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INTEGRALITY AND ARITHMETICITY OF CO-COMPACT
LATTICE CORRESPONDING TO CERTAIN COMPLEX TWO-BALL

QUOTIENTS OF PICARD NUMBER ONE ∗

SAI-KEE YEUNG†

Dedicated to Professor Yum-Tong Siu on his sixtieth birthday

The main purpose of this paper is to provide some criteria for the integrality and
arithmeticity of a cocompact lattice corresponding to a complex ball of dimension
two.

Let G be a semi-simple Lie group of non-compact type and K be a maximal
compact subgroup of G. G/K is then a symmetric space of non-compact type. Let
Γ be a cocompact lattice of G. A lot of examples of such lattices are provided by
arithmetic lattices (cf. [Bo1]). According to the Arithmeticity Theorem of Margulis
[Mar], in the case that the symmetric space G/K has real rank at least 2, Γ has to be
an arithmetic lattice. In the case that the symmetric space is either a quaternionic
hyperbolic space or the Cayley hyperbolic plane, Corlette [C] establishes superrigidity
of a lattice in those spaces, which together with the results of Gromov-Schoen [GS]
established the arithmeticity of such lattices as well. For real hyperbolic spaces, there
exist a lot of non-arithmetic lattices in each dimension as constructed by Gromov and
Piatetski-Shapiro [GP]. According to the classification of semi-simple Lie groups, the
only case remained is the class of complex hyperbolic manifolds of complex dimension
at least 2. In this aspect, there are examples of non-arithmetic lattice in dimension 2
and 3 (cf. [Mos] [MD]). We do not know of examples in higher dimensions. In both
real and complex hyperbolic cases, it is interesting to give criteria to characterize
arithmetic lattices.

It is well-known since the work of Margulis (cf. [Zi]) that arithmeticity follows
from superrigidity. In [MSY], a general Bochner type formula was formulated, the
linear version of which yields vanishing theorems including Matsushima’s Vanishing
Theorem and Kazhdan’s Property T for such lattices, while the semi-linear version
yields a uniform proof of the superrigidity results of Margulis and Corlette for co-
compact lattices. In this way, problems about vanishing theorems of cohomology
groups and superrigidity are put in a equal footing. For the complex or real hyperbolic
cases, the Bochner formula does not lead to vanishing or rigidity properties as in the
other cases. In fact, there are examples with non-vanishing first Betti numbers (cf.
[BW]). However, it naturally leads us to look for criteria for arithmeticity of complex
and real rank one cases in terms of restrictions on cohomology groups. A question
known in this direction is the following which was attributed to Rogawski (cf. [Re]).

Conjecture 1. Let Γ be a torsion-free cocompact lattice of PU(2, 1) so that
the corresponding ball quotient M = Γ\B2

C satisfies the conditions that the first Betti
number b1(M) = 0 and the Neron-Severi group H1,1(M) ∩ H2(M,Q) = Q. Then Γ
is arithmetic and comes from a division algebra with an involution of second kind.

In the terminology of Definition 3 in Section 6, these are arithmetic lattices of
second type. Arithmetic lattices of first type are the ones defined by a Hermitian form
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over a number field. It is verified by Rogawski [Ro] that cocompact lattices coming
from congruence subgroups of a division algebra with an involution of second kind do
share the two cohomological constraints that H1(M) = 0 and H1,1(M)∩H2(M,Q) =
Q.

The main result of this paper is as follows. We refer the readers to §1 and the
beginning of §5, §6 for the terminology used.

Main Theorem

A. Let Γ be a torsion-free cocompact lattice of PU(2, 1) so that the quotient M =
Γ\PU(2, 1)/P (U(2) × U(1)) satisfies H1,1(M) ∩ H2(M,Q) = Q and b1(M) = 0.
Then Γ is integral.

B. Assume that Γ satisfies the hypothesis of Part (A) and furthermore that the
canonical line bundle KM is three times the generator of the Neron-Severi group
H1,1(M) ∩ H2(M,Z) = Z modulo torsion. Then Γ is arithmetic.

C. Assume that Γ satisfies the hypothesis of Part (A) and furthermore that the cor-
responding ball quotient M contains no immersed totally geodesic curve. Then one of
the followings holds.
(i). Γ is arithmetic of second type.
(ii). Γ is a non-arithmetic lattice of PU(2, 1) and is a subgroup of infinite index in
an arithmetic lattice of second type of some PU(2, 1)p with p > 1.

We remark that the Main Theorem B remains valid for smooth ball quotients Mo

which has a finite unramified covering M satisfying the hypothesis of Main Theorem
B. Examples satisfying Main Theorem B include fake projective plane which are
projective algebraic surfaces different from P 2

C but have the same rational cohomology
ring as the projective plane and hence the canonical line bundle is three times the
generator of the Neron-Severi group. The first such examples are constructed by
Mumford [Mu2] (cf. [IK] for two more examples). Hence we have the following
corollary.

Theorem 1. Lattices associated with fake projective planes are arithmetic.

We refer the readers to Kato [Ka] and Klingler [Kl] for other recent, independent
works on the arithmeticity of Mumfords’ fake projective planes. In particular, The-
orem 1 is proved independently by Klingler in [Kl] which appears while the present
paper is being refereed. Though more restrictive, the paper [Ka] gives a more precise
description of the lattice in terms of Shimura varieties for the original example of fake
projective plane constructed by Mumford.

From the results of Rogawski [Ro] and classification of algebraic groups, arithmetic
lattices of PU(2, 1) of second type satisfy b1(M) = 0, H1,1(M)∩H2(M,Q) = Q and
contain no immersed totally geodesic hyperbolic curve (cf. Section 3). These lattices
provide examples satisfying the conditions for Main Theorem C.

The proof of Main Theorem A is related to the results of [Y2], where we con-
sider a conjecture of Borel on virtual positivity of the first Betti number of complex
ball quotients formulated in a way similar to a conjecture of Thurston on real ball
quotients.

Theorem 2 (Y2). Let Γ be a co-compact torsion-free lattice of PU(2, 1). Let
M be the associated compact complex two ball quotient Γ\PU(2, 1)/P (U(2) × U(1).
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Consider the realization of Γ as a subgroup of GF for an algebraic group G defined
over a real number field F with G ⊗F R ∼= PU(2, 1). Assume that Γ is non-integral
in GF . Then the first Betti number of M is virtually positive.

We remark that in Main Theorem A, the hypothesis on b1 is on M instead of some
finite unramified covering of M as stated in Theorem 2. Neither result is stronger
than the other, though the general approaches to the two problems are similar. In
this paper, for completeness of arguments, we provide essentially all the necessary
details for the proof of Main Theorem A .

The usual approach of geometric superrigidity does not work for smooth complex
ball quotients. Approach such as [MSY] in general involves a Bochner type formula,
the linear version gives rise to vanishing theorems while the non-linear version provides
results in rigidity. We refer the readers to [Y1] for further discussions and examples.
In view of the examples of complex ball quotients with non-trivial first Betti numbers
as constructed by Kazhdan, Shimura and Borel-Wallach (cf. [BW]), we cannot expect
superrigidity results for complex ball quotients to follow easily from an appropriate
Bochner formula.

Our approach here is still geometric. The outline of the proof is as follows. From
Weil’s Local Rigidity Theorem, we know that a lattice in G = PU(2, 1) is locally
rigid and can be defined over a real algebraic number field. If a lattice Γ satisfying
the conditions of the Main Theorem is not integral, there is a prime p so that the
representation in G(Fp) is unbounded. From the results of Gromov-Schoen [GS], we
know that there exists a non-trivial Γ−equivariant harmonic map from the two ball
into the associated Bruhat-Tits Building. Bochner formula of Siu ([Siu1], [Sam]) still
applies to show that the mapping is harmonic, leading to a multi-valued holomorphic
one form η, which becomes single valued after passing to the spectral covering M1 of
M . The Bruhat-Tits Building can be of dimension one or dimension two.

For the case that the Bruhat-Tits Building is of dimension one, we use the Lefchetz
type theorem and factorization theorem of Simpson ([Sim1]) to show that either the
representation factors through a non-trivial homomorphism into the real line corre-
sponding to an apartment of the building, or factors through a representation of the
fundamental group of an orbicurve. The first case is ruled out by the fact that the
stabilizer of an apartment in a building is a proper subgroup of G(Fp). The second
case implies that τ is indeed rational coming from the pull-back of Chern class of a
line bundle.

In case that the building is of dimension 2, it is associated to PL(3, Fp). There
are two naturally occuring holomorphic one forms ω1, ω2 on the spectral covering of
the manifold. We need to separate into three cases.
(a). ω1 and ω2 are linearly dependent.
(b). ω1 and ω2 are linearly independent but ω1 ∧ ω2 ≡ 0.
(c). ω1 and ω2 are linearly independent, ω1 ∧ ω2 �≡ 0.
Case (a) is handled in a way similar to the earlier situation that the building is a
tree. Case (b) leads to a non-trivial morphism of the manifold into an orbicurve, con-
tradictory to the assumption that the Picard number is one, similar to the classical
Castelnuovo-de Franchis Theorem. Case (c) corresponds to a non-degenerate map
into a two dimensional Euclidean building. First we show that the spectral mapping
coming from the harmonic map is unramified, since existence of a ramification locus
leads to a certain type of factorization, contradicting Zariski-denseness of the rep-
resentation. As the action of the image of the fundamental group by the harmonic
map is discrete on the building, we show that the Albanese map determined by ωi’s
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projects real analytically but not holomorphically to a mapping into a real two torus.
By considering the topology of a generic fiber of the projection map, we show that the
first Betti number of M cannot be trivial. In this way, we conclude that the lattice
has to be integral as stated in Main Theorem A.

