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VANISHING COHOMOLOGY FOR HOLOMORPHIC
VECTOR BUNDLES IN A BANACH SETTING∗

LÁSZLÓ LEMPERT
†

To Yum-Tong Siu, on his sixtieth birthday

Abstract. For a large class of Banach spaces X we prove the following. If Ω ⊂ X is open and
pseudoconvex, and E → Ω is a locally trivial holomorphic Banach bundle, then the sheaf cohomology
groups Hq(Ω, E) vanish for q ≥ 1. We also give an application concerning neighborhoods of complex
submanifolds.

1. Introduction. Consider a complex Banach space X, a pseudoconvex open
Ω ⊂ X, a holomorphic Banach bundle E → Ω (that is, a holomorphic vector bundle
with fibers isomorphic to Banach spaces), and the sheaf cohomology groups Hq(Ω, E).
The problem we shall address here is whether these groups vanish for q ≥ 1. What is
customarily called Cartan’s Theorem B implies that this is so if dimX < ∞; Cartan
himself dealt with bundles of finite rank and Leiterer extended his result to Banach
bundles, see [C, Li]. It is possible that Hq(Ω, E) = 0, q ≥ 1, holds in complete
generality, but at present, and to this author, such a theorem is very much out of
reach. Instead, as in earlier vanishing theorems in [Lm2, P1-3], we restrict ourselves
to Banach spaces with bases.

Recall that X has a Schauder basis e1, e2, . . . ∈ X if any x ∈ X can be uniquely
represented as a norm convergent sum

(1.1) x =
∞∑

n=1

λnen, λn ∈ C.

If in addition the series in (1.1) converge after arbitrary rearrangements, one speaks
of a countable unconditional basis. The spaces lp, Lp[0, 1] for 1 < p < ∞, l1, and
the space c of convergent sequences all have unconditional bases, see [Sn]. Our main
result is

Theorem 1.1. If X is a Banach space with countable unconditional basis, Ω ⊂ X
open and pseudoconvex, E → Ω a locally trivial holomorphic Banach bundle, and
q ≥ 1, then Hq(Ω, E) = 0.

This theorem will be derived from a variant, in which X is only required to have
a Schauder basis and a property that involves Runge approximation. Let B(x, r) ⊂ X
denote the ball of radius r, centered at x, and B(0, r) = B(r). If M is a complex
manifold and E → M a holomorphic fiber bundle, O(M,E) stands for the space
of holomorphic sections; when E = M ×W is trivial, we shall write O(M ;W ) for
O(M,E). Consider the following
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Hypothesis 1.2. There is a µ ∈ (0, 1) such that for any Banach space (W, ‖ ‖W ),
ε > 0, and g ∈ O(B(1);W ) an h ∈ O(X;W ) can be found that satisfies ‖g− h‖W < ε
on B(µ).

In [Lm3] we proved Hypothesis 1.2 forX that has a countable unconditional basis;
Josefson gave a different proof in [J]. Therefore Theorem 1.1 follows from

Theorem 1.3. Suppose X is a Banach space with a Schauder basis and Hypothe-
sis 1.2 holds. If Ω ⊂ X is open and pseudoconvex, E → Ω a locally trivial holomorphic
Banach bundle, and q ≥ 1, then Hq(Ω, E) = 0.

We shall also prove an infinite dimensional extension of Cartan’s Theorem A to
the effect that holomorphic sections of E over certain subsets of Ω can be approximated
by global sections, see Theorem 4.5. Further, we shall apply Theorem 1.3 to study
neighborhoods of submanifolds, in the spirit of Docquier–Grauert and Siu [DG, Su].
We say that a complex submanifold M of a complex manifold M ′ is split if TxM ⊂
TxM

′ has a closed complement for each x ∈M .

Theorem 1.4. Suppose X is a Banach space with a Schauder basis, Hypothesis
1.2 holds, O ⊂ X is open, and M ⊂ O is a split closed complex submanifold that is
biholomorphic to a pseudoconvex open subset of a Banach space. Identify M with the
image of the zero section in the normal bundle ν = (TX|M)/TM . Then a neighbor-
hood of M in ν admits a biholomorphism on a pseudoconvex neighborhood of M in O.
On M the biholomorphism can be chosen to be the identity.

In a related development, Patyi proved that subvarieties M of pseudoconvex open
Ω ⊂ X have pseudoconvex neighborhood bases, provided M can be defined as the zero
locus of a holomorphic section of a Banach bundle E → Ω, see [P3, Theorem 1.2].

Next comes a simplified and therefore not completely accurate discussion of the
proof of Theorem 1.3. A general strategy to prove cohomology vanishing, in finite or
infinite dimensions, is to exhaust Ω by a sequence of simpler sets ΩN ⊂ Ω, N = 1, 2, . . .
so that

1◦ Hq(Ω, E)|ΩN = 0 can be proved, and
2◦ holomorphic sections of E over (certain subsets of) ΩN

can be approximated by global holomorphic sections.
The approximation property can then be used to show that

Hq(Ω, E) = lim
N
Hq(Ω, E)|ΩN = 0.

When dim Ω < ∞, Cartan and his followers take ΩN compact and holomorphi-
cally convex. Over a compact ΩN any cohomology class f ∈ Hq(Ω, E) is represented
by a Čech cocyle of a finite covering, which allows for an inductive argument to prove
f |ΩN = 0. By contrast, in infinite dimensions Ω can not be exhausted by a sequence
of compacta.

Instead, in [Lm2] we exhausted an infinite dimensional Ω by pseudoconvex open
subsets; each ΩN was a ball bundle over a finite dimensional base DN . For trivial
E we could prove 1◦ and 2◦, and ultimately Hq(Ω, E) = 0. The case of a general
bundle was subsequently taken up by Patyi. In [P1, P2] he used the same ΩN and
was able to show 1◦ and 2◦, provided E|ΩN is isomorphic to the bundle induced from
E|DN by the projection ΩN → DN ; if this is so, Patyi calls E|ΩN a basic bundle.
(There is a subtlety in the proof and even in the formulation of 2◦. Above we have not
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specified in what topology the approximation is to be done. When dim Ω <∞ and the
ΩN are compact, the approximation is uniform on ΩN . When dim Ω = ∞ and E is
trivial, the approximation is still uniform, although only on certain subsets ωN ⊂ ΩN ;
but for general E uniform approximation over noncompact sets is meaningless. Patyi
had to construct appropriate fiber metrics on E|ΩN , in which he was then able to
approximate uniformly, as needed.) Furthermore, he devised an approach to prove
E|ΩN is always basic. This depended on a Runge type approximation hypothesis for
Lie group valued holomorphic functions. He could verify the hypothesis for solvable
groups, so that in the end he proved Hq(Ω, E) = 0 for E with solvable structure group.
However, it is still unknown whether his approximation hypothesis is generally true.

In this paper we improve on Patyi’s scheme in the following way. Let Z be
the typical fiber of E. It is easy to find an open covering U of Ω and holomorphic
trivializations eU of E|U , U ∈ U, such that the transition maps eUe

−1
V :U ∩ V →

GL(Z) are bounded and uniformly continuous. We shall call the choice of {eU}U∈U

a uniformization of E, and if for a given covering U a uniformization exists, we shall
say E is U–uniform. Next we exhaust Ω by pseudoconvex open ΩN , each ΩN a ball
bundle over a finite dimensional base DN , in a way adapted to the uniformization.
Namely, U|ΩN will have a finite refinement UN that is induced from a covering of the
base DN . Thus E|ΩN is UN–uniform, and we shall show that such bundles are basic.
This could be done following Patyi’s idea, because all one needs now is to approximate
bounded holomorphic functions with values in GL(Z), which is easy to do. However,
we shall proceed differently, bypass approximation, and reduce the problem to finite
dimensions instead. Once E|ΩN is known to be basic, 1◦ and 2◦ can be proved as in
[P1].

The novelty in our approach is the concept of uniformization and the construction
of adapted ΩN . This latter is based on the following result, cf. [Lm4, Theorem 1.6].

Plurisubharmonic domination. If a Banach space X has a Schauder basis
and satisfies Hypothesis 1.2, Ω ⊂ X is open and pseudoconvex, and u: Ω → R is
locally bounded above, then there is a plurisubharmonic v: Ω → R such that u ≤ v.

Here is a brief overview of the contents. In the preparatory Section 2 we discuss
boundedness and uniform continuity of functions with values in Banach–Lie groups.
The results obtained will be used in Section 3, that introduces the idea of uniformiza-
tion both for vector and principal bundles. For suitably uniformized Banach bundles
over certain ball bundles we prove a version of Theorems A and B, Corollary 3.5. In
Section 4 general uniformized Banach bundles E → Ω are considered, and we exhaust
Ω by ΩN to which the results of Section 3 apply. The main results here, Theorem 4.5
and Proposition 4.6 concern approximation. Section 5 ties together the loose ends,
and proves Theorem 1.3. Theorem 1.4 is proved in Section 6.

