic Newton polygon for the zeta functions of the universal family of hypersurfaces
of degree d, see [18].
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In [18], several decomposition theorems were established for the generic Newton
polygon. As a consequence, it was proved that the AS conjecture is true for n ≤ 2
but false for every n ≥ 5. In the present paper, we establish a new and more flexible
collapsing decomposition theorem for the generic Newton polygon, see Theorem 3.7.
As a consequence, we are able to handle the remaining two dimensions (n = 3, 4) as
well. In particular, we have a complete answer to the AS conjecture (and hence our
first question as well) in terms of the dimension n.

Theorem 1.5. The AS conjecture is true in every low dimension n ≤ 3 but false
in every high dimension n ≥ 4.

Although the AS conjecture is not true in general in higher dimensions, we would
like to know how far the conjecture is from being true and when it is true in various
important special cases. It turns out that a weaker form of the AS conjecture is always
true. Namely, we have the following theorem.

Theorem 1.6. There is an effective positive integer D∗ = D∗(∆) ≥ D such that
if p ≡ 1 (mod D∗), then GNP(∆, p) = HP(∆).

This theorem was first proved in [18] using the star decomposition developed
there. It also follows from the collapsing decomposition theorem of the present paper.
The quantity D∗ one gets using the new collapsing decomposition is much smaller
(often optimal) than what one gets using the old star decomposition. This allows us
to prove that the full form of the AS conjecture is true for all n ≤ 3 and for many
other important higher dimensional ∆. That is, one can take D∗ = D in many cases.
In Section 3, we give a detailed description of the collapsing decomposition theorem
as well as a number of further applications to zeta functions and L-functions.

In general, the smallest possible value for D∗ is quite subtle. It depends not just
on the combinatorial shape of ∆ but also on subtle p-adic arithmetic property of ∆
as well. Again, there is probably no simple formula for the smallest D∗, but see [18]
for a classification conjecture on those large p for which GNP(∆, p) = HP(∆). In
particular, this classification conjecture implies an explicit algorithm to compute the
smallest possible D∗.

An immediate consequence of Theorem 1.6 is

Corollary 1.7. Let ∆ be an n-dimensional integral convex polytope in Rn

containing the origin. Then, the lower limit

lim
p→∞ inf GNP(∆, p) = HP(∆)

exists and is attained for a set of primes p with positive density.

Our second question is when NP(f) = HP(∆) for all f ∈ Mp(∆). The answer
would depend on a more subtle relation between ∆ and p. Let δi (1 ≤ i ≤ h) be
the set of closed codimension 1 faces of ∆ not containing the origin. Let ∆i be the
n-dimensional polytope generated by δi and the origin. The facial decomposition of
∆ is defined (see [18])by

∆ =
h⋃

i=1

∆i. (7)
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We have

Theorem 1.8. NP(f) = HP(∆) for all f ∈ Mp(∆) if the following two condi-
tions hold. (i). For each 1 ≤ i ≤ h, δi is a simplex containing no lattice points other
than the vertices. (ii). For each 1 ≤ i ≤ h, multiplication by p on the finite group of
the lattice points in the fundamental domain of ∆i is a weight preserving map. That
is, w({pu}) = w(u) for all lattice points u in the fundamental domain of ∆i, where
{pu} is the class of the lattice point pu in the fundamental domain of ∆i.

The converse of the above theorem is not always true. It would be interesting to
classify those ∆ and p for which NP(f) = HP(∆) for all f ∈ Mp(∆).

1.4. Limiting conjectures on Newton polygons. To motivate further re-
search on Newton polygons, we state three limiting conjectures about the variation
of the Newton polygon as the prime p varies. The first one concerns the lower limit
of the Newton polygon of a fixed Laurent polynomial f as p varies. This one is easy
to state but difficult to prove in general. It greatly strengthens Corollary 1.7. It can
also be viewed as an arithmetic version of the geometric Grothendieck specialization
theorem.

Conjecture 1.9. Let ∆ be an n-dimensional integral convex polyhedron in Rn

containing the origin. Let f(x) be a non-degenerate Laurent polynomial with rational
coefficients such that ∆(f) = ∆. Then, we have the lower limiting formula

lim
p→∞ inf NP(f(x) mod p) = HP(∆) (8)

and this lower limit is attained for a set of primes p with positive density.

The Laurent polynomial is called diagonal if the exponents of its non-constant
terms are the non-zero vertices of an n-dimensional simplex ∆ containing the origin.
By the Stickelberger theorem, this conjecture is true if f(x) is a diagonal Laurent
polynomial, see section 2 below. More generally, the conjecture is true if f(x) is
a certain deformation of a diagonal Laurent polynomial. The most general result in
this direction is the following theorem which is an immediate consequence of our facial
decomposition theorem, see section 3.

Theorem 1.10. Let ∆ be an n-dimensional integral convex polyhedron in Rn

containing the origin. Let f(x) be a non-degenerate Laurent polynomial with ratio-
nal coefficients such that ∆(f) = ∆. Assume that the restriction fδi

of f to each
codimension 1 face δi (1 ≤ i ≤ h) not containing the origin is diagonal. Then,
there is an explicitly determined positive integer D∗ such that for all large primes
p ≡ 1 (mod D∗), we have the equality

NP(f(x) mod p) = HP(∆). (9)

Note that the condition in Theorem 1.10 implies that ∆ must be simplicial, i.e.,
each codimension 1 face δi of ∆ is a simplex. Theorem 1.10 provides many non-trivial
examples for which Conjecture 1.9 holds. For simplicity, we stated Conjecture 1.9 only
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for the rational number field. The conjecture easily generalizes to any fixed number
field.

The limit of the Newton polygon NP(f) as p varies does not exist in general, as
the diagonal case shows. The next question we want to ask is when the limit (not
just lower limit) exists as p varies and is equal to the Hodge polygon. Depending on
NP(f) or GNP(∆, p), we are really asking two questions in this direction.

First, we consider the possible limit of the generic Newton polygon. The limit
cannot exist in general for general ∆, as the minimal diagonal example in Section 2.4
shows. Let L(∆) be the set of lattice points in the cone C(∆). This is a monoid. Let
E(∆) be the monoid generated by the finitely many lattice points in the polytope ∆.
This is a sub-monoid of L(∆).

Conjecture 1.11. Let ∆ be an n-dimensional integral convex polytope in Rn

containing the origin. Assume that the difference L(∆)−E(∆) is a finite set. Then,
the limit

lim
p→∞GNP(∆, p) = HP(∆)

exists and is equal to the Hodge polygon.

This conjecture is true in the case when the integer D∗(∆) in Theorem 1.6 can be
taken to be at most 2. There are many such examples in the geometric situation of zeta
functions, where D∗ = D = 1 (the AS conjecture). Note it is not true in general that
the limit in the above conjecture is attained for all large primes, although Corollary
1.7 says that the limit is indeed attained for a set of primes with positive density.

Next, we consider the limit of NP(f) as p varies. Again the limit cannot exist in
general. For the limit to exist, even the condition in Theorem 1.10 is too weak as the
diagonal case shows. However, we conjecture that the limit of the Newton polygon
as p varies does exist and hence equals to the Hodge polygon for most of the integral
polynomials if we combine the conditions in Theorem 1.10 and Conjecture 1.11.

Let δi (1 ≤ i ≤ h) be the set of closed codimension 1 faces of ∆ not containing
the origin. Let ∆i be the n-dimensional polytope generated by δi and the origin.

Conjecture 1.12. Assume that ∆ is simplicial. Let V1 = {V1, · · · , VJ1} be the
set of all non-zero vertices in ∆. Let V2 = {W1, · · · ,WJ2} be a set of lattice points
in ∆ with weight strictly smaller than one. Let ai (1 ≤ i ≤ J1) be n fixed non-zero
rational numbers. Let AJ2 be the family of Laurent polynomials

f(x) =
J1∑
i=1

aix
Vi +

J2∑
j=1

bjx
Wj (10)

parametrized by the bj. Let E(J) be the monoid generated by the J lattice points in
V1∪V2. Assume that L(∆)−E(J) is a finite set. Then, there is a Zariski open dense
subset U ↪→ AJ2 defined over Q such that for each f ∈ U(Q̄), we have

lim
p→∞NP(f, p) = HP(∆), (11)

where NP(f, p) denotes NP(f mod P ) and P denotes a prime ideal lying above p in
the ring of integers of the number field generated by the coefficients of f . Note that
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for large p, NP(f mod P ) depends only on p and not on the choice of the prime ideal
P lying above p.

The condition in Conjecture 1.12 is more restrictive than that in Conjecture
1.11. But its conclusion is also stronger. In particular, an immediate consequence
of Conjecture 1.12 is that for all Q-rational points f ∈ U(Q), we have the limiting
formula

lim
p→∞NP(f(x) mod p) = HP(∆). (12)

This equation means that the limit on the left side exists and is equal to the right
side.

We believe that both Conjecture 1.11 and Conjecture 1.12 are much more realistic
to prove than Conjecture 1.9. By Corollary 1.7 and Theorem 1.10, the key point of
Conjectures 1.11 and 1.12 is that the limit exists. The first interesting case to consider
includes the family of normalized one variable polynomials of degree d:

f(x) = xd + ad−2x
d−2 + · · · + a1x. (13)

This one variable case has received considerable attentions in the work of Sperber [16],
Hong [9][10] and Yang [22]. More recently, the one variable case of Conjecture 1.12
has been proved by June Hui Zhu [23][24]. One can also consider a suitable sub-family
of the above family by specifying certain coefficients to be zero.

1.5. Further questions. Assume that p is a prime such that GNP(∆, p) =
HP(∆). Let Up(∆) be an affine open dense subset of the variety Mp(∆) such that
NP(f) = HP(∆) for f ∈ Up(∆). Since Mp(∆) is smooth, Up(∆) is also smooth.
The restriction of the σ-module E(∆) to Up(∆) is then an ordinary overconvergent
σ-module. By the Hodge-Newton decomposition [20] for σ-modules, there is an in-
creasing filtration of sub-σ-modules (no longer overconvergent) on Up(∆):

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ EnD = E(∆)|Up(∆),

such that the successive quotient Ek/Ek−1 is a pure σ-module on Up(∆) of rank H∆(k)
and slope k/D. The L-function of such a pure σ-module and its higher power Adams
operations [19] measure the p-adic arithmetic variation of the pure σ-module. By
Dwork’s conjecture [7] as proved in [19][20][21] in the setting of σ-modules, such a
pure L-function is p-adic meromorphic everywhere. It would be interesting to get
information about the slopes (or the Newton polygon) of the pure L-function. As an
initial result in this direction, an explicit lower bound for the Newton polygon of the
pure L-function is obtained in [21] in the case that the pure σ-module has rank one.
Note that in the current setting, the unit root σ-module E0 is always of rank one,
which is non-trivial if the origin is not a vertex of ∆. For more examples, let Fk be
the unit root σ-module arising from the slope k/D part Ek/Ek−1. Then detFk is a
rank one unit root σ-module. An intermediate and perhaps more accessible question
is to study the k-th moment L-function of the σ-module E(∆) and its variation as the
positive integer k varies, see Fu-Wan [8] for general structural results in this direction.
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2. Diagonal local theory. In this section, we give a thorough treatment of the
diagonal case, refining and improving the calculations in our earlier paper [17]. Recall
that a Laurent polynomial f is called diagonal if f has exactly n non-constant terms
and ∆(f) is n-dimensional (necessarily a simplex). In this case, the L-function can be
computed explicitly using Gauss sums, just as the well known case of the zeta function
of a Fermat hypersurface. Thus, theoretically speaking or from algorithmic point of
view, the Newton polygon in the diagonal case can be completely determined using
the Stickelberger theorem. It should, however, be noted that interesting arithmetic
and combinatorial problems will often arise in the actual explicit calculation of the
Newton polygon due to the diversity of the simplex ∆. The diagonal case forms the
building blocks for the general decomposition theory in next section. It also provides
a rich source of explicit interesting examples, including counter-examples of the AS
conjecture.

2.1. p-action, Gauss sums and L-functions. To describe the L-function in
terms of Gauss sums, we first review the p-action on lattice points. Let 0, V1, · · · , Vn

be the vertices of an n-dimensional integral simplex ∆ in Rn. Let f be the diagonal
Laurent polynomial

f(x) =
n∑

j=1

aix
Vj , aj ∈ F∗

q .