Once we know that Γ is an integral lattice in a simple algebraic group G ∼=
PU(2, 1) defined over a real algebraic number field F, we consider the restriction of
scalars RF/Q(G) =

∏
σ∈Gal(F/Q) G(OF )σ. To show that such a lattice Γ is arithmetic,

we need to show that all factors in RF/Q(G) apart from the first one is compact. For
Main Theorem B, suppose on the contrary that there is at least one more non-compact
factor apart from the first one in the restriction of scalars, the algebraic group Gσ

has to be isomorphic to PU(2, 1) from Lie algebra consideration. The machinery of
harmonic maps and Bochner type formula can be applied to obtain an equivariant
holomorphic map between the two complex two balls. From the assumption that the
canonical line bundle is three times a generator of the Neron-Severi group modulo
torsion, we show that such a holomorphic map has to be biholomorphic, which is
a contradiction since the mapping is induced from the conjugation of the identity
representation of Γ by a non-trivial element in the Galois group.

For more general situation considered in Main Theorem C without assumption on
the canonical class, the lattice involved is either arithmetic or a subgroup of infinite
index in some arithmetic subgroup of PU(2, 1)p for some p > 1 following from restric-
tion of scalars again. For the algebraic groups involved, PU(2, 1) or PU(2, 1)p with
p > 1, there are only two classes of such lattices, labelled as First and Second Type
in Section 6. We show that for lattices of First type, there is always an immersed
totally geodesic curve which is a complex one ball quotient, completing the proof of
Main Theorem C.

The set up of the paper is as follows. We collect in Section 1 preliminary properties
which are required for our later arguments. Then we formulate the proof of Main
Theorem A in Section 2, for which the actual proof is carried out in Section 3 for rank
one Bruhat-Tits buildings and Section 4 for rank two buildings.

The proof of Main Theorem B is given in Section 5, from which the applications
to fake projective planes as stated in Theorem 1 follows. The proof for Main Theorem
C is given in Section 6.

It is a pleasure for the author to thank Domingo Toledo and John S. P. Wong
for helpful discussions and for pointing out errors in earlier versions of the paper.
The author would also like to express his gratitute to the referees for their invaluable
suggestions and comments on the paper.

1. Preliminaries. In this section, we recall some standard definitions and con-
structions concerning lattices of PU(2, 1) and their representations.

We begin with the notion of local rigidity. Let G be a complex algebraic group.
Let Γ be a finitely generated group, which is taken to be a lattice in a semi-simple
Lie group or the fundamental group of a locally symmetric space in our context. A
representation u ∈ Hom(Γ, G) is said to be locally rigid if the orbit of u under G by
conjugation u → ug, ug(x) = g · u(x) · g−1 is open in Hom(Γ, G) with respect to the
topology defined by pointwise convergence. Following Weil [We], a representation u
is locally rigid if H1(Γ, Ad ◦ u) = 0 (cf. [Rag], page 91). The same definition applies
for a real algebraic group. A torsion-free lattice Γ of a connected real semisimple
algebraic group H is said to be locally rigid if the inclusion Γ → H is a locally rigid
representation. If Γ is a cocompact lattice in a simple Lie group of non-compact type
which is not SL(2,R), H1(Γ, Ad ◦ u) vanishes from an appropriate Bochner formula
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[We]. In particular, suppose that H is a connected real semisimple algebraic group
which has no compact factors and is not locally isomorphic to SL(2,R). Weil’s Local
Rigidity Theorem states that any cocompact irreducible lattice of H is locally rigid.

Consider now a lattice in PU(2, 1). The simple Lie group G = PU(2, 1) consists
of the quotients of all 3 × 3 matrices of determinant one in GL(3,C) preserving the
diagonal Hermitian form −|z0|2 + |z1|2 + |z2|2 by scalar constants. Using the mapping

z = x +
√−1y �−→

(
x y
−y x

)
,

we may regard G as an algebraic Q-group GR consisting of the set of real points in
an algebraic subgroup of PGL(6,C) . Let ρ : Γ → GR be the natural homomorphism
given by embedding of the lattice. From Weil’s Local Rigidity Theorem [We], we know
that ρ is rigid and hence Γ can be defined over a real number field F after conjugating
by an element in G (cf. [R] (6.6), (7.67)). That is, there is a faithful R−rational
representation π : G → PGL(m,C) for which π(Γ) ⊂ PGL(m,F ), and π(G) as the
Zariski closure of Γ is defined over F as well.

We make the following definitions.

Definition 1.

a. We say that a representation ρ : Γ → G = PU(2, 1) is integral if there is a form
GF of G over a number field F such that a subgroup of finite index of Γ is contained
in G(OF ). Hence it is conjugate to a representation whose coefficients in matrix form
are rational numbers in a number field F with uniformly bounded denominators (cf.
[Zi]). Let p be a finite place and Fp be the completion of F at p. From the finite
generation of Γ, integrality of ρ is equivalent to the p-boundedness of ρ in G(Fp) for
all finite places p.
b. A lattice in G is arithmetic if there exists a semisimple algebraic Q-group H and
a surjective homomorphism ϕ : Ho

R → G with compact kernel such that ϕ(HZ ∩ Ho
R)

and Γ are commensurable.

It follows from definition that arithmetic lattices are integral. On the other
hand, given an integral lattice Γ as above, we can define Weil’s Restriction of Scalars
ResF/Q(G) =

∏
σ∈S∞ Gσ, where S∞ is the set of all Archimedean places. Suppose

that Gσ is compact for all σ �= 1, Γ is then an arithmetic lattice.

As explained earlier, to prove that a lattice is integral in G, it suffices for us to
show that the induced representation of Γ in G(Fp) is bounded for all finite place p.
This is a special type of non-Archimedean superrigidity. To prove that Γ is arithmetic,
we also need to show that the induced representation of Γ in Gσ is bounded for all
σ �= 1. This is a special case of Archimedean superrigidity. In the next few sections, we
discuss first non-Archimedean superrigidity followed by the Archimedean superrigidity
in more specialized settings.

2. Formulation of problem for integrality. Let ρ : Γ → G = PU(2, 1) be the
natural representation given by the embedding of the lattice. From the discussions
in §1, we know that Γ can be regarded as a lattice of a semi-simple algebraic group
GF defined over a number field F and GR

∼= PU(2, 1). Hence Γ is integral if ρ is
p−bounded in G(Fp) for all p. From our assumption that Γ is non-integral, we know
that there exists p such that the homomorphism ρp : Γ → G(Fp) induced from ρ
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is p−unbounded in G(Fp). For simplicity of notations, we still denote ρp by ρ when
there is no danger of confusion.

Denote by X the Bruhat-Tits building associated to G(Fp). The Bruhat-Tits
building associated to G = PU(2, 1) is a simplicial complex and is an Alexandrov
space (cf. [GS]) with the naturally endowed Euclidean metric along simplices. Γ is
now a cocompact lattice of G so that the natural homomorphism ρ : Γ → G has
Zariski-dense image. As X is contractible, there exists a Lipschitz ρ-equivariant map
fo : Γ\G/K → X. It follows from the main result of Gromov-Schoen ([GS], Theorem
7.1) that there exists a ρ-equivariant harmonic map from G/K to X.

Moreover the regularity estimates of Gromov-Schoen implies that the singularity
set S̃ of f has Hausdorff codimension at least 2. At a regular value of f, the image lies
locally in a subset of an apartment isometric to Rn corresponding to an apartment
Σ of the Euclidean building X. Let x1 be a linear function on Σ. Let dz1 = dx1 ⊗ C
be the complexification of dx1. Consider the pull-back of dz1 and let ∂f1 be the
(1, 0)−part of f∗dz1. As is shown in [GS], integration by parts still makes sense since
S̃ has high Hausdorff codimension. In this way, the ∂∂−Bochner formula of Siu [Siu]
is still applicable to imply that∫

|∇∂f |2 =
∑
i,j

∫
RN (Ai, Aj , Ai, Aj),

where Ai =
∑
α

fα
i

∂
∂yα = f∗

(
∂

∂zi

)
in terms of an orthonormal frame of tangent vec-

tors { ∂
∂zi } on M. We conclude that ∇∂f = 0 or ∇∂f = 0 since the image X has

non-positive curvature operator. Hence ∂f1 is a local holomorphic one form on a
neighbourhood of M̃ − S̃, where S̃ is the set of singularities of the harmonic map f.

Let xi = σi(x1), σr ∈ W, be the functions obtained from the action of the Weyl
group W . {xi}, i = 1, . . . , l is canonically and globally defined on Σ up to the action
of the Weyl group W, where l is the order of the Weyl group of W . Let ∂f i be the
(1, 0)−part of f∗(dxi ⊗ C). The same argument as above shows that ∂f i are local
holomorphic one forms on M̃. Hence any symmetric polynomial α of ∂f i, i = 1, . . . , l,
gives a multi-valued globally defined holomorphic one form ξ on M − S, where S is
the image of S̃ by the universal covering map. The multivalued form extends to S
since df vanishes on such points (cf. [GS]).