For background and basic complex analysis/geometry in finite and infinite dimen-
sions the reader is referred to [H, Lm1, M, N].

2. Calculus of group valued functions. In this section we shall define and
discuss bounded and uniformly continuous functions with values in a Banach–Lie
group. Fix a smooth real Banach–Lie group G.

Definition 2.1. A subset S ⊂ G is bounded if for an arbitrary neighborhood U
of 1 ∈ G there is a finite set F ⊂ G and n ∈ N such that S ⊂ FUn.

When S is a bounded subset of the identity component G1 of G, for any neighbor-
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hood U of 1 there will be a k ∈ N such that S ⊂ Uk. It will suffice to check this when
U = U−1 ⊂ G1. The subgroup generated by U is G1, since it is open, hence closed. It
follows that any finite E ⊂ G1 is contained in some Um. Therefore, if S ⊂ FUn with
a finite F ⊂ G then S ⊂ (F ∩G1)Un ⊂ Un+m, as claimed.

Let g be the (Banach–) Lie algebra of G and exp: g → G the exponential map,
a diffeomorphism near 0. Since for a bounded neighborhood u of 0 ∈ g the sets
u/j, j ∈ N, form a neighborhood basis of 0, exp(u/j) form a neighborhood basis of
1 ∈ G. Since furthermore exp u ⊂ (exp u/j)j , it follows that U = exp u is bounded,
and even Uk is bounded for each k ∈ N.

Proposition 2.2. If S, T ⊂ G are bounded, so are ST and S−1.

Proof. Boundedness of ST follows from [A, (3.2) Lemma]. As to S−1, take a
symmetric neighborhood U of 1 so that Uk is bounded for any k ∈ N, as above. There
are a finite set F ⊂ G and n ∈ N such that S ⊂ FUn. Then S−1 ⊂ U−nF−1 = UnF−1

is bounded by the first part of the proposition.

Now fix another smooth Banach–Lie group H, let S ⊂ H and f :S → G.

Definition 2.3. (a) f is bounded if f(S) ⊂ G is bounded.
(b) f is uniformly continuous if for every neighborhood U ⊂ G of 1G there is a

neighborhood V ⊂ H of 1H such that f(a)−1f(b) ∈ U whenever a−1b ∈ V , a, b ∈ S.

In verifying uniform continuity we shall depend on the following

Lemma 2.4. Let A,B,C be Banach manifolds, b0 ∈ B, c0 ∈ C, and F :A×B →
C a smooth map such that F (·, b0) ≡ c0. Any a0 ∈ A has a neighborhood A0 with the
following property: given a neighborhood U of c0 there is a neighborhood BU of b0 with
F (A0 ×BU ) ⊂ U .

Proof. It can be assumed that A,B,C are convex open subsets of Banach spaces
and a0, b0, c0 are at the origin. Then

(2.1) F (a, b) =
∫ 1

0

d

dt
F (a, tb)dt =

( ∫ 1

0

(∂BF )(a, tb)dt
)
b,

∂B denoting partial differential along B. If A0 ⊂ A, B0 ⊂ B are convex neighborhoods
of the origin such that the linear maps ∂BF (a, b) are uniformly bounded as a, b range
over A0, B0, then the integral on the right of (2.1) will be uniformly bounded, and the
claim follows (with some BU ⊂ B0).

Corollary 2.5. If S ⊂ H is open and f :S → G is smooth then each point of S
has a neighborhood on which f is bounded and uniformly continuous.

Proof. Local boundedness directly follows from the mere continuity of f . As for
local uniform continuity, given a0 ∈ S, choose neighborhoods A of a0 and B of 1H so
that AB ⊂ S; let b0 = 1H , C = G, c0 = 1G, and F (a, b) = f(a)−1f(ab). Lemma 2.4
then produces a neighborhood A0 of a0 on which f is uniformly continuous.

Now consider the adjoint map

(2.2) Adg:G 
 x �→ g−1xg ∈ G, g ∈ G.
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Corollary 2.6. If S ⊂ G is bounded then for any neighborhood U of 1 ∈ G
there is another neighborhood V of 1 with AdS V ⊂ U .

Proof. Setting A,B,C = G, b0 = 1, and F (a, b) = Adab in Lemma 2.4 we
obtain a neighborhood W of a0 = 1 so that the claim holds for S = W . Since
it also holds for finite S, and if it holds for S and T it will hold for ST—indeed
AdST V ⊂ (AdS V )(AdT V )—, the corollary follows.

Theorem 2.7. (a) Multiplication G×G→ G is bounded and uniformly contin-
uous on bounded sets.

(b) Inversion G → G and exp: g → G are bounded and uniformly continuous on
bounded sets.

(c) 0 ∈ g has a bounded neighborhood u0 such that exp |u0 has a bounded and
uniformly continuous inverse on U0 = exp u0, denoted log.

Proof. (a) follows from Proposition 2.2, the identity (ab)−1(cd) = (b−1d)Add(a−1c),
and Corollary 2.6. To take care of inversion one has to use the identity (a−1)−1b−1 =
Ada−1(b−1a) instead. As to the exponential map, we already know it maps bounded
sets to bounded sets. Corollary 2.5 implies 0 ∈ g has a convex, bounded neighborhood
on which exp is uniformly continuous. If u is such a neighborhood then so is 2u by
the identity

(exp 2a)−1 exp 2b = (exp a)−1(exp b)Adexp b(exp a)−1 exp b

and Corollary 2.6; hence by induction exp is indeed uniformly continuous on all
bounded sets. Finally, (c) follows from Corollary 2.5, since log is smooth on some
neighborhood of 1 ∈ G.

Theorem 2.8. (a) A homomorphism ϕ:H → G is uniformly continuous. It is
also bounded on bounded sets.

(b) A smooth action ψ:H ×G→ G of H by automorphisms of G is bounded and
uniformly continuous on bounded sets.

Proof. (a) Uniform continuity is obvious. As ϕ is bounded on some neighborhood
of 1, Proposition 2.2 implies the rest.

(b) Write ψ(h, g) = ψh(g). To prove boundedness, first take a connected neigh-
borhood W × U of 1H×G on which ψ is bounded. As ψ(W × Un) ⊂ ψ(W × U)n, ψ
is bounded on W × Un, hence on sets W × S, where S is a bounded subset of the
identity component G1 ⊂ G. Further, if S is such and h ∈ H,

ψ(hWn, S) ⊂ ψh(ψW (ψW (. . . ψW (S) . . . );

the set inside ψh, a subset of G1, is bounded by induction. Hence ψ(hWn, S) is
bounded by part (a). It follows that ψ is bounded on sets K×S with K ⊂ H, S ⊂ G1

bounded. We still have to show ψ is bounded on setsK×gS, K,S as above, g ∈ G. Fix
g. There are sets K ⊂ H such that ψK(g) is bounded: any finite set and appropriate
neighborhoods of 1H will do. If K and L are such sets, L a connected neighborhood
of 1H , then KL is also such a set. Indeed,

ψKL(g) = ψK(ψL(g)) ⊂ ψK(g)ψK(g−1ψL(g))

is bounded as g−1ψL(g) ⊂ G1 is bounded. Thus ψK(g) is bounded for any bounded
K ⊂ H. If S ⊂ G1 is also bounded then ψK(gS) ⊂ ψK(g)ψK(S) is bounded, whence
it follows that ψ is indeed bounded on all bounded subsets of H ×G.
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To prove uniform continuity, we first claim that, given a neighborhood U of 1G

(i) for any bounded K ⊂ H there is a neighborhood V of 1G such that ψh(g) ∈ U ,
for (h, g) ∈ K × V ;

(ii) for any bounded S ⊂ G there is a neighborhood W of 1H such that g−1ψh(g) ∈ U ,
for (h, g) ∈W × S.
To verify (i) note that it holds for finite K, and by Lemma 2.4 also for some

neighborhood K of 1H , independent of U . If it holds for K and L, it will also hold for
KL as ψkl(g) = ψk(ψl(g)). It follows that (i) indeed holds, and (ii) is proved similarly,
using Corollary 2.6, too.

That ψ is uniformly continuous on bounded sets now follows from the identity

ψh(a)−1ψk(b) = ψh(a−1b)ψh(b−1ψh−1k(b)),

taking (i) and (ii) into account.

