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REAL AND COMPLEX HAMILTONIAN MECHANICS ON SOME
SUBRIEMANNIAN MANIFOLDS ∗

OVIDIU CALIN† , DER-CHEN CHANG‡ , AND PETER GREINER§

Dedicated to Professor Yum-Tong Siu on his sixtieth birthday

Abstract. We prove geodesic completeness and global conectivity for a step 2k + 2 subRie-
mannian manifold. Using complex Hamiltonian mechanics we also calculate some subRiemannian
distances.

1. Introduction. SubRiemannian geometry starts with the Carathéodory’s for-
malization of thermodynamics [6] where the quasi-static adiabatic processes are re-
lated to the integral curves of a Darboux model. The result is that any two points may
be joined by a smooth integral curve. Next Chow [7] proves that any two points in a
manifold with a distribution with the bracket generating property may be connected
by piecewise smooth integral curves; the bracket generating property says that at
every point the span of the iterated Lie brackets of vector fields tangent to the given
distribution span the tangent space. Recently Gromov [9,10] proved that Chow’s
piecewise smooth integral curves may be replaced by smooth integral curves.

We start with a subelliptic operator ∆X of the form

∆X =
m∑
j=1

X2
j

on a n-dimensional manifold Mn where the vector fields X1,...,Xm are linearly in-
dependent and bracket generating, see [7] and [13]. The subbundle X of TMn, X
spanned by X1,...,Xm is a distribution. We introduce a metric on X by choosing
X1,...,Xm for an orthonormal basis. Chow’s theorem allows us to connect any two
points in Mn with a curve tangent to X. Minimizing the lengths of such curves yields
a distance function on Mn; often referred to as the Carnot-Carathéodory distance.
Thus the subelliptic operator ∆X induces a subRiemannian geometry in an analo-
gous to the way the elliptic Laplace-Beltrami operator induces Riemannian geometry.
The step of the operator ∆X is the minimum number of brackets necessary to obtain
TMn from X1,...,Xm plus one. The principal symbol of ∆X is the Hamiltonian, and
the projection of a bicharacteristic onto Mn is a geodesic; articles on control theory
sometime refer to such geodesics as normal.

A great deal of work on these geometries is done from a control theoretic point
of view. Our interests is somewhat different, we study the subRiemannian geometric
concepts with a view to finding fundamental solutions, heat kernels, etc. for ∆X

in invariant terms. We mention some work relevant to this paper. Beals, Gaveau
and Greiner [1] study the subRiemannian geodesics on the Heisenberg group Hn. In
particular, they show that for isotropic Hn the t-axis is the set of conjugate points
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138 O. CALIN, D.-C. CHANG AND P. GREINER

for geodesics starting from the origin. Strichartz [17,18] pointed out that in a step 2
subRiemannian manifold every point has a cut point arbitrarily near it. One may say
that subRiemannian geometric concepts are global. Greiner and Calin [8] discussed
this more precisely on a particular step 3 example.

This paper is concerned with the geometry of the subelliptic model of [5]. In
section 2 we introduce the Euler-Lagrange equations, solve them for geodesics starting
from the origin in section 3 and for geodesics starting outside of the origin in section
4. In sections 5 and 6 we prove geodesic completeness and global connectivity by
geodesics. Section 7 is devoted to complex Hamiltonian mechanics. In particular,
we show that the critical points of the modified complex action function f(τ) yield
the lengths of the geodesics starting from the origin; in the step 2 case this recovers
results of [1].

2. Euler Lagrange equations. Consider the vector fields on IR3

(1) X1 = ∂x1 + 2x2|x|2k∂t , X2 = ∂x2 − 2x1|x|2k∂t.

The Hamiltonian H is defined as the principal symbol of the X-Laplacian

(2) ∆X =
1
2
(X2

1 +X2
2 )

(3) H(ξ, θ, x, t) =
1
2

(
ξ1 + 2x2|x|2kθ

)2

+
1
2

(
ξ2 − 2x1|x|2kθ

)2

.

Definition 2.1. A geodesic connecting the points P (x0, t0) and Q(x, t) is the
projection on the (x, t)-space of the solution of the Hamilton’s system

ẋ = Hξ, ṫ = Hθ,

ξ̇ = −Hx, θ̇ = −Ht

with the boundary conditions x(0) = x0, t(0) = t0, x(sf ) = x, t(sf ) = t.

Using the Legendre transform, one obtains the Lagrangian

(4) L(x, ẋ, ṫ, θ) =
1
2
(ẋ2

1 + ẋ2
2) + θṫ− 2θ|x|2k(x2ẋ1 − x1ẋ2),

which in polar coordinates x1 = r cosφ, x2 = r sinφ takes the following form

(5) L =
1
2
(ṙ2 + r2φ̇2) + θṫ+ 2θr2k+2φ̇.

θ is constant along the solutions since θ̇ = −∂H/∂t = 0. The Euler-Lagrange system
of equations is

(6)

⎧⎪⎨⎪⎩
r̈ = rφ̇(φ̇+ 2(2k + 2)θr2k)
r2(φ̇+ 2θr2k) = C(constant)
θ = constant.
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3. Solutions which start from the origin. When r(0) = 0, C = 0 and (6)
takes the form

(7)

⎧⎪⎨⎪⎩
r̈ = rφ̇(φ̇+ 2(2k + 2)θr2k)
φ̇ = −2θr2k

θ = constant.

Eliminating φ from the first two equations

(8) r̈ = −4(2k + 1)θ2r4k+1.

