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Abstract. We prove a functional limit theorem for Markov chains that, in each step, move up or down by a possibly state dependent
constant with probability 1/2, respectively. The theorem entails that the law of every one-dimensional regular continuous strong
Markov process in natural scale can be approximated with such Markov chains arbitrarily well. The functional limit theorem applies,
in particular, to Markov processes that cannot be characterized as solutions to stochastic differential equations. Our results allow to
practically approximate such processes with irregular behavior; we illustrate this with Markov processes exhibiting sticky features,
e.g., sticky Brownian motion and a Brownian motion slowed down on the Cantor set.

Résumé. Nous prouvons un théorème limite fonctionnelle pour les chaînes de Markov qui, à chaque étape, montent ou descendent avec
probabilité 1/2 d’une constante dépendante de l’état. Le théorème implique que la loi de chaque processus de Markov uni-dimensionel,
fort, continu, régulier et à l’échelle naturelle peut être approximée par de telles chaînes de Markov avec précision quelconque. Le
théorème limite fonctionnelle s’applique en particulier aux processus de Markov qui ne peuvent pas être caractérisés comme solutions
d’une équation différentielle stochastique. Notamment nos résultats permettent d’approximer de tels processus avec un comporte-
ment irrégulier; nous illustrons cela avec des processus de Markov «collants», par exemple, le mouvement brownien «collant» et un
mouvement brownien ralenti sur l’ensemble de Cantor.
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Introduction

Let (ξk)k∈N be an iid sequence of random variables, on a probability space with a measure P , satisfying P(ξ1 = ±1) = 1
2 .

Given y ∈R, h ∈ (0,∞) and a function ah :R→ R, we denote by (Xh
kh)k∈N0 the Markov chain defined by

Xh
0 = y and Xh

(k+1)h = Xh
kh + ah

(
Xh

kh

)
ξk+1, for k ∈N0. (1)

We choose as the Markov chain’s index set the set of non-negative multiples of h because we interpret h as the length of
a time step. We extend (Xh

kh)k∈N0 to a continuous-time process by linear interpolation, i.e., we set

Xh
t = Xh�t/h�h + (

t/h − �t/h�)(Xh
(�t/h�+1)h − Xh�t/h�h

)
, t ∈ [0,∞). (2)

Let h ∈ (0,∞) and let (ah)h∈(0,h) be a family of real functions and (Xh)h∈(0,h) the associated family of extended Markov

chains defined as in (2). A fundamental problem of probability theory is to find conditions on (Xh)h∈(0,h) such that the

laws of the processes Xh, h ∈ (0, h), converge in some sense as h → 0. In this article we provide an asymptotic condition
on the family (ah)h∈(0,h) guaranteeing that the laws of the processes Xh, h ∈ (0, h), converge as h → 0 to the law of
a one-dimensional regular continuous strong Markov process (in the sense of Section VII.3 in [39] or Section V.7 in
[40]). In what follows we use the term general diffusions for the latter class of processes. Recall that a general diffusion
Y = (Yt )t∈[0,∞) has a state space that is an open, half-open or closed interval I ⊆ R. We denote by I ◦ = (l, r) the interior

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1066
mailto:s.ankirchner@uni-jena.de
mailto:thomas.kruse@math.uni-giessen.de
mailto:mikhail.urusov@uni-due.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


A functional limit theorem for coin tossing Markov chains 2997

of I , where −∞ ≤ l < r ≤ ∞. Moreover, the law of any general diffusion is uniquely characterized by its speed measure
m on I , its scale function and its boundary behavior. Throughout the introduction we assume that Y is in natural scale
and that every accessible boundary point is absorbing (see the beginning of Section 1 and Section 6 on how to incorporate
diffusions in general scale and with reflecting boundary points). This setting covers, in particular, solutions of driftless
SDEs with discontinuous and fast growing diffusion coefficient (see Section 2) and also diffusions with sticky features
(see Section 7), which cannot be modeled by SDEs whenever a sticky point is located in the interior of the state space.