Let α1, . . . , αl be the set of multivalued holomorphic forms thus obtained. They
define on the total space of the cotangent bundle T ∗M a subvariety M ′

1 with defining
equation tl +α1(x)tl−1 · · ·+αn(x), where t is the canonical section of the tautological
line bundle of T ∗M. Let p : M ′

1 → M be the covering map. p∗∂f i gives rise to a
genuine holomorphic one form ωi on M ′

1. Let M1 be a reduced, irreducible component
of M ′

1. We call M1 the spectral covering of M ′
1 and p|M1 : M1 → M the spectral

covering. Note that sometimes M ′
1 instead of M1 is refered to be the spectral covering

in literature. M1 is a Galois covering of M from construction. Here we use the term
Galois covering to describe a possibly ramified covering which is Galois outside of
the ramifications locus. From definition, the singular values of the harmonic map f
constructed by [GS] have to lie in walls of the apartments of the building X. Hence
the singularity of f ◦ p : M1 → X has to lie in the ramification divisors corresponding
ωi = ωj . The procedure described above is quite standard and can be found in earlier
work of Simpson (cf. [Katz] and [Zu]). We summarized the discussions by the following
lemma.

Lemma 1. The ρ−equivariant harmonic map of M̃ to the building X gives rise to
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holomorphic one forms ωi on some spectral covering M1 on M . The spectral covering
M1 → M is a possibly ramified normal covering with order l dividing the order of
the Weyl group of X with ramification loci given by ωi = ωj for some i �= j. The
singularities of the induced harmonic map f ◦ p lie on the union of the divisors ωi =
ωj , i �= j corresponding to the walls of the building X.

Since G ⊗F R ∼= PU(2, 1) is a Lie group of absolute rank 2, there are now two
cases to consider.
Case (I). rankFp

G = 1 so that the associated building X is a tree.
Case (II). rankFp

G = 2 so that G(Fp) ∼= SL(3,C) and the associated building X is a
two dimensional complex.

In the following two sections, we are going to consider the two cases separately
for the proof of Theorem 1.

3. Boundedness of representations in rank one buildings. We consider
non-Archimedean superrigidity in rank one p-adic algebraic groups, corresponding to
rank one Bruhat-Tits buildings in Case (I) above.

Proposition 1. Let Γ be a non-integral lattice of PU(2, 1). Assume that
M = B2

C/Γ is smooth with Picard number 1. Then the representation of Γ in the
isomorphism group of a rank one Bruhat-Tits building is always bounded.

Proof. In this case, the Bruhat-Tits building X is a tree consisting of apartments
Σ which are isomorphic to R. The isotropy group of an apartment Σ in X is the
affine Weyl group W = Z × W , a semi-direct product where W is the usual Weyl
group of G (cf. [Br]). Z acts by translation and W ∼= Z2 acts by reflections. Since W
has order 2, the spectral covering p : M1 → M has degree 2 or 1.

In general M1 may have singularities. Let p2 : M2 → M1 be a desingularization
of M1. Let π2 : M̃2 → M2 be the univeral covering map of M2. The mapping q =
p ◦ p2 ◦ π2 : M̃2 → M can be lifted to q̃ : M̃2 → M̃. There exists a non-trivial
holomorphic 1−form α on M2 obtained by pulling back the one from M1.

Applying the result of Simpson [Sim3] to Ỹ = M̃2, we conclude that one of the
following two conclusions holds.
Case Ia. The image of the Albanese map determined by the holomorphic one form α
has dimension at least two.
Case Ib. The image of the Albanese map determined by the holomorphic one form α
has dimension one.

Lemma 2.

1. Case Ia leads to a contradiction.
2. In Case Ib, there exists a non-trivial holomorphic map from the smooth complex
two ball quotient M to an orbicurve C.

Proof. The argument is actually a modification of an argument of Simpson in
an unpublished manuscript concerning representation of Kähler groups in SL(2). For
our case, we consider representations in PU(2, 1).

For Case Ia, we define on the universal covering M̃2 of M2 the function g(y) =∫ y

yo
p∗(α) ∈ C by integrating the one form from a fixed point yo ∈ M̃2. It is well

defined since α is d−closed and M̃2 is simply connected. Recall that g : M̃2 → C has
connected fibers. Hence we get a map r : R → X so that fo ◦q = r ◦Re(g) : M̃2 → X.

The set of points z ∈ M̃2 for which dg = α or dq = d(p ◦ p2 ◦ π2) is degenerate is a
complex subvariety of M̃2. It follows that for each point t ∈ R, there is z in the real
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hypersurface (Re(g))−1(t) such that both dg and dq are non-degenerate at z ∈ M̃2.
Hence r is differentiable on R. Furthermore, |dr(t)| = 1 for all t ∈ R by checking at
such non-degenerate points z ∈ (Re(g))−1(t). Hence Im(f) is an isometric copy of R,
that is, an apartment of Σ of the building X. It follows from our construction that Σ
is the image of the π1(M)−equivariant map fo : M̃ → X. It follows that ρ(π1(M)) lies
in the stabilizer of an apartment Σ in G(Fp). Since the Zariski closure of the stabilizer
is a proper subgroup of G(Fp) (cf. [Br]), this contradicts the Zariski-denseness of ρ.

For Case Ib, the dimension of the the image Im(a2) of the Albanese map a2 :
M2 → Alb(M2) is of complex dimension one. Considering the normalization E of
Im(a2), we get a holomorphic mapping a′

2 : M2 → E.
As mentioned before, M can be considered as the quotient of spectral covering

M1 by an involution corresponding to the ambiguity of the two-valued form obtained
from the Bruhat-Tits Building. From the result of Simpson [Sim3], we conclude that
there is an biholomorphism τ : E → E so that σ∗a′∗

2 β = a′∗
2 τ∗β corresponding to the

involution σ, where β is given by a′∗
2 β = α.

The quotient of E by τ gives rise to a complex one dimensional orbicurve C. The
mapping from M2 to E coming from the Albanese mapping induces a holomorphic
map a : M → C. An orbicurve C in general is given by data (Y, n), where Y is the
underlying topological manifold, and n = nyi

is the branching multiplicity of the
orbifold singularity at each of the finite number of singular points yi, i = 1, . . . , r.

This concludes the proof of Lemma 2.

Lemma 3. Assume that the Picard number of an algebraic surface M is equal to
1. Then there is no non-trivial holomorphic map into an algebraic curve.

Proof. Assume that f : M → R is a non-trivial holomorphic map into an algebraic
curve R. Let a be a generator of the Neron-Severi group modulo torsion. Then
the pull back of the fundamental class by f of R, c, is a non-torsion element in
H1,1(M)∩H2(M,Z) and hence is a non-trivial multiple of a. Hence the push-forward
of a as a cycle is non-trivial. A generic fibre of f is one dimensional. Let b be the
cohomology class of a generic fibre. Then b is a non-trivial multiple of a as well. As
the push-forward of b is trivial, the same is true for a. The contradiction establishes
the Lemma.

Proposition 1 now follows from the previous two lemmas.

4. Boundedness of representations in rank two buildings. In this section,
we treat Case (II) mentioned in §2, the more difficult case.

Proposition 2. Let Γ be a cocompact lattice of G = PU(2, 1). Assume that
M = Γ\PU(2, 1)/P (U(2) × U(1)) is smooth with Picard number 1 and b1(M) = 0.
Assume also that there is an unbounded representation of Γ in PSL(3, Fp). Then the
spectral covering map p : M1 → M is an unramified covering and there exist at least
two linearly independent holomorphic one forms on M1.

Proof. In this case, the Bruhat-Tits building X is a simplicial complex of rank
two obtained as follows. Let V be the F−vector space of dimension 3 on which G
acts. A lattice in V is a finitely generated OF submodule of V which generates V .
Two lattices on V are said to be equivalent if one is the multiple of another by an
element in F ∗

p . The vertices of X are given by the equivalence classes [L] of lattices in
V, such that an unordered edge is connected between [L] and [L′] if pL ⊂ L′ ⊂ L. An
apartment of the building X is obtained by fixing a basis e1, e2, e3 of V and considering
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the subcomplex Σ of X consisting of vertices corresponding to lattices of the form
L =< pr1e1, p

r2e2, p
r3e3 >OF

. Since the lattice < pr1e1, p
r2e2, p

r3e3 >OF
is equivalent

to < px1e1, p
x2e2, p

x3e3 >OF
with xi = ri −

∑3
j=1 rj

3 , it follows that an apartment can
be described as the two dimensional plane H defined on R3 by x1 + x2 + x3 = 0, on
which the vertices are the intersection of the integral lattices on R3 with H. In this
way, the chamber system of X is of type Ã2. A chamber is thus given by an equilateral
triangle. The isotropic group of an apartment is the affine Weyl group W = L × W
obtained as a semi-direct product, where W ∼= S3 is the symmetric group of three
elements, and L ∼= Z2 is the translation group. On H, L acts by translation and W
acts by permuting the coordinates x1, x2, x3.

Since the representation ρ : Γ → G(Fp) is non-compact. Lemma 1 implies that
there exist holomorphic one forms on a spectral covering M1 of M . In terms of
the notation described above, the holomorphic one forms on M1 obtained from the
harmonic map are given by ωi = ((f ◦ p)∗(dxi ⊗C))1,0. Obviously, ω1 + ω2 + ω3 = 0.
Hence there are at most two linearly independent holomorphic one forms among ωi.