Let M be the non-singular n× n matrix

M = (V1, · · · , Vn),

where each Vj is written as a column vector. It is easy to check that f is non-
degenerate if and only if p is relatively prime to detM . We do not assume that p
satisfies this condition. We consider the solutions of the following linear system

M

⎛
⎜⎝
r1
...
rn

⎞
⎟⎠ ≡ 0 (mod 1), ri rational, 0 ≤ ri < 1. (14)

The map (r1, · · · , rn) → r1V1 + · · ·+ rnVn clearly establishes a one-to-one correspon-
dence between the solutions of (14) and the integral lattice points of the fundamental
domain

RV1 + · · · + RVn(mod ZV1 + · · · + ZVn). (15)

Under this bijection, we can identify the solution set of (14) and the set of integral
lattice points in the above fundamental domain. Let S(∆) be the set of solutions r
of (14), which may be identified with the lattice points u = Mr in the fundamental
domain (15). It has a natural abelian group structure under addition modulo 1. By
the theory of elementary abelian groups, the order of S(∆) is precisely given by

|detM | = n!V(∆).

Let Sp(∆) denote the prime to p part of S(∆). It is an abelian subgroup of order
equal to the prime to p factor of detM . In particular, Sp(∆) = S(∆) if p is relatively
prime to detM .
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If m is an integer relatively prime to the order of Sp(∆), then multiplication by
m induces an automorphism of the finite abelian group Sp(∆). This map is called the
m-map (or m-action) of Sp(∆), denoted by the notation r → {mr}, where

{mr} = ({mr1}, · · · , {mrn})
and {mri} denotes the fractional part of the real number mri. For each element
r ∈ Sp(∆), let d(m, r) be the smallest positive integer such that multiplication by
md(m,r) acts trivially on r, i.e.,

(md(m,r) − 1)r ∈ Zn.

The integer d(m, r) is the order of the m-map restricted to the cyclic subgroup gen-
erated by r. It is called the m-degree of r. For each positive integer d, let Sp(m, d)
be the set of r ∈ Sp(∆) such that d(m, r) = d. Of course, the set Sp(m, d) is empty
for all large d since Sp(∆) is finite. We have the disjoint m-degree decomposition

Sp(∆) =
⋃
d≥1

Sp(m, d).

Since p is relatively prime to the order of Sp(∆), we will use the case that m is a
power of p, such as p and q.

In order to compute the L-function, we now recall the definition of Gauss sums.
Let χ be the Teichmüller character of the multiplicative group F∗

q . For a ∈ F∗
q , the

value χ(a) is just the (q − 1)-th root of unity in the p-adic field Ω such that χ(a)
modulo p reduces to a. Define the (q − 1) Gauss sums over Fq by

Gk(q) = −
∑

a∈F∗
q

χ(a)−kζTr(a)
p (0 ≤ k ≤ q − 2),

where Tr denotes the trace map from Fq to the prime field Fp. For each a ∈ F∗
q , the

Gauss sums satisfy the following interpolation relation

ζTr(a)
p =

q−2∑
k=0

Gk(q)
1 − q

χ(a)k.

One then calculates that

S∗
1 (f) =

∑
xj∈F∗

q

ζTr(f(x))
p

=
∑

xj∈F∗
q

n∏
i=1

ζTr(aix
Vi )

p

=
∑

xj∈F∗
q

n∏
i=1

q−2∑
ki=0

Gki
(q)

1 − q
χ(ai)kiχ(xVi)ki

=
q−2∑
k1=0

· · ·
q−2∑

kn=0

(
n∏

i=1

Gki
(q)

1 − q
χ(ai)ki)

∑
xj∈F∗

q

χ(xk1V1+···+knVn)

= (−1)n
∑

k1V1+···+knVn≡0(modq−1)

n∏
i=1

χ(ai)kiGki
(q). (16)
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This gives a formula for the exponential sum S∗
1 (f) over the field Fq. Replacing q

by qk, one gets a formula for the exponential sum S∗
k(f) over the k-th extension field

Fqk .
If r = (r1, · · · , rn) and r′ = (r′1, · · · , r′n) are two elements in Sp(p, d) which are in

the same orbit under the p-action, that is

r′ = {pkr}

for some integer k, then one checks from the above definition of Gauss sums that

Gri(qd−1)(q
d) = Gr′

i(q
d−1)(q

d)

for all 1 ≤ i ≤ n, where Gk(qd) is the Gauss sum defined over the finite extension
field Fqd . Thus, the p-action and the q-action do not change the Gauss sum. For
r ∈ Sp(q, d), the well known Hasse-Davenport relation says that

Gr(qdk−1)(q
dk) = Gr(qd−1)(q

d)k,

for every positive integer k. Using this relation and (16), one then obtains the following
explicit formula [17] for the L-function.

Theorem 2.1. Using the above notations, we have

L∗(f/Fq, T )(−1)n−1
=

∏
d≥1

∏
r∈Sp(q,d)

(
1 − T d

n∏
i=1

χ(ai)ri(q
d−1)Gri(qd−1)(q

d)
) 1

d

, (17)

where r = (r1, · · · , rn).

Note that we used the q-action in the definition of the set Sp(q, d) which occurs
in (17). For each of the d points in the orbit of r ∈ Sp(q, d) under the q-action, the
corresponding factor in (17) is the same. Thus, we can remove the power 1/d if we
restrict r to run over the q-orbits (closed points) of Sp(q, d). In particular, this shows
that the right side of (17) is indeed a polynomial of degree |Sp(∆)|.

2.2. Applications of the Stickelberger theorem. The Stickelberger theorem
for Gauss sums can be described as follows.

Theorem 2.2. Let 0 ≤ k ≤ q − 2. Let σp(k) be the sum of the p-digits of k in
its base p expansion. That is,

σp(k) = k0 + k1 + k2 + · · · , k = k0 + k1p+ k2p
2 + · · · , 0 ≤ ki ≤ p− 1.

Then,

ordpGk(q) =
σp(k)
p− 1

.

Combining Theorems 2.1 and 2.2, one can then completely determine the p-adic
absolute values of the reciprocal zeros of L∗(f, T )(−1)n−1

. In particular, the New-
ton polygon is independent of the non-zero coefficients aj of the diagonal Laurent
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polynomial f . Thus, for simplicity, we may assume that all the coefficients are 1.
Namely,

f =
n∑

j=1

xVj . (18)

Applying Theorem 2.1 to the polynomial in (18) and q = p, we obtain

Corollary 2.3. For f in (18), we have

L∗(f/Fp, T )(−1)n−1
=

∏
d≥1

∏
r∈Sp(p,d)

(
1 − T d

n∏
i=1

Gri(pd−1)(p
d)

) 1
d

, (19)

where r = (r1, · · · , rn) and the p-action is used.

The Newton polygon computed with respect to q of the polynomial in Theorem
2.1 is the same as the Newton polygon computed with respect to p of the polynomial in
Corollary 2.3. This follows directly from the relationship between the two L-functions:
the reciprocal zeros of L∗(f/Fq, T )(−1)n−1

for the polynomial f in (18) are exactly
the k-th power of the reciprocal zeros of L∗(f/Fp, T )(−1)n−1

, where q = pk.
If now r = (r1, · · · , rn) is an element of Sp(p, d) and αr is any one of the d

reciprocal roots (which differ only by a d-th root of unity) of the corresponding factor
in (19), then the Stickelberger theorem implies that

ordp(αr) =
1
d
ordp

n∏
i=1

Gri(pd−1)(p
d)

=
1

d(p− 1)

n∑
i=1

σp(ri(pd − 1))

=
1

d(p− 1)

n∑
i=1

p− 1
pd − 1

d−1∑
j=0

{pjri}(pd − 1)

=
1
d

d−1∑
j=0

|{pjr}|, (20)

where for r ∈ Sp(∆), the norm |r| = r1 + · · · + rn is just the weight w(u) of the
corresponding lattice point u = Mr in the fundamental domain (15). From (20),
one can write down a (complicated) formula for the Newton polygon of the diagonal
L-function.

For r ∈ Sp(p, d) ⊂ Sp(∆), we define the average norm of r to be

w([r]) =
1
d

d−1∑
j=0

|{pjr}|.

Thus, w([r]) can be viewed as the norm of the orbit of r under the p-action. For a
rational number 0 ≤ s ≤ n, let hs(p) denote the number of elements r ∈ Sp(∆) whose
average norm is s. Then, we have

Corollary 2.4. For f in (18), for each rational number 0 ≤ s ≤ n, the Newton
polygon of L∗(f/Fp, T )(−1)n−1

has a side of slope s whose horizontal length is hs(p).
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2.3. Ordinary criterion and ordinary primes. We would like to know when
the diagonal Laurent polynomial f in (18) is ordinary, that is, when NP (f) = HP (f)
if f is non-degenerate. For this purpose, we need to describe the Hodge polygon in
the diagonal case. Since our diagonal f may not be non-degenerate, our discussion
below is a little bit more general. In particular, the Hodge polygon would be a little
more general and depend on the prime number p if p is small. Consider the following
linear system for u ∈ Zn,

M

⎛
⎜⎝
r1
...
rn

⎞
⎟⎠ = u, 0 ≤ ri. (21)

If u ∈ C(∆), system (21) has exactly one rational solution r = (r1, · · · , rn). In this
case, the weight w(u) of u is given by

w(u) = r1 + · · · + rn = |r|.
Let W∆(k, p) be the number of lattice points u ∈ Zn such that

w(u) = r1 + · · · + rn =
k

D
(22)

and such that each ri is p-integral (that is, the denominator of ri is relatively prime
to p). Let

H∆(k, p) = W∆(k, p) −
(
n

1

)
W∆(k −D, p) +

(
n

2

)
W∆(k − 2D, p) − · · · .

By the inclusion-exclusion principle, H∆(k, p) is simply the number of elements in
Sp(∆) with weight k/D. Define the prime to p Hodge polygon HPp(∆) to be the
polygon with vertices (0,0) and

(
m∑

k=0

H∆(k, p),
m∑

k=0

k

D
H∆(k, p)), m = 0, 1, · · · , nD.

It is clear that HP (∆) = HPp(∆) if and only if p is relatively prime to detM . The
diagonal f in (18) is called ordinary at p if the Newton polygon of L∗(f/Fp, T )(−1)n−1

coincides with the prime to p Hodge polygon HPp(∆).

Theorem 2.5. The diagonal Laurent polynomial f in (18) is ordinary at p if
and only if the norm function |r| on Sp(∆) is stable under the p-action: That is, for
each r ∈ Sp(∆), we have

|r| = |{pr}|.
Equivalently, this means that the weight function w(u) on the lattice points of Sp(∆)
is stable under the p-action:

w(u) = w({pu}). (23)

Proof. If the norm function |r| on Sp(∆) is stable under the p-action, then for
any r ∈ Sp(p, d), (20) shows that each corresponding reciprocal root αr satisfies

ordp(αr) = |r| = w(u),
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where u = Mr. By Corollary 2.3, the L-function L∗(f/Fp, T )(−1)n−1
has exactly

H∆(k, p) reciprocal roots α with slope ordp(α) = k/D. This means that f is ordinary
at p.

Conversely, if f is ordinary at p, we need to prove that the norm function on
Sp(p, d) is stable under p-action. This can be proved by induction on the norm of r
as follows. The norm 0 subset of S(p, d) consists of r = 0/D = 0. It is clear that
{pi0} = 0. Thus, the norm 0 subset of Sp(p, d) is stable under the p-action. Removing
the zero element from Sp(p, d), if r ∈ Sp(p, d) − {0} has minimum norm 1/D, then
the ordinary assumption implies that the average norm of r must be 1/D. Since
each {pir} has norm at least 1/D, we deduce that the norm of {pir} is exactly the
minimum norm 1/D. This proves that the norm 1/D subset of Sp(p, d) is stable under
the p-action. By induction, one shows that for each positive integer k, the norm k/D
subset of Sp(p, d) is stable. The theorem is proved.

In particular, if the p-action on Sp(∆) is trivial, then the weight function w(u) on
the lattice points of Sp(∆) is automatically stable under the p-action and hence the
diagonal Laurent polynomial f in (18) is ordinary at p. Let d1(p) | d2(p) | · · · | dn(p)
be the invariant factors of the finite abelian group Sp(∆). That is,

Sp(∆) =
n⊕

i=1

Z/di(p)Z,

where di(p)|di+1(p) for 1 ≤ i ≤ n − 1. By the theory of finite abelian groups, mul-
tiplication by the largest invariant factor dn(p) kills the finite abelian group Sp(∆).
Thus, if p− 1 is divisible by dn(p), the p-action on Sp(∆) becomes trivial. Let dn be
the largest invariant factor of S(∆). It is clear that dn(p) is a factor of dn for every
p. Furthermore, dn(p) = dn if and only if p does not divide detM . We obtain

Corollary 2.6. Let dn(p) be the largest invariant factor of Sp(∆). Let dn be
the largest invariant factor of S(∆). If p ≡ 1 (mod dn(p)), then the diagonal Laurent
polynomial in (18) is ordinary at p. In particular, if p ≡ 1 (mod dn), then the diagonal
Laurent polynomial in (18) is ordinary at p.

