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A REMARK ON THE DOUADY SEQUENCE
FOR NON-PRIMARY HOPF MANIFOLDS ∗
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Dedicated to Professor Yum-Tong Siu on his sixtieth birthday

1. Introduction. To determine cohomology groups of holomorphic vector bun-
dles or more general coherent analytic sheaves on complex manifolds is very important
in several complex variables and complex geometry. For example, Cartan-Serre’s theo-
rem B and Kodaira’s vanishing theorem are fundamental respectively in the studies of
two classes of complex manifolds: Stein manifolds and projective algebraic manifolds.
Deformation and moduli space of complex structures are also closely related to the de-
termination of the cohomology groups of the bundles according to Kodaira-Spencer’s
theory.

Some concrete calculations of cohomology groups on some well-known manifolds
have been given. For example, cohomology groups of holomorphic line bundles (and
more general holomorphic vector bundles with trivial pull back) on primary Hopf
manifolds were calculated, where the Douady sequence (a short exact sequence of
complexes, cf. [1,4,10,11,14]) plays a key role in the calculation.

The purpose of the present note is to generalize the Douady sequence to the
case of non-primary Hopf manifolds, so that the cohomology groups of a holomorphic
line bundles (and more general holomorphic vector bundles with trivial pull back)
over arbitrary Hopf manifolds could be calculated. This could be used to obtain a
criterion for a continuous complex vector bundle over any Hopf manifold admitting a
holomorphic structure and to study the filtrability of the holomorphic vector bundles
over any Hopf manifold and the moduli space of any Hopf manifold. (cf. [8-12,16,17])

2. Some known results.

A. By an n-dimentional Hopf manifold X, we shall mean a compact complex
manifold of which the universal covering is W = C

n − 0. X can be written as a
quotient space W/G with a group G generated by some biholomorphic transformations
of W whose action on W is properly discontinuous and free. When n ≥ 2, it’s known
that W is simply connected and G is the fundamental group of X. When G is the
infinite cyclic group Z, the Hopf manifold X is called primary, otherwise it’s called
secondary or non-primary. Hopf manifold is the simplest complex manifold which is
non-Kählerian.

Similar to Kodaira’s statement for Hopf surface in [7], the fundamental group G
of X has the following properties: G contains a contraction f , and the infinite cyclic
subgroup Z generated by f has a finite index in G; the subgroup Z is located in the
center of G and then normal in G; the group G/Z is isomorphic to a finite subgroup
K of G.
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Suppose that A is a normal subgroup of the group G, B is a subgroup of G, if
there is an isomorphism p between G/A and B, then G = A ·B, a semi-direct product
of A and B. Actually, ∀g ∈ G, we have p(gp(g)−1) = e, where e is the identity of G
and p(g) ∈ B . This means that gp(g)−1 ∈ A. It’s easy to see that A ∩ B = e.

Therefore, the fundamental group G of a Hopf manifold can be written as G =
Z · K and f · k = k · f for ∀k ∈ K.

B. A smooth complex vector bundle of rank r over a real smooth manifold is
called flat if it admits a flat structure, i.e., which is given by an open covering with
local frame fields s.t. the transition functions are all constant matrices in GL(r, C).
It’s well known that the bundle is flat is equivalent to that the bundle admits a flat
connection in the sense that the curvature of the connection vanishes identically, and
the bundle is defined by a representation of the fundamental group to GL(r, C) (cf.[6]).

Using a similar argument of Kodaira’s for Hopf surface in [7], we can get that any
holomorphic line bundle on a Hopf manifold is flat.

Actually, given an arbitrary Hopf manifold X, there is a primary Hopf manifold X̃
and a holomorphic finite covering p : X̃ → X with the finite group K as the covering
transformation group. Given any holomorphic line bundle on X, the pull back p∗(L)
on X̃ is flat. On the other hand, K naturally acts on p∗(L) and L is isomorphic to
p∗(L)/K. Based on a flat connection on p∗(L), one can construct a K-invariant flat
connection on p∗(L) and then a flat connection on p∗(L)/K.

Assume L ∈ H1(X,O∗) is a flat holomorphic line bundle on X, we can get the
representation of the fundamental group π1(X) ∼= Z · K of X:

ρ : π1(X) → GL(1, C) ∼= C
∗

f �−→ c

k �−→ ρ(k)

where f is the contraction which is the generator of Z and k ∈ K. The line bundle
L is the quotient of W ×C, the trivial line bundle on the universal covering of X, by
the operation of the representation of fundamental group in the following way:

g : W × C → W × C

(z, v) �→ (g(z), ρL(g)v)

where g ∈ G, i.e.,

L = W × C/π1(X) = W ×ρ C

We define O(L) to be the locally free sheaf of germs of holomorphic local sec-
tions and ΩpX(L) := ΩpX

⊗O(L). We will present an observation to obtain a gen-
eralization of Douady exact sequence on any Hopf manifold, so that the groups
hq(X,ΩpX(L)) :=dim Hq(X,ΩpX(L)) could be calculated for any Hopf manifold which
is not necessarily primary.