Let AlbW,{ωi}(M1) be the Abelian variety defined as the quotient of the Al-
banese variety by the W -invariant Abelian subvariety annihilated by ωi, i = 1, 2, 3.
Let α : M1 → AlbW,{ωi}(M1) the corresponding Albanese mapping. The standard
construction of the usual Albanese maping (cf. [BPV]) is given on the universal
covering by β : M̃1 → CN ,

β(z) = (
∫ z

o

η1, . . . ,

∫ z

o

ηN ),

where zo is a fixed point of M̃1 and ηi, i = 1, . . . , N forms a basis of the space
of holomorphic one forms on M1. Let θ1, . . . , θk be an invariant set of holomorphic
one forms on M1 such that {ω1, ω2, ω3, θ1, . . . , θk} is an W -invariant spanning set
of the space of the pull back by α of holomorphic one forms on AlbW,{ωi}(M1). Let
n = dimC AlbW,{ωi}(M1) and denote by R(θ1, . . . , θk) the set of linear relations among

θi on AlbW,{ωi}(M1). Then α is given on M̃1 by

α(z) = (
∫ z

zo

ω1,

∫ z

zo

ω2,

∫ z

zo

ω3,

∫ z

zo

θ1, . . . ,

∫ z

zo

θk)

∈ {(y1, y2, . . . , yk+3) ∈ Ck+3|y1 + y2 + y3 = 0, R(y4, . . . , yk+3) = 0} ∼= Cn.

For simplicity, we also denote AlbW,{ωi}(M1) by Alb(M1) or A and just name it
as Albanese variety.

There are now three cases to consider.

Case IIa. ω1 and ω2 are linearly dependent.
Case IIb. ω1 and ω2 are linearly independent but ω1 ∧ ω2 ≡ 0.
Case IIc. ω1 and ω2 are linearly independent and ω1 ∧ ω2 �≡ 0.

Lemma 4.

1. In Cases IIa and IIb, there exists a non-constant holomorphic map from M to an
orbicurve.
2. In Case IIc, the spectral covering p : M1 → M is an unramified covering of index
at most 6 and the Albanese mapping determined by {ω1, ω2, ω3} has complex rank at
least two.
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Proof. This is given by case by case consideration.
Case IIa. Since ω1 and ω2 are linearly dependent, there exist constants k1, k2 satis-
fying ω2 = k1ω1 and ω3 = k2ω1. Since the holomorphic one forms are obtained from
the harmonic map into the building, the image of the harmonic map actually lies in
a one dimensional affine space along each apartment. The image is actually a one
dimensional subcomplex of the building X. The argument of Proposition 1 shows
that either the image of the harmonic map Φ lies in a line in an apartment isometric
to R, which contradicts the Zariski denseness of the representation ρ; or there exists
a surjective holomorphic map from M to an orbicurve, which is the conclusion we
sought.

Case IIb. In this case, ω1 and ω2 are linearly independent and ω1 ∧ ω2 ≡ 0 on M1.
According to a classical theorem of Castelnuovo-de Franchis (cf. [BPV], Proposition
IV 4.1), there is a holomorphic mapping f1 : M1 → R, a Riemann surface, such that
ω1 and ω2 are the pull-back of some holomorphic one forms from R. The algebraic
curve R can be canonically obtained from the span of ω1, ω2, ω3 in the following sense
(cf. [Ran]). The Albanese variety A of M1 has dimension at least two from the
existence of two linearly independent holomorphic one forms. Consider the Albanese
map α : M1 → A. If the Albanese variety A has dimension 2 or if the dimension of
α(M1) is one, it suffices to let R to be the image of the Albanese map. Hence we may
assume that dim(A) = n ≥ 3 and dim(α(M1)) = 2. The following is the summary
of the construction in [Ran] page 464-466, which shows that R can be canonically
constructed. We refer the readers to [Mu1] for general discussions on Abelian varieties.
From our degeneracy condition, the image of α lies in dz1 ∧ dz2 = 0. There exists a
linear subspace L = ⊕n

i=3
∂

∂zi ⊗C ⊂ ToA of dimension n−2 containing all Ty(α(M1)),
where y ∈ α(M1). Take a generic hyperplane H containing L in Cn and an irreducible
component FH of {y ∈ α(M1) : Ty(α(M1)) ⊂ H} containing a generic point of α(M1).
FH has dimension greater than 0 and generates an Abelian subvariety B of A. B is
proper since ToB is generated by the set {Ty(α(M1)), y ∈ α(M1)} and hence is a
subspace of H ⊂ Cn. Consider the quotient map π : A → A/B into the quotient
Abelian variety, which exists from Poincare’s Complete Irreducibility Theorem (cf.
[Mu1]). R = π(α(M1)) has dimension less than α(M1) and is non-trivial since ωi, the
one forms that we start with, are the pull-back of one-forms from R.

Consider now the finite group W acting on M1. The action leaves the space
spanned by ωi, i = 1, 2, 3 invariant. Since the above construction of R is canonical,
W induces a finite group action of R. The quotient is an orbicurve C. We conclude
that there exists a holomorphic map a : M → C.

Case IIc. In this case, the conditions that ω1 and ω2 are linearly independent and
ω1 ∧ ω2 �≡ 0 imply that the Albanese map α : M1 → A is a holomorphic mapping of
complex rank two into an Abelian variety A of complex dimension at least two. Recall
that M1 is a connected Galois covering of M with the covering group corresponding
to a subgroup of S3. The index of the covering is then an integer dividing 6. We are
going to prove that the spectral covering p : M1 → M is unramified. For this purpose,
we need to rule out Subcases IIci, IIcii in the following corresponding to existence of
a non-trivial ramification divisor.

Subcase IIci, that there is a ramification divisor of p which is not contracted by the
Albanese map α on M1

According to Lemma 1, the divisor corresponds to ωi = ωj for some distinct pair
of indices i �= j in {1, 2, 3}. For simplicity, let us just denote the divisor by ωi = ωj
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with the understanding that i, j take distinct values in {1, 2, 3}. Let ωo = ωi − ωj .
Then ωo vanishes along a divisor Do but is not identically zero on M1. From definition,
α̃(D̃o) lies as a complex subvariety of complex dimension one in a linear space L on
Cn defined by zi = zj + c. The subvariety Do, or more precisely some translates of
α(Do), generates an Abelian subvariety B with ToB = {TyD, y ∈ Do} as in Case
IIb earlier. Let π : A → A/B be the quotient map into the quotient Abelian variety
A/B. On one hand, π(α(M1)) has dimension less than 2 since fibres in the direction
of ker(ωo) in M1 are contracted. On the other hand, π(α(M1)) has dimension greater
than 0 since π is non-trivial in the non-vanishing direction of ωo = α∗dzi − α∗dzj .
Hence E = dim(π ◦ α(M1)) is of dimension 1.

E is however not canonical and depends on D and ωo. Let h = π ◦ α : M1 → E.
Let h̃ : M̃1 → Ẽ be the mapping given by z �→ ∫ z

zo
ωo, where zo is some arbitrary fixed

point on M̃1. We may assume that a fibre of h is connected after replacing E by a
finite covering through Stein factorization. It follows from definition of h and h̃ that
a lift of a fiber h−1(a) of h at a regular value a ∈ E to M̃ is a component of a fibre of
h̃. The set of regular values of h is a Zariski open set Eo of E. Eo is an affine curve.
Consider the homotopy sequence of the fibration,

1 = π2(Eo) → π1(h−1(a)) i1∗→ π1(h−1(Eo))) → π1(Eo) → · · · ,
where i1∗ is the homomorphism induced by the imbedding. We conclude that the fun-
damental group of a fiber π1(h−1(a)) = ker(i1∗) is a normal subgroup of π1(h−1(Eo)).
h−1(Eo) is a Zariski-open subset of M1 and the homomorphism i2∗ : π1(h−1(Eo)) →
π1(M1) is surjective. Pulling back the homomorphism ρ : π1(M) → G(Fp) by
the projection p : M1 → M and restricting to h−1(a), we get a homomorphism
σ = ρ ◦ p∗ ◦ i2∗ ◦ i1∗ : π1(h−1(a)) → G(Fp). The Zariski closure σ(π1(h−1(a))) of the
image of σ is a normal algebraic subgroup of G(Fp). Since G(Fp) with G ∼= PSL(3) is

simple, σ(π1(h−1(a))) is either trivial or G(Fp). Let ˜h−1(a) be the universal covering
of h−1(a). The ∂∂-Bochner formula of Siu implies that the harmonic map f is pluri-

harmonic. It follows that f ◦ p̃ : ˜h−1(a) → X is a σ−equivariant harmonic mapping

into the building. Here p̃ : ˜h−1(a) → M̃ is the lift of p|h−1(a) : h−1(a) → M to the cor-
responding universal covering spaces. Note that in the definition of α : M̃1 → Cn, the
real part of the first three components (

∫ z

zo
ω1,

∫ z

zo
ω1,

∫ z

zo
ω1), where ω1 +ω2 +ω3 = 0,

are constructed from the pluriharmonic map into the Bruhat-Tits building that we
start with. It follows that the image of Re(f ◦ p̃|

˜h−1(a)
) is unbounded corresponding

to the real part of α(z) transversal to
∫ z

zo
ωo in the Euclidean space. As a funda-

mental domain of h−1(a) is compact, we conclude that σ and hence σ(π1(h−1(a))) is
non-trivial. Since σ(π1(h−1(a))) is a normal subgroup of G(Fp), which is simple, this
implies that σ(π1(h−1(a))) = G(Fp). We claim that this cannot be the case for all
generic a ∈ E.