As an application, we get information about the variation of the Newton polygon
when p varies. For example, we have

Corollary 2.7. Let f(x) be a diagonal Laurent polynomial with integer coeffi-
cients. Let dn be the largest invariant factor of the n-dimensional simplex ∆(f). For
a positive real number t, let πf (t) be the number of primes p ≤ t such that f(x) is
ordinary at p. Then, there is a positive integer µ(∆) ≤ ϕ(dn) such that the following
asymptotic formula holds

πf (t) ∼ µ(∆)
ϕ(dn)

t

log t
,

where ϕ(dn) denotes the Euler function.

In fact, if p1 is an ordinary prime for f , then Theorem 2.5 implies that f is
ordinary for every prime p ≡ p1(mod dn). Thus, the set of ordinary primes for f
are exactly the primes in certain residue classes modulo dn. The integer µ(∆) is the
number of positive integers m ≤ dn such that (m, dn) = 1 and the weight function
w(u) on the fundamental domain of ∆(f) is stable under the m-action.
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We now discuss the relationship between the denominator D(∆) and the largest
invariant factor dn. By definition, the denominator D(∆) is the least common de-
nominator for the coordinates of the vector (e1, · · · , en) which is the unique solution
of the linear system

(e1, · · · , en)M = (1, · · · , 1).

Solving this linear system, one finds that

(e1, · · · , en) = (1, · · · , 1)M−1 ∈ 1
dn

Zn.

This shows that D(∆) is a factor of dn and we have the inequality

D(∆) ≤ dn.

In general, D(∆) will be a proper factor of dn if n ≥ 2. The simplest example is to
take the 2 variable diagonal Laurent polynomial f(x) = xd

1x
1−d
2 +x2. One checks that

D = 1 but the largest invariant factor d2 = d.
We finish this subsection by showing that the full form of the AS conjecture holds

in the indecomposable case for n ≤ 3.

Definition 2.8. Let δ be the (n− 1)-dimensional face generated by the Vj (1 ≤
j ≤ n). This is the unique co-dimension 1 face of the simplex ∆ not containing the
origin. We say that ∆ is indecomposable if the face δ contains no lattice points
other than the vertices Vj.

Note that the larger ∆ may have non-vertex lattice points with weight less than
1.

Corollary 2.9. The AS conjecture is true for indecomposable ∆ if n ≥ 3 or if
n = 4 but D = 1.

Proof. Let fδ be the restriction of f to δ. Since ∆ is indecomposable, the
restriction fδ is a diagonal Laurent polynomial. We may assume now that fδ is
non-degenerate, that is, p is relatively prime to n!V(∆); otherwise there is nothing
to prove. By the deformation consequence of Theorem 3.1 in Section 3.1, we know
that NP(f) coincides with HP(∆) if and only if NP(fδ) coincides with HP(∆). By
Corollary 2.6, we only need to prove that the denominator D(∆) is equal to the largest
invariant factor dn under the assumption of the corollary. Let

e1X1 + · · · + enXn = D, gcd(e1, · · · , en) = 1 (24)

be the equation of the hyperplane δ, where the ei are relatively prime integers. Ap-
plying the Euclidean algorithm to the columns of the row vector {e1, · · · , en}, one
finds that there is a matrix R ∈ GLn(Z) such that

(e1, · · · , en)R = (1, 0, · · · , 0).

Let P = R−1. Then, the first row of P is (e1, · · · , en) and we have P ∈ GLn(Z).
Since each column vector Vj of M satisfies equation (24), we see that the first row of
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the product matrix PM is (D, · · · ,D). This normalization shows that without loss
of generality, we may assume that δ is defined by the equation X1 = D. Recall that

D ≤ dn ≤ |det(M)|.
Thus, it suffices to prove that det(M) = ±D.

If n = 1, it is trivial that D = d1. If n = 2, then δ is the line segment between
V1 = (D, v1) and V2 = (D, v2) for some integers v1 �= v2. Since there is no lattice
point strictly between v1 and v2, we deduce that |v1−v2| = 1 and thus det(M) = ±D.

If n = 3, let δ1 be the 2-dimensional integral simplex in R2 whose vertices are the
origin, U2 and U3, where Ui (2 ≤ i ≤ 3) is the last two coordinates of Vi − V1. Since
there are no non-vertex lattice points on δ, there are also no non-vertex lattice points
on δ1. But δ1 has dimension 2. We deduce the stronger property that there are no
non-vertex lattice points in the fundamental domain R2(modZU2 + ZU3). In fact, if
r2U2+r2U3 (0 < ri < 1) were a non-vertex lattice point in the fundamental domain of
δ1 but not in δ1, then r2 +r3 > 1 and we deduce that its mirror (1−r2)U2 +(1−r3)U3

is an interior lattice point of δ1 since (1 − r2) + (1 − r3) < 1. No non-vertex lattice
point in the fundamental domain of the simplex δ1 implies that det(U2, U3) = ±1. It
follows that

det(V1, V2, V3) = det(V1, V2 − V1, V3 − V1) = Ddet(U2, U3) = ±D.
If n = 4, the extra condition D = 1 shows that any lattice point

V = r1V1 + r2V2 + r3V3 + r4V4, 0 ≤ ri < 1

in the fundamental domain of ∆ has weight in the set {0, 1, 2, 3}. Since ∆ is inde-
composable, the fundamental domain has no non-zero lattice points of weight {0, 1}.
The mirror construction

V → (1 − r1)V1 + (1 − r2)V2 + (1 − r3)V3 + (1 − r4)V4

shows that the fundamental domain has no lattice points of weight 3. It follows that
all non-zero lattice points in the fundamental domain has weight exactly 2. The weight
function on Sp(∆) is certainly stable under the p-action for every p, since there is only
one non-trivial weight. Now, f is non-degenerate, we have Sp(∆) = S(∆). Thus, the
weight function on S(∆) is also stable under p-action. The proof is complete.

2.4. Counter-examples in high dimensions. The discussion in the previous
section shows that, in searching for diagonal counter-examples of the AS conjecture,
we should look at those ∆ with D(∆) < dn. Furthermore, to insure that the diagonal
family is already the generic family, we need to choose ∆ to be minimal, i.e., there
are no other lattice points on ∆ other than the vertices. This is the approach taken
in [18]. The following 5-dimensional counter-example is given in [18].

Let ∆ be the 5-dimensional simplex in R5 whose non-zero vertices are the column
vectors Vi (1 ≤ i ≤ 5) of the following matrix:

M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠ (25)
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Clearly, D(∆) = 1 since the first coordinate of each Vi is 1. One computes that the
determinant of the matrix M has absolute value 3. A direct proof shows that there
are no lattice points on ∆ except for the vertices. Thus, the generic family is the
diagonal family. In particular, L∗(f, T ) is a polynomial of degree 3 if p �= 3. There are
only three lattice points contained in the fundamental domain R5/ZV1 + · · · + ZV5.
One of them is the origin. The other two are

(2, 1, 1, 1, 1) =
2
3
V1 +

5∑
i=2

1
3
Vi, (3, 2, 2, 2, 2) =

1
3
V1 +

5∑
i=2

2
3
Vi. (26)

These two lattice points have weight 2 and 3, respectively. One checks that if p ≡
2 (mod 3), the p-action permutes the two points in (26) and thus the weight function
is not stable under the p-action. We conclude that the Newton polygon lies strictly
above its lower bound if p ≡ 2 (mod 3).

To construct counter-examples in higher dimensions (n ≥ 6), we can simply let
∆ be the integral simplex in Rn generated by the origin and the column vectors of
the n× n matrix

M∗ =

⎛
⎝M B

0 In−5

,

⎞
⎠ (27)

where M is the above 5 × 5 matrix, In−5 is the identity matrix of order (n− 5), the
first row of B is (1, 1, · · · , 1) and all other rows of B are zero. The first row of M∗

is (1, 1, · · · , 1) and so D(∆) = 1. One checks that there are no lattice points on ∆
other than the vertices. The generic family is indeed the diagonal family. However, if
p ≡ 2 (mod 3), the above argument shows that the Newton polygon of L∗(f, T )(−1)n−1

lies strictly above its lower bound.
Counter-examples in dimension 4 are a little harder to construct and to prove. In

fact, Corollary 2.9 shows that there are no such counter-examples if D = 1 and n = 4.
Let D ≥ 2 and k ≥ 2 be any two given positive integers. Let f be the 4-variable
diagonal Laurent polynomial

f(x) = a1x
D
1 + a2x

D
1 x2 + a3x

D
1 x2x3 + a4x

D
1 x

−1
3 xDk

4 , (28)

where the coefficients are non-zero elements of Fq. Thus, ∆ = ∆(f) is the 4-
dimensional simplex in R4 whose non-zero vertices are the column vectors of the
following matrix

M =

⎛
⎜⎜⎝
D D D D
0 1 1 0
0 0 1 −1
0 0 0 Dk

⎞
⎟⎟⎠ .

It is clear that D(∆) = D, d4 = Dk and det(M) = Dk+1. The lattice points in the
fundamental domain R4/ZV1 + · · · + ZV4 are of the form

j1
Dk

V1 + {D
k − j4
Dk

}V2 +
j4
Dk

V3 +
j4
Dk

V4, (29)

where {x} denotes the fractional part of the real number x, j1 and j4 are integers
such that

0 ≤ j1, j4 ≤ Dk − 1, j1 + j4 ≡ 0 (modDk−1). (30)
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There are exactly Dk+1 choices in (30), corresponding to the number of lattice points
in the fundamental domain. There are exactly D lattice points in the fundamental
domain with weight smaller than 1 corresponding to the case j4 = 0. There are no
lattice points on ∆ with weight 1 other than the vertices. The next smallest possible
weight for a lattice point in the fundamental domain is 1 + 1

D . Take j4 = 1 and
j1 = Dk−1 − 1, then

u = (D + 1, 1, 0, 1) =
Dk−1 − 1

Dk
V1 +

Dk − 1
Dk

V2 +
1
Dk

V3 +
1
Dk

V4

is a lattice point in the fundamental domain with weight 1 + 1
D . The p-action of this

point is given by

{pu} = {p(D
k−1 − 1)
Dk

}V1 + {p(D
k − 1)
Dk

}V2 + { p

Dk
}V3 + { p

Dk
}V4.

The weight of this point is bounded from below by

w({pu}) ≥ 1 + { p

Dk
}

since the sum of the middle two coefficients in (29) is already 1. This shows that the
weight function is not stable under the p-action if

{ p

Dk
} > 1

D
.

The last condition is satisfied, for instance, if we take p such that p − (1 + Dk−1)
is divisible by Dk. Such p satisfies the condition that p − 1 is divisible by Dk−1 (in
particular by D) but not divisible by Dk. Thus, the diagonal Laurent polynomial f
in (28) is not ordinary for such p.

Although the Laurent polynomial in (28) is not yet generic in terms of ∆. It is
“essentially” generic as far as the ordinary property of f is concerned. This is because
there are no lattice points on ∆ with weight 1 other than the non-zero vertices. Thus,
the diagonal Laurent polynomial in (28) is the “leading form” of the generic Laurent
polynomial with respect to ∆. The only terms we missed are those terms with weight
strictly less than 1. Theorem 3.1 in next section shows that deformations by such
“error terms” (with weight less than 1) have no effect on the ordinary property of f ,
although it would indeed change the Newton polygon in non-ordinary case. This shows
that AS conjecture is false in dimension 4 as well. This counter-example together with
the trick in (27) gives the following result.

Corollary 2.10. Let D∗(∆) be the smallest positive integer such that

GNP(∆, p) = HP(∆)

for all primes p ≡ 1 (mod D∗(∆)). Then for each integer n ≥ 4, we have

lim
dim(∆)=n

sup
D∗(∆)
D(∆)

= +∞.

This shows that for each integer n ≥ 4, the two numbers D∗(∆) and D(∆) can
differ as much as one would like. Nevertheless, we shall see that D∗(∆) = D(∆) in
many important cases.