C. A differential module (K, d) is a R-module K together with an endomorphism
called differential d : K → K s.t. d ◦ d = 0. The homology group of K is by definition
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the quotient module H(K) = Z(K)/B(K), where Z(K) = ker(d), B(K) = Im(d) are
called respectively submodules of cycles and boundaries. A morphism of differential
modules ϕ : (K, d) → (L, d) is a R-homomorphism ϕ : K → L s.t. d ◦ ϕ = ϕ ◦ d. It’s
easy to check that one can get an induced morphism on homology groups, denoted
by H(ϕ) : H(K) → H(L).

It’s known that one has the following so-called Snake Lemma. Given a short
exact sequence of morphisms of differential modules 0 → K ϕ→ L ψ→ M → 0. Then
there exists a connecting homomorphism ∂ : H(M) → H(K), and a homology exact
sequence

H(K)
H(ϕ)−→ H(L)

H(φ)−→ H(M) ∂−→ H(K)
H(ϕ)−→ H(L)

The often used examples of differential modules are chain complex and cochain
complex. A chain complex is a Z-graded differential module K• =

⊕
q∈Z

Kq together
with a differential d of degree -1, i.e., d =

⊕
dq with dq : Kq → Kq−1 and dq−1 ◦ dq =

0. Similarly, a cochain complex is a Z-graded differential module K• =
⊕

q∈Z
Kq

together with a differential d of degree 1, i.e., d =
⊕

dq with dq : Kq → Kq+1 and
dq+1 ◦dq = 0. Morphisms of complexes are assumed to be of degree 0, i.e., of the form
ϕ =

⊕
ϕq with ϕq : Kq → Lq.

By the Snake Lemma, any short exact sequence

0 → K• ϕ→ L• ψ→ M• → 0

gives rise to a corresponding long exact sequence of cohomology groups

· · · → Hq(K•)
Hq(ϕ)−→ Hq(L•)

Hq(φ)−→ Hq(M•) ∂q

−→ Hq+1(K•)→· · ·
3. Main result. To take an open covering A = {Ui} of X such that all Ui are

contractible Stein subsets of X and Ũi := π−1(Ui) is a disjoint union of open Stein
subsets{U ′

ijk} of W, each of them isomorphic to Ui. We rewrite

Ũi :=
⋃
j∈Z

f j(
⋃
k∈K

k(U ′
i00)), U

′
i00

∼= Ui, U
′
ijk := f jkU ′

i00,

Ũi =
⋃

j∈Z,k∈K
U ′
ijk,

Ã := {Ũi} is a covering of W , where K is given in 2.A. If ϕ ∈ Γ(Ui,Ω
p
X(L), then ϕ̃ :=

π∗(ϕ) contained in Γ(Ũi, π∗(ΩpX(L))). Since π∗(ΩpX(L)) = π∗(ΩpX)
⊗

π∗(L), π∗(L) =
OW , and π∗(ΩpX) = ΩpW , we have ϕ̃ ∈ Γ(Ũi,Ω

p
W ), thus we can establish a sequence of

Čech complexes:

0 → C•(A,ΩpX(L)) π
∗

→ S• cId−f∗
−→ S• → 0 (1)

where S• := C•(Ã,ΩpW )K=ker {ρ(k)Id − k∗ : C•(Ã,ΩpW ) → C•(Ã,ΩpW ),∀k ∈ K} ⊂
C•(Ã,ΩpW ).

Our main observation is the following:

Theorem. The short sequence (1) of Čech complexes is exact.
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Proof. 1. We show first the surjectivity of map cId − f∗.
Without loss of generality, let γ be an element of Γ(Ũi0 ∩ · · ·∩ Ũiq ,Ω

p
W ) satisfying

K invariant i.e., k∗γ = ρ(k)γ, for ∀k ∈ K. It is clear that

Ũi0 ∩ · · · ∩ Ũiq =
⋃
j∈Z

f j(
⋃
k∈K

k(U ′
i000 ∩ · · · ∩ U ′

iq00))