If we set

(9) V (r) = 2θ2r2(2k+1),

then (8) may be written as Newton’s equation

(10) r̈ = −V ′(r),

where V ′(r) = dV (r)/dr, V (r) the potential energy. With ṙ = p we have

r̈ =
dp

ds
=
dp

dr

dr

ds
= p

dp

dr
= −4(2k + 1)θ2r4k+1.

Integrating,

(11)
1
2
ṙ2 + 2θ2r2(2k+1) = E

where E is a constant which denotes the total energy of the system. In fact E =
ṙ2(0)/2, and using |ẋ(s)|2 = ṙ2(s) + r2(s)φ̇(s), one obtains E = 1

2 |ẋ(0)|2. Thus, we
obtain the law of conservation of energy

(12)
1
2
ṙ2 + V (r) = E.

The radius r(s) starts at 0 and increases (ṙ > 0) until ṙ = 0, when r = rmax. After
that, r(s) decreases (ṙ < 0) to 0. rmax can be found by letting ṙ = 0 in equation (12).
Hence rmax is the positive solution of the equation

(13) V (r) = E,

which is

(14) rmax =
( E

2θ2
) 1

2(2k+1)
,
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see figure 1.

E > 0

V(r)

0 r
max

Fig. 1. rmax is the solution of the equation V (r) = E.

For each level of energy E > 0 there is a corresponding rmax > 0, which is independent
of the initial direction of the solution. The solution lies in the disk D(0, rmax). The
greater the energy E, the larger rmax is. As E = |ẋ(0)|2/2 depends only on the
magnitude of the initial speed, rmax will do the same. The second equation of (7)
provides

(15) φ̇ = −2θr2k.

As r(0) = 0, φ̇(0) = 0. For θ > 0, φ̇(s) < 0, i.e. φ is decreasing. For θ < 0, φ̇(s) > 0,
i.e. φ is increasing. For θ = 0, φ is constant.

Equations (11) and (15) yield

(16)
dr

ds
=
√

2E − 4θ2r2(2k+1),
dφ

ds
= −2θr2k

where r(s) was supposed to be increasing from r(0) = 0 to rmax. We eliminate s by
dividing the equations in (16) and obtain

(17)
dφ

dr
=

−2θr2k√
2E − 4θ2r2(2k+1)

,

which yields

(18) φ(s) − φ(0) =
∫ r(s)

0

−2θx2k

√
2E − 4θ2x2(2k+1)

dx.



MECHANICS ON SOME SUBRIEMANNIAN MANIFOLDS 141

When r = rmax, the above variation of φ is denoted by φ+, given by

φ+ =
∫ rmax

0

−2θx2k

√
2E − 4θ2x2(2k+1)

dx

=
−2θ√
2E

∫ 1

0

( E

2θ2
)2k/(4k+2) ( E

2θ2
)1/(4k+2)

u2k
√

1 − u4k+2 du

=
−θ
|θ|

1
2k + 1

∫ 1

0

v dv√
1 − v2

= − 1
2k + 1

sgn(θ)
(

arcsin(1) − arcsin(0)
)

= −sgn(θ)
π

2(2k + 1)
.

Proposition 3.1. The angle φ+ swept out by the vectorial radius between r = 0
and r = rmax is

(19) φ+ =

{
π

2(2k+1) , if θ < 0,

− π
2(2k+1) , if θ > 0.

The above proposition agrees with the fact that the particle is moving clock-wise
for θ > 0 and counter-clock-wise for θ < 0. Between r = rmax and r = 0 the vectorial
radius sweeps an angle φ−. As r is decreasing, ṙ < 0, then

(20)
dφ

dr
=

2θr2k√
2E − 4θ2r2(2k+1)

,

and

φ− =
∫ 0

rmax

2θr2k√
2E − 4θ2r2(2k+1)

dr =
∫ rmax

0

−2θr2k√
2E − 4θ2r2(2k+1)

dr

= −sgn(θ)
π

2(2k + 1)
= φ+.

The solution passes through the origin again after sweeping out an angle equal to
φ+ + φ− = π

2k+1 (clock-wise if θ < 0 and counter-clock-wise if θ > 0). This means,
the angle between the tangents at the origin is π

2k+1 . As this angle is commensurable
with 2π, the projection of the geodesic on the x-plane will be closed and periodic.

4. Solutions which start outside the origin. The solutions with r(0) �= 0
will be discussed. The system (6) is considered with the initial conditions

(21) r(0) �= 0 , φ(0) = φ0.

The second equation of (6) becomes

(22) φ̇ =
C

r2
− 2θr2k.

Substituting in the first equation of (6), one obtains

(23) r̈ =
C2

r3
+ 4kθCr2k−1 − 4θ2(2k + 1)r4k+1.
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Let

(24) V (r) =
1
2

(C2

r2
− 4θCr2k + 4θ2r4k+2

)
=

1
2

(
2θr2k+2 − C

r

)2

.

Then, one may rewrite equation (23) as Newton’s equation

(25) r̈ = −V ′(r).

Substituting p = ṙ, equation (23) becomes

p
dp

dr
= −dV

dr
,

which yields

p2

2
= −V (r) + E,

where E is a constant, the total energy.

Proposition 4.1. If r is a solution of the Euler-Lagrange system with initial
conditions (21), then the energy is conserved:

(26)
1
2
ṙ2 +

1
2

(
2θr2k+2 − C

r

)2

= E.

We shall give a qualitative description of the solutions of (26). There are two
cases: sgn(C) = sgn(θ) and sgn(C) �= sgn(θ). In each case we shall draw the graph
of the potential energy V and the trajectory of the solution in the phase plane.