VARIATION OF NEWTON POLYGONS FOR EXPONENTIAL SUMS 447

3. Global decomposition theory. The diagonal case is in principal well un-
derstood by the discussion in the previous section. We now turn to the general case.
The aim of this section is to describe the basic facial decomposition theorem from [18]
for the Newton polygon and the new collapsing decomposition theorem for the generic
Newton polygon. We then deduce a number of applications. The full description and
the proof of the collapsing decomposition will be given in the final section, since it is
a little complicated and involve a more technical definition called the degree polygon.

3.1. Facial decomposition for the Newton polygon. The facial decompo-
sition theorem described in this section allows us to determine when f is ordinary in
certain non-diagonal cases.

Let f(x) be a Laurent polynomial over Fq such that ∆(f) = ∆ is n-dimensional.
We assume that f is non-degenerate. Let δ1, · · · , δh be all the co-dimension 1 faces
of ∆ which do not contain the origin. Let fδi be the restriction of f to the face δi.
Then, ∆(fδi) = ∆i is n-dimensional. Furthermore, f is non-degenerate if and only if
fδi is non-degenerate for all 1 ≤ i ≤ h. Since we assumed that f is non-degenerate,
it follows that each fδi is also non-degenerate.

The following facial decomposition theorem is taken from our paper [18].

Theorem 3.1. (facial decomposition). Let f be non-degenerate and let ∆(f) be
n-dimensional. Then f is ordinary if and only if each fδi (1 ≤ i ≤ h) is ordinary.
Equivalently, f is non-ordinary if and only if some fδi is non-ordinary.

This theorem shows that as far as the ordinary property of f is concerned, we
may assume that ∆(f) has only one face of co-dimension 1 not containing the origin.
Combining Theorem 3.1 with the results of Section 2 (Theorem 2.5), we obtain

Corollary 3.2. If each fδi (1 ≤ i ≤ h) is a diagonal Laurent polynomial over
Q, then we have a complete classification of the primes p such that f modulo p is
ordinary.

Together with Corollary 2.7, we deduce

Corollary 3.3. Let f(x) be a Laurent polynomial with rational coefficients and
with ∆(f) = ∆. For a positive real number t, let πf (t) be the number of primes p ≤ t
such that f(x) is ordinary at p. Assume that fδi is diagonal for each 1 ≤ i ≤ h.
Then, there is a positive rational number r(∆) ≤ 1 such that we have the following
asymptotic formula

πf (t) ∼ r(∆)
t

log t
.

Combining Theorem 3.1 with Corollary 2.6, we deduce

Corollary 3.4. Let each fδi (1 ≤ i ≤ h) be a diagonal Laurent polynomial
whose largest invariant factor is dn(i). Then f is ordinary if p− 1 is divisible by the
least common multiple lcm(dn(1), · · · , dn(h)).

For a simple example with h = 1, let f(x) be a polynomial over Fq of the form

f(x) = a1x
d
1 + a2x

d
2 + · · · + anx

d
n + g(x), aj ∈ F∗

q , (31)
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where d is a positive integer and g(x) is any polynomial of degree smaller than
d. The polynomial f(x) in (31) is a deformation of the Fermat polynomial. It is
non-degenerate if and only if d is not divisible by p, in which case the L-function
L∗(f, T )(−1)n−1

is a polynomial of degree dn. Theorem 3.1 shows that f(x) is or-
dinary over Fq if and only if the leading diagonal form fδ = a1x

d
1 + · · · + anx

d
n is

ordinary over Fq. This last condition holds if and only if p− 1 is divisible by d.
For a simple example with h > 1, let f(x) be the n-dimensional generalized

Kloosterman polynomial

f(x) = a1x1 + · · · + anxn + an+1
1

xv1
1 · · ·xvn

n
, aj �= 0, (32)

where each vj is a positive integer. The polynomial f(x) in (32) is non-degenerate if
and only if none of the vj is divisible by p, in which case the L-function L∗(f, T )(−1)n−1

is a polynomial of degree 1 + v1 + · · ·+ vn. Let δi be the (n− 1)-dimensional simplex
formed by all the exponents of f(x) with the i-th exponent removed, where 1 ≤ i ≤
n + 1. Let ∆i be the n-dimensional simplex generated by the origin and δi. The
invariant factors of ∆n+1 are all 1. Thus, fδn+1 is ordinary for all p. For 1 ≤ i ≤ n,
the invariant factors of ∆i are given by

{1, · · · , 1, vi},

and thus fδi is ordinary if p− 1 is divisible by vi. We conclude that the generalized
Kloosterman polynomial f(x) in (32) is ordinary for all p such that p− 1 is divisible
by lcm(v1, · · · , vn). This result was first proved by Sperber [15] for large p, see also
[14] for the classical case v1 = · · · = vn = 1 and p > n+ 3.

Similarly, we can consider the Laurent polynomial

f(x) = a1x1 + · · · + anxn + an+1x
v1
1 · · ·xvn

n , aj �= 0, vj > 0, (33)

or by making the invertible change of variables xi → x−1
i , we get the new equivalent

Laurent polynomial

f(x) = a1
1
x1

+ · · · + an
1
xn

+ an+1
1

xv1
1 · · ·xvn

n
, aj �= 0, vj > 0. (34)

The polynomial f(x) in (33)-(34) is non-degenerate if and only if none of the vj is
divisible by p. The L-function L∗(f, T )(−1)n−1

in this case is a polynomial of degree
v1 + · · · + vn. It is ordinary if p− 1 is divisible by lcm(v1, · · · , vn).

For another example with h > 1, we consider the sum of two polynomials from
(33)-(34). Namely, let f(x) be the n-dimensional (n > 1) generalized bi-Kloosterman
polynomial

f(x) = a1x1 + · · · + anxn + an+1
1

xu
1 · · ·xu

n

+b1
1
x1

+ · · · + bn
1
xn

+ bn+1x
v
1 · · ·xv

n, (35)

where the coefficients are non-zero and the u, v are positive integers. The exponential
sum associated to this polynomial (in the special case u = v = 1) arises from Kim’s
[12] calculation of the Gauss sum for the unitary group. We claim that ∆(f) has
exactly (2n − 2) + 2n = 2n + 2n− 2 co-dimension 1 faces δi not containing the origin.
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This is proved as follows. If δi contains the vertex (v, · · · , v), then the other (n− 1)
vertices of δi must be chosen from the n positive unit coordinate vectors. There are n
such choices. If δi contains the vertex (−u, · · · ,−u), then the other (n−1) vertices of
δi must be chosen from the n negative unit coordinate vectors. There are also n such
choices. If δi contains neither the vertex (−u, · · · ,−u) nor the vertex (v, · · · , v), then
δi contains exactly k (0 < k < n) positive unit coordinate vectors and the remaining
(n− k) negative unit coordinate vectors. There are 2n − 2 such choices. Thus, there
are (2n − 2) + 2n possibilities in total. The claim is proved.

The largest invariant factors (in fact the absolute values of the determinants) of
these faces are given respectively, by v (n of them), u (n of them) and 1 (2n − 2 of
them). Thus, the polynomial f(x) in (35) is non-degenerate if and only if none of the
u, v is divisible by p. The L-function L∗(f, T )(−1)n−1

in this case is a polynomial of
degree 2n − 2+nu+nv. Corollary 3.4 shows that f is ordinary if p− 1 is divisible by
lcm(u, v). In particular, if all u = v = 1 as in [12], then f is ordinary for every prime
p.

We now turn to some easy applications of Theorem 3.1 to the AS conjecture. In
the case n = 1, Corollary 3.4 with h ≤ 2 immediately implies

Corollary 3.5. The AS conjecture holds for n = 1.

In the case n = 2, if ∆ has only one co-dimension 1 face not containing the origin,
then ∆ must be a simplex. This fact together with Theorem 3.1 gives the following
weaker version of the AS conjecture for n ≤ 2.

Corollary 3.6. Theorem 1.6 holds if n ≤ 2.

To treat the full form of the AS conjecture even in the case n = 2 or its weaker ver-
sion in higher dimension n ≥ 3, we need to introduce further decomposition theorems.
We will describe the new collapsing decomposition in next subsection.

3.2. Collapsing decomposition for generic Newton polygon. We will as-
sume that n ≥ 2 as the case n = 1 is already handled by the facial decomposition.
Let V = {V1, · · · , VJ} be the set of J fixed lattice points in Rn. Let ∆ be the convex
polyhedron in Rn generated by the origin and the lattice points in V. We assume that
∆ is n-dimensional. By the facial decomposition, we may assume that ∆ has only one
co-dimension 1 face δ not containing the origin and all Vj ∈ δ. To decompose ∆, we
will decompose the unique face δ. Actually, we will be decomposing the set V since
we are working in a little more general setting. In the special case when V consists of
all lattice points in δ, then our decomposition can be described purely in terms of δ.
Clearly, the set V has at least n elements. If the set V has exactly n elements, then
the set V is called indecomposable.

Choose an element in V which is a vertex of δ, say V1. The collapsing decom-
position of V with respect to V1 is simply the convex decomposition of V resulted
from the collapsing after removing the vertex V1. We now describe the collapsing
decomposition more precisely. Let V1 = V − {V1} be the complement of V1 in V.
Let δ1 be the convex polytope of the lattice points in V1. This is a subset of δ. Let
δ′1 be the toplogical closure of δ − δ1. This is not a convex polyhedron in general.
The intersection δ1 ∩ δ′1 consists of finitely many different (n − 2)-dimensional faces
{ε2, · · · , εh} of δ1. Let δi (2 ≤ i ≤ h) be the convex closure of εi and V1. Then, each δi
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is (n−1)-dimensional. Let Vi (2 ≤ i ≤ h) be the intersection V∩δi. Then, each Vj lies
in at least one (possibly more) of the subsets Vi of V. The collapsing decomposition
of V with respect to V1 is defined to be

V =
h⋃

i=1

Vi. (36)

The full collapsing decomposition theorem for the degree polygon applies to the de-
composition in (36). To describe it only in terms of Newton polygon, we must further
reduce to indecomposable diagonal situation, in which case the degree polygon co-
incides with its upper bound if and only if the Newton polygon coincides with its
lower bound. And thus, we will be able to replace the degree polygon by the simpler
Newton polygon.

Applying the collapsing decomposition in (36) to each Vi by choosing a vertex
of Vi, by induction, we will eventually be able to decompose V as a finite union of
indecomposable ones:

V =
m⋃

i=1

Wi, (37)

where each Wi has exactly n elements and thus indecomposable. Furthermore, the
subsets Wi’s are different although they may have non-empty intersections. The
complete decomposition in (37) resulting from a sequence of collapsing decompositions
is called a complete collapsing decomposition of V. Note that such a complete
collapsing decomposition is in general not unique because of the choice of a vertex in
each stage of the collapsing construction.

Let f be the generic Laurent polynomial associated to the set V:

f =
J∑

j=1

ajx
Vj . (38)

Let the Wi (1 ≤ i ≤ m) be a complete collapsing decomposition of V as in (37). For
each integer 1 ≤ i ≤ m, let fi be the restriction of f to Wi:

fi =
∑

Vj∈Wi

ajx
Vj . (39)

This is the generic Laurent polynomial associated to the indecomposable Wi. We
have

Theorem 3.7. (collapsing decomposition). Let the Wi (1 ≤ i ≤ m) be a complete
collapsing decomposition of V. If each fi (1 ≤ i ≤ m) is generically non-degenerate
and ordinary for some prime p, then f is also generically non-degenerate and ordinary
for the same prime p.

Since each Wi is indecomposable, each fi is the generic diagonal Laurent poly-
nomial whose exponents are in Wi. As a consequence of Theorem 3.7 and Corollary
2.6, we obtain
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Corollary 3.8. Let Mi be the non-singular n× n matrix whose column vectors
are the elements of Wi. Let dn(i) be the largest invariant factor of the matrix Mi.
Let

D∗ = lcm{dn(1), dn(2), · · · , dn(m)}. (40)

If p ≡ 1 (mod D∗), then f is generically ordinary for the prime p.

The number D∗ in (40) may depend on our choice of the complete collapsing
decomposition. Although any choice would yield a good upper bound for the smallest
possible D∗, we do not know a general algorithm which tells us how to choose a best
complete collapsing decomposition. Taking V to be the full set of lattice points in δ,
Corollary 3.8 reduces to

Corollary 3.9. The weaker AS conjecture as stated in Theorem 1.6 is true in
every dimension.