If A is a subset of a third Banach–Lie group Γ and S ⊂ G, let Cu(A;S) denote
the family of bounded, uniformly continuous maps A→ S. Theorems 2.7, 2.8 imply

Corollary 2.9. (a) Cu(A;G) is closed under pointwise multiplication and in-
version.

(b) If ξ ∈ Cu(A; g) then exp ◦ ξ ∈ Cu(A;G). With U0 ⊂ G, u0 ⊂ g as in Theorem
2.7(c) if f ∈ Cu(A;U0) then log ◦f ∈ Cu(A; u0)

(c) If ϕ:H → G is a homomorphism and f ∈ Cu(A;H) then ϕ ◦ f ∈ Cu(A;G).
(d) If ψ:H × G → G is a smooth action by automorphisms of G and h ∈

Cu(A;H), g ∈ Cu(A;G), then ψ(h, g) ∈ Cu(A;G).

When all groups involved are complex Lie groups, and A,S are open, write
Ou(A;S) for the family of bounded, uniformly continuous holomorphic maps. In
this situation we have

Corollary 2.10. The previous corollary is true with Cu replaced by Ou; (d)
under the assumption that ψ is a holomorphic action.

Accordingly, Ou(A;G) is a group under pointwise multiplication. It can be en-
dowed with the structure of a complex Banach–Lie group as follows. Fixing a norm
on g, the sup norm turns Ou(A; g) into a Banach space. Composition with exp and
log defines maps Exp: Ou(A; g) → Ou(A;G) and Log: Ou(A;U0) → Ou(A; u0), with
u0, U0 as in Theorem 2.7(c). Choose a neighborhood u1 of 0 ∈ g so that (exp u1)3 ⊂ U0.
Then the zero function 0 ∈ Ou(A; g) is an interior point of Ou(A; u1); fix a symmetric
open neighborhood v ⊂ Ou(A; u1) of 0. With each f ∈ Ou(A;G) we associate a chart

Φf : v 
 ξ �→ f Exp ξ ∈ Ou(A;G),

and push forward neighborhoods of 0 ∈ v by Φf to define a neighborhood basis
of f . One checks that in this way a Hausdorff topology is obtained on Ou(A;G).
To verify the charts are holomorphically related, take two overlapping charts, say
f ∈ Φg(v) ∩ Φh(v). Thus f = gExp η = hExp ζ, with η, ζ ∈ v; the corresponding
transition map is given by

(Φ−1
g ◦ Φh)(ξ) = Log(g−1hExp ξ) = Log{Exp ηExp(−ζ)Exp ξ},

whenever the left hand side is defined, i.e., for ξ in an open set w ⊂ v. Theorem 2.7
implies Φ−1

g ◦ Φh is continuous. That it is also holomorphic follows from Morera’s
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theorem. Indeed, take a simply connected domain D ⊂ C, a rectifiable Jordan curve
C ⊂ D, and a holomorphic map D 
 λ �→ ξλ ∈ w. The integral of (Φ−1

g ◦ Φh)(ξλ)
along C vanishes, for if a ∈ A(∫

C

(Φ−1
g ◦ Φh)(ξλ)dλ

)
(a) =

∫
C

log{g−1(a)h(a) exp ξλ(a)}dλ = 0

(note that for fixed a the second integrand is a holomorphic function of λ, since the
operations on G, g are holomorphic). We conclude Φ−1

g ◦ Φh are holomorphic, and so
a complex Banach manifold structure is defined on Ou(A;G).

The group operations are also holomorphic. For example, to show multiplication
is holomorphic near (g, h) ∈ Ou(A;G) × Ou(A;G) we use the charts Φg,Φh,Φgh. In
these charts multiplication is given by

(2.3) (ξ, η) �→ Log{(gh)−1g(Exp ξ)hExp η} = Log{(AdhExp ξ)Exp η},
(where now Adh stands for the self map of Ou(A;G) gotten by applying Adh(a):G→
G pointwise). Since Ad is a holomorphic action of G on itself, Theorems 2.7, 2.8,
combined with Morera’s theorem, prove as above that (2.3) is holomorphic for ξ, η
sufficiently small.

In the next section we shall use this construction for subsets A of a Banach space
X, viewed as an additive group.

3. Uniform bundles. Consider a Banach space (X, ‖ ‖), an open Ω ⊂ X, and
a holomorphic Banach bundle E → Ω. For simplicity we assume that all fibers are
isomorphic to the same Banach space Z, which is certainly true if Ω is connected. We
shall write Hom(E,Z) for the bundle of homomorphisms between E and the trivial
bundle with fiber Z, so that the fibers of Hom(E,Z) are the spaces Hom(Ex, Z) of
continuous linear maps, x ∈ Ω. By a uniformization of E we mean a choice of an open
covering U of Ω and holomorphic trivializations eU ∈ O(U,Hom(E,Z)), U ∈ U, such
that eUe

−1
V ∈ O(U ∩ V ; GL(Z)) are bounded and uniformly continuous in the sense

explained in Section 2. A bundle endowed with such a uniformization will be called
uniform or, to be more specific, U–uniform.

If X ′ is another Banach space, Ω ⊂ X ′ open, π: Ω′ → Ω holomorphic and uni-
formly continuous, then the induced bundle π∗E → Ω′ has a natural uniformization

e′U = eU ◦ π ∈ O(
π−1U,Hom(π∗E,Z)

)
, U ∈ U.

In particular, the restriction of E to an open subset Ω′ ⊂ Ω, or to Ω ∩ Y, Y ⊂ X a
closed subspace, are both uniform relative the coverings U|Ω′ resp. U|Y . Other natural
operations on vector bundles also respect uniform structures: for example, if E,F → Ω
are U–uniform then so will be E ⊕ F and Hom(E,F ).

Now fix a complex Banach–Lie group G. Uniformization of holomorphic prin-
cipal G–bundles E → Ω is defined analogously.* Writing Hom(E,G) for the bun-
dle of homomorphisms between E and the trivial G–bundle, we are to choose eU ∈
O(U,Hom(E,G)) so that the transition functions eUe

−1
V ∈ O(U ∩ V,EndG G) are

bounded and uniformly continuous. Here EndG G stands for those maps G → G
that commute with left translations. These maps are right translations by elements
of G; thus EndG G is canonically isomorphic with G. Again, natural operations on

*Our convention is that G acts on E from left.
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G–bundles respect uniform structures. Here are a few details for Hom(E,F ), if F is a
G–bundle uniformized by fU , U ∈ U. First, Hom(E,F ) is a principal G–bundle, the
G action given by post–composing ϕ ∈ Hom(Ex, Fx) with the action of G on F . One
then checks that by associating with ϕ the endomorphism hU (ϕ) ∈ EndG G

hU (ϕ)(g) = fU (x)ϕe−1
U (x)(g), g ∈ G, U 
 x,

a system hU of uniformizing sections is obtained.
There is an obvious connection between uniformized Banach and principal bun-

dles. If E is a uniformized Banach bundle with fibers isomorphic to Z then the
bundle Iso(E,Z) ⊂ Hom(E,Z) of isomorphisms is a principal GL(Z)–bundle with
a natural uniformization. Conversely, if E is a uniformized principal G–bundle and
π:G → GL(Z) a holomorphic representation, then the associated Banach bundle Eπ

has a natural uniformization.
A homomorphism ϕ:E → F between holomorphic principal G–bundles uni-

formized by eU resp. fU , U ∈ U, is called uniform if fUϕe
−1
U ∈ Ou(U ; EndG G)

for all U . In view of Corollaries 2.9, 2.10, the inverse of such a homomorphism is also
uniform, hence we also call ϕ a uniform isomorphism. If such ϕ:E → F exists, we say
E and F are uniformly isomorphic. An isomorphism ψ:E → F between U–uniform
holomorphic Banach bundles is called uniform if the associated map

Iso(F,Z) → Iso(E,Z)

of U–uniform principal bundles is a uniform isomorphism.
For sections f of a principal or Banach bundle E → Ω uniformized by trivial-

izations eU one can introduce the notions of boundedness and uniform continuity:
the condition will be that eUf :U → G (resp. Z) should be bounded resp. uniformly
continuous for all U . We shall denote the space of bounded, uniformly continuous
holomorphic sections by Ou(Ω, E). For a uniformized Banach bundle E → Ω and a
subset Ω0 ⊂ Ω one can also introduce the topology of U–local uniform convergence on
O(Ω0, E), the space of germs of holomorphic sections at Ω0. Basic neighborhoods of
f ∈ O(Ω0, E) will be labeled by positive functions ε defined on some finite V ⊂ U: the
neighborhood corresponding to ε is

{g ∈ O(Ω0, E): sup
V ∩Ω0

‖eV (g − f)‖Z < ε(V ) for all V ∈ V}.