Case sgn(C) = sgn(θ). In this case V (r) has a zero and a global minimum at

(27) r0 =
( C

2θ

)1/2(k+1)

,

and limx→0+ V (r) = limx→∞ V (r) = ∞.

Equilibrium points. r0 corresponds to a stable equilibrium point,

V ′(r0) = 0 and V ′′(r0) > 0.

The corresponding φ satisfies

φ̇ =
C

r20
− 2θr2k0 =

C − 2θr2(k+1)
0

r20
= 0

and hence φ is constant. This means that each point of the circle S(0, r0) is an
equilibrium point (constant solution). At each of these points the energy E = 0.

Tangent circles. When E > 0, there are exactly two positive roots rmin and rmax
of the equation

(28) V (r) = E,
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such that

(29) 0 < rmin ≤ r0 ≤ rmax.

The solution in the phase plane and the potential V are shown in figure 2.

Proposition 4.2. The solution of the Euler-Lagrange system (6) in the case
sgn(C) = sgn(θ) lies in the circular ring W(0, rmin, rmax) = {x ∈ R2; rmin ≤ |x| ≤
rmax}.

Proof. r is equal to rmin or rmax when ṙ = 0. The equation of conservation of
energy (26) shows that rmin and rmax are solutions of the equation V (r) = E and
the solution r has the property

0 < rmin ≤ r ≤ rmax.

r

0
rmin

r
max

r

min

.
r

V

r

r

maxr

V(r)

E > 0

0

Fig. 2. Solution in phase plane, case sgn(C) = sgn(θ).

Existence of loops. The equation φ̇ = 0 has the positive root

(30) r =
( C

2θ

) 1
2(k+1)

.

Hence φ̇ = 0 if and only if r = r0. When the solution intersects the circle of
equilibrium points S(0, r0), the sign of φ̇ changes, i.e. the trajectory is bouncing
back, making loops in the ring W(0, rmin, rmax), see figure 3.
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r

r

r0

max

w

.
φ = 0

0

min 

Fig. 3. Projection of the geodesic on the x-plane, case sgn(C) = sgn(θ).

The ring width. w = rmax − rmin is a function of energy w = w(E). Using
properties of the function V (r), we find
(i) w(E) is an increasing function of energy E;
(ii) w(0) = 0 if and only if rmin = r0 = rmax;
(iii) limE→∞ rmin = 0 , limE→∞ rmax = ∞.

The t-component. From the Hamiltonian equation

ṫ =
∂H

∂θ
= 2|x|2k(x2ẋ1 − x1ẋ2) = −2r2(k+1)φ̇,

φ̇ = 0 on the circle S(0, r0) implies that ṫ(s) changes sign and reaches the local maxima
and minima when the geodesic crosses the cylinder S(0, r0) × R.

Case sgn(C) �= sgn(θ), C �= 0. Here

φ̇ =
C − 2θr2(k+1)

r2
�= 0,

which means that φ increases (decreases) for θ < 0 (θ > 0) and hence there are no
loops. In this case the potential energy is strictly positive

V (r) =
1
2

(2θr2k+2 − C

r

)2

> 0,

and has a minimum at

(31) r1 =
( −C

2θ(2k + 1)

) 1
2(k+1)

.

Indeed, V ′(r) = 0 if and only if

4θ2(2k + 1)r4k+4 − 4kθCr2k+2 − C2 = 0.

Substituting u = r2k+2 we obtain a quadratic equation in u

4θ2(2k + 1)u2 − 4kθCu− C2 = 0,
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with the roots

u1 =
C

2θ
and u2 = − C

2θ(2k + 1)
.

As r1 is positive, we choose

(r1)2(k+1) = − C

2θ(2k + 1)
.

The equilibrium solution. The equilibrium solution is the circle of radius r1 cen-
tered at the origin. The corresponding φ can be obtained from

r21(φ̇+ 2θr2k1 ) = C

and it is equal to

φ(s) =
(C
r21

− 2θr2k1
)

+ φ0.

Bounds for r(s). There are two positive roots ρmin and ρmax for the equation

V (r) = E , where E ≥ V (r1)

and 0 < ρmin ≤ r1 ≤ ρmax.

1minρ max

V(r)
V

r ρ

ρ0

1V(r )

1

max
ρmin

E > V(r )

.
r

r

r

Fig. 4. Solution in the phase plane, case sgn(C) �= sgn(θ).

In the phase plane the solution is rotating around the stable equilibrium point (r1, 0)
such that

ρmin ≤ r(s) ≤ ρmax.

The projection of the geodesics in the x-plane is contained in the ring
W(0, ρmin, ρmax). The width of the ring increases as the total energy E increases,
where E = 1

2 |ẋ(0)|2. See figure 5.
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The t-component. In this case ṫ = −2r2(k+1)φ̇ �= 0. Hence t(s) increases if θ > 0,
decreases if θ < 0, it is constant if θ = 0.

0
ρ

1r

maxρ

min

Fig. 5. Projection of the geodesic on the x-plane, case sgn(C) �= sgn(θ).

5. Geodesic completeness.

Definition 5.1. If for any point P , any geodesic c(t) emanating from P is
defined for all t ∈ R, the geometry is called geodesically complete.

The main result of this section is

Theorem 5.2. The geometry induced by the vector fields (1) is geodesically
complete.

We note that geodesic completeness does not hold in general. A counterexample
in the step 2 case is provided in Calin [4]. To prove Theorem 5.2 we need a few results
regarding extendability of solutions of differential equations. The following result can
be found for instance in Hartman [12].