From construction, we know that the restriction of f◦p̃(h−1(a)) to each apartment
Σ of the building lies in the kernel of some differential form dxi − dxj for some linear
function on the apartment Σ ∼= R2, where xi, xj are some linear functions on Σ as
explained earlier. In fact, (f ◦ p̃)∗(dxi − dxj) is the real part of ωo. Hence the image
f ◦ p(h−1(a)) ∩ Σ is contained in a line lc defined on Σ by xi − xj = c. As a can
take generic values, and all such lc are isometric straight lines with the same slope on
Σ ∼= R2, we may assume that c = 0 after moving by some isometry if necessary, so that
we may regard lc as a one dimensional subcomplex of the apartment Σ ⊂ X. Since
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f ◦ p̃(h−1(a)) is connected in X, an isometry carrying lc to a wall, a one-dimensional
subcomplex, in an apartment Σ in X actually extends to an isometry of f ◦ p̃(h−1(a))
to a wall in X. Hence f ◦ p̃(h−1(a)) can be taken as a tree, which is a totally geodesic
subcomplex in X. As explained earlier, vertices of an apartment Σ of X correspond to
equivalence classes [L] of lattices L =< pr1e1, p

r2e2, p
r3e3 >OF

with integer values ri

in a three dimensional vector space V =< e1, e2, e3 >. Without loss of generality, we
assume that ωo = ω1−ω3 and the image f ◦p(h−1(a))∩Σ is described by x1−x3 = 0.

Since xi = ri −
∑3

j=1 rj

n , this corresponds to r1 = r3 in all the lattices corresponding
to the image f ◦ p(h−1(a)) ∩ Σ. Consider a two dimensional vector subspace V ′

Σ =<
e1 + e3, e2 > of V . The set of lattices in V ′

Σ with e′1 = e1 + e3 and e′2 = e2 as a basis
contributes to an apartment Σ′ of a rank one building X ′

Σ associated to V ′
Σ. For two

different apartments Σ1 and Σ2 in X sharing a common chamber C, the corresponding
subspace V ′

Σ1
and V ′

Σ2
are the same since the geodesic subcomplex f ◦ p̃(h−1(a))∩Σi

is determined by the subset f ◦ p̃(h−1(a)) ∩ C containing an open subset of Σi for
i = 1, 2. As any two apartments of X share a common chamber from the definition of
a building, V ′ is a well-defined two dimensional subspace of V for f ◦ p̃(h−1(a)). The
associated building X ′ is a tree on which G′(Fp) = PSL(V ′, Fp) ∼= PSL(2, Fp) as a
subgroup of G(Fp) = PSL(V, Fp) ∼= PSL(3, Fp) acts. Since σ(h−1(a)) lies in G′(Fp),
a proper subgroup of G(Fp), the claim is proved. It follows from the claim and the
discussions before its statement that Subcase IIc(i) does not occur.

Subcase IIcii, that all divisors in the ramification locus, which is not empty, are con-
tracted by the Albanese map α.

Let D be a connected component in the ramification locus of p. Let E be the
image in M . From Lemma 1, D has to lie on ωi = ωj for some i �= j, where
ωi = ((f ◦ p)∗(dxi ⊗ C))1,0. As f is holomorphic, ωi = (f ◦ p)∗(dzi), where dzi is
the (1, 0)−part of dxi ⊗ C. Since α(D) is a point, it follows from the construction
of α that f(E) = f(p(D)) is a point xo ∈ X. Hence the restriction of ρ to π1(E) or
π1(D) is bounded and both D and E are contractible by some holomorphic maps.
We would only use the second fact, where D is contracted by the Albanese map
α : M1 → Alb(M1) and E is constracted by the map αo : M → Alb(M1)/W induced
by α. Let N1 = α(M1) and N2 = αo(M). Then α : M1 → N1 contracts all components
D of the ramification divisor of p to points {Ai} on N1, and αo : M → N contract
all components E = p(D) of the branching divisor of p to points {Bj} on N . From
construction, there is a holomorphic map q : N1 → N whose restriction q : N1 −
∪iAi → N−∪jBj is a finite unramified covering. Let n1 : P1 → N1 and n : P → N be
the normalizations of N1 and N respectively. q induces a holomorphic map s : P1 → P
(cf. [BPV]). Since a holomorphic map into an algebraic variety factors through its
normalization, αo : M → N can be factored as n ◦ r with a holomorphic mapping
r : M1 → P1, and α1 : M1 → N1 can be written as n1◦r1 with a holomorphic mapping
r1 : M1 → P1.

Chasing the commutative diagram from our construction, we conclude that s◦r1 =
r ◦ p : M1 → P. The sets n−1

1 (∪iPi) ⊂ P1 and n−1(∪jQj) ⊂ P are both finite set of
points as only normalizations are involved. We see that s : P1 → P is an unramified
covering when restricted to s : P1 − n−1

1 (∪iAi) → P − n−1(∪jBj). However, the
ramification locus of s, a holomorphic map between two normal varieties, has to
contain a ramification divisor of codimension one if the ramification locus is non-
empty. Since n−1

1 (∪iPi) ⊂ P1 and n−1(∪jQj) ⊂ P have codimension two in N ′
1 and

N ′ respectively, we conclude that s is actually an unramified covering. It is clear then
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that p : M1 → M is unramified. Hence Subcase IIcii actually does not occur.

As both Subcases IIci and IIcii are ruled out, we conclude that p : M1 → M is an
unramified covering. Again, the assumption in this case implies that there are at least
two linear independent holomorphic one forms on M1 coming from pulling back of
the one forms from the Albanese of M1. This concludes the proof of the proposition.

Proposition 3. Let Γ be a torsion-free cocompact lattice of PU(2, 1) so that M =
Γ\PU(2, 1)/P (U(2) × U(1)) is a smooth complex ball quotient with Picard number 1
and the first Betti number b1(M) = 0. Then any representation of Γ into G(Fp) ∼=
PSL(3, Fp) is bounded.

Proof. Assume for the purpose of proof by contradiction that there exists an
unbounded representation ρ : Γ → PSL(3, Fp). We only need to consider Case IIc,
so that the Albanese variety A arising from the Albanese mapping α : M1 → A
determined by ω1, ω2, ω2 has complex dimension at least two.

Lemma 5. There exists a harmonic map hR : M1 → T2 into a real two torus.

Proof. The real part of the map is h̃R : M̃1 → R2 defined by

h̃R(z) = (
∫ z

zo

(f ◦ p)∗dx1,

∫ z

zo

(f ◦ p)∗dx2,

∫ z

zo

(f ◦ p)∗dx3)

∈ {(y1, y2, y3) ∈ R3|y1 + y2 + y3 = 0} ∼= R2,

where f is the harmonic map into the building and dxi’s are the local coordinates on
the two dimensional building as discussed before.

We claim that the set h̃R(π1(M1)z) is discrete in R2. We need to show the discrete-
ness around any point z ∈ M̃1. However, around any point z ∈ M1, the differential
of h̃R(M̃1) is the same as the differential of f̃1 : M̃1 → X induced from the harmonic
map originally obtained from M̃ to X. This is particularly clear in the case that
p(z) ∈ M̃ does not lie in the singularity of the harmonic map f : M̃ → X. In such
case, both R2 and locally around f ◦ p(z) in the building X, the metrics involved are
the Euclidean metric, the actions of π1(M1) on hR(M̃1) = R2 and f(M̃1) = X are
locally isometric. Hence non-discreteness of the action of (h̃R)∗(π1(M1)) around any
point on R2 would be reflected by the non-discreteness of the action of (ρ◦p)∗(π1(M1)
on X. The action of the latter group is however known to be discrete, since it lies
in the affine Weyl group of the building. The same argument works for the case that
p(z) lies in the singular set of the harmonic map f as well. In fact, around such a
point, the differentials dhR and df are still the same. f(π(z)) has to lie in a wall on
the building X. The action of (h̃R)∗(π1(M1)) around h̃R(z) is the same as the action
of f∗◦p∗(π1(M1)) around f ◦p(z). The latter is discrete from the π1(M)−equivariance
of f and the fact that the affine Weyl group still acts discretely on and around the
walls of the building X. The claim is thus proved.

It follows that h̃R induces a pluriharmonic map of real rank two hR : M1 → T =
R2/π1(M1), a real 2−torus.

Recall from our earlier discussions in this section that the lift of the Albanese
map α : M1 → A determined by ωi’s is defined on M̃1 by

α(z) = (
∫ z

zo

(f ◦ p)∗(dx1 ⊗ C)1,0,

∫ z

zo

(f ◦ p)∗(dx2 ⊗ C)1,0,
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zo

(f ◦ p)∗(dx3 ⊗ C)1,0,

∫ z

zo

θ1, . . . ,

∫ z

zo

θk)

∈ {(y1, . . . , yk+3) ∈ Ck+3|y1 + y2 + y3 = 0, R(y4, . . . , yk+3) = 0} ∼= Cn.

It follows that on M̃1, the pull back of hR is just the real part of the projections to
the first three factors of the pull back of α. Regarding both maps as Γ-equivarient
mappings on the universal covering M̃1, it follows that there exists a projection q :
A → T so that hR = q ◦ α.