Taking n ≤ 3 or n = 4 with D = 1 in Corollary 3.8, we deduce from Corollary
2.9, the following full form of the AS conjecture.

Corollary 3.10. The AS conjecture is true if n ≤ 3 or if n = 4 but D = 1 and
p > n!V(∆).

In this corollary, we inserted the extra condition on p in the case that D = 1
simply to avoid the case that some of the diagonal pieces in a complete collapsing
decomposition might become generically degenerate, that is, pmight divide the largest
invariant factor of Wi for some i if p is small. This does not happen in the case n ≤ 3
unless the generic total family f is already degenerate, but it can happen if n ≥ 4.
In the zeta function case, the integer D is always 1. For example, applying Corollary
3.10 to the 3-variable polynomial of the form x3f(x1, x2), we can deduce

Corollary 3.11. Let ∆ be a 2-dimensional integral convex polyhedron in R2.
Then, for every prime p, the zeta function of the affine toric curve f(x1, x2) = 0
(xi �= 0) is ordinary for a generic non-degenerate f with ∆(f) = ∆.

If we apply Corollary 3.10 to the polynomial of the form x4f(x1, x2, x3) in 4
variables, we can deduce

Corollary 3.12. Let ∆ be a 3-dimensional integral convex polyhedron in
R3. For every prime p > n!V(∆), the zeta function of the affine toric surface
f(x1, x2, x3) = 0 (xi �= 0) is ordinary for a generic non-degenerate f with ∆(f) = ∆.

To translate these results to the usual affine hypersurface case, we can use a simple
boundary argument (see [18]). This gives

Corollary 3.13. Let ∆ be a 2-dimensional integral convex polyhedron in the first
quadrant of R2. Assume that ∆ contains a non-zero vertex on both the x1 axis and the
x2-axis. Then, for every prime p, the zeta function of the affine curve f(x1, x2) = 0
is ordinary for a generic non-degenerate f with ∆(f) = ∆.
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Corollary 3.14. Let ∆ be a 3-dimensional integral convex polyhedron in the
first quadrant of R3. Assume that ∆ contains a non-zero vertex on each of the xi-axis
(1 ≤ i ≤ 3). Then, for every prime p > n!V(∆), the zeta function of the affine surface
f(x1, x2, x3) = 0 is ordinary for a generic non-degenerate f with ∆(f) = ∆.

These results significantly generalize the well known fact that a generic non-
degenerate plane curve of degree d is ordinary. Corollaries 3.11-14, however, do not
generalize to higher dimensional ∆. In fact, the 5-dimensional counter-example in
Section 2.4 shows that the higher dimensional generalization of Corollary 3.12 is al-
ready false for the 3-dimensional generic toric affine hypersurface f(x1, · · · , x4) with
∆(f) = ∆ for some 4-dimensional ∆. The higher dimensional analogue is true for
certain ∆ which is sufficiently “regular” in a suitable sense. For example, the hy-
perplane decomposition theorem in [18] implies that a generic non-degenerate affine
hypersurface of degree d is ordinary (affine version of Mazur’s conjecture). At this
point, we do not know how to derive this result using the collapsing decomposition
theorem.

Applying Corollary 3.13 to the following family of hyper-elliptic curves of genus
g:

y2 + (
g∑

i=0

ai)y =
2g+1∑
j=0

bjx
j ,

one obtains

Corollary 3.15. For every genus g, the universal family of hyper-elliptic curves
of genus g is generically ordinary for every p.

Corollary 3.16. For every genus g, the universal family of smooth projective
curves of genus g is generically ordinary for every p.

4. Newton polygons of Fredholm determinants. All our decomposition
theorems in [18] are on the chain level, All except for the facial decomposition theo-
rem are proved for a certain degree polygon which is finer than the generic Newton
polygon. Thus, to fully describe the collapsing decomposition theorem, we need to
review Dwork’s trace formula expressing the L-function in terms of the Fredholm de-
terminant of a certain infinite Frobenius matrix. This gives the necessary background
to work on the chain level, which is actually more flexible for our purpose than on
the cohomology level. In the ordinary case, the descent result given in Theorem 4.5
allows us to replace the infinite Frobenius matrix by a much more manageable infinite
matrix. With these preparations, we can then formulate the chain level versions of
our problems, which are easier to work with and which include singular cases as well.

4.1. Dwork’s trace formula. Let Qp be the field of p-adic numbers. Let Ω be
the completion of an algebraic closure of Qp. Let q = pa for some positive integer
a. Denote by “ord” the additive valuation on Ω normalized by ord p=1, and denote
by “ordq” the additive valuation on Ω normalized by ordqq=1. Let K denote the
unramified extension of Qp in Ω of degree a. Let Ω1 = Qp(ζp), where ζp is a primitive
p-th root of unity. Then Ω1 is the totally ramified extension of Qp of degree p − 1.
Let Ωa be the compositum of Ω1 and K. Then Ωa is an unramified extension of Ω1
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of degree a. The residue fields of Ωa and K are both Fq, and the residue fields of Ω1

and Qp are both Fp. Let π be a fixed element in Ω1 satisfying

∞∑
m=0

πpm

pm
= 0, ordπ =

1
p− 1

.

Then, π is a uniformizer of Ω1 = Qp(ζp) and we have

Ω1 = Qp(π).

The Frobenius automorphism x 
→ xp of Gal(Fq/Fp) lifts to a generator τ of
Gal(K/Qp) which is extended to Ωa by requiring that τ(π) = π. If ζ is a (q − 1)-st
root of unity in Ωa, then τ(ζ) = ζp.

Let E(t) be the Artin-Hasse exponential series:

E(t) = exp(
∞∑

m=0

tp
m

pm
)

=
∏

k≥1,(k,p)=1

(1 − tk)µ(k)/k,

where µ(k) is the Möbius function. The last product expansion shows that the power
series E(t) has p-adic integral coefficients. Thus, we can write

E(t) =
∞∑

m=0

λmt
m, λm ∈ Zp.

For 0 ≤ m ≤ p− 1, more precise information is given by

λm =
1
m!
, ordλm = 0, 0 ≤ m ≤ p− 1. (41)

The shifted series

θ(t) = E(πt) =
∞∑

m=0

λmπ
mtm (42)

is a splitting function in Dwork’s terminology. The value θ(1) is a primitive p-th root
of unity, which will be identified with the p-th root of unit ζp used in our definition
of the exponential sums as given in the introduction.

For a Laurent polynomial f(x1, · · · , xn) ∈ Fq[x1, x
−1
1 , · · · , xn, x

−1
n ], we write

f =
J∑

j=1

ājx
Vj , Vj ∈ Zn, āj ∈ F∗

q .

Let aj be the Teichmüller lifting of āj in Ω. Thus, we have aq
j = aj . Set

F (f, x) =
J∏

j=1

θ(ajx
Vj ) (43)

Fa(f, x) =
a−1∏
i=0

F τ i

(f, xpi

). (44)
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Note that (42) implies that F (f, x) and Fa(f, x) are well defined as formal Laurent
series in x1, · · · , xn with coefficients in Ωa.

To describe the growth conditions satisfied by F , write

F (f, x) =
∑

r∈Zn

Fr(f)xr.

Then from (42) and (43), one checks that

Fr(f) =
∑

u

(
J∏

j=1

λuj
a

uj

j )πu1+···+uJ , (45)

where the outer sum is over all solutions of the linear system

J∑
j=1

ujVj = r, uj ≥ 0, uj integral. (46)

Thus, Fr(f) = 0 if (46) has no solutions. Otherwise, (45) implies that

ordFr(f) ≥ 1
p− 1

inf
u
{

J∑
j=1

uj},

where the inf is taken over all solutions of (46).
For a given point r ∈ Rn, recall that the weight w(r) is given by

w(r) = inf
u
{

J∑
j=1

uj |
J∑

j=1

ujVj = r, uj ≥ 0, uj ∈ R},

where the weight w(r) is defined to be ∞ if r is not in the cone generated by ∆ and
the origin. Thus,

ordFr(f) ≥ w(r)
p− 1

, (47)

with the obvious convention that Fr(f) = 0 if w(r) = +∞.
Let C(∆) be the closed cone generated by the origin and ∆. Let L(∆) be the set

of lattice points in C(∆). That is,

L(∆) = Zn ∩ C(∆). (48)

For real numbers b and c with 0 < b ≤ p/(p − 1), define the following two spaces of
p-adic functions:

L(b, c) = {
∑

r∈L(∆)

Crx
r | Cr ∈ Ωa, ordpCr ≥ bw(r) + c}

L(b) =
⋃
c∈R

L(b, c).
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One checks from (47) that

F (f, x) ∈ L(
1

p− 1
, 0), Fa(f, x) ∈ L(

p

q(p− 1)
, 0).

Define an operator ψ on formal Laurent series by

ψ(
∑

r∈L(∆)

Crx
r) =

∑
r∈L(∆)

Cprx
r.

It is clear that

ψ(L(b, c)) ⊂ L(pb, c).

It follows that the composite operator φa = ψa◦Fa(f, x) is an Ωa-linear endomorphism
of the space L(b), where Fa(f, x) denotes the multiplication map by the power series
Fa(f, x). Similarly, the operator φ1 = τ−1◦ψ◦F (f, x) is an Ωa-semilinear (τ−1-linear)
endomorphsim of the space L(b). The operators φm

a and φm
1 have well defined traces

and Fredholm determinants. The Dwork trace formula asserts that for each positive
integer k,

S∗
k(f) = (qk − 1)nTr(φk

a).

In terms of L-function, this can be reformulated as follow.

Theorem 4.1. We have

L∗(f, T )(−1)n−1
=

n∏
i=0

det(I − Tqiφa)(−1)i(n
i).

The L-function is determined by the single determinant det(I−Tφa). For explicit
calculations, we shall describe the operator αa in terms of an infinite nuclear matrix.
First, one checks that

φa
1 = φa−2

1 τ−1 ◦ ψ ◦ F (f, x) ◦ τ−1 ◦ ψ ◦ F (f, x)
= φa−2

1 τ−1 ◦ ψ ◦ τ−1 ◦ F τ (f, x) ◦ ψ ◦ F (f, x)
= φa−2

1 (τ−1)2 ◦ ψ2 ◦ F τ (f, xp) ◦ F (f, x)
= · · · = ψa ◦ Fa(f, x) = φa.

We now describe the matrix form of the operators φ1 and φa with respect to some
orthonormal basis. Fix a choice π1/D of D-th root of π in Ω. Define a space of
functions

B = {
∑

r∈L(∆)

Crπ
w(r)xr | Cr ∈ Ωa(π1/D), Cr → 0 as |r| → ∞}.

Then, the monomials πw(r)xr (r ∈ L(∆)) form an orthonormal basis of the p-adic
Banach space B. Furthermore, if b > 1/(p− 1), then L(b) ⊆ B. The operator φa

(resp. φ1) is an Ωa-linear (resp. Ωa-semilinear ) nuclear endomorphsim of the space
B. Let Γ be the orthonormal basis {πw(r)xr}r∈L(∆) of B written as a column vector.
One checks that the operator φ1 is given by

φ1Γ = A1(f)τ−1
Γ,



456 D. WAN

where A1(f) is the infinite matrix whose rows are indexed by r and columns are
indexed by s. That is,

A1(f) = (ar,s(f)) = (Fps−r(f)πw(r)−w(s)). (49)

We note that the row index r and column index s of A1(f) were switched in [18].
Thus, the matrix there needs to be transposed. This is corrected here.

Since φa = φa
1 and φ1 is τ−1-linear, the operator φa is given by

φaΓ = φa
1Γ

= φa−1
1 Aτ−1

1 Γ
= φa−2

1 Aτ−2

1 Aτ−1

1 Γ
= Aτ−a

1 · · ·Aτ−2

1 Aτ−1

1 Γ
= A1A

τ
1 · · ·Aτa−2

1 Aτa−1

1 Γ.

Let

Aa(f) = A1A
τ1

1 · · ·Aτa−1

1 . (50)

Then, the matrix of φa under the basis Γ is Aa(f). We call A1(f) = (ar,s(f)) the
infinite semilinear Frobenius matrix and Aa(f) the infinite linear Frobenius matrix.
Dwork’s trace formula can now be rewritten in terms of the matrix Aa(f) as follows.

L∗(f, T )(−1)n−1
=

n∏
i=0

det(I − TqiAa(f))(−1)i(n
i). (51)

We are reduced to understanding the single determinant det(I − TAa(f)).