Our main result, Theorem 1.1, shows that if a family of functions (ah)h∈(0,h) satisfies for all y ∈ I ◦, h ∈ (0, h) the
equation

1

2

∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) = h, (3)

with a precision of order o(h) uniformly in y over compact subsets of I ◦ (see Condition (A) below for a precise state-
ment), then the associated family (Xh)h∈(0,h) converges in distribution, as h → 0, to the general diffusion Y with speed
measure m. We show that for every general diffusion a family of functions (ah)h∈(0,h) satisfying (3) exists implying that
every general diffusion can be approximated by a Markov chain of the form (1). Equation (3) dictates how to compute
the functions (ah)h∈(0,h) and therefore paves the way to approximate the distribution of a general diffusion numerically
(see, e.g., Section 8).

The central idea in the derivation of Equation (3) is to embed for every h ∈ (0, h) the Markov chain (Xh
kh)k∈N0 into Y

with a sequence of stopping times. To explain this idea assume for the moment that the state space is I = R. For every
h ∈ (0, h) let τh

0 = 0 and then recursively define τh
k+1 as the first time Y exits the interval (Yτh

k
− ah(Yτh

k
), Yτh

k
+ ah(Yτh

k
))

after τh
k . It follows that the discrete-time process (Yτh

k
)k∈N0 has the same law as the Markov chain (Xh

kh)k∈N0 . Instead of
controlling now directly the spatial errors |Yτh

k
− Ykh|, we first analyze the temporal errors |τh

k − kh|, k ∈ N0. We show
that for every y ∈ R, a ∈ [0,∞) the expected time it takes Y started in y to leave the interval (y − a, y + a) is equal
to 1

2

∫
(y−a,y+a)

(a − |u − y|)m(du). In particular, if ah satisfies (3) for all y ∈ I , it follows that for all k ∈ N0 the time

lag τh
k+1 − τh

k between two consecutive stopping times is in expectation equal to h. In this case we refer to (Xh
kh)k∈N0 as

Embeddable Markov Chain with Expected time Lag h (we write shortly (Xh
kh)k∈N0 ∈ EMCEL(h)).

For some diffusions Y one can construct EMCEL approximations explicitly (see, e.g., Section 7). For cases where (3)
cannot be solved in closed form, we perform a perturbation analysis and show that it suffices to find for all h ∈ (0, h),
y ∈ I ◦ a number ah(y) satisfying (3) with an error of order o(h) uniformly in y belonging to compact subsets of I ◦. We
prove that for the associated stopping times (τh

k )k∈N0 the temporal errors |τh
k − kh|, k ∈ N0, converge to 0 as h → 0 in

every Lα-space, α ∈ [1,∞). This ultimately implies convergence of (Xh)h∈(0,h) to Y in distribution as h → 0.
To illustrate the benefit of the perturbation analysis, we construct in Section 8 approximations for a Brownian motion

slowed down on the Cantor set (see Figure 3). Moreover, we note that our main result, Theorem 1.1, is not only appli-
cable to perturbations of the EMCEL approximation but can also be used to derive new convergence results for other
approximation methods such as, e.g., weak Euler schemes (see Corollary 2.3).

The idea to use embeddings in order to prove a functional limit theorem goes back to Skorokhod. In the seminal book
[42] scaled random walks are embedded into Brownian motion in order to prove Donsker’s invariance principle. In [5]
we embed Markov chains into the solution process of an SDE and prove a functional limit theorem where the limiting
law is that of the SDE. In [42] and [5] the approximating Markov chains have to be embeddable with a sequence of
stopping times (τk)k∈N0 such that the expected distance between two consecutive stopping times is exactly equal to h, the
time discretization parameter. In contrast, in the present article we require that the expected distance between consecutive
embedding stopping times is only approximately equal to h. We show that for the convergence of the laws it is sufficient
to require that the difference of the expected distance and h is of the order o(h). Moreover, compared to [5], we allow for
a larger class of limiting distributions. Indeed, our setting includes processes that cannot be characterized as the solution
of an SDE, e.g., diffusions with sticky points.

There are further articles in the literature using random time grids to approximate a Markov process, under the addi-
tional assumption that it solves a one-dimensional SDE. In [17] the authors first fix a finite grid in the state space of the
diffusion. Then they construct a Bernoulli random walk on this grid that can be embedded into the diffusion. The authors
determine the expected time for attaining one of the neighboring points by solving a PDE.