Our goal is to prove that such a picture contradicts our hypothesis on M. For
the clarity of presentation, let us consider first the simpler case of dimC A = 2 which
is geometrically clearer. Necessary modifications will be added to prove the general
case later on. The two dimensional case is of particular interest since it is satisfied
by the fake projective planes, the focus of Theorem 1 (cf. §5 for definition). This can
be seen from the the following simple observations. The Galois group of the spectral
covering is a normal subgroup of the symmetry group S3. However, it cannot be the
alternating group A3, otherwise Ω =

∑
i ωi ∧ ωi+1 is A3-invariant and descends to

give a non-trivial element in H2,0(M), where we let ω4 = ω1. Hence Galois group
of the spectral covering is S3. Let M ′ be the covering of M corresponding to A3. It
follows from Riemann-Roch Theorem that h2,0(M ′) = 2. However, if there exists a
holomorphic one form η on M1 not contained in the linear span of ωi, i = 1, 2, 3, η
cannot be A3 invariant for otherwise

√−1η ∧ η would lead to an element in H1,1(M)
linearly independent of the Kähler class. Hence

∑
σ∈A3

√−1η ∧ σ(η) gives rise to a
holomorphic two form on M ′ independent of Ω following the same construction as for
ω, contradicting the conclusion from Riemann Roch. We conclude that ωi, i = 1, 2 are
the only linearly independent holomorphic one forms on M1 if M is a fake projective
plane.

Now we begin with proof for the case of dimC A = 2.

Simplified case: dimC A = 2
Let p be a generic point on the real two torus T . The Galois group of the spectral

covering H < S3 acts on T by permuting the coordinates x1, x2, x3 as before. As p is
generic, h(p) �= p for h ∈ H. As A is topologically a four torus, q−1(p) is a real two
torus on A. Since dimC(A) = 2, α : M1 → A is surjective. Let C = α−1(q−1(p)) as
a set. Then C is a two dimensional compact manifold on M1. Under the action of
h ∈ H, h �= 1, h(C) is an isometric copy of C. h(C) is disjoint from C since h(p) is
disjoined from p. p1(C) is a two dimensional compact manifold on M . Similar to C,
p1(C) is not a complex subvariety of M .

Let R be the ramification locus and B = α(R) the branching locus of α. It is clear
that there is no contracted divisors for α, otherwise the divisor descends to M and
contradicts Pic(M) = 1. We claim that for a generic p, q−1(p)∩B = ∅. Note that hR

is analytic apart from some real one dimensional subvarieties R1 on T corresponding
to the fixed point sets of elements of the Weyl group. The albanese map α induced
by ωi’s is obviously complex analytic. Hence q is analytic as a real differentiable map
apart from the preimage of R1 and can be considered as projection into the purely real
part of the torus A. However R is a complex analytic subvariety of A. Its projection
to T cannot be the whole T unless R = A. The Claim is proved.

Recall that C = α−1(q−1(p)). It follows from the Claim that α : C → q−1(p) is
an unramified covering.
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Let γ ∼= S1 be a generating cycle of q−1(p). Clearly, γ is a generator of H1(A,R)
and is not homologous to a trivial cycle on A. Consider γ1 = α−1(γ) as a set. γ1

defines a cycle on C ⊂ M1. γo = p1(γ1) is then a cycle on M .
We claim that γo is a non-trivial one cycle on M . Suppose on the contrary that

γo is the boundary of a two cycle σ on M . As p1 : M1 → M is an unramified covering,
we know from our construction that p−1

1 (C) is a disjoint union of [M1 : M ] copies of
cycles each isometric to C. We may lift σ to a surface σ1 ⊂ M1 so that the boundary
of σ1 is simply γ1. In fact, it suffices to take the component of p−1

1 (σ) which has γ1

as the boundary. The push forward by the Albanese map α(σ1) would then be a two
dimensional manifold with γ as the boundary. This however contradicts our choice
that γ is a non-trivial 1-cycle on A, a real four torus as a differentiable manifold. The
claim is proved.

The same argument implies that γo is not a torsion element in H1(M,R), other-
wise it would lead to a torsion element in H1(A,R), again a contradiction. It follows
that the first Betti number of M is non-trivial. This contradicts our hypothesis on
M .

General case: dimC A = n ≥ 2
We use the notation as in the case of dimC A = 2. In this case the fiber of q,

T1 = q−1(p), for a generic p is a real 2n − 2 torus and α(M1) ∩ q−1 is a real two
dimensional variety on T1 = q−1(p). The same argument as in dimC A = 2 case
implies that the branching locus B should be projected a proper real subvariety of
T . Hence for a generic p ∈ T, α : C = α−1(q−1(p)) → q−1(p) is an unramified finite
covering.

Topologically, T1 is diffeomorphic to a cartesian product
∏n−2

i=1 (Si), where each Si

is diffeomorphic to a circle S1. Since α(M1)∩q−1 is a real two dimsional subvariety of
T1, there exists a projection into direct factors τij : T1 = (S1)n−2 → Si×Sj such that
the restriction of the projection to α(M1) ∩ q−1 is surjective. Renaming the index if
necessary, we may assume that p12 : α(M1) ∩ q−1 → S1 × S2

∼= (S1)2 is surjective.
Again, let γ−1 be a non-trivial one cycle on S1×S2. Let γ be a connected component of
p−1
12 (γ−1). Let γ1 be a connected component of α−1(γ) on M1. Let γo = π(γ1). Suppose

now that γo is homologically trivial on M . Then the same argument as in the case
of dimC A = 2 shows that γ−1 has to be homologically trivial on S1 × S2

∼= (S1)2,
a two torus. This certainly contradicts our choice of γ−1 on S1 × S2. Similarly, γo

is a non-torsion element in H1(M,R), otherwise γ−1 would be a torsion element in
S1 × S2. This completes the proof of the proposition.

Main Theorem A. Let Γ be a torsion-free cocompact lattice of PU(2, 1) so that
the quotient M = Γ\PU(2, 1)/P (U(2) × U(1)) satisfies H1,1(M) ∩ H2(M,Q) = Q
and b1(M) = 0. Then Γ is integral.

Proof. This follows immediately from the formulation in §2 and Propositions 1,
2 and 3.

5. Results in arithmeticity. For a complex two ball quotient M of Picard
number 1, a rational multiple of the canonical line bundle KM is a generator of the
Neron-Severi group modulo torsion. The dual of a complex two ball quotient is the
complex projective plane P 2

C, for which the canonical line bundle is KP 2
C

= −3HP 2
C
,

where HP 2
C

is the hyperplane line bundle. In other words, a cubic root of KP 2
C

exists
as a line bundle. Realizing a complex two ball as a domain of P 2

C in the standard way

B2
C = {[z0, z1, z2] : |z0|2 > |z1|2 + |z2|2} ↪→ P 2

C ,
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The canonical line bundle KB2
C

can be written as 3H = 3HP 2
C
|B2

C
as a SU(1, 2)

invariant line bundle.
In general, a cocompact lattice Γ of the complex two ball B2

C is a lattice in the
automorphism group of B2

C, PU(2, 1) = SU(2, 1)/{εI}, where {εI} consists of all
cubic roots of unity ε multiplied to the identity I. The canonical line bundle KB2

C

descends to M = B2
C/Γ, but the cubic root H may not descend since there may not

be a consistent way of taking the cubic root of the transition functions of KB2
C

with
respect to Γ which takes values in SU(2, 1)/{εI}. However, if Γ is defined in SU(2, 1),
we can take cubic root of the transition function of the canonical line bundle so that
the bundle descends to M . In such a case KM = 3HM for a positive line bundle HM .

Conversely, consider an arbitrary smooth complex two ball quotient M on which
KM = 3HM . As is observed in [Ko], page 96, there exists a finite unramified covering
p : M1 → M for which the corresponding normal sublattice Γ1 of finite index in Γ
can be embedded in SU(2, 1) so that KM1 = 3HM1 for an ample line bundle HM1

descending from H on B2
C. It follows that p∗HM is linear equivalent to HM1 which is

the restriction of the cubic root H of KB2
C

when pulled back to the universal covering
B2

C. Hence the pull-back of HM to B2
C by the universal covering map can be considered

as a cubic root of KB2
C
. It other words, a cubic root of the transition functions of the

canonical line bundle KB2
C

can be taken on B2
C consistent with the action of Γ. Hence

there is a lifting of Γ to SU(2, 1) and Γ can be considered as a lattice in SU(1, 2).
Note that even if the condition KM = 3HM is satisfied and M has Picard number

one, HM may not be the generator of the torsion free part of the Neron-Severi group.
Here we give a characterization for the case that the canonical line bundle of the ball
quotient is three times the generator of the Neron-Severi group modulo torsion. This
is also the case discussed in [Re] and [Wa].

Main Theorem B Let Γ be a cocompact lattice of G = PU(2, 1) so that the
quotient M = Γ\PU(2, 1)/P (U(2)×U(1)) has Picard number 1 and that the canonical
line bundle KM is three times the generator of the Neron-Severi group modulo torsion.
Then Γ is arithmetic.

Proof. From Main Theorem A, we know that Γ can be considered as an integral
lattice in an algebraic group G which is F−isomorphic to PU(2, 1), where F is a real
algebraic number field. To prove arithmeticity, it suffices for us to prove that Gσ(R)
is compact for each σ ∈ Gal(F/Q) − {1}.