Lemma 5.3. Let f(t, y) be a continuous function on a strip t0 ≤ t ≤ t0 + a <∞,
y ∈ Rd arbitrary. Let y = y(t) denote a solution of

(32) y′ = f(t, y), y(t0) = y0

on a right maximal interval J . Then either J = [t0, t0 + a] or J = [t0, δ), δ ≤ t0 + a,
and |y(t)| → ∞ as t→ δ.

The Hamiltonian system of equations can be written in the form (32). Consider
y ∈ R2n, y = (x, p), with x, p ∈ Rn. Let H(y) be the Hamiltonian function, and set

∇H(y) =
(∂H
∂x

,
∂H

∂p

)
,

and

J =
(
On In
−In On

)
∈ M2n(R).
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Then

J ∇H(y) =
(∂H
∂p

,−∂H
∂x

)
.

Hamilton’ s system

(33)

{
ẋ(s) = ∂H/∂p

ṗ(s) = −∂H/∂x

can be written as

(34) ẏ(s) = f(y(s)),

where f(y) = J ∇H(y). Since f is independent of s, we may rewrite Lemma 5.3 as

Corollary 5.4. Let f(y) be an arbitrary continuous function for y ∈ R2n and
let y(s) be a solution for

ẏ(s) = f(y(s)), y(0) = y0

on a right maximal interval I. Then either I = [0,∞) or I = [0, δ) with |y(s)| → ∞
as s→ δ.

In other words, if the solution y(s) doesn’t blow up for a finite value of the parameter
s, then the maximal right interval is [0,∞).

We are working in coordinates r, φ, t with the corresponding momenta p, η, θ.
Consider a solution for the Hamilton’s system

y(s) =
(
r(s), φ(s), t(s); p(s), η(s), θ(s)

)
.

We shall show that |y(s)| cannot blow up for finite values of s. This is equivalent to
show that each component of y(s) has this property. The momentum θ is bounded
because it is constant. Also (5) implies that η̇ = ∂L/∂φ = 0. This implies that η(s) =
η is a constant and hence bounded. The momentum p is given by p = ∂L/∂ṙ = ṙ.
Using the conservation of energy, yields

|p(s)| = |ṙ(s)| ≤
√

2E.

As E is constant along the solutions, |p(s)| is bounded. Here we used the standard
definition of the momentum

p =
∂L

∂q̇
,

and the Euler-Lagrange equation

ṗ =
∂L

∂q
.

Next, we deal with the bounds for r(s). We have seen that for E > 0 there are exactly
two positive roots rmin, rmax of the equation

V (r) = E,
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and

0 < rmin ≤ r(s) ≤ rmax,

so r(s) is bounded. The projection of the trajectory in the x-plane is contained in the
ring defined by the circles of radii rmin and rmax. See the figures 3 and 5.

In order to deal with the bounds for the φ component, we use

(35) φ̇(s) =

{
C

r2(s) − 2θr2k(s), if r(0) �= 0,

−2θr2k, if r(0) = 0.

The inequality

0 ≤ rmin ≤ r(s) ≤ rmax

yields the upper bound

|φ̇(s)| ≤ C0, ∀s,

with

(36) C0 =

{
|C|/r2min + 2|θ|r2kmax, if r(0) �= 0,
2|θ|r2kmax, if r(0) = 0.

Thus for all s

|φ(s)| ≤ |φ(s) − φ(0)| + |φ(0)| ≤ C0|s| + |φ(0)|,

so

lim
s→δ

|φ(s)| ≤ Cδ + |φ0|

and |φ(s)| cannot blow up for finite δ.

We still need to show that t(s) doesn’t blow up for finite s. From Hamilton’s
equation

ṫ(s) =
∂H

∂θ
= −2r2(k+1)(s)φ̇(s).

Using the boundedness of |φ̇|,

|t(s)| ≤ |t(s) − t(0)| + |t(0)| ≤ max
u∈[0,s]

|ṫ(u)||s| + |t(0)|

≤ 2r2(k+1)
max |φ̇(s)| + |t(0)| ≤ 2C0r

2(k+1)
max |s| + |t(0)|

= C1|s| + |t(0)|.

Hence t(s) cannot blow up for a finite value of s. Using Corollary 5.4 the bicharac-
teristic solution y(s) = (r(s), φ(s), t(s), p(s), η(s), θ(s)) is defined on [0,+∞). Using a
similar argument to the left we get y(s) defined on the entire real line. In particular,
the projection on the (r, φ)-plane has the same property.
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6. Global connectivity by geodesics. Consider the subRiemannian geometry
induced by the vector fields (1). In this section we shall prove the following global
connectivity result:

Theorem 6.1. Given any two points A,B ∈ R3, there is a geodesic joining A
and B.

It is known that geodesics are locally length minimizing, see Hamenstädt [11], Lee
and Markus [15], Strichartz [17,18], Beläıche [3]. However, there are examples of
length minimizing curves in steps greater than 2, which are not geodesics, see Liu and
Sussmann [16], Sussmann [19].

Definition 6.2. The distribution H generated by the vector fields X1 and X2

given by (1) is called the horizontal distribution. A curve c is called horizontal if
ċ ∈ H. The Riemannian metric g defined on H with respect to which X1 and X2 are
orthonormal is called the subRiemannian metric.

By Chow’s theorem [7], arbitrary points P and Q can be joined by a piece-wise
horizontal curve. Using the subRiemannian metric, one may define the distance

d(P,Q) = inf{length(c); c horizontal, joining P and Q},
where length(c) =

∫
I

√
g(ċ, ċ).