[37] describes a similar approximation method for the Cox-Ingersoll-Ross (CIR) process. Also here the authors first
fix a grid on [0,∞) and then construct a random walk on the grid that can be embedded into the CIR process. In contrast
to [17], the authors in [37] compute the distributions of the embedding stopping times (and not only their expected value)
by solving a parabolic PDE. In the numerical implementation of the scheme the authors then draw the random time
increments from these distributions and thereby obtain a scheme that is exact along a sequence of stopping times. Note
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that in contrast to [17] and [37], in our approach the space grid is not fixed a priori. Instead, we approximately fix the
expected time lag between the consecutive embedding stopping times.

Yet a further scheme that uses a random time partition to approximate a diffusion Y with discontinuous coefficients is
suggested in [36]. In contrast to our approach the distribution of the time increments is fixed there. More precisely, the
authors of [36] use the fact that the distribution of Y sampled at an independent exponential random time is given by the
resolvent of the process. Consequently, if it is possible to generate random variables distributed according to the resolvent
kernel, one obtains an exact simulation of Y at an exponentially distributed time. Iterating this procedure and letting the
parameter of the exponential distribution go to infinity provides an approximation of Y .

We remark that embeddings along random time grids have been recently employed in [20] and [21] in order to obtain
convergence rates of (F)BSDE approximations driven by Bernoulli increments.

Recall that, while approximating solutions of SDEs on deterministic time grids usually employs Euler-type schemes
(1) with Gaussian increments (ξk)k∈N, we use Bernoulli increments in our paper. In this connection, we would like to
mention that, from the numerical perspective, convergence results along equidistant time grids, including approximations
by the weak Euler schemes with Bernoulli increments, can be found, e.g., in Section 14.1 of [32]. From the more theoret-
ical perspective, we refer to Theorem 7.4.1 in [16] and Theorem IX.4.8 in [28], which are some general functional limit
theorems of the Trotter-Kato type for approximating diffusions. A discussion of how to approximate controlled diffusions
by Markov chains with Bernoulli increments can be found in [35]. Another perspective on schemes with Bernoulli incre-
ments is suggested in [11] and [22], where, on certain machines (like field programmable gate arrays), such schemes are
shown to be more efficient for simulation algorithms.

While in our paper a continuous-time Markov process is approximated via (linearly-interpolated) discrete-time Markov
chains, there is an alternative approach, pioneered in [43], where the approximating processes are themselves continuous-
time Markov processes. For a recent account, see [10] and references therein. A generalization of the latter approach for
variable-speed random walks on trees contained in [6] is worth mentioning as well.

The article is organized as follows. In Section 1 we rigorously formulate and discuss the functional limit theorem. In
Section 2 we discuss some of its implications for diffusions that can be described as solution of SDEs. In Sections 3 and
4 we explain, for a given general diffusion, how to embed an approximating coin tossing Markov chain into the diffusion
and prove some properties of the embedding stopping times. Section 5 provides the proof of the functional limit theorem,
where we, in particular, need the material discussed in Sections 3 and 4. The functional limit theorem is shown under
the additional assumption that if a boundary point is attainable, then it is absorbing. In Section 6 we explain how one
can extend the functional limit theorem to general diffusions with reflecting boundary points. In the last two sections
we illustrate our main result with diffusions exhibiting some stickiness. In Section 7 we construct coin tossing Markov
chains approximating sticky Brownian motion, with and without reflection, respectively. In Section 8 we first describe a
Brownian motion that is slowed down on the Cantor set, and secondly we explicitly construct coin tossing Markov chains
that approximate this process arbitrarily well.

1. Approximating general diffusions with Markov chains

Let (�,F, (Ft )t≥0, (Py)y∈I , (Yt )t≥0) be a one-dimensional continuous strong Markov process in the sense of Sec-
tion VII.3 in [39]. We refer to this class of processes as general diffusions in the sequel. We assume that the state space is
an open, half-open or closed interval I ⊆ R. We denote by I ◦ = (l, r) the interior of I , where −∞ ≤ l < r ≤ ∞, and we
set I = [l, r]. Recall that by the definition we have Py[Y0 = y] = 1 for all y ∈ I . We further assume that Y is regular. This
means that for every y ∈ I ◦ and x ∈ I we have that Py[Hx(Y ) < ∞] > 0, where Hx(Y ) = inf{t ≥ 0 : Yt = x}. If there is
no ambiguity, we simply write Hx in place of Hx(Y ). Moreover, for a < b in I we denote by Ha,b = Ha,b(Y ) the first
exit time of Y from (a, b), i.e. Ha,b = Ha ∧ Hb . Without loss of generality we suppose that the diffusion Y is in natural
scale. If Y is not in natural scale, then there exists a strictly increasing continuous function s : I → R, the so-called scale
function, such that s(Yt ), t ≥ 0, is in natural scale. Let m be the speed measure of the Markov process Y (see VII.3.7 and
VII.3.10 in [39]).1 Recall that for all a < b in I ◦ we have