Lemma 6. Let Γ be a co-compact lattice of GR
∼= PU(2, 1), where Γ and G are

defined over a real algebraic number field F . Then the Restriction of Scalars for G is

R =
∏

σ∈S∞
Gσ = PU(2, 1)p × PU(3)d−p

for some 1 ≤ p ≤ d, where GR
∼= PU(2, 1) is the first factor of the Restriction of

Scalars.

Proof. Two field embeddings σ1, σ2 : F → C are said to be equivalent if they are
complex conjugate of one another. An Archimedean place σ of F is an equivalence
class of embeddings of F into C. Denote by S∞ the set of all such Archimedean
places and σ1 the identity.

For an Archimedean place σ of F , we let F σ = σ(F ) and Fσ the completion of
F at σ, which is R if F σ is real and C if F σ is complex. Suppose G as an algebraic
variety is defined by a set P of polynomials over F on a vector space isomorphic to
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F l
σ1

∼= Rl for some integer l. We denote by Gσ the algebraic group defined by the set
of polynomials P σ, P ∈ P, over F σ on a vector space isomorphic to F l

σ.

We now apply the well-known fact that G⊗F C is isogenous to Gσ ⊗F σ C, which
follows from the observation that the Lie algebra g satisfies g ⊗F C ∼= gσ ⊗F σ C by
comparing the structure cosntants of the Lie algebra (cf.Lemma 6.57 of [Wi]). Since
G ⊗ C ∼= SL(3,C), we conclude that Gσ ⊗F σ C ∼= SL(3,C) as well. Direct checking
going through the list of classical groups (cf. [Wi], §3E) implies that Gσ is isogenous
to either SL(3, Fσ) or PU(p, q) with p+ q = 3. We are going to rule out the first case.

The inclusion ρ : Γ → G is a k−homomorphism. An Archimedean place σ : F →
C induces ρσ ∈ R(Γ, Gσ) so that ρσ(Γ) = Γσ. We claim that H1(Γ, Ad ◦ ρσ) = 0.
It suffices to show that every cocycle is actually a coboundary. A cocycle φ satisfies
φ(xy) = φ(x) + Ad ◦ ρσ(x)φ(y) for all x, y ∈ G(F ). φ is a coboundary if there exist
v in the Lie algebra of G(F ) such that φ(x) = Ad ◦ ρσ(x)v − v. We know from [We]
that H1(Γ, Ad ◦ ρ) = 0. It follows from conjugation by σ that H1(Γ, Ad ◦ ρσ) = 0 as
well. The claim is proved.

It follows from the claim and Weil’s work (cf. [Rag] page 91) that ρσ is a rigid
representation. Since Γ is Zariski dense in G, Γσ is Zariski dense in Gσ considered as
a real algebraic group. Hence we may apply a theorem of Simpson [Sim1] to conclude
that Γσ is an algebraic group of Hodge type in the sense of Simpson. However, neither
SL(3,R) nor SL(3,C) is an algebraic group of Hodge type (cf. [Sim1], page 50). We
conclude that Gσ is isogenous to PU(p, q) for some p + q = 3. R is now obtained
from Weil’s Restriction of Scalars R = ResF/Q(G) =

∏
σ∈S∞ Gσ, which without loss

of generality is written as PU(2, 1)p × PU(3)d−p.

Hence to prove Main Theorem B, it suffices for us to show that the form Gσ
F

obtained from the conjugate of GF by σ has signature (3, 0) or (0, 3). Assume for
the purpose of proof by contradiction that the form P σ is not definite so that it is
a non-degenerate Hermitian form with signature (2, 1) or (1, 2). In either case, the
corresponding group Γσ = σ(Γ) is a subgroup of another complex two ball Mσ. This
is not possible from the following argument.

The lattice Γσ is Zariski dense in B2
C from the Zariski denseness of Γ in G.

Hence the arguments of Eells-Sampson implies the existence of Γ−equivariant map
Φ : B2

C = M̃ → M̃σ = B2
C (cf. [La]).

We claim that Φ is holomorphic. In case that the real rank r of the mapping Φ
is at least 3, this follows from Siu’s ∂∂−Bochner formula. The cases r ≤ 2 can be
treated similar to [CT], page 173-201 or [Siu2]. Following an earlier observation of
Sampson, r = 1 implies that the image is a geodesic line whose stabilizer contains the
image of Γ, contradicting Zariski denseness of image of Γ. The case of r = 2 leads
to factorization of the map Φ through a holomorphic map into a Riemann surface.
Pulling back the canonical Kähler form from the Riemann surface would contradict
the hypothesis that the Picard number of M is 1 as argued earlier.

Alternately, from the results of Simpson [Sim1], we know that Φ has to come from
a variation of Hodge structure. Φ can then be lifted to a holomorphic map Φ′ from M̃
to a Griffiths’ Period Domain Nσ

1 above Nσ. Since Nσ = B2
C

∼= PU(2, 1)/P (U(2) ×
U(1)), the only Griffiths’ Period Domain above Nσ is Nσ itself. We conclude that Φ
is holomorphic again. This provides another proof for the claim.

As explained in the paragraph above the statement of Main Theorem B in this
section, Γ is actually a subgroup in SU(2, 1) and hence so is Γσ from definition.
Therefore Φ∗K

M̃σ
= 3Φ∗H

M̃σ
, the line bundle on M̃σ ⊂ P2

C obtained from the
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restriction of hyperplane line bundle from P2
C, Let K

M̃σ
be the SU(2, 1)-invariant

line bundle on M̃σ. K
M̃σ

is then Γσ-invariant. Hence Φ∗K
M̃σ

is then a Γ-invariant

holomorphic line bundle on M̃, since Φ is Γ-equivariant.
Pulling back local canonical section dz1 ∧ dz2 on M̃σ by Φ gives rise to a local

holomorphic section of K
M̃

vanishing along the ramification divisor R of Φ. It follows
that

K
M̃

= Φ∗K
M̃σ + R

as a Γ-invariant line bundle on M̃.
Recall that K

M̃σ
= 3HMσ

, and R is a non-negative multiple of the generator
of the Neron-Severi group of M . It follows from the Γ-invariance of line bundles
involved and the fact that KM = K

M̃
is three times the generator of the Neron-

Severi group modulo torsion that R = 0. We conclude that Φ is an unramified
holomorphic mapping. Hence the Bergman metric on M̃σ is the same as the Bergman
metric on M̃. It follows that Φ is a totally geodesic immersion. As is well-known, this
induces a rational isomorphism Ξ : GF (R) → GF σ (R), extending the homomorphism
Φ : Γ → Γσ. As Γ is Zariski dense in G and Ξ|Γ = Φ|Γ, the rational homomorphism
has to be the same as the conjugation map σ : G → Gσ everywhere on G. However,
the conjugation σ is not even continuous. This contradiction implies that p = 1 and
hence Γ is arithmetic. This concludes the proof of Main Theorem B.

Concrete examples satisfying conditions of Main Theorem B includes fake projec-
tive planes.

Definition 2. A fake projective plane is a smooth complex surface satisfying one
of the following equivalent conditions.
a. b1(X) = b2(X) = 0 and π1(X) is infinite.
b. c2

1(X) = 3c2(X), Euler number χ(X) = 3 and the curvature of X is negative.
c. X is a smooth complex ball quotient with rational (co)homology ring the same as
the corresponding one of P2

C.

The equivalence of the above conditions follows easily from standard facts in the
study of complex surfaces, such as Riemann-Roch Theorem, Hodge Index Theorem,
Noether Formula and the solution of Calabi Conjecture by Aubin and Yau (cf. [BPV],
page 136). An example of fake projective plane is first given by Mumford [M], using
p-adic uniformization. Later on modification of the techniques is given by Ishida-
Kato[IK] to give two more similar examples.

Proof of Theorem 1. It follows from definition above that a fake projective plane
has Hodge number h1,1 = 1 and hence Picard number equal to 1. Furthmore, b1 = 0
and it is a ball quotient with K being three times the generator of the Picard group,
since the same is true for P2

C. The arithmeticity of the lattice involved now follows
from Main Theorem B.

6. More general cases. In this section, we consider smooth complex two ball
quotients with b1(M) = 0 and Pic(M) = 1 but no longer require that KM is three
times a generator of the Neron-Severi group. To facilitate our later discussion, we
recall some basic results from the classification of algebraic groups.

Algebraic groups defined over a number field F has been classified. A standard
reference is the article of Tits [T], page 54-61. Regarding as lattices in an algebraic
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group, arithmetic lattices are classified as well. The procedure for the construction
of any algebraic group G defined over an algebraic number field F such that GR =
PU(p, q) is as follows. Let D be a central division algebra of degree d defined over
a quadratic extension L of F with an involution of second kind τ so that F = {a ∈
L|aτ = a}. Let V be a vector space over D and B be a non-degenerate τ -hermitian
form over V so that apart from additivity,

B(ax, y) = aB(x, y), B(x, y) = (B(y, x))τ

for vectors x, y ∈ V and a ∈ D. B may be regarded as a n× n matrix defined over D
for some integer n. Let

U(B,D, τ) = {X ∈ GLn(V )|(Xt)τBX = F},
PU(B,D, τ) = U(B,D, τ) ∩ PSLn(D).

Then G = PU(B,D, τ) ⊗F R, with p + q = nd.
We are interested in the cases of p + q = 3. Hence either

Case (a). d = 1, n = 3 so that G(OF ) is defined by a hermitian form B over a number
field, or
Case (b). d = 3, n = 1 so that G(OF ) is defined by a hermitian form B over a division
algebra.