We emphasize that both the space Ou(Ω, E) and the topology on O(Ω0, E) depend on
the choice of the uniformization.—It follows from Theorems 2.7, 2.8 that a uniform
isomorphism ϕ:E → F induces a topological isomorphism O(Ω0, E) → O(Ω0, F ).

Further down we shall use the following terminology. Let Ω0 ⊂ Ω1,Ω2 ⊂ Ω.

Definition 3.1. We say that O(Ω2, E) is dense in O(Ω1, E) over Ω0 if O(Ω2, E)|Ω0

is dense in O(Ω1, E)|Ω0, in the topology of O(Ω0, E).

Loosely speaking, this means that a certain Runge type approximation is possible.
In this section we shall study uniform bundles over certain ball bundles, and prove

a (weak) instance of the Grauert–Oka principle: two uniform Banach resp. principal
bundles, that are easily seen to be topologically isomorphic, are in fact holomorphically
isomorphic. From this we shall derive an approximation and a cohomology vanishing
result, Corollary 3.5.
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The ball bundles in question are gotten as follows. Let π:X → X be a projection
on a finite dimensional subspace and ρ = idX − π the complementary projection.
Given A ⊂ πX and r:A→ (0,∞) continuous, the sets

(3.1)
A(r) = {x ∈ X:πx ∈ A, ‖ρx‖ < r(πx)},
A[r] = {x ∈ X:πx ∈ A, ‖ρx‖ ≤ r(πx)}

are called sets of type (B) (with respect to π). By [Lm2, Proposition 4.1] A(r) is
open and pseudoconvex precisely when A is open and pseudoconvex, and − log r is
plurisubharmonic. To any open covering V of A there corresponds a covering

V(r) = {V (r):V ∈ V}
of A(r). With this notation we have

Theorem 3.2. Suppose A(r) is open and pseudoconvex. Let V be an open cover-
ing of A and E → A(r) a V(r)–uniform holomorphic Banach or principal G–bundle.
If A1 ⊂⊂ A is open and r1:A1 → (0,∞) continuous, r1 < r|A1, then π∗E|A1(r1) and
E|A1(r1) are uniformly isomorphic.

The theorem will be deduced from an analogous but finite dimensional result
concerning bundles on which S1 acts. Let ∆ ⊂ C denote the open unit disc, ∆ its
closure; S1 = ∆\∆. The multiplicative semigroup ∆ acts on A(r) by

(3.2) gωx = πx+ ωρx, ω ∈ ∆, x ∈ A(r).

If A(r) is open, the restriction of the action to ∆ is holomorphic.

Proposition 3.3. Suppose dimX <∞ and A(r) is open and pseudoconvex. Let
F → A(r), H → A(r) be locally trivial holomorphic principal G–bundles, and suppose
the S1 action {gω:ω ∈ S1}, cf. (3.2), lifts to continuous actions both on F and H,
by biholomorphic G–maps. If there is an S1 equivariant isomorphism ψ0:F |A→ H|A
then there is an equivariant isomorphism ψ:F → H.

Proof. First construct an S1 invariant holomorphic connection ∇F on F . Since
F is locally trivial, Ω = A(r) can be covered by open subsets U so that each F |U
admits a holomorphic connection ∇U . The difference ∇U − ∇V of two such local
connections can be represented by a holomorphic one form on U ∩ V , with values in
a Banach bundle f (the adjoint Lie algebra bundle), or by a section αUV of f ⊗ T ∗Ω
over U ∩ V . Since H1(Ω, E) = 0 for any locally trivial holomorphic Banach bundle
E → Ω by [Li, Theorem 2.3], there are αU ∈ O(U, f⊗T ∗Ω) such that αUV = αU −αV .
Then ∇ = ∇U − αU over U consistently defines a holomorphic connection on F . To
achieve S1 equivariance, let dω denote the Haar probability measure on S1. The space
C of holomorphic connections on F (with the compact open topology) being an affine
space of a Fréchet space, continuous C–valued functions can be integrated against
Radon probability measures. Hence

∇F =
∫

S1
(ω∗∇)dω

defines a holomorphic connection on F that is easily seen to be S1 invariant.
Similarly, there is an invariant holomorphic connection ∇H on H. Now construct

ψ as follows. If x ∈ A(r) and v ∈ Fx, in (F,∇F ) parallel transport v along the
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segment [x, πx], to obtain v0 ∈ Fπx. Next in (H,∇H) parallel transport ψ0(v0) along
the segment [πx, x]; the vector thus gotten will be ψ(v) ∈ Hx. Since all ingredients
of this construction are holomorphic and equivariant, ψ will indeed be an equivariant
isomorphism.

Now consider a principal G–bundle E → A(r) as in Theorem 3.2. We shall assume
r is bounded, without loss of generality. Introduce the finite dimensional Banach space
X ′ = πX ⊕ C and the Hartogs set

A(r)′ = {(ξ, η) ∈ A× C: |η| < r(ξ)} ⊂ X ′,

cf. (3.1), and define V (r)′ ⊂ A(r)′ similarly for V ∈ V. We shall apply a Radon type
transformation to E to obtain a V(r)′ = {V (r)′:V ∈ V}–uniform bundle PE = F →
A(r)′ as follows. Let B denote the unit ball in Ker π ⊂ X, and consider the double
fibration

(3.3)

A(r)′ ×B

a↙ ↘ α

A(r) A(r)′,

where a(ζ, y) = ξ + ηy for ζ = (ξ, η) ∈ A(r)′, y ∈ B, and α is projection on the first
factor. The bundle F will be defined as the direct image of a∗E under α.

Concretely, set aζ = a(ζ, ·),
Fζ = Ou(B, a∗ζE), and F = �ζ∈A(r)Fζ .

If eV ∈ O(V (r),Hom(E,G)) are the uniformizing trivializations of E, the maps

fV (ζ):Ou(B, a∗ζE) 
 s �→ (a∗ζeV )s ∈ Ou(B;G), ζ ∈ V (r)′,

endow F = PE → A(r)′ with the structure of a locally trivial holomorphic prin-
cipal bundle of the group PG = Ou(B;G). Since for ζ ∈ U(r)′ ∩ V (r)′ the tran-
sition functions fU (ζ)fV (ζ)−1 ∈ EndPG PG are defined by applying a∗ζ(eUe

−1
V ) ∈

Ou(B; EndG G), the trivializations uniformize F .
The semigroup ∆ acts on A(r)′ and B by γω(ξ, η) = (ξ, ωη) and βω(y) = ωy, ω ∈

∆. Restricting for the moment to S1 ⊂ ∆, all spaces in (3.3) acquire an S1 action.
For A(r)′ this is γ|S1, for A(r) the trivial action, and for A(r)′×B the action (γ|S1)×
(β|S1)−1; both maps a and α are equivariant. The trivial action on A(r) lifts to the
trivial action on E, which gives rise to an S1 action on a∗E, and also on F as follows.
Since

(3.4) aγωζ = aζβω, and so a∗γωζ = β∗
ωa

∗
ζ ,

pull back by βω induces an isomorphism

β∗
ω:Fζ = Ou(B, a∗ζE) → Fγωζ = Ou(B, a∗γωζE).

Thus the S1 action β∗
ω on F covers the action γω on A(r)′.

There is a monomorphism

P :Ou(A(r), E) → Ou(A(r)′, PE)
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given by (Pe)(ζ) = a∗ζe. Using (3.4) one checks that Pe is S1 equivariant for all
e ∈ Ou(A(r), E) (which is not surprising, since e itself was equivariant, the actions on
A(r), E being trivial). Conversely, we have

Proposition 3.4. Any S1 equivariant f ∈ Ou(A(r)′, PE) is of form f = Pe, e ∈
Ou(A(r), E).

Proof. Equivariance means

(3.5) β∗
ωf(ζ) = f(γωζ), ω ∈ S1.

As both sides depend continuously on ω ∈ ∆, indeed holomorphically when ω ∈ ∆,
unique continuation implies (3.5) holds for all ω ∈ ∆. In other words, if ζ ′ = γωζ, y =
βωy

′ with ω ∈ ∆ then f(ζ)(y) = f(ζ ′)(y′). This implies that if for A(r) 
 x = a(ζ, y)
we define e(x) = f(ζ)(y) ∈ Ex then e(x) is independent of the choice of (ζ, y) ∈
A(r)′ ×B. Thus we obtain a section e ∈ Ou(A(r), E); clearly Pe = f as needed.