0 < m
([a, b])< ∞. (4)

Finally, we also assume that if a boundary point is accessible, then it is absorbing. We drop this assumption in Section 6,
where we extend our approximation method to Markov processes with reflecting boundaries. The extension works for
both instantaneous and slow reflection.

1There are different conventions concerning the normalization of the speed measure. We follow the convention of [39] and [8] and note that our speed
measure is thus twice as large as the one for example found in [40].
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Let h ∈ (0,∞) and suppose that for every h ∈ (0, h) we are given a measurable function ah : I → [0,∞) such that
ah(l) = ah(r) = 0 and for all y ∈ I ◦ we have y ± ah(y) ∈ I . We refer to each function ah as a scale factor. We next
construct a sequence of Markov chains associated to the family of scale factors (ah)h∈(0,h). To this end we fix a starting
point y ∈ I ◦ of Y . Let (ξk)k∈N be an iid sequence of random variables, on a probability space with a measure P , satisfying
P(ξk = ±1) = 1

2 . We denote by (Xh
kh)k∈N0 the Markov chain defined by

Xh
0 = y and Xh

(k+1)h = Xh
kh + ah

(
Xh

kh

)
ξk+1, for k ∈N0. (5)

We extend (Xh
kh)k∈N0 to a continuous-time process by linear interpolation, i.e., for all t ∈ [0,∞), we set

Xh
t = Xh�t/h�h + (

t/h − �t/h�)(Xh
(�t/h�+1)h − Xh�t/h�h

)
. (6)

To highlight the dependence of Xh = (Xh
t )t∈[0,∞) on the starting point y ∈ I ◦ we also sometimes write Xh,y .

To formulate our main result we need the following condition.

Condition (A). For all compact subsets K of I ◦ it holds that

sup
y∈K

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) − h

∣∣∣∣ ∈ o(h), h → 0. (7)

Theorem 1.1. Assume that Condition (A) is satisfied. Then, for any y ∈ I ◦, the distributions of the processes
(X

h,y
t )t∈[0,∞) under P converge weakly to the distribution of (Yt )t∈[0,∞) under Py , as h → 0; i.e., for every bounded

and continuous functional2 F : C([0,∞),R) →R, it holds that

E
[
F
(
Xh,y

)]→ Ey

[
F(Y )

]
, h → 0. (8)

Remark 1.2. To better explain Condition (A), for every α < β in I , we introduce the Green function Gα,β : [α,β]2 →R

of Y by the formula

Gα,β(u, v) = (β − u ∨ v)(u ∧ v − α)

β − α
, u, v ∈ [α,β]

(recall that Y is in natural scale) and observe that, for all y ∈ [α,β],

Ey

[
Hα,β(Y )

]=
∫

(α,β)

Gα,β(y,u)m(du) (9)

(see, e.g., Section VII.3 in [39]). It follows that, for any y ∈ I ◦ and a > 0 such that y ± a ∈ I , it holds

Ey

[
Hy−a,y+a(Y )

]
=
∫

(y−a,y)

1

2
(u − y + a)m(du) +

∫
{y}

1

2
am(du) +

∫
(y,y+a)

1

2
(y + a − u)m(du)

= 1

2

∫
(y−a,y+a)

(
a − |u − y|)m(du). (10)

Thus, Condition (A) is an analytic condition that is equivalent to requiring that the scale factors (ah)h∈(0,h) satisfy

sup
y∈K

∣∣Ey

[
Hy−ah(y),y+ah(y)(Y )

]− h
∣∣ ∈ o(h), h → 0,

for any compact subset K of I ◦.