Definition 6.3. A subRiemannian manifold is called complete if it is complete
as a metric space, i.e. the distance function d given by the subRiemannian metric is
complete.

The following theorem can be found in Strichartz [17,18]:

Theorem 6.4. Let M be a connected step 2 subRiemannian manifold.
(a) If M is complete, then any two points can be joined by a geodesic.
(b) If there exists a point P such that every geodesic from P can be indefinitely ex-
tended, then M is complete.
(c) Every nonconstant geodesic is locally a unique length minimizing curve.
(d) Every length minimizing curve is a geodesic.

Proof of Theorem 6.1. Let M = R3\{(0, t); t ∈ R}. The subRiemannian model
defined by the vector fields (1) is step 2 on M and step 2(k + 1) on {(0, t); t ∈ R}.
Let A, B ∈ R3.
(i) A,B ∈ M :
From Theorem 5.2, any point of M has the property (b) of Theorem 6.4. Therefore
M is complete. Using Theorem 6.4 (a), any two points in M can be joined by a
minimizing geodesic. By property (d) of Theorem 6.4, the minimizing geodesic is a
geodesic. Hence A and B can be connected by a normal geodesic.
(ii) A ∈ {(0, t); t ∈ R} and B ∈ M:
After a translation along the t-axis, Theorem 3.1 of [5] has the following

Corollary 6.5. There are finitely many geodesics that join the point (0, t0) to
(x, t) if and only if x �= 0. These geodesics are parametrized by the solutions ψ of:

(37)
|t− t0|
|x|2(k+1)

= µ(ψ),

There is exactly one such geodesic if and only if:

|t− t0| < µ(c1)|x|2(k+1),
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where c1 is the first critical point for µ and

(38) µ(x) =
2

2k + 1

∫ (2k+1)x

0
sin

2(k+1)
2k+1 (v) dv

sin
2(k+1)
2k+1 (x)

.

A graph of the function µ is given in figure 6.
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x

Fig. 6. The graph of the function µ(x).

Clearly, (ii) is an immediate consequence.
(iii) A,B ∈ {(0, t); t ∈ R} :
This is the limit case, |x| → 0, of Corollary 6.5. Namely, (37) becomes µ(ψ) = ∞.
Hence ψ ∈ π

2k+1Z. There are infinitely many geodesics between A and B.

7. Complex Hamiltonian mechanics.

The complex action. The goal of this section is to describe the lengths of the
geodesics starting at the origin by means of complex Hamiltonian mechanics. For ∆X

of (2), the complex action is

g(r, t, r0, t0) = −i(t− t0) +
k

k + 1
Eτ

+
1

2(k + 1)
sgn(τ)

[√
2Er2 +W (r2)2 −

√
2Er20 +W (r20)2

]
,

where E is the constant of energy and W is defined below; see (4.58) of [2], where
we replaced a by 1/k and k by k + 1. We are interested in the action starting at the
origin: r0 = r(0) = 0. We set

(39) Ψ(x) = ψ(x2
1 + x2

2) = ψ(|x|2),

where

(40) ψ(u) =
uk+1

k + 1
, ψ′(u) = uk.
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The equations (4.11) and (4.12) of [2] yield

(41) W (u) = 2ψ′(u) − Ω = 2uk+1 − Ω.

Ω, the angular momentum, is a constant of motion which satisfies the following equa-
tion

(42) r2(s)α̇(s) = i
(
2r2(s)ψ′(r2(s)) − Ω

)
= iW (r2(s)).

r(0) = 0 implies

(43) Ω = 0, W (u) = 2uk+1,

therefore

2Er2 +W (r2)2 = 2Er2 +
(
2r2(k+1)

)2

= r2
(
2E + r2(2k+1)

)
,

and

(44)
√

2Er2 +W (r2)2 = r
√

2E + r2(2k+1).

Hence the complex action from the origin is

(45) g = g(r, t, 0, t0) = −i(t− t0) +
k

k + 1
Eτ +

r

2(k + 1)
sgn(τ)

√
2E + r2(2k+1).

It satisfies the Hamilton-Jacobi equation:

(46)
∂g

∂τ
+

1
2

[
X1(g)2 +X2(g)2

]
= 0,

or

(47)
∂g

∂τ
+H (x,∇xg) = 0.

The classical action from the origin is given by

(48) S = S(x, t, τ, θ) =
∫ τ

0

[
〈ξ, ẋ〉 + θṫ−H(s)

]
ds.

S is the integral of the Lagrangian along the bicharacteristic with boundary conditions:

(49) x(0) = 0, x(τ) = x, t(0) = 0, t(τ) = t.

Here we fix t0 = t(0), so θ cannot be chosen arbitrarily; it is a real constant along the
path. In the case of the complex action, the boundary condition t(0) = 0 is replaced
by θ = −i. The complex action and the classical actions are related by the formula

(50) g = S − it(0).

Using

τH0 =
∫ τ

0

H0 =
∫ τ

0

[
〈ξ, ẋ〉 + θṫ−H(s)

]
ds = S(x, t, τ),
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Equation (47) may be rewritten as

(51)
∂g

∂τ
+
S

τ
= 0,

so

(52)
∂g

∂τ
= −g + it(0)

τ
.

Define the modified complex action function as

(53) f(x, t, τ) = τg(x, t, τ).