Proof of Theorem 3.2. We shall only deal with principal bundles E, since the part
about Banach bundles will follow upon passing to the associated principal bundle.
Applying the transformation P to various bundles we claim that

(3.6) PHom(π∗E,E) ≈ Hom(Pπ∗E, PE)

as PG–bundles with S1 actions. Indeed, if ζ ∈ A(r)′, any

ϕ ∈ Ou(B, a∗ζHom(π∗E,E)) = PHom(π∗E,E)|ζ
induces, by pointwise post–composition, a

Φ ∈ Hom
(Ou(B, a∗ζπ

∗E), Ou(B, a∗ζE)
)

= Hom(Pπ∗E, PE)|ζ ;
the map ϕ �→ Φ defines an S1 × PG equivariant map from the left hand side of (3.6)
to the right hand side, that covers γ|S1 × idA(r)′ . It follows that this map realizes the
isomorphism in (3.6).

Now π∗E|A = E|A. Hence Pπ∗E|A × {0} = PE|A × {0}, and the identity is
an S1 equivariant homomorphism between these bundles. By Proposition 3.3 there is
therefore an S1 equivariant homomorphism

f ∈ O(
A(r)′,Hom(Pπ∗E, PE)

) ≈ O(
A(r)′, PHom(π∗E,E)

)
.

Although f may not be bounded and uniformly continuous, f1 = f |A1(r1)′ cer-
tainly is. Hence by Proposition 3.4 f1 = Pe1 with some uniform homomorphism
e1:π∗E|A1(r1) → E|A1(r1), and the theorem follows.

Corollary 3.5. Suppose X has a Schauder basis and Hypothesis 1.2 holds with
some µ. Let A(r) ⊂ X be open and pseudoconvex, E → A(r) a V(r)–uniformized
holomorphic Banach bundle. If A1 ⊂⊂ A is open, r1:A1 → (0,∞) continuous, r1 <
r|A1, and A1(r1) pseudoconvex, then

(a) Hq(A1(r1), E) = 0 for q ≥ 1.
(b) Suppose furthermore that A0 ⊂ A1 ⊂⊂ A2 ⊂⊂ A, with A0 compact and

plurisubharmonically convex in A, A2 open; ri:Ai → (0,∞) are continuous with r0 <
µr1|A0, r1 < r|A1, r2 < r|A2. Then O(A2(r2), E) is dense in O(A1(r1), E) over
A0[r0].
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Proof. We shall follow [P1, sections 4-6]. At the price of shrinking A(r) we can
assume π∗E|A(r) and E are uniformly isomorphic, by Theorem 3.2; and also that there
is a locally trivial holomorphic Banach bundle F → A with F ⊕ E|A isomorphic to a
trivial bundle T → A, by [P1, Proposition 4.1]. Then (π∗F ⊕E)|A1(r1) is isomorphic
to the trivial bundle π∗T |A1(r1), so that Hq(A1(r1), E) embeds in Hq(A1(r1), π∗T ).
Since this latter vanishes by [Lm2, Theorem 0.3], (a) follows.

To prove (b) note that F will be uniform for any covering W of A by open
W ⊂⊂ A. If W is a refinement of V then the V(r)–uniformization of E will in-
duce a W(r)–uniformization; moreover, the topologies on O(A0[r0], E) induced by
the two uniformizations will coincide. The trivial bundle T also has a natural W–
uniformization. After some more shrinking the W–uniform bundles F ⊕ E|A and
T will be uniformly isomorphic, and so will be the induced W(r)–uniform bundles
π∗F |A(r) ⊕ E and π∗T |A(r) = T ′. By Theorem 6.1 in [Lm2] O(A2(r2), T ′) is dense
in O(A1(r1), T ′) over A0[r0], which implies (b).

4. Exhaustion. All through this section we shall work with a Banach space
(X, ‖ ‖) that has a Schauder basis e1, e2, . . . , and satisfies Hypothesis 1.2 with some
µ; Ω ⊂ X will be open and pseudoconvex, and E → Ω a U–uniform holomorphic
Banach bundle with fibers isomorphic to the Banach space Z. We shall exhaust Ω by
open sets ΩN of type (B) in a way adapted to U, discuss properties of ΩN , and prove
two approximation results, Theorem 4.5 and Proposition 4.6.

Introduce projections πN :X → X

πN

∞∑
1

λjej =
N∑
1

λjej , λj ∈ C, π0 = 0, π∞ = idX ,

and ρN = idX − πN . We shall assume for all x ∈ X

(4.1) ‖πNx− πMx‖ ≤ ‖πnx− πmx‖, 0 ≤ n ≤ N ≤M ≤ m ≤ ∞.

As pointed out in [Lm2, Section 7], this can be arranged upon equivalently renorming
X.

Definition 4.1. A continuous function α: Ω → (0, 1) is adapted (to U) if
(i) α(x) < distX\Ω(x) for x ∈ Ω;
(ii) the covering {B(x, α(x)):x ∈ Ω} is finer than U;
(iii) − logα is plurisubharmonic; and
(iv) in case Ω is unbounded, lim‖x‖→∞ α(x) = 0.

Denote the family of adapted functions A = AU. It is clear that if α, β ∈ A and
c ∈ (0, 1), then cα, min{α, β} ∈ A. What is not obvious is whether there are adapted
functions at all.

Lemma 4.2. A �= ∅.
Proof. For x ∈ Ω let β(x) = sup{r ∈ (0, 1):B(x, r) ⊂ U with some U ∈ U} and

u(x) = max{− log β(x), − log distX\Ω(x), ‖x‖}.
As u: Ω → R is locally bounded, by [Lm4, Theorem 1.6] there is a continuous plurisub-
harmonic v > u on Ω; then e−v ∈ A.
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Fix c ∈ (0, 1). If α: Ω → (0, 1) is continuous, α < distX\Ω, and N = 0, 1, . . . ,
define

(4.2)

DN 〈α〉 = {ξ ∈ Ω ∩ πNX: (N + 1)α(ξ) > c},
DN 〈α〉 = {ξ ∈ Ω ∩ πNX: (N + 1)α(ξ) ≥ c},
ΩN 〈α〉 = {x ∈ π−1

N DN 〈α〉: ‖ρNx‖ < α(πNx)},
ΩN 〈α〉 = {x ∈ π−1

N DN 〈α〉: ‖ρNx‖ ≤ α(πNx)}.
We could work with any concrete value of c, say c = 1/2, except that in the proof of
Theorem 4.5 it will be convenient to choose a c that matches the geometric situation
considered.

Thus ΩN 〈α〉, ΩN 〈α〉 ⊂ Ω are sets of type (B) with base DN 〈α〉, DN 〈α〉. They
are related to the exhausting sets used in [Lm2, Lm4, P1, P2], but previously α was
taken essentially a constant multiple of distX\Ω. Such α is adapted to very special
coverings only, which is, in a way, the reason why [Lm2, P1, P2] had to settle for
weaker vanishing theorems.

Proposition 4.3. If α ∈ A then
(a) DN 〈α〉 ⊂ πNX and ΩN 〈α〉 ⊂ X are open, bounded, and pseudoconvex;
(b) there is a γ ∈ A such that B(x, γ(x)) ⊂ ΩM 〈α〉 whenever x ∈ ΩN 〈γ〉, M ≥ N

(in particular, ΩN 〈γ〉 ⊂ ΩM 〈α〉);
(c) every x ∈ Ω has a neighborhood contained in all but finitely many ΩM 〈α〉;
(d) if also 4α ∈ A then Y ∩ ΩN 〈α〉 is plurisubharmonically convex in Y ∩ Ω for

all finite dimensional subspaces Y ⊂ X.

Proof. (a) Openness and boundedness are obvious, and so is pseudoconvexity,
since the inequalities in (4.2) describe sublevel sets of functions plurisubharmonic in
Ω ∩ πNX resp. π−1

N DN 〈α〉.
(b) For every z ∈ Ω choose 0 < εz < α(z) so that 2α(z) > α > α(z)/2 hold on

B(z, εz), making sure that log εz is a locally bounded function of z. Plurisubharmonic
domination, [Lm4, Theorem 1.6], implies there is a β ∈ A such that β(z) < εz/2 <
α(z)/2. Thus

2α(z) > α > α(z)/2 on B(z, 2β(z)).

Similarly, there is γ ∈ A, γ < β/4, such that

2β(z) > β > β(z)/2 on B(z, 2γ(z)).

Now suppose N,M, x are as in the proposition. Since x ∈ B(πNx, 2γ(πNx)),

β(x) > β(πNx)/2 > 2γ(πNx).