4.2. Newton polygons of Fredholm determinants. To get a lower bound
for the Newton polygon of det(I − TAa(f)), we need to estimate the entries of the
infinite matrices A1(f) and Aa(f). By (47) and (49), we obtain the estimate

ordar,s(f) ≥ w(ps− r) + w(r) − w(s)
p− 1

≥ w(s). (52)

Recall that for a positive integer k, W∆(k) is defined to be the number of lattice
points in L(∆) with weight exactly k/D(∆):

W∆(k) = card{r ∈ L(∆) | w(r) =
k

D(∆)
}.

Let ξ ∈ Ω be such that

ξD = πp−1.

Then

ordξ = 1/D.

By (52), the infinite matrix A1(f) has the block form

A1(f) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A00 ξ1A01 . . . ξiA0i . . .
A10 ξ1A11 . . . ξiA1i . . .
...

...
. . .

...
Ai0 ξ1Ai1 . . . ξiAii . . .
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎠
, (53)
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where the block Aij is a finite matrix of W∆(i) rows and W∆(j) columns whose entries
are p-adic integers in Ω.

Definition 4.2. Let P (∆) be the polygon in R2 with vertices (0, 0) and

( m∑
k=0

W∆(k),
1

D(∆)

m∑
k=0

kW∆(k)
)
, m = 0, 1, 2, · · · .

This is the chain level version of the Hodge polygon. The block form in (53) and
the standard determinant expansion of the Fredholm determinant shows that we have

Proposition 4.3. The Newton polygon of det(I−TA1(f)) computed with respect
to p lies above the polygon P (∆).

Using the block form (53) and the exterior power construction of a semi-linear
operator, one then gets the following lower bound of Adolphson and Sperber [1] for
the Newton polygon of det(I − TAa(f)).

Proposition 4.4. The Newton polygon of det(I−TAa(f)) computed with respect
to q lies above the polygon P (∆).

4.3. A descent theorem. For the application to L-function, we need to use
the linear Frobenius matrix Aa(f) instead of the simpler semi-linear Frobenius matrix
A1(f). In general, the Newton polygon of det(I − TAa(f)) computed with respect
to q is different from the Newton polygon of det(I − TA1(f)) computed with respect
to p, even though they have the same lower bound. Since the matrix Aa(f) is much
more complicated than A1(f), especially for large a, we would like to replace Aa(f)
by the simpler matrix A1(f). This is not possible in general. However, if we are only
interested in the question whether the Newton polygon of det(I − TAa(f)) coincides
with its lower bound, the following theorem shows that we can descend to the simpler
det(I − TA1(f)). This result is taken from our paper [18].

Theorem 4.5. The Newton polygon of det(I−TAa(f)) computed with respect to
q coincides with P (∆) if and only if the Newton polygon of det(I−TA1(f)) computed
with respect to p coincides with P (∆).

Proof. This theorem can also be proved easily using exterior power construction.
We include another proof following [18] as we need to transpose the matrices of [18]
due to the switch of the row and column indices as indicated above. This proof gives
additional information, namely, the Hodge-Newton decomposition which is useful for
further investigation.

The proof is by induction on the sides. The first (slope zero) side of the Newton
polygon of det(I−TA1(f)) coincides with the first side of P (∆) if and only if det A00 �≡
0 (mod ξ). To simplify notations, we use the convention that mod ξ (or mod p) means
the reduction modulo the maximal ideal in the ring of integers in Ω. By (50) and
(53), we can write

Aa(f) ≡
(
A00 · · ·Aτa−1

00 0
∗ 0

)
(modξ). (54)
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It follows that the first side of the Newton polygon of det(I −TAa(f)) coincides with
the first side of P (∆) if and only if det A00 �≡ 0 (mod ξ). Thus, the theorem is true
for the first side.

Assume that det A00 �≡ 0 (mod ξ). We now use a triangulation procedure to prove
the theorem for the first two sides. Form an elementary matrix B (to be determined)
as follows:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

I00 0 . . . 0 . . .
B10 I11 . . . 0 . . .
...

...
. . .

...
Bi0 0 . . . Iii . . .
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Its inverse is

B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

I00 0 . . . 0 . . .
−B10 I11 . . . 0 . . .

...
...

. . .
...

−Bi0 0 . . . Iii . . .
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where Bi0 is a matrix of W∆(i) rows and W∆(0) columns, and Iii is the identity
matrix of order W∆(i). Now the matrix BA1(f)B−τ has the form

BA1(f)B−τ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C00 ξ1C01 . . . ξiC0i . . .
C10 ξ1C11 . . . ξiC1i . . .
...

...
. . .

...
Ci0 ξ1Ci1 . . . ξiCii . . .
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎠
, (55)

where

C00 = A00 − ξ1A01B
τ
10 − · · · − ξkA0kB

τ
k0 − · · · ,

Ci0 = Bi0A00 +Ai0 − ξ1{Bi0A01 +Ai1}Bτ
10 − · · ·

−ξk{Bi0A0k +Aik}Bτ
k0 − · · · (i > 0),

C0j = A0j ,
Cij = Bi0A0j +Aij (i ≥ 1, j ≥ 1). (56)

We want to choose suitable matrices Bi0 such that

Ci0 = 0 for all i ≥ 1. (57)

Since A00 is invertible, by (56), equation (57) can be rewritten as

Bi0 = −Ai0A
−1
00 + ξ1{Bi0A01 +Ai1}Bτ

10A
−1
00 + · · ·

+ξk{Bi0A0k +Aik}Bτ
k0A

−1
00 + · · · . (58)

Thus, by successive iteration of (58) or by the fixed point theorem for a contraction
map in a p-adic Banach space, we deduce that there are solution matrices Bi0 of (58)
whose elements are p-adic integers invariant under the action of τa.
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If we go through the above triangulation procedure again but ignore the action of
τ , we conclude that there is a similar elementary matrix B1, whose entries are p-adic
integers, such that

B1A1(f)B−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

D00 ξ1D01 . . . ξiD0i . . .
0 ξ1D11 . . . ξiD1i . . .
...

...
. . .

...
0 ξ1Di1 . . . ξiDii . . .
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎠
, (59)

where Dij is a matrix of the same size as Cij . It follows from (56) that

Cij ≡ Dij (modξ). (60)

Comparing (55) with (59), we conclude that the Newton polygon of det(I − TA1(f))
coincides with P (∆) if and only if the Newton polygon of det(I − TBA1(f)B−τ )
coincides with P (∆). It is clear that

BAa(f)B−1 = BAa(f)B−τa

= (BA1(f)B−τ ) · · · (BA1(f)B−τ )τa−1
, (61)

Using the triangular form obtained in (55), we deduce that the first two sides of the
Newton polygon of det(I − TA1(f)) computed with respect to p coincide with P (∆)
if and only if the first two sides of the Newton polygon of det(I − TAa(f)) computed
with respect to q coincide with P (∆). Repeating the above argument, by induction
we see that the theorem is true. Actually, the rationality of L∗(f, T ) and a p-adic
estimate on its zeros and poles imply that we only need to prove the theorem for the
sides with slopes at most n.

The above proof implies

Proposition 4.6. The Newton polygon of det(I−TAa(f)) computed with respect
to q coincides with P (∆) for the sides with slopes at most m/D if and only if the
Newton polygon of det(I − TA1(f)) computed with respect to p coincides with P (∆)
for the sides with slopes at most m/D.

Putting the above together, we obtain

Theorem 4.7. Let ∆(f) = ∆. Assume that the L-function L∗(f, T )(−1)n−1

is a polynomial. Then, NP(f) = HP(∆) if and only if the Newton polygon of
det(I − TA1(f)) coincides with its lower bound P (∆). In this case, the degree of
the polynomial L∗(f, T )(−1)n−1

is exactly n!V(f).

Proof. Since L∗(f, T )(−1)n−1
is a polynomial, the trace formula (51) and the

definition of H∆(k) show that L∗(f, T )(−1)n−1
has exactly H∆(k) reciprocal roots

with slope k/D for all k if and only if det(I − tAa(f)) has exactly W∆(k) reciprocal
roots with slope k/D for all k. By Theorem 4.5, this last condition holds if and only
if the Newton polygon of det(I − TA1(f)) coincides with its lower bound P (∆). The
proof is complete.

The theorem of Adolphson-Sperber shows that the polynomial condition of The-
orem 4.7 is satisfied for every non-degenerate f with n-dimensional ∆(f). Thus, the
AS conjecture is a consequence of the following chain level version.
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Conjecture 4.8. Let ∆ be an n-dimensional integral convex polyhedron in Rn

containing the origin. If

p ≡ 1 (mod D(∆)),

then the Newton polygon of det(I − TA1(f)) coincides with its lower bound P (∆)
for a generic f with ∆(f) = ∆, i.e., for all f in a Zariski dense open subset of the
parameter space of f with ∆(f) = ∆.

This conjecture is of course also false in general. However, it is true in many im-
portant cases. For each ∆, the AS conjecture is true whenever Conjecture 4.8 is true.
Thus, we shall restrict our attention to the study of Conjecture 4.8 which avoids the
non-degenerate assumption. In addition, there are several simplifying advantages in
working with the chain level Conjecture 4.8 than the cohomology level AS conjecture.

5. Degree polygons and Newton polygons. Since we are only interested in
knowing if f is ordinary, we can always apply the facial decomposition theorem in
Section 3. This will reduce the situation to the case where ∆ has only one codimension
1 face not containing the origin and has the origin as a vertex. From now on, we shall
assume that this condition holds. Namely, we assume that the origin 0 is a vertex of
∆ and that ∆ has only one face δ of codimension 1 which does not contain the origin.

Let

V = {V1, · · · , VJ} (62)

be the set of J fixed lattice points on the face δ such that the set V contains all the
vertices of δ. It is clear that ∆ is generated by 0 and the elements in V. For our
application to Conjecture 4.8, it is sufficient to take the case where V consists of all
the lattice points on the face δ. This gives the maximal family. However, our theory
works for a more general set V and hence for a more flexible family.

5.1. Newton polygons of subcones. For later proof, we need to define the
Newton polygon and the degree polygon for a subcone of the full cone C(∆). Thus, we
first extend our setting a little bit. Let Σ be a cone contained in C(∆) (not necessarily
open or closed). Define a function on non-negative integers as follows:

W (Σ, k) = card{r ∈ Zn ∩ Σ | w(r) =
k

D(∆)
}, (63)

This is the number of lattice points in the cone Σ with weight exactly k/D. Let P (Σ)
be the polygon in R2 with vertices (0, 0) and

( m∑
k=0

W (Σ, k),
1

D(∆)

m∑
k=0

kW (Σ, k)
)
, m = 0, 1, 2, · · · . (64)

For convenience, we shall call the vertex in (64) the mth vertex in P (Σ). Note that
the mth vertex may be equal to the (m + 1)th vertex, because it may happen that
W (Σ,m) = 0. Recall that A1(f) = (as,r(f)) is the semilinear Frobenius matrix
defined in (49). We define A1(Σ, f) to be the submatrix (as,r(f)) with r and s
running through the cone Σ. In particular, for the full cone Σ = C(∆), we have

A1(C(∆), f) = A1(f)
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and

W (C(∆), k) = W (k).

From the block form (53), we deduce

Proposition 5.1. The Fredholm determinant det(I − TA1(Σ, f)) is entire. Its
Newton polygon lies above the polygon P (Σ).

Let P (Σ, x) be the piecewise linear function on R≥0 whose graph is the polygon
P (Σ). By the block form (53), we can write

det(I − TA1(Σ, f)) =
∞∑

k=0

pP (Σ,k)G(Σ, f, k)T k, (65)

where G(Σ, f, k) is a power series in the aj with p-adic integral coefficients. The
reduction

H(Σ, f, k) ≡ G(Σ, f, k) (mod π) (66)

is a polynomial in the coefficients aj of f defined over the finite prime field Fp. This
polynomial is called the k-th Hasse polynomial of the pair (Σ, f).

For a given pair (Σ, f), the Newton polygon of det(I −TA1(Σ, f)) coincides with
its lower bound P (Σ) at the m-th vertex

( m∑
i=0

W (Σ, i),
1
D

m∑
i=0

iW (Σ, i)
)

if and only if the Hasse polynomial H(Σ, f, k) does not vanish for

k =
m∑

i=0

W (Σ, i)

at the point aj . To show that the Newton polygon of det(I − TA1(Σ, f)) coincides
generically with its lower bound at the m-th vertex, we need to show that the Hasse
polynomial H(Σ, f, k) in the variables aj is not identically zero for k =

∑m
i=0W (Σ, i).