We shall show that the critical points of f with respect to τ play an important role
in finding the lengths of the geodesics between the origin and the point (x, t). The
following two results contained in [5] describe the geodesics starting from the origin:

Theorem 7.1. There are finitely many geodesics that join the origin to (x, t) if
and only if x �= 0. These geodesics are parametrized by the solutions ψ of:

(54)
|t|

|x|2(k+1)
= µ(ψ),

see (38). There is exactly one such geodesic if and only if:

|t| < µ(c1)|x|2(k+1),

where c1 is the first critical point for µ. The number of geodesics increases without
bound as |t|

|x|2(k+1) → ∞. If 0 ≤ ψ1 < · · · < ψN are the solutions of (54), then there
are exactly N geodesics, and their lengths are given by

(55) �2(k+1)
m = ν(ψm)

(
|t| + |x|2(k+1)

)
, m = 1, . . . , N

where

(56) ν(ψ) =

[ ∫ (2k+1)ψ

0
sin− 2k

2k+1 (v) dv
]2(k+1)

(k + 1)2(k+1)
(
1 + µ(ψ)

)
sin

2(k+1)
2k+1 ((2k + 1)ψ)

.

Theorem 7.2. The geodesics that join the origin to a point (0, t) have lengths
�1, �2, . . . , where

(57) (�m)2(k+1) =
( m

2k + 1

)2k+1M2(k+1)

Q
|t|,

with the constants M and Q expressed in terms of beta functions

M = B
( 1

4k + 2
,
1
2

)
,

Q = 2B
(4k + 3

4k + 2
,
1
2

)
.

For each length �m, the geodesics of that length are parametrized by the circle S1.
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Differentiating (53), yields

∂f

∂τ
=
∂(τg)
∂τ

= g + τ
∂g

∂τ
= g − (g + it(0)) = −it(0).

From relation (2.20) of [5],

(58) t− t(0) = −µ(φ̃)|x|2(k+1), φ̃ = φ− φ0,

and therefore

(59)
∂f

∂τ
= −i(t+ µ(φ̃)|x|2(k+1)).

Since dφ̃
ds = −2θr2k, see (2.14) of [5], one has

(60) φ̃ = −2θ
∫ τ

0

r2k(s) ds.

Now (59) implies

Proposition 7.3. Let x �= 0. τc is a critical point for the modified complex
action f(x, t, τ) if and only if

φ̃ = 2i
∫ τc

0

r2k(s) ds

is a solution for the equation

(61)
t

|x|2(k+1)
= −µ(φ̃).

Theorem 7.1 implies

Proposition 7.4. Let τ1, . . . , τm be the critical points of the modified complex
action f(x, t, τ).
The numbers

ζj = 2i
∫ τj

0

r2k(s) ds, j = 1, . . . ,m,

satisfy the equation

(62)
t

|x|2(k+1)
= µ(−ζj),

and for each ζj we have a geodesic connecting (x, t) to the origin. The length �j of
the geodesic parametrizied by ζj is

�
2(k+1)
j = ν(ζj)

(
|t| + |x|2(k+1)

)
= ν

(
2i
∫ τj

0

r2k(s) ds
)(

|t| + |x|2(k+1)
)
.

Consequently, the knowledge of the critical points τc of the modified complex
action function gives the lengths of the geodesics. The rest of this section contains
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the calculation of τj and the geodesic lengths for the step 2 case and for the step 4 case.

Step 2 case: The Heisenberg group. Here k = 0. In this case φ̃j = 2iτj and
τj is purely imaginary. The lengths of the geodesics between the origin and (x, t),
x �= 0, are given by (55), that is

(63) �2j = ν(2iτj)
(
|t| + |x|2

)
.

Step 4 case. This is a lengthy calculation. We need to compute the integral

(64) 2i
∫ τ

0

r2(s) ds,

and we shall do that in terms of elliptic functions. The Hamiltonian function associ-
ated with the vector fields

(65) X1 = ∂x1 + 2x1|x|2∂t, X2 = ∂x2 − 2x2|x|2∂t
is

(66) H(ξ, θ, x, t) =
1
2

(
ξ1 + 2x2|x|2θ

)2

+
1
2

(
ξ2 − 2x1|x|2θ

)2

.

Using Hamilton’s equations

ẋ1 = ξ1 + 2x2|x|2θ,

ẋ2 = ξ2 − 2x1|x|2θ,
we have

(67) H =
1
2
(ẋ2

1 + ẋ2
2) =

1
2
,

where we have used the arc length parametrization. In polar coordinates x1 = r cos φ̃,
x2 = r sin φ̃ and dφ̃

ds = −2θr2k, the conservation of energy (67) takes the form

(68) ṙ2 + 4θ2r6 = 1.

With θ = −i,
(69) ṙ2 − 4r6 = 1,

and

(70)
dr

ds
= ±

√
1 + 4r6.

Since r(0) = 0, r(s) satisfies the integral equation

(71)
∫ r

0

dx√
1 + 4x6

= ±s.
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The substitutions x2 = t, 4t3 = u3 and u = −v yield∫ r

0

dx√
1 + 4x6

=
1
2

∫ r2

0

dt√
t(1 + 4t3)

=
1

24/3

∫ 41/3r2

0

du√
u(1 + u3)

=
i

24/3

∫ −41/3r2

0

dv√
v(1 − v3)

.

Lemma 7.5. ∫ a

0

dx√
x(1 − x3)

=
1

31/4
sn−1

(√
1 − h(a)2

b2
, k
)
,

where b = 2 −√
3, k =

√
b/2 and

h(a) =
√

3

a+ 1+
√

3
2

− 1.

Proof. We need to evaluate the integral∫ a

0

dx√
f(x)

where f(x) = x(1 − x3) = −(x2 − x)(1 + x+ x2). We set

x =
pt+ q

t+ 1

with

p =
−1 −√

3
2

, q =
−1 +

√
3

2
.