Therefore, if y ∈ B(x, γ(x)), using also (4.1)

(4.3)
‖x− πMy‖ ≤ ‖x− πMx‖ + ‖πM (x− y)‖

≤ ‖x− πNx‖ + ‖x− y‖ < γ(πNx) + γ(x) < β(x), whence

(4.4) α(πMy) > α(x)/2 > β(x) > γ(πNx) ≥ c/(N + 1) ≥ c/(M + 1),

and so πMy ∈ DM 〈α〉. In view of (4.1), (4.2), (4.3), and (4.4)

‖ρMy‖ ≤ ‖ρNy‖ ≤ ‖ρNx‖ + ‖ρN (x− y)‖ < γ(πNx) + γ(x) < β(x) < α(πMy).
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Thus y ∈ ΩM 〈α〉, which proves the claim.
(c) Let γ be as in (b). A glance at (4.2) shows x ∈ ΩN 〈γ〉 for some N . By (b)

B(x, γ(x)) is then contained in all ΩM 〈α〉, M ≥ N .
(d) The function

u(x) =
max{‖ρNx‖, c/(N + 1)}

α(πNx)
, x ∈ Y ∩ π−1

N Ω,

is plurisubharmonic—since its logarithm is—, and Y ∩ ΩN 〈α〉 = {x:u(x) ≤ 1}. Fur-
ther, set d(x) = min{1,distX\Ω(x)}, x ∈ X, and

(4.5) v(x) = 2
max{‖ρNx‖, c/(N + 1)}

d(x)
, x ∈ Y ∩ Ω.

Since − log d is plurisubharmonic in Ω, see [N], v is plurisubharmonic. When x ∈
ΩN 〈α〉

d(πNx) ≤ d(x) + ‖x− πNx‖ ≤ d(x) + α(πNx) ≤ d(x) + d(πNx)/4

in view of (4.2) and Definition 4.1; hence 2d(x) > d(πNx) > 4α(πNx). Therefore
v < u ≤ 1 on Y ∩ ΩN 〈α〉. Fix ε > 0 so that the plurisubharmonic function w(x) =
v(x) + ε‖x‖, x ∈ Y ∩ Ω, still satisfies

(4.6) w < 1 on Y ∩ ΩN 〈α〉.
We claim that if w(x) ≤ 1 then x is contained in

(4.7) G = {x ∈ Y ∩ Ω ∩ π−1
N Ω : d(x), d(πNx) > c/(N + 1), ‖x‖ < 2/ε}.

Indeed, (4.5) implies d(x) ≥ 2c/(N + 1) and ‖ρNx‖ < d(x)/2, whence d(πNx) ≥
d(x) − ‖πNx− x‖ > d(x)/2 ≥ c/(N + 1); the last inequality in (4.7) is obvious.

The boundary of G relative to Y , denoted ∂G, being compact, min∂G w > 1. One
can therefore choose a convex increasing function χ: R → R such that χ(ξ) = ξ for
ξ ≤ 1 and χ(min∂G w) > max∂G u. The function

u0 =
{

max{u, χ ◦ w} on G
χ ◦ w on Y ∩ Ω\G.

is plurisubharmonic, since χ◦w is plurisubharmonic on Y ∩Ω, u is plurisubharmonic on
G, and χ◦w > u in a neighborhood of ∂G. If u0(x) ≤ 1 then x ∈ G, whence u(x) ≤ 1.
Conversely, if u(x) ≤ 1, i.e. x ∈ Y ∩ ΩN 〈α〉, then w(x) < 1 by (4.6) and u0(x) ≤ 1.
The upshot is that Y ∩ ΩN 〈α〉 = {x ∈ Y ∩ Ω:u0(x) ≤ 1} is plurisubharmonically
convex.

As in [Lm2, Lm4], we shall need another sequence of exhausting sets ΩN 〈α〉, each
of type (B) but now with respect to the projection πN+1; at the same time ΩN 〈α〉
and ΩN 〈α〉 will be comparable. Let
(4.8)

DN 〈α〉 = πN+1X ∩ ΩN 〈α〉, ΩN 〈α〉 = {x ∈ π−1
N+1D

N 〈α〉: ‖ρN+1x‖ < α(πNx)},
D

N 〈α〉 = πN+1X ∩ ΩN 〈α〉, Ω
N 〈α〉 = {x ∈ π−1

N+1D
N 〈α〉: ‖ρN+1x‖ ≤ α(πNx)}.

As above, DN 〈α〉 and ΩN 〈α〉 are pseudoconvex if α ∈ A.
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Proposition 4.4. If α ∈ A then ΩN 〈α〉 ⊂ Ω
N 〈α〉. If 2α ∈ A then ΩN 〈α〉 ⊂

ΩN 〈2α〉.
Proof. Suppose x ∈ ΩN 〈α〉, α ∈ A. To check πN+1x = ξ ∈ D

N 〈α〉, note that
πNξ = πNx ∈ DN 〈α〉 and ‖ρNξ‖ = ‖πN+1ρNx‖ ≤ ‖ρNx‖ ≤ α(πNx). Thus ξ ∈
ΩN 〈α〉, whence ξ ∈ D

N 〈α〉. Further ‖ρN+1x‖ ≤ ‖ρNx‖ ≤ α(πNx); therefore x ∈
Ω

N 〈α〉.
Next suppose x ∈ ΩN 〈α〉, 2α ∈ A. Then by (4.8)

πNx = πNπN+1x ∈ πND
N 〈α〉 ⊂ πNX ∩ πNΩN 〈α〉 = DN 〈α〉.

Since ρNx = ρN+1x+ ρNπN+1x and πN+1x ∈ DN 〈α〉 ⊂ ΩN 〈α〉,
‖ρNx‖ < ‖ρN+1x‖ + α(πNπN+1x) < 2α(πNx),

so that x ∈ ΩN 〈2α〉.
Now we turn to approximation:

Theorem 4.5. There is a γ ∈ A with the following property. Given N = 0, 1, . . . ,
suppose A1 ⊂⊂ Ω∩πNX is (relatively) open, A0 ⊂ A1 is compact and plurisubharmon-
ically convex in Ω ∩ πNX, Ri:Ai → (0, 1) are continuous, R0 < µR1|A0, R1 ≤ γ|A1.
If A1(R1) is pseudoconvex then O(Ω, E) is dense in O(A1(R1), E) over A0[R0].

Proof. Fix α0, α1, α2, α3 ∈ A so that α1 < α2 < α3, α0 < µα1/2, and choose
γ ∈ A, γ < α = α0 as in Proposition 4.3b. Further, choose c of (4.2) so that
A1 ⊂⊂ DN 〈γ〉. For each n = 0, 1, . . . construct a finite Sn ⊂ Dn〈α2〉 and a finite
open covering Vn of Dn〈α2〉 so that the covering Vn(α2|πnX) of Ωn〈α2〉 refines the
covering

Bn = {B(x, α3(x)):x ∈ Sn}.
We arrange that Bn ⊂ Bn+1, and set B =

⋃
n Bn. The U–uniform bundle E in-

herits a B–uniform structure, and for each n the bundle E|Ωn〈α2〉 inherits a Bn–
and a Vn(α2|πnX)–uniform structure. The four uniform structures induce the same
topology on O(C,E) if C ⊂ Ωn〈α2〉.

In the first step we apply Corollary 3.5b, with A2 = DN 〈α1〉, A = DN 〈α2〉, r0 =
R0, r1 = R1, r2 = α1|A2, r = α2|A, to conclude that O(ΩN 〈α1〉, E) is dense in
O(A1(R1), E) over A0[R0].

In the second step we show that for each n ≥ N O(Ωn+1〈α1〉, E) is dense in
O(Ωn〈α1〉, E) over Ωn〈α0〉 ⊃ A0[R0]. We again apply Corollary 3.5b, this time
with the sets of type (B) (with respect to πn+1) Ω

n〈α0〉, Ωn〈α1/2〉, Ωn+1〈α1〉, and
Ωn+1〈α2〉 corresponding to A0[r0], A1(r1), A2(r2), resp. A(r) there. That the as-
sumptions of the corollary are satisfied follows from Propositions 4.3, 4.4. We conclude
O(Ωn+1〈α1〉, E) is dense in O(Ωn〈α1/2〉, E) over Ω

n〈α〉. Since

A0[R0] ⊂ ΩN 〈γ〉 ⊂ Ωn〈α0〉 ⊂ Ω
n〈α0〉 ⊂ Ωn〈α1/2〉 ⊂ Ωn〈α1〉

by Propositions 4.3, 4.4, the claim is proved.
Finally, let eB ∈ O(B,Hom(E,Z)) denote uniformizing trivializations, B ∈ B.

Given f ∈ O(A1(R1), E) and ε > 0, successively choose fj ∈ O(ΩN+j〈α1〉, E) so that

‖eBf0 − eBf‖Z < ε/2 on B ∩A0[R0], for all B ∈ BN , and

‖eBfj+1 − eBfj‖Z < ε/2j+2 on B ∩ ΩN+j〈α0〉, for all B ∈ BN+j ,
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j = 0, 1, . . . . In view of Proposition 4.3c it follows that as j → ∞, eBfj converge
locally uniformly on B, for all B ∈ B. The limit will be of form eBg with some
g ∈ O(Ω, E) that satisfies ‖eBg − eBf‖Z < ε on B ∩A0[R0] for B ∈ BN , as needed.