Our strategy is then to show that certain “leading form” of the Hasse polynomial
H(Σ, f, k) is not zero in some cases. For this purpose, we need to choose some priority
variables out of the total set of variables {a1, · · · , aJ} so that we can define the leading
form of H(Σ, f, k) in terms of these priority variables. Of course, we want to choose
the priority variables in such a way that it is easier to prove the non-vanishing of the
leading form. To make this idea precise, we need the help of a certain maximizing
function and introduce the associated notion of a degree polygon.

5.2. Degree polygons. Fix a non-empty subset U of the set V:

U ⊂ V.

The aj ’s with Vj ∈ U will be our priority variables. For example, if U consists of the
single element V1, then a1 will be our priority variable. If U equals the total set V,
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then all the variables {a1, · · · , aJ} will be our priority variables. For a given U , we
define a maximizing function on the cone C(∆) as follows.

Definition 5.2. Let U be a non-empty subset of the set V . For r ∈ C(∆), we
define

m(U ,V; r) = sup{
∑

Vj∈U
uj |

J∑
j=1

ujVj = r, uj ≥ 0}.

If r ∈ Rn but r �∈ C(∆), we define m(U, V ; r) = 0. If for all r ∈ C(∆), we have

m(U ,V; r) = inf{
∑

Vj∈U
uj |

J∑
j=1

ujVj = r, uj ≥ 0},

we say that U is homogeneous with respect to V.

This is a standard maximizing function in linear programming. For a given r,
there are various algorithms to compute m(U ,V; r). The simplex method in linear
programming shows that the set of optimal solutions is a “face” formed by some of the
lattice points Vj . This optimal face can be described explicitly in various special cases.
A trivial case is when U equals V. In this case, m(U ,V; r) equals the weight function
w(r) and thus U is automatically homogeneous, we are led to the facial decomposition
theorem in Theorem 3.1. One non-trivial case is when U consists of a single element.
This choice leads to the star decomposition theorem in [18]. Another case is when U
consists of the intersection of δ with a suitable half space [18]. This choice leads to
the hyperplane decomposition theorem. The most flexible case arises when we take
U to be the compliment V − {V1} of a vertex V1 in V. This leads to the collapsing
decomposition in the present paper.

This last case is not always homogeneous. However, if we assume that V1 is a
vertex and U = V − {V1} lies on an (n − 2)-dimensional (not (n − 1)-dimensional)
hyperplane H in δ, then it is easy to check that U is homogeneous with respect to V .
In fact, let r =

∑
j ujVj ∈ C(∆) as in Definition 5.2. We may assume that r is not

the origin. Dividing by w(r), we may assume that w(r) =
∑

j uj = 1. If r ∈ H, then
u1 = 0, and

∑J
j=2 uj = w(r) for all solutions. If r �∈ H, then

∑J
j=2 ujVj is the unique

intersection point with the hyperplane H of the line connecting V1 and r, and thus∑J
j=2 uj is independent of the choice of the solutions. This proves that U is indeed

homogeneous with respect to V.
For a non-negative integer k and a subcone Σ of C(∆), we define

Q(Σ,U ,V; k) = (p− 1)
∑

w(r)≤k/D, r∈Zn∩Σ

m(U ,V; r), (67)

where the intersection Zn ∩ Σ is simply the set of lattice points in the cone Σ. The
number Q(Σ,U ,V; k) is always non-negative. Let Q(Σ,U ,V) be the graph in R2 of
the piece-wise linear functions passing through the vertices (0, 0) and

( m∑
k=0

W (Σ, k), Q(Σ,U ,V;m)
)
, m = 0, 1, 2, · · · . (68)
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We shall call the vertex in (68) as the m-th vertex in Q(Σ,U ,V). Note that the
coordinates in (68) are always non-negative. The polygon P (Σ) is concave upward by
our definition. We do not claim that Q(Σ,U ,V) is convex (upward or downward). In
the special case that Σ = C(∆), we simply write

Q(C(∆),U ,V) = Q(U ,V).

Definition 5.3. For any polynomial F in the variables aj (1 ≤ j ≤ J), we
define d(U , F ) to be the total degree of F in the priority variables aj with Vj ∈ U . If
F = 0, we define d(U , F ) = −∞. The number d(U , F ) is called the U-degree of F .

Thus, the polynomial F is non-zero if and only if its U-degree is not −∞. Let Fr

be the polynomial defined by (45). It is clear from Definition 5.2 that we have the
following upper bound for the U-degree of Fr:

d(U , Fr) ≤ m(U ,V; r). (69)

In the case that U is homogeneous with respect to V, then Fr is U-homogeneous
and thus the above inequality becomes an equality if and only if Fr is non-zero.

Definition 5.4. Let d(U ,H(Σ, f, k)) denote the U-degree of the k-th Hasse poly-
nomial H(Σ, f, k). We define the U-degree polygon of det(I − TA1(Σ, f)) to be the
graph in R2 of the piecewise linear function with vertices (0, 0) and

( m∑
k=0

W (Σ, k),max{0, d(U ,H(Σ, f,
m∑

k=0

W (Σ, k)))}
)

m = 0, 1, · · · ,∞.

Note that we do not claim that the U-degree polygon is convex.

If r and r′ are two lattice points in Zn, Definition 5.2 easily implies the inequality

m(U ,V; r) +m(U ,V; r′) ≤ m(U ,V; r + r′). (70)

The equality always holds if U is homogeneous with respect to V and r, r′ ∈ C(∆).
Furthermore, if c is non-negative, then

m(U ,V; cr) = cm(U ,V; r). (71)

Let m be a non-negative integer. By the block form of the matrix A1(Σ, f), the
determinant expansion of a matrix and equations (67)-(71), we deduce

d
(
U ,H(Σ, f,

m∑
k=0

W (Σ, k)
))

≤ max
φ

∑
w(r)≤m/D,r∈Zn∩Σ

d(U , Fpr−φ(r))

≤ max
φ

∑
w(r)≤m/D,r∈Zn∩Σ

m(U ,V; pr − φ(r))

≤ max
φ

∑
w(r)≤m/D,r∈Zn∩Σ

(pm(U ,V; r) −m(U ,V;φ(r)))
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≤ (p− 1)
∑

w(r)≤m/D,r∈Zn∩Σ

m(U ,V; r)

= Q(Σ,U ,V; ,m), (72)

where φ runs through the permutations on
∑m

k=0W (Σ, k) letters. If U is homogeneous
with respect to V and if the Hasse polynomial

H(Σ, f,
m∑

k=0

W (Σ, k)
)

is not the zero polynomial, then the Hasse polynomial is U-homogeneous and we have
the equality

d
(
U ,H(Σ, f,

m∑
k=0

W (Σ, k)
))

= Q(Σ,U ,V; ,m).

In this way, we have proved the following upper bound for the U-degree polygon.

Proposition 5.5. The U-degree polygon of det(I − TA1(Σ, f)) lies below the
polygon Q(Σ,U ,V).

If the U-degree polygon coincides with its upper bound Q(Σ,U ,V) at the m-
th vertex, then the polynomial H(Σ, f,

∑m
i=0W (Σ, i)) is not zero since its U-degree

is equal to Q(Σ,U ,V;
∑m

i=0W (i)) which is non-negative and hence not −∞. The
converse is also true if U is homogeneous with respect to V. We obtain

Proposition 5.6. If the U-degree polygon of det(I − TA1(Σ, f)) coincides with
Q(Σ,U ,V) at the m-th vertex, then the Newton polygon of det(I−TA1(Σ, f)) coincides
generically with P (Σ) at the m-th vertex. If U is homogeneous with respect to V , then
the converse is also true.

This property shows that the U-degree polygon is finer than the generic Newton
polygon. Grothendieck’s specialization theorem says that the Newton polygon goes
up under specializations. The following is an analogue for the U-degree polygon. It
results from the fact that the degree of a polynomial decreases under specializations.

Proposition 5.7. The U-degree polygon of det(I − TA1(Σ, f)) goes down under
U-specializations, where a U-specialization means a specialization of those variables
aj such that Vj is neither a vertex of ∆ nor an element of U .

6. Collapsing decomposition for degree polygons. We will assume that
n ≥ 2 as the case n = 1 is already handled by the facial decomposition. Let

V = {V1, · · · , VJ}

be the set of J fixed lattice points in Rn. Let ∆ be the convex polyhedron in Rn gen-
erated by the origin and the lattice points in V. We assume that ∆ is n-dimensional.
By the facial decomposition, we may assume that ∆ has only one co-dimension 1 face
δ not containing the origin and all Vj ∈ δ. To decompose ∆, we will decompose the
unique face δ. Actually, we will be decomposing the set V since we are working in a
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little more general setting. In the special case when V consists of all lattice points in
δ, then our decomposition can be described purely in terms of δ. Clearly, the set V
has at least n elements. If the set V has exactly n elements, then the set V is called
indecomposable.

Choose an element in V which is a vertex of δ, say V1. Let

V =
h⋃

i=1

Vi

be the collapsing decomposition of V with respect to V1 as described in Section 3.2.
Let f(x) be the generic Laurent polynomial

f(X) =
J∑

j=1

ajX
Vj .

For 1 ≤ i ≤ h, let Σi be the n-dimensional convex cone generated by Vi and the
origin. Equivalently, Σi is the n-dimensional cone generated by the origin and δi. Let

fΣi
(X) =

∑
Vj∈Σi

ajX
Vj

be the restriction of f to the cone Σi. We shall take

U = V1 = {V2, · · · , VJ}. (73)

6.1. The closed collapsing decomposition theorem. The closed collapsing
decomposition theorem for degree polygons is

Theorem 6.1. For m ∈ Z≥0, the V1-degree polygon of det(I−TA1(f)) coincides
with its upper bound Q(V1,V) at the mth vertex if and only if for each 1 ≤ i ≤ h, the
V1∩Vi-degree polygon of det(I−TA1(fΣi

)) defined with respect to P (Σi, fΣi
) coincides

with its upper bound Q(V1 ∩ Vi,Vi) at the mth vertex.

This result implies Theorem 3.7 by induction on the cardinality of the set V. We
may assume that the generic f is ordinary, otherwise there is nothing to prove. If
|V| = n (the minimal possible value), then f is already diagonal and there is nothing
to prove. Let |V| > n. By induction and under the assumption of Theorem 3.7, we can
assume that for each fΣi

in Theorem 6.1, the Newton polygon of det(I − TA1(fΣi
))

coincides generically with P (Σi, fΣi
). Now, V1 ∩ Vi is homogeneous with respect to

Vi. By Proposition 5.6, the V1 ∩Vi-degree polygon of det(I −TA1(fΣi
)) defined with

respect to P (Σi, fΣi
) coincides with its upper bound Q(V1 ∩Vi,Vi). By Theorem 6.1,

we deduce that the V1-degree polygon of det(I − TA1(f)) coincides with its upper
bound Q(V1,V). Applying Proposition 5.6 again, we conclude that f is generically
ordinary. Theorem 3.7 is proved.

Before proving Theorem 6.1, we need to have a better understanding of the max-
imizing function that is used to define the degree polygon. Recall that for r ∈ C(∆),
we defined

m(V1,V; r) = sup{
J∑

j=2

uj |
J∑

j=1

ujVj = r, uj ≥ 0}.
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If r ∈ Rn but r �∈ C(∆), then m(V1,V; r) = 0.

Lemma 6.2. Let (u1, · · · , uJ ) be a rational solution of the linear equation

J∑
j=1

ujVj = r, uj ≥ 0.

Suppose that uj1 , · · · , ujk
are its non-zero coordinates. Then, we have

1. (i). If r ∈ Σ1, then m(V1,V; r) =
∑J

j=2 uj if and only if Σ1 (or δ1) contains
all the lattice points Vj1 , · · · , Vjk

(equivalently, u1 = 0).
2. (ii). If r ∈ Σi for some i ≥ 2 and m(V1,V; r) =

∑J
j=2 uj, then Σi (or δi)

contains all the lattice points Vj1 , · · · , Vjk
.

3. (iii). If r ∈ Σ1 ∩Σi for some i ≥ 2 and m(V1,V; r) =
∑J

j=2 uj, then Σ1 ∩Σi

(or δ1 ∩ δi) contains all the lattice points Vj1 , · · · , Vjk
.