Then

f = − 1
(t+ 1)4

(
(p2 − p)t2 + q2 − q

)(
(p2 + p+ 1)t2 + (q2 + q + 1)

)
= − 1

(t+ 1)4
(
(
3
2

+
√

3)t2 + (
3
2
−
√

3)
)(3

2
t2 +

3
2

)
= − 1

(t+ 1)4
3
2

(
3
2

+
√

3)(t2 − b2)(t2 + 1),

where b2 = 7 − 4
√

3 and b = 2 −√
3. Thus∫ a

0

dx√
f(x)

=
2√

3 + 2
√

3

∫ b

h(a)

1√
(b2 − t2)(t2 + 1)

dt.

By [14], p.52(3.2.4),∫ b

x

1√
(1 + t2)(b2 − t2)

dt =
1√

1 + b2
sn−1

(√b2 − x2

b
,

b√
1 + b2

)
,



156 O. CALIN, D.-C. CHANG AND P. GREINER

and ∫ a

0

dx√
f(x)

= 3−1/4 sn−1
(√

1 − h(a)2

b2
,

√
b

2

)
.

Consequently,∫ r

0

dx√
1 + 4x6

=
i

24/3

∫ −41/3r2

0

dv√
v(1 − v3)

=
i

24/3 · 31/4
sn−1

(√
1 − h(−41/3r2)2

b2
, k

)
,

and in view of (71),

(72) sn−1

(√
1 − h(−41/3r2)2

b2
, k

)
= ∓24/331/4is.

From cn2x+ sn2x = 1 (see [14], p.24(2.1.4)),

(73) cn2
(
24/331/4is, k

)
=
h(−41/3r2)2

b2
.

Again, by [14], p.39(2.6.12):

cn(iu, k) = nc(u, k′) =
1

cn(u, k′)
,

where k′ =
√

1 − k2, so (73) becomes

(74) bnc(24/3 31/4s, k′) = h(−41/3r2),

with k′ =
√
b/2 and b = 2 +

√
3. Inverting h, we obtain

(75) r2(s) = 4−1/3

(
1 +

√
3

2
−

√
3

1 + bnc(24/3 31/4s, k′)

)
.

Thus (64) can be expressed as

2i
∫ τ

0

r2(s) ds =
1 +

√
3

41/3
(iτ) − 21/3

√
3 i
∫ τ

0

ds

1 + b nc(24/3 31/4s, k′)
.(76)

We are left with evaluating the second term on the right hand side of (76). With
u = is, one has∫ τ

0

ds

1 + b nc(24/3 31/4s, k′)
=

1
i

∫ iτ

0

du

1 + b nc(−i 24/3 31/4s, k′)
(77)

=
1
i

∫ iτ

0

du

1 + b cn(24/3 31/4s, k)
,(78)
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since nc is even. Consequently,

(79) 2i
∫ τ

0

r2(s) ds = �(iτ),

where

�(z) =
1 +

√
3

41/3
z − 21/3

√
3
∫ z

0

dv

1 + b cn(24/3 31/4v, k)

=
1 +

√
3

41/3
z − 31/4

2

∫ 24/331/4z

0

dv

1 + b cn(v, k)
.

Next we use [14], p.93(51):∫ u

0

dv

1 + b cnv

=
1

1 − b2
Λ
(
u,

ib√
1 − b2

, k
)
− b√

(1 − b2)(k2 + k′2b2)
tan−1

(√
k2 + k′2b2

1 − b2
sdu

)
,

b2 < 1,

where

(80) Λ(u, iβ, k) =
∫ u

0

dv

1 + β2 sn2v
.

We recall that

b = 2 −
√

3, k =

√
b

2
=

√
6 −√

2
4

, k′ =

√
b

2
=

√
6 +

√
2

4
, β =

b√
1 − b2

,

1 − b2 = 4
√

3 − 6, k2 + k′2b2 = 1 −
√

3
2
,

k2 + k′2b2

1 − b2
=

1
4

√
3 − 2

2
√

3 − 3
,

and

b√
(1 − b2)(k2 + k′2α2)

=
(2 −√

3)
√

2

(
√

3 − 1)
√

2
√

3 − 3

=

√
2 −√

3 · √2
(
√

3 − 1) · 31/4

=
√

2 (
√

3 − 1)
2

√
2

(
√

3 − 1) 31/4

= 31/4,

1
1 − b2

=
1
2

1
2
√

3 − 3
=

2 +
√

3
2
√

3
=

1√
3

+
1
2
,

√
k2 + k′2b2

1 − b2
=

1
4

√
2(
√

3 − 1)√
2
√

3 − 3
=

1
4

√
2(
√

3 − 1)

31/4
√

2 −√
3

=
1

2 · 31/4
.
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b√
1 − b2

=
2 −√

3√
2(2

√
3 − 3)

=
2 −√

3

21/231/4
√

2 −√
3

=
1

21/231/4
·
√

2(
√

3 − 1)
2

=
√

3 − 1
2 · 31/4

.

Consequently,

∫ u

0

dv

1 + b cnv
=
(√

3
3

+
1
2

)
Λ
(
u, i

√
3 − 1

2 · 31/4
, k
)
− 3−1/4 tan−1

(
sdu

2 · 31/4

)
,

and

�(z) =
1 +

√
3

41/3
z − 2 +

√
3

4 · 31/4
Λ
(
24/331/4z, i

√
3 − 1

2 · 31/4
, k
)

(81)

−1
2

tan−1

(
sd(24/331/4z)

2 · 31/4

)
.