Proposition 4.6. If γ ∈ A is as in Theorem 4.5, xj ∈ Ω, 0 < aj ≤ γ(xj), and
0 < bj < µaj/2 for j = 0, . . . , p, then O(Ω, E) is dense in O(

⋂p
0 B(xj , aj), E) over⋂p

0 B(xj , bj).

Proof. Assume a0 ≤ a1 ≤ . . . . There is nothing to prove unless
⋂p

0 B(xj , aj/2) �=
∅, so we assume that, too. It follows for each j

B(xj , aj) ⊃ B(x0, a0/2).

By a translation we can arrange x0 = 0. Apply Theorem 4.5 with N = 0, to conclude
O(Ω, E) is dense in O(B(x0, a0/2), E) over B(x0, b0). Since

p⋂
0

B(xj , aj) ⊃ B(x0, a0/2) and
p⋂
0

B(xj , bj) ⊂ B(x0, b0),

the proposition follows.

5. The proof of Theorem 1.3. We start with an arbitrary Banach space
(X, ‖ ‖) and Ω ⊂ X open and connected.

Lemma 5.1. Any locally trivial holomorphic Banach bundle E → Ω can be uni-
formized.

Proof. Let the fibers of E be isomorphic to the Banach space Z. First construct
an open covering V of Ω so that E|V is trivial for all V ∈ V. We can assume each
trivialization eV ∈ O(V,Hom(E,Z)) extends to a neighborhood of V , and also that V
is locally finite. Next for each x ∈ Ω choose a neighborhood Wx that intersects only
finitely many elements of V. Upon shrinking Wx we can arrange that it intersects
only those V1 ∩ V2, V1, V2 ∈ V, that accumulate at x; and then, in view of Corollary
2.5, that

e−1
V1
eV2 |Wx ∈ Ou(V1 ∩ V2 ∩Wx; GL(Z))

for each such V1, V2. Thus the trivializations fV ∩Wx
= eV |Wx, V ∈ V, x ∈ Ω,

uniformize E, as claimed.

Before proving Theorem 1.3, let us quickly review sheaf theoretic notation. Given
a collection U = {Ui: i ∈ I} of open subsets of Ω and p = 0, 1, . . . , we denote
by Cp(U, E) the space of alternating p–cochains f = {fs: s ∈ Ip+1}, each fs ∈
O(

⋂
i∈s Ui, E). We use the convention that O(∅, E) = {0}. The coboundary operator

is δ:Cp → Cp+1, the space of cocycles is denoted Zp(U, E), and the corresponding
Čech cohomology group Hp(U, E). If each Ui is pseudoconvex and each E|Ui trivial,
U is a Leray covering by Theorem 0.3 of [Lm2], whence Hp(U, E) ≈ Hp(

⋃
U, E).

Proof of Theorem 1.3. We will prove by induction. Given q ≥ 1, we assume
Hp(Ω′, E) = 0 for all 1 ≤ p < q and Ω′ ⊂ Ω pseudoconvex; and we will show
Hq(Ω, E) = 0. We can also assume Ω connected, hence all fibers of E isomorphic to
the same Banach space (Z, ‖ ‖Z).

By Lemma 5.1 E is U–uniform for some open covering U of Ω. Choose αi ∈ A =
AU, i = −1, . . . , 4, as follows: α4 = γ as in Theorem 4.5; α2 < α3 < α4; α1 < α2 is
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such that B(x, α1(x)) ⊂ ΩM 〈α2〉 whenever x ∈ ΩN 〈α1〉 and M ≥ N , cf. Proposition
4.3b; α−1 < α0 < µα1/2. As in the proof of Theorem 4.5, for each N further choose a
finite SN ⊂ DN 〈α3〉 and a finite covering VN of DN 〈α3〉 so that VN (α3) refines the
family {B(x, α4(x)):x ∈ SN}, hence also the family U. It follows from Corollary 3.5a
that

(5.1) Hp(ΩN 〈α2〉, E) = 0, for all N and p ≥ 1.

Now B(x, α4(x)), x ∈ SN , cover ΩN 〈α3〉. It can be arranged that more generally,
B(x, αi(x)), x ∈ SN ∩DN 〈αi−1〉, cover ΩN 〈αi−1〉, 0 ≤ i ≤ 4. It can also be arranged
that SN ⊂ SN+1 for all N . Let

S =
⋃
N

SN , Bi = {B(x, αi(x)):x ∈ S},

and denote by
ex ∈ O(

B(x, α4(x)),Hom(E,Z)
)
, x ∈ S,

uniformizing trivializations of E. Clearly

Ω ⊃
⋃

Bi ⊃
⋃
N

ΩN 〈αi−1〉 = Ω, 0 ≤ i ≤ 4.

By our earlier observation Hq(Ω, E) ≈ Hq(Bi, E), so that it will suffice to show
Hq(B4, E) = 0.

Take therefore an f ∈ Zq(B4, E). (5.1) implies f |ΩN 〈α2〉 = δgN with some
gN ∈ Cq−1(B4|ΩN 〈α2〉, E). We claim gN can be chosen so that their components

gNs ∈ O(
ΩN 〈α2〉 ∩

⋂
x∈s

B(x, α4(x)), E
)
, s ∈ Sq

satisfy for all N

(5.2) ‖ex(gN+1s − gNs)‖Z < 2−N , on
⋂
y∈s

B(y, α0(y)), x ∈ s ∈ (SN ∩DN 〈α1〉)q.

Indeed, suppose g0, . . . , gN have already been found, and let the cochain h ∈
Cq−1(B4|ΩN+1〈α2〉, E) solve f |ΩN+1〈α2〉 = δh. Thus δ(h− gN ) = 0, i.e.,

h− gN ∈ Zq−1
(
B4|ΩN 〈α2〉 ∩ ΩN+1〈α2〉, E

)
,

and by the inductive hypothesis h− gN = δk with some

k ∈ Cq−2
(
B4|ΩN 〈α2〉 ∩ ΩN+1〈α2〉, E

)
.

(When q = 1 we take this to mean k is a holomorphic section over ΩN 〈α2〉∩ΩN+1〈α2〉,
and δk means the 0-cochain (k|B(x, α4(x)))x∈S .) If q > 1, apply Proposition 4.6 to
the components kt, t ∈ (SN ∩ DN 〈α1〉)q−1 of k. Since by the choice of α1 these
components are holomorphic on

⋂
y∈tB(y, α1(y)), the proposition gives lt ∈ O(Ω, E)

such that

‖ex(lt − kt)‖Z < 2−N/q on B(x, α4(x)) ∩
⋂
y∈t

B(y, α0(y)), if x ∈ SN .

For all other t ∈ Sq−1 define lt = 0 and let l = (lt) ∈ Cq−2(B0, E); then gN+1 = h−δl
satisfies (5.2). If q = 1 then k is holomorphic on ΩN 〈α1〉, and now Theorem 4.5 gives



82 l. lempert

l ∈ O(Ω, E) such that

‖ex(l − k)‖Z < 2−N on B(x, α4(x)) ∩ ΩN 〈α0〉, if x ∈ SN .

Again, gN+1 = h− δl will satisfy (5.2).
Now (5.2) implies that for each s ∈ Sq, as N → ∞

gNs

∣∣ ⋂
y∈s

B(y, α0(y)) → gs ∈ O( ⋂
y∈s

B(y, α0(y)), E
)
;

clearly g = (gs) ∈ Cq−1(B0, E) satisfies δg = f |B0. Hence the image of f in
Hq(B0, E) is zero. On the other hand, refinement B0 → B4 induces an isomor-
phism in cohomology, which means that the class of f in Hq(B4, E) is already zero.
Since f was arbitrary, 0 = Hq(B4, E) ≈ Hq(Ω, E), q.e.d.

6. The proof of Theorem 1.4. We start by proving a general result on plurisub-
harmonic domination. Recall the following terminology from [Lm4]. We say that
plurisubharmonic domination is possible in a complex manifold M if for any u:M → R

that is locally bounded above there is a plurisubharmonic v:M → R such that u ≤ v.
If one can find a Banach space Z and a holomorphic f :M → Z so that u ≤ ‖f‖Z , we
say in M holomorphic domination is possible.