In Case (b), the hermitian form can be understood by noting that D ⊗F R ∼=
M3(R) so that B ∈ D and the extension of B over the splitting field of F is a non-
degenerate Hermitian 3 × 3 matrix with one negative and two positive eigenvalues.

Let σ �= 1 be an embedding of F into C such that Gσ is non-compact. We
claim that F σ ⊂ R. This is equivalent to proving that Fσ, the completion of F at an
Archimedean place σ, is R for all σ. From the above discussions, G is defined by a
hermitian form B over a number field F ⊂ R or a division algebra over F ⊂ R. The
conjugate of the defining hermitian form Bσ is defined over Fσ, the completion of F σ

at σ. Since Gσ is either the real algebraic group PU(1, 2) or a Lie group of compact
type according to the arguments in Lemma 6, this is possible only if the quadratic
form Bσ is defined over a real number field. This is our claim.

It follows from our claim that the defining number field F is totally real. We
summarize our discussions into the following definition and Lemma.

Definition 3.

a. Let k be a totally real number field of degree a over the field of rational numbers
Q and F be a quadratic imaginary extension of k. Let D be a central division
algebra defined over F with an involution τ of second kind so that k is the set of
elements of F fixed by τ. Let B be a non-degenerate τ−hermitian form defined
over a n−dimensional D−vector space. Let G = PU(B,D, τ). Assume that
nd = 3. Assume furthermore that there are exactly p non-equivalent embeddings
σi, i = 1, . . . , p, of k into C such that Gσi ⊗ R are isomorphic to PU(1, 2) and the
rest to the semi-simple Lie group of compact type. Let Λ be a lattice of PU(1, 2)p

isomorphic to
∏p

i=1 Gσi(OF σi ). Λ is said to be an arithmetic lattice of First Type
if n = 3 and d = 1. In such a case, Λ are defined by hermitian forms defined over
a number field. Λ is said to be an arithmetic lattice of Second Type if n = 1 and
d = 3. In such a case, Λ are defined by hermitian forms defined over a division algebra.

b. Suppose Γ is an integral lattice of GF over an algebraic number field F . We say
that Γ is of First Type (respectively Second Type) if and only G(OF ) is of First Type
(respectively Second Type).
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Our earlier discussions can be summarized by the following lemma.

Lemma 7. Let Γ be a co-compact torsion-free lattice of PU(2, 1). Consider the
realization of Γ as a subgroup of GF for an algebraic group G defined over a real
number field F with G ⊗F R ∼= PU(2, 1) and assume that Γ is integral in GF . Let
R =

∏
σ∈S∞ Gσ = Rnc ×Rc, where Rnc

∼= PU(2, 1)p is the non-compact and Rc
∼=

PU(3)p the compact part of R. Let p1 : R → Rnc be the projection into the non-
compact part. Then p1(R(OQ)) is an arithmetic lattice of Rnc

∼= PU(2, 1)p of First
or Second Type, G(OF ) ∼= R(OQ) and p1(Γ) is a subgroup of p1(R(OQ)).

Here is the main result of this section.

Main Theorem C. Let Γ be a cocompact lattice of G = PU(2, 1) so that the
quotient Γ\PU(2, 1)/P (U(2) × U(1)) has Picard number 1, b1(M) = 0 and contains
no immersed totally geodesic hyperbolic algebraic curves. Then one of the followings
holds.
(i). Γ is arithmetic of second type, that is, comes from a division algebra of E of rank
3 with an involution of the second type.
(ii). Γ is a non-arithmetic lattice of PU(2, 1) but is a subgroup of an arithmetic lattice
of second type of some PU(2, 1)p with p > 1.

Remarks.

1. It is proved by Rogawski [Ro] that cocompact lattices of PU(2, 1) of case (i) above
coming from all congruence subgroups of a division algebra of E|Q of rank 3 with an
involution of the second type really satisfies the property that the Picard number is
1 and there is no holomorphic 1−forms.
2. It is not known to the author whether non-arithmetic lattice of type (ii) exists.
Examples of non-arithmetic lattice of PU(2, 1) which is a subgroup of an arithmetic
lattice of first type of some PU(2, 1)p with p > 1 can be found in [DM].
3. If an unramified covering of M satisfies the condition that the canonical line
bundle is three times the generator of the Neron-Severi group modulo torsion, then
the arguments of Main Theorem B exclude case (ii) from the above conclusion.

We begin with the following simple observations for arithmetic lattice of first
type in PU(2, 1). It is commensurable to a lattice G(P,O), the first factor of
Ho

R
∼= PU(2, 1) × PU(3)d−1, where O is the set of integers in F . We can diag-

onalize the form P by an element g ∈ GL(3, k) such that the first factor in Ho
Z ,

G(P,O) is commensurable with G(P g,O) for some diagonal P g. Hence our lattice is
commensurable with G(P g,O) with P g of form

lo|x0|2 − l1|x1|2 − l2|x2|2,
where li ∈ k and li > 0. We may regard Γ as a co-compact lattice consisting of
elements γ satisfying γPoγ

t = Po, where Po is the diagonal matrix with diagonal values
given by [lo, l1, l2]. The complex ball of dimension two B2

C is realized as {[zo, z1, z2] ∈
P 2

C : lo|z0|2 − l1|z1|2 − l2|z2|2 < 0}. Consider the geodesic subspace Ñ ∼= B1
C of

M̃ ∼= B2
C defined by {[zo, z1, 0] ∈ P 2

C : lo|z0|2 − l1|z1|2 < 0}. Let ι be the reflection on
M̃ = B2

C about the hyperplane z2 = 0. Let Λ = Γ ∩ Ñ .

Lemma 8. Assume that M = B2
C/Γ, where Γ is a torsion free lattice of PU(2, 1).

Then Ñ/Λ is an immersed totally geodesic complex one ball quotient in M. Further-
more, the curve is a smoothly embedded one provided that ι normalizes Γ.



INTEGRALITY AND ARITHMETICITY OF LATTICE IN PU(2, 1) 127

Proof. Since Ñ is the fixed point set of the involution ι obtained by reflection
about the hyperplane z2 = 0, Λ is a uniform lattice Ñ (cf. [Rag], page 24). Hence
R = Ñ/Λ is a totally geodesic complex curve on M. It remains to prove that R is
smooth. Since M is smooth, the only singularity that can occur is the self intersection
of the image of Ñ by the covering map, which occurs when there exists γ ∈ Γ−Λ and
x ∈ Ñ such that γx ∈ Ñ . Assume for the purpose of proof by contradiction that such
γ and x exist. Then γ−1ιγιx = x as Ñ is fixed by ι. Since ι normalizes Γ, γ−1ιγι ∈ Γ.
As M is smooth, Γ is torsion free. It follows that γ−1ιγι = e, the identity. Hence γ
commutes with ι, which implies that γ ∈ Λ, contradictory to our assumption.

Proof of Main Theorem C. It follows from Main Theorem A that Γ ⊂ G(OF ),
where OF is the set of integers of a real algebraic number field F as discussed ear-
lier. Consider the restriction of scalars RF/Q(G) =

∏
σ∈Gal(F/Q) Gσ ∼= PU(2, 1)p ×

PU(3)d−p, where p is the number of embeddings of F into C for which the Hermitian
forms P σ associated to Gσ are indefinite.

Suppose p = 1 and lattice is of first type. It follows from definition that Γ is
an arithmetic lattice. From Lemma 8, we know that the image of N is an immersed
totally geodesic one ball quotient. This rules out arithmetic lattices of first type and
leads to conclusion (i).

Consider now the case p > 1. Let

α : g �−→ (σ1(g), · · · , σd(g))

be the diagonal embedding from G(F ) to RF/Q(G). From the restriction of scalars,
(RF/Q(G))Q = α(GF ) and (RF/Q(G))Z = α(G(OF )). The projection p : RF/Q(G) →
GF is a bijection with inverse α. By a theorem of Borel-Harish-Chandra (cf. [Z] p. 36),
(RF/Q(G))Z is a lattice of (RF/Q(G))R. Since (RF/Q(G))R as a semi-simple Lie group
has real rank p > 1, Margulis’ Arithmeticity theorem implies that (RF/Q(G))Z is an
arithmetic lattice in (RF/Q(G))R and hence is either of first or second type classified
before. We claim that (RF/Q(G))Z cannot be of first type. Suppose on the contrary
that (RF/Q(G))Z is of first type. It follows that G(OF ) = G(P,O), the group of units
of a Hermitian form P over k, except that now P σ is not definite as a quadratic form
for some σ �= 1. The arguments of Lemma 8 do not make any reference concerning
the properties of P σ and hence the same proof implies that there exists an immersed
totally geodesic one ball quotient in M . As G(OF ) is bijective to (RF/Q(G))Z by the
natural homomorphisms given by α and p, we conclude that G(OF ) is a subgroup of
the lattice (RF/Q(G))Z. Since RF/Q(G) has more than one non-compact factors in
PU(2, 1), it follows from Weak Approximation Theorem of algebraic groups over a
number field that G(OF ), the projection of the lattice (RF/Q(G))Z to the first factor
of the product, is dense in the point-set topology (cf. [Kn]). Hence Γ cannot be finite
indexed in (RF/Q(G))Z = G(OF ), for otherwise the latter group would be a discrete
subgroup in G. This concludes the proof of Main Theorem C.
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