We put γ = γ1 − γ2 where

γ1 =

{
γ, z ∈ ⋃

j≥0 f j(
⋃
k∈K k(U ′

i000
∩ · · · ∩ U ′

iq00)
0 z ∈ ⋃

j<0 f j(
⋃
k∈K k(U ′

i000
∩ · · · ∩ U ′

iq00)

and

γ2 =

{
0, z ∈ ⋃

j≥0 f j(
⋃
k∈K k(U ′

i000
∩ · · · ∩ U ′

iq00)
−γ, z ∈ ⋃

j<0 f j(
⋃
k∈K k(U ′

i000
∩ · · · ∩ U ′

iq00)

set

β :=
∑
j≥0

c−j−1(f∗)j(γ1) +
∑
j<0

c−j−1(f∗)j(γ2)

It is well defined since the sums are locally finite.
It is clear that γ1, γ2 is K invariant, i.e., (ρ(k)Id−k∗)γ1 = 0 and (ρ(k)Id−k∗)γ2 =

0.
Since Z belongs to the center of G, i.e. f · k = k · f , so β is also K invariant.
Therefore

f∗β =
∑
j≥0

f∗(c−j−1(f∗)j(γ1)) +
∑
j<0

f∗(c−j−1(f∗)j(γ2))

=
∑
j≥0

c−j−1(f∗)j+1(γ1) +
∑
j<0

c−j−1(f∗)j+1(γ2)

= c[
∑
j≥0

c−(j+1)−1(f∗)j+1(γ1) +
∑
j<0

c−(j+1)−1(f∗)j+1(γ2)]

= c[
∑
j≥1

c−j−1(f∗)j(γ1) +
∑
j<1

c−j−1(f∗)j(γ2)]

By definition:

cβ = c[
∑
j≥0

c−j−1(f∗)j(γ1) +
∑
j<0

c−j−1(f∗)j(γ2)]

From the above we get

(cId − f∗)β = cβ − f∗β = γ1 − γ2

So the proof of surjectivity is completed.

2. To prove the injectivity of π∗ and Imπ∗ = ker(cId − f∗).
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Let γ ∈ Γ(Ui0 ∩ · · · ∩ Uiq ,Ω
p
X(L)), from the representation of L, we know

π∗γ ∈ Γ(Ũi0 ∩ · · · ∩ Ũiq ,Ω
p
W )

which can be presented by {· · · , γ̃−k, · · · , γ̃−1, γ̃0, γ̃1, · · · , γ̃k, · · · }, where

γ̃k ∈ Γ(fk(
⋃
k∈K

k(U ′
i000 ∩ · · · ∩ U ′

iq00)),Ω
p
W )

and γ̃k(fk(z)) = ckγ̃0(z), for any z∈ ⋃
k∈K k(U ′

i000
∩ · · · ∩ U ′

iq00)

We derive from the above the injectivity of the map π∗ and

f∗ ◦ (π∗ ◦ γ)(z) = π∗ ◦ γ(f(z)) = cπ∗ ◦ γ(z)

thus

(cId − f∗) ◦ π∗ ◦ γ = 0

Similarly, we can get

k∗(π∗ ◦ γ) = ρ(k)π∗ ◦ γ

Therefore, we have

Imπ∗ ⊆ ker(cId − f∗)

Take any γ̃ ∈ Γ(Ũi0∩· · ·∩Ũiq ,Ω
p
W ) s.t f∗γ̃ = cγ̃ and k∗γ̃ = ρ(k)γ̃ , and G = Z·K,

so there exists γ ∈ Γ(Ui0 ∩ · · · ∩ Uiq ,Ω
p
X(L)) s.t. π∗γ = γ̃, therefore

Imπ∗ ⊇ ker(cId − f∗)

The proof of the theorem is finished.

Remark. When K is trivial, we can get as a special case the usual Douady
sequence as used in [1,4,10,11,15]. When G is Abelian, the Douady sequence was
obtained in [16,17].

Corollary. By 2.C and Leray’s theorem, we can get the long exact sequence of
cohomology

0 → H0(X,ΩpX(L)) → H0(Ã, S•) P0−→ H0(Ã, S•) → H1(X,ΩpX(L)) →

→ H1(Ã, S•) P1−→ H1(Ã, S•) → H2(X,ΩpX(L)) →

...

→ Hq−1(Ã, S•)
Pq−1−→ Hq−1(Ã, S•) → Hq(X,ΩpX(L)) → · · ·

where P := cId − f∗, Pq := Hq(P ).
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Remark. The group Hq(Ã, S•) is related to the cohomology group of the induced
line bundle of L over W/K (where K is a finite group), which is not hard to calculate.
In this way, one could compute the cohomology groups of holomorphic line bundles
over any Hopf manifold. And then one can use the calculations to determine when the
complex vector bundles over any Hopf manifolds admits holomorphic structures and
the holomorphic vector bundles over any Hopf manifolds are filtrable (for details we
refer to [9,16,17]). The main result could also be extended to the case of holomorphic
vector bundles with trivial pullback.
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