Proof. (i). Let r ∈ Σ1. Since
∑J

j=1 ujVj = r and w(r) =
∑J

j=1 uj , we have

J∑
j=2

uj ≤
J∑

j=1

uj = w(r).

The inequality is an equality if and only if u1 = 0. This is true if and only if Σ1

contains all the lattice points Vj1 , · · · , Vjk
.

(ii). Let

r1 =
J∑

j=2

ujVj , r2 = u1V1.

Then,

r = r1 + r2, w(r1) =
J∑

j=2

uj .

We may assume that r is non-zero. If Σi does not contain all of the lattice points
Vj1 , · · · , Vjk

, then w(r1)w(r2) > 0 and r1 lies strictly on the other side of Σi with
respect to the hyperplane Σ1 ∩ Σi. This implies that the line segment from r1 to r
intersects the hyperplane Σ1 ∩ Σi at a unique point r′1 (�= r1). That is, there is a
unique positive number 0 < λ < 1 such that λr1 + (1 − λ)r = r′1 ∈ Σ1 ∩ Σi. Thus,

r = λr + (1 − λ)r = λ(r1 + r2) + (1 − λ)r = (λr1 + (1 − λ)r) + λr2 = r′1 + λr2.

Since w(r) = w(r1) + w(r2) = w(r′1) + λw(r2), where 0 < λ < 1 and w(r2) > 0, we
deduce that w(r′1) > w(r1). This shows that w(r1) =

∑J
j=2 uj is not the maximum

value m(V1,V; r). This proves (ii). One checks that (iii) follows from (i) and (ii). The
lemma is proved.

Lemma 6.3. Let r1 and r2 be two rational points in the cone C(∆). Then

m(V1,V; r1 + r2) ≥ m(V1,V; r1) +m(V1,V; r2).
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If the equality holds, then both r1 and r2 lie on Σi for some i.

Proof. Let

r1 = u1V1 + · · · + uJVJ ,

J∑
j=2

uj = m(V1,V; r1),

r2 = w1V1 + · · · + wJVJ ,

J∑
j=2

wj = m(V1,V; r2),

Then,

r1 + r2 = (u1 + w1)V1 + · · · + (uJ + wJ )VJ . (74)

m(V1,V; r1) +m(V1,V; r2) =
J∑

j=2

(uj + wj) ≤ m(V1,V; r1 + r2). (75)

Let Vj1 , · · · , Vjk
be the lattice points with non-zero coefficients in (74). If r1 +r2 ∈ Σi

and the inequality in (75) is an equality, then Lemma 6.2 shows that the lattice points
Vj1 , · · · , Vjk

are all contained in Σi. This implies that both r1 and r2 are contained
in Σi. The lemma is proved.

Lemma 6.4. Let r ∈ Σi for some 1 ≤ i ≤ h and f =
∑J

j=1 ajx
Vj . Then

d(V1, Fr(f) − Fr(fΣi
)) < m(V1,V; r).

That is, the V1-degree of Fr(f)−Fr(fΣi
) is strictly smaller than the expected maximum

value m(V1,V; r).

Proof. Let u1, · · · , uJ be non-negative integers satisfying

r =
J∑

j=1

ujVj ,

J∑
j=2

uj = m(V1,V; r).

Let uj1 , · · · , ujk
are the non-zero terms among the uj ’s. Lemma 6.2 shows that the

cone Σi contains all the lattice points Vj1 , · · · , Vjk
. This shows that if a monomial

in the aj with V1-degree m(V1,V; r) appears in Fr(f), then the same monomial also
appears in Fr(fΣi

). Thus, Fr(f) and Fr(fΣi
) have the same initial terms of V1-degree

m(V1,V; r). The lemma is proved.
In order to prove the closed collapsing decomposition theorem, we need to work

with its open version first.
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6.2. The open collapsing decomposition theorem. For 1 ≤ i ≤ h, let So
i

be the set of relatively open faces in δi, including the empty set. This is also called
the boundary decomposition of δi. The union

δi =
⋃

σ∈So
i

σ (76)

is a disjoint union. Each So
i contains exactly one (n − 1)-dimensional face, which is

the interior of δi. The 0-dimensional elements in So
i are simply the vertices in δi. For

an element σ ∈ So
i , let Σo denote the open cone generated by σ and the origin (the

origin itself is not included unless σ is the empty set). Since σ ∈ So
i , the open cone

Σo is a subcome of the closed cone Σi and we have

dimΣo = dimσ + 1.

Clearly, the union

Σi =
⋃

σ∈So
i

Σo (77)

is a disjoint union, called the boundary decomposition of Σi. Let Σ be the topological
closure of Σo. The open collapsing decomposition theorem is

Theorem 6.5. For m ∈ Z≥0, the V1-degree polygon of det(I−TA1(f)) coincides
with its upper bound Q(V1,V) at the mth vertex if and only if for each 1 ≤ i ≤ h and
each σ ∈ So

i , the V1 ∩ Σ-degree polygon of det(I − TA1(Σo, fΣi
)) coincides with its

upper bound Q(Σo,V1 ∩ Vi,Vi) at the mth vertex.

Proof. Let

S(V1,V) =
h⋃

i=1

So
i (78)

which includes the empty set as an element. Denote the number of elements in this
set by g + 1. Fix an ordering of S(V1,V) by

S(V1,V) = {σ0, σ1, · · · , σg} (79)

such that

dim(σj) ≤ dim(σj+1), 0 ≤ j ≤ g − 1. (80)

In particular, σ0 is the empty set. Let Σo
j be the relatively open cone generated by

σj and the origin. In particular, Σo
0 consists of the origin. It is clear that we have

dim(Σo
j) = dim(σj) + 1

and thus

dim(Σo
j) ≤ dim(Σo

j+1), 0 ≤ j ≤ g − 1 (81)

Let

C(V1,V) = {Σo
0, · · · ,Σo

g}. (82)
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Then, the full cone C(∆) is the disjoint union of the relatively open cones in C(V1,V):

C(∆) =
g⋃

j=0

Σo
j . (83)

Let 0 ≤ j1 < j2 ≤ g and

s ∈ Σo
j1 , r ∈ Σo

j2 . (84)

In particular, r �= 0 since the origin is only contained in Σo
0. We claim that for each

1 ≤ i ≤ h, the closed convex cone Σi cannot contain both r and ps − r. Otherwise,
suppose that both r and ps − r are contained in Σi for some 1 ≤ i ≤ h. From the
identity ps = r + (ps − r), we deduce that r, s and ps − r are all contained in Σi.
In particular, both Σo

j1
and Σo

j2
are subcones of Σi. Let ps − r ∈ Σo

j3
(a subcone of

Σi). Then, the equation ps = r + (ps− r) shows that s is in the interior of the cone
generated by Σo

j2
and Σo

j3
. This implies that

dim(Σo
j1) ≥ dim(Σo

j2), (85)

with equality holding if and only if ps− r lies in the topological closure of Σo
j2

. Our
ordering assumption shows that (85) is indeed an equality. Thus, ps− r is indeed in
the topological closure of Σo

j2
. We conclude from ps = r + (ps − r) that s is in Σo

j2
.

This shows that Σo
j1

and Σo
j2

are not disjoint, a contradiction. The claim is proved.
This claim together with Lemmas 6.3 shows that

d(V1, as,r(f)) = d(V1, Fps−r(f))
≤ m(V1,V; ps− r) < pm(V1,V; s) −m(V1,V; r). (86)

Let Bj1j2 (0 ≤ j1, j2 ≤ g) be the nuclear submatrix of A1(f) consisting of all
(as,r(f)) with s ∈ Σo

j1
and r ∈ Σo

j2
. For 0 ≤ j ≤ g, the Newton polygon of the

entire function det(I − tBjj) lies above P (Σo
j). Furthermore, under a permutation of

orthonormal basis,

A1(f) =

⎛
⎜⎜⎜⎝
B00 B01 . . . B0g

B10 B11 . . . B1g

...
...

. . .
...

Bg0 Bg1 . . . Bgg

⎞
⎟⎟⎟⎠ . (87)

If as,r(f) is an element in Bj1j2 with j1 < j2, then (86) shows that the V1-degree
d(V1, as,r(f)) of the polynomial as,r(f) is strictly smaller than the expected maximum
value pm(V1,V; s)−m(V1,V; r). This means that the above block form for A1(f) is, in
some sense, lower triangular with respect to the V1-degree. By induction, we deduce
that

det(I − TA1(f)) =
g∏

j=0

det(I − TBjj) +
∞∑

k=0

pP (∆,k)G(f, k)T k, (88)

where G(f, k) is a power series in the aj with p-adic integral coefficients such that
the reduction G(f, k) (mod π) is a polynomial over Fp whose V1-degree is strictly
smaller than their upper bound Q(V1,V; k), see the notation in (67)-(68). Thus, the
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V1-degree polygon of det(I − TA1(f)) coincides with Q(V1,V) at the mth vertex if
and only if the V1-degree polygon of the first term on the right side of (88) coincides
with Q(V1,V) at the mth vertex. One further shows that the latter is true if and only
if the V1-degree polygon of

det(I − TA1(Σo
j , f)) = det(I − TBjj)

defined with respect to P (Σo
j) coincides with Q(Σo

j ,V1,V) at the mth vertex for all 0 ≤
j ≤ g. The matrix A1(Σo

j , f) is however different from the desired matrix A1(Σo
j , fΣi

),
where Σo

j ⊂ Σi. But the V1-degree polygon of det(I − TA1(Σo
j), f) and the V1 ∩ Vi-

degree polygon of det(I − TA1(Σo
j , fΣi

)) have the same upper bound

Q(Σo
j ,V1,V) = Q(Σo

j ,V1 ∩ Vi,Vi). (89)

The last equality can be easily proved from our definitions in (67)-(68).
To finish the proof, we need to show that if we replace the matrix A1(Σo

j , f)
defined in terms of f by the matrix A1(Σo

j , fΣi
) defined in terms of fΣi

, we will not
change the property of the coincidence of the degree polygon with its upper bound.
Let r, s ∈ Σi. If ps − r also belongs to Σi, Lemma 6.4 shows that we can replace
Fps−r(f) by Fps−r(fΣi

). If ps − r does not belong to Σi, then Lemma 6.3 shows
that the V1-degree of Fps−r(f) is strictly smaller than the expected maximum value
pm(V1,V; s) − m(V1,V; r), while Fps−r(fΣi

) = 0. In this case, we can also replace
Fps−r(f) by Fps−r(fΣi

). The theorem is proved.

6.3. Proof of the closed collapsing decomposition. To prove the closed
collapsing decomposition theorem, it suffices to combine the above open collapsing
decomposition theorem and the following boundary decomposition theorem [18].

Theorem 6.6. For each 1 ≤ i ≤ h, we have the boundary decomposition

det(I − TA1(fΣi
)) =

∏
σj∈So

i

det(I − TA1(Σo
j , fΣi

)).

This theorem shows that the V1∩Vi-degree polygon of det(I−TA1(fΣi
) coincides

with its upper bound Q(Σi,V1 ∩ Vi,Vi) if and only if the V1 ∩ Vi-degree polygon of
det(I − TA1(Σo

j , fΣi
) coincides with its upper bound Q(Σo

j ,V1 ∩ Vi,Vi) for all j with
σj ∈ So

i . The proof of Theorem 6.1 is complete.
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École Norm. Sup., (4) 29 (1996), no. 3, pp. 287–328.
[4] E. Bombieri, On exponential sums in finite fields, II, Invent. Math., 47 (1978), pp. 29–39.
[5] P. Deligne, La conjecture de Weil, II, Publ. Math. IHES, 52 (1980), pp. 137–252.
[6] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology and Newton

polyhedra, Invent. Math., 106:2 (1991), pp. 275–294.



VARIATION OF NEWTON POLYGONS FOR EXPONENTIAL SUMS 471

[7] B. Dwork, Normalized period matrices, II, Ann. of Math., 98 (1973), pp. 1–57.
[8] L. Fu and D. Wan, Moment L-functions, partial L-functions and partial exponential sums,

Math. Ann., 328 (2004), pp. 193–228.
[9] S. Hong, Newton polygons of L-functions associated with exponential sums of polynomials of

degree four over finite fields, Finite Fields & Appl., 7 (2001), pp. 205–237.
[10] S. Hong, Newton polygons for L-functions of exponential sums of polynomials of degree six

over finite fields, J. Number Theory., 97 (2002), pp. 368–396.
[11] N. Katz, Slope filtration of F-crystals, Astérisque, 63 (1979), pp. 113–163.
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