To evaluate the second term more explicitly, we use the following elliptic functions:

sn−1(x, k) =
∫ x

0

dt√
(1 − t2)(1 − k2t2)

, 0 ≤ x ≤ 1, p.50(3.1.2)

cn−1(x, k) =
∫ 1

x

dt√
(1 − t2)(k′2 + k2t2)

, 0 ≤ x ≤ 1, p.52(3.2.2)

F (ω, k′) = sn−1(sinω, k′) =
∫ ω

0

(1 − k′2 sin2 θ)−1/2 dθ, p.51(3.1.8)

E(u, k) =
∫ u

0

dn2(v, k) dv, p.62(3.4.25)

D(ω, k′) =
∫ ω

0

√
1 − k′2 sin2 θ dθ =

∫ ω

0

√
cos2 θ − k2 sin2 θ dθ, p.63(3.4.26)

E = E(k) = E(K, k) =
∫ π/2

0

(1 − k2 sin2 θ)1/2 dθ =
∫ K

0

dn2v dv, p.63(3.5.4)

K = K(k) =
∫ π/2

0

(1 − k2 sin2 θ)−1/2 dθ

=
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, p.73(3.8.1)

where numbers refer to [14]. In particular,

Λ(u, iβ, k) =
k2

β2 + k2
u+

β√
(β2 + k2)(β2 + 1)

[
u
{
D(ω, k′) − F (ω, k′)

+
E
K
F (ω, k′)

}− tan−1(Y/X)
]

=
k2

β2 + k2
u+

β√
(β2 + k2)(β2 + 1)

[
u
{
D(ω, k′) − F (ω, k′)

+
E
K
F (ω, k′)

}
+
i

2
log

θ4(x− iy)
θ4(x+ iy)

]
,
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where

X = 1 + 2
∞∑
n=1

(−1)nqn
2
cos 2nx cosh 2ny,

Y = 2
∞∑
n=1

(−1)nqn
2
sin 2nx sinh 2ny,

with q = exp(−πK ′/K), x = πu/2K and y = πF (ω, k′)/2K and sinω = β/
√
β2 + k2,

see [14], p.72(3.7.47). θ4 stands for Jacobi’s zeta function. In our case

β =
√

3 − 1
2 · 31/4

, k =
√

6 −√
2

4
, k′ =

√
6 +

√
2

4
, b = 2 −

√
3.

An algebraic computation yields

k2

β2 + k2
= b

√
3,

β√
(β2 + k2)(β2 + 1)

= 2 · 31/4 b,
β√

β2 + k2
=

√
3 − 1.

We shall show the function Λ depends only on the Jacobi’s epsilon function E(u, k).
We have

F (ω, k′) = sn−1(sinω, k′) = sn−1(
√

3 − 1, k′).

From [14], p.41(2.7.14) and p.63(3.4.27), am v =
∫ v
0

dn γ dγ, and E(v, k′) =
D(am v, k′), with sn(v) = sin(am v). With ω = am v, yields v = sn−1(

√
3− 1, k′), and

hence

D(ω, k′) = E(sn−1(
√

3 − 1, k′), k′).

If k =
√

3−1
2
√

2
=

√
6−√

2
4 , then K ′/K =

√
3 see [14], p.86(10). Hence

q = e−π
√

3.

Also

K = K(k) =
31/4

4
√
π

1√
3

Γ(1/6)Γ(1/3),

and

K[2
√

3E − (
√

3 + 1)K] =
π

2
.

Dividing by K2 = 1
16π

√
3
Γ2(1/6)Γ2(1/3) we get

E
K

=
π

4
√

3K2
+

√
3 + 1
2
√

3
=
(

2π
Γ(1/6)Γ(1/3)

)2

+
3 +

√
3

6
.

Hence,

Λ(u, iβ, k) = b
√

3u+ 2 · 31/4 b

[
u

{
E(am−1ω, k′) − am−1ω

+
[(

2π
Γ(1/6)Γ(1/3)

)2

+
3 +

√
3

6

]
am−1ω

}
+
i

2
log

θ4(x− iy)
θ4(x+ iy)

]
,
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with am−1ω = sn−1(
√

3 − 1, k′). Hence, the formula (81) becomes

�(z) =
1 +

√
3

41/3
z − 31/2 2−2/3z

+
1
2

[
u

{
E(am−1ω, k′) +

[(
2π

Γ(1/6)Γ(1/3)

)2

− 3 −√
3

6

]
am−1ω

}
+
i

2
log

θ4(x− iy)
θ4(x+ iy)

]
− 1

2
tan−1

(
sd(24/3 31/4z)

2 · 31/4

)
,

with u = 24/3 31/4 z and am−1ω = sn−1(
√

3 − 1, k′). Finally, we restate the last part
of Proposition 7.4 for the step 4 case, k = 1.

Corollary 7.6. Let τj be the critical points of the modified complex action
f(τ) = τg(τ). Setting ζj = �(iτj), the lengths of the geodesics between the origin and
the point (x, t), |x| �= 0 are given by

�4j = ν(ζj)
(|t| + |x|4).
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[3] Belläıche, A., subRiemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996.
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[6] Carathéodory, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann.,

67 (1909), pp. 93–161.
[7] Chow, W.L., Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung,

Math. Ann., 117 (1939), pp. 98–105.
[8] Greiner, P.C, and Calin, O., On subRiemannian Geodesics, to appear in Analysis and

Applications, World Scientific Publishing, 2003, pp. 1–69.
[9] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces, with appendices

by M. Katz, P. Pansu and S. Semmes, Progr. Math., 152, Birkkäuser, Boston, MA, 1999.
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