Lemma 6.1. Let Y be a separable Banach space, Ω ⊂ Y open, P a complex
manifold, and π:P → Ω a holomorphic map. Suppose u:P → R is such that for
each x ∈ Ω there are a neighborhood ω ⊂ Ω and a plurisubharmonic vω:π−1ω → R

such that vω ≥ u|π−1ω. If in Ω plurisubharmonic domination is possible then there
is a plurisubharmonic v:P → R such that v ≥ u. If in Ω holomorphic domination is
possible and the vω are locally Lipschitz then v can also be chosen locally Lipschitz.

Proof. We shall follow the proof of [Lm4, Theorem 1.4] that constructs semineg-
ative metrics on vector bundles. Cover Ω by countably many balls of form

ωj = {x ∈ X: rj − ‖x− aj‖ > 0}, j = 0, 1, . . . ,

so that on π−1ωj plurisubharmonic vj dominate u. Define χ0(x) = r0 − ‖x− a0‖ and

χj(x) = min{rj − ‖x− aj‖, 1
j
− ri + ‖x− ai‖; i < j}, j ≥ 1.

Then the sets ω′
j = {x ∈ Ω:χj(x) > 0} ⊂ ωj form a locally finite covering of Ω. With

z ∈ P set

(6.1) v(z) = sup{vj(z) + logχj(πz) : ω′
j 
 πz},

which we can also write
v = sup

j
(vj + π∗ logχj),

with the understanding that vj + π∗ logχj is extended from π−1ω′
j to P by −∞.

According to [Lm4, Proposition 5.2], valid in an arbitrary separable Banach space,
given x ∈ ω′

j , there is a Lipschitz continuous, plurisubharmonic ϕj : Ω → R such that
ϕj +logχj is plurisubharmonic in a neighborhood of x. The sup in (6.1) being locally
finite, for each x ∈ Ω we find a neighborhood G ⊂ Ω and a Lipschitz continuous,
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plurisubharmonic ϕG: Ω → R such that

(6.2) v + π∗ϕG = sup
j
{vj + π∗(ϕG + logχj)} ≥ u

is plurisubharmonic in π−1G: simply take ϕG =
∑

ω′
j	x ϕj + const. Since Ω is para-

compact, and by Lindelöf’s theorem, we can assume the sets G form a countable,
locally finite covering of Ω. In this situation [Lm4, Lemma 5.1] provides a ψ: Ω → R

such that ψ − ϕG is plurisubharmonic in G, for all G. Moreover, ψ can be chosen to
dominate the function ϕ(x) = supG	x ϕG(x), which makes ψ ≥ ϕG on G. It follows
that

v = v + π∗ψ = (v + π∗ϕG) + π∗(ψ − ϕG)

is plurisubharmonic and ≥ u, cf. (6.2).
If in Ω holomorphic domination is possible and the vj are locally Lipschitz, then

[Lm4, Lemma 5.1] provides a locally Lipschitz ψ, and v is also locally Lipschitz; hence
so will be v.

Proof of Theorem 1.4. First we show that in M plurisubharmonic domination
is possible and H1(M,E) = 0 for all locally trivial holomorphic Banach bundles
E → M . Let M be biholomorphic to a pseudoconvex open Ω in a Banach space
Y . Thus Y is isomorphic to TyΩ, y ∈ Ω, which is isomorphic to TxM, x ∈ M ,
which in turn is complemented in TxX ≈ X. The upshot is that Y is isomorphic
to a complemented subspace of X. Let ι ∈ Hom(Y,X) and ρ ∈ Hom(X,Y ) satisfy
ρι = idY . We shall verify plurisubharmonic domination in Ω. Take a u: Ω → R that
is locally bounded above. Then ρ∗u: ρ−1Ω → R is also such, hence by [Lm4, Theorem
1.6] there is a plurisubharmonic v ≥ ρ∗u in ρ−1Ω, and ι∗v will then dominate u. To
show cohomology vanishing, we prove H1(Ω, F ) = 0 for all locally trivial holomorphic
Banach bundles F → Ω. Pull back by ρ and ι induce morphisms

H1(Ω, F )
ρ∗
→ H1(ρ−1Ω, ρ∗F ) ι∗→ H1(Ω, F )

such that ι∗ρ∗ = id. Since the group in the middle vanishes by Theorem 1.3, so does
H1(Ω, F ).

Second, consider the bundles τ = TM, θ = TX|M , and ν = θ/τ , all three locally
trivial. We claim there is a locally trivial holomorphic Banach bundle ν ⊂ θ such that
ν ⊕ τ = θ. Indeed, the exact sequence 0 → τ → θ → ν → 0 induces

0 → Hom(ν, τ) → Hom(ν, θ) → Hom(ν, ν) → 0,

also exact since τx ⊂ θx is complemented for all x ∈M . In the associated cohomology
sequence

H0(M,Hom(ν, θ)) → H0(M,Hom(ν, ν)) → H1(M,Hom(ν, τ)) = 0

there will be an f ∈ H0(M,Hom(ν, θ)) that projects on id ∈ H0(M,Hom(ν, ν)).
Thus f(ν) = ν ⊂ θ will be complementary to τ . Also ν ≈ ν.

Third we construct a holomorphic map a: ν → X and a neighborhood W ⊂ ν of
the zero section, that we identify with M , so that a maps W biholomorphically on an
open subset of X. Further, a|M = idM . Let us introduce the following notation. If
Z is a Banach space and z ∈ Z, there is a natural isomorphism between TzZ and Z;
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we shall denote by ζ̃ ∈ Z the vector corresponding to ζ ∈ TzZ. Thus ζ is the velocity
vector of the curve r(t) = z + tζ̃ at t = 0 ∈ R. We now define

a(ξ) = x+ ξ̃, x ∈M, ξ ∈ νx ⊂ TxX.

One computes that the differential of a at x ∈ M is an isomorphism; by the implicit
function theorem x has an open neighborhood U ⊂ ν that a maps biholomorphically
on another open neighborhood of x. Let U be a locally finite covering of M consisting
of such neighborhoods U ⊂ ν. Let V be another locally finite covering of M by open
sets V ⊂ ν such that the closure of each V is contained in some U ∈ U. Finally,
for each x ∈ M find an open neighborhood Wx ⊂ ν so that (1) if x ∈ V ∈ V then
Wx, a(Wx) ⊂ V ; (2) if x ∈ U ∈ U then Wx ⊂ U ; (3) if a(Wx) ∩ V �= ∅, V ∈ V, then
x ∈ V . Since sufficiently small neighborhoods of x intersect only finitely many U and
V , such Wx can be found. We claim a is biholomorphic on W =

⋃
x∈M Wx.

It will suffice to show a is biholomorphic on Wx ∪Wy, x, y ∈M . This is obvious
if a(Wx) ∩ a(Wy) = ∅. Otherwise let x ∈ V ∈ V; then Wx, a(Wx) ⊂ V by (1), and
so a(Wy) ∩ V �= ∅. Hence y ∈ V by (3). Let V ⊂ U ∈ U; (2) implies Wy ⊂ U , thus
Wx, Wy ⊂ U . Since a was biholomorphic on U , the claim is proved. Also note that
a(W ) =

⋃
x a(Wx) ⊂ X is open.

To conclude, recall that a continuous metric on the bundle π: ν →M is a contin-
uous m: ν → [0,∞) that restricts on each fiber νx to a norm inducing the topology of
the fiber. It is easy to construct a continuous metric m so that {ξ ∈ ν:m(ξ) < 1} is
contained in W , and its image under a is contained in O. By [Lm4, Theorem 1.4] there
is a plurisubharmonic metric p: ν → [0,∞) with m ≤ p; let P = {ξ ∈ ν: p(ξ) < 1}.
Thus a maps P biholomorphically on an open Q ⊂ O. All that remains is to show Q
is pseudoconvex. For x ∈ M choose a neighborhood ω ⊂ M that is biholomorphic to
a pseudoconvex open subset of Y ; if ω is small enough then ν|ω is trivial. It follows
that π−1ω is biholomorphic to a pseudoconvex open subset of X, and so is P ∩ π−1ω.
Therefore plurisubharmonic domination is possible in P ∩ π−1ω, and by Lemma 6.1,
also in P . This, in turn, implies plurisubharmonic domination in Q, whence Q is
indeed pseudoconvex.

It would be very interesting to investigate what remains true in Theorem 1.4
without the assumption that M is split. We propose the following problem. Let X
be a Banach space that one can subject to geometrical conditions, such as existence
of a Schauder or unconditional basis. If O ⊂ X is open and M ⊂ O a closed complex
submanifold, biholomorphic to a pseudoconvex open subset of some Banach space,
does it follow that M has a pseudoconvex neighborhood ⊂ O? The answer is not
known even if M is a pseudoconvex open subset of a linear subspace Y ⊂ X.
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