2As usual, we equip C([0,∞),R) with the topology of uniform convergence on compact intervals, which is generated, e.g., by the metric

d(x, y) =
∞∑

n=1

2−n
(‖x − y‖C[0,n] ∧ 1

)
, x, y ∈ C

([0,∞),R
)
,

where ‖ · ‖C[0,n] denotes the sup norm in C([0, n],R).
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Remark 1.3. It is worth noting that Condition (A) is, in fact, nearly necessary for weak convergence (8) (see Exam-
ple 2.1).

Remark 1.4. For all y ∈ I ◦, h ∈ (0, h) it holds that∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) =

∫
I

(
ah(y) − |u − y|)+m(du).

This yields an alternative representation of Condition (A) which is occasionally used below.

It is important to note that for every speed measure m there exists a family of scale factors such that Condition (A)
is satisfied and hence every general diffusion Y can be approximated by Markov chains of the form (5). Indeed, for all
y ∈ I ◦, h ∈ (0, h) let âh(l) = âh(r) = 0 and

âh(y) = sup

{
a ≥ 0 : y ± a ∈ I and

1

2

∫
(y−a,y+a)

(
a − |z − y|)m(dz) ≤ h

}
(11)

and denote by (X̂h)h∈(0,h) the associated family of processes defined in (5) and (6). Then the proof of Corollary 1.5 below
shows that for all compact subsets K of I ◦ there exists h0 ∈ (0, h) such that for all y ∈ K , h ∈ (0, h0) it holds that

1

2

∫
(y−âh(y),y+âh(y))

(̂
ah(y) − |z − y|)m(dz) = h.

In particular, the family (̂ah)h∈(0,h) satisfies Condition (A) and we show in Section 3 below that the Markov chain

(X̂h
kh)k∈N0 is embeddable into Y with a sequence of stopping times with expected time lag h. We refer to (X̂h

t )t∈[0,∞),
h ∈ (0, h), as EMCEL approximations and write shortly (X̂h

kh)k∈N0 ∈ EMCEL(h).

Corollary 1.5. For every y ∈ I ◦ the distributions of the EMCEL approximations (X̂
h,y
t )t∈[0,∞) under P converge weakly

to the distribution of (Yt )t∈[0,∞) under Py as h → 0.

Proof. Let K be a compact subset of I ◦. Without loss of generality assume that K = [l0, r0] with l < l0 < r0 < r . Let
a0 = r−r0

2 ∧ l0−l
2 ∧ 1. It follows with dominated convergence that the function

K � y �→ 1

2

∫
I

(
a0 − |u − y|)+m(du) ∈ (0,∞)

is continuous. In particular, it is bounded away from zero, i.e., there exists h0 ∈ (0, h) such that for all y ∈ K it holds that
1
2

∫
I
(a0 − |u − y|)+m(du) ≥ h0. Next observe that for all y ∈ K the function [0, a0] � a �→ 1

2

∫
I
(a − |u − y|)+m(du) ∈

[0,∞) is continuous and strictly increasing. Hence for all y ∈ K , h ∈ (0, h0) the supremum in (11) is a maximum and it
holds that 1

2

∫
(y−âh(y),y+âh(y))

(̂ah(y) − |u − y|)m(du) = h. In particular, Condition (A) is satisfied and the statement of

Corollary 1.5 follows from Theorem 1.1. �

2. Application to SDEs

A particular case of our setting is the case, where Y is a solution to the driftless SDE

dYt = η(Yt ) dWt , (12)

where η : I ◦ →R is a Borel function satisfying the Engelbert-Schmidt conditions

η(x) �= 0 ∀x ∈ I ◦, (13)

η−2 ∈ L1
loc

(
I ◦) (14)

(L1
loc(I

◦) denotes the set of Borel functions locally integrable on I ◦). Under (13)–(14) SDE (12) has a unique in law
weak solution (see [15] or Theorem 5.5.7 in [30]). This means that there exists a pair of processes (Y,W) on a filtered
probability space (�,F, (Ft ),P ), with (Ft ) satisfying the usual conditions, such that W is an (Ft )-Brownian motion and
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(Y,W) satisfies SDE (12). The process Y possibly reaches the endpoints l or r in finite time. By convention we force Y

to stay in l (resp., r) in this case. This can be enforced in (12) by extending η to I with η(l) = η(r) = 0. In this example Y

is a regular continuous strong Markov process with the state space being the interval with the endpoints l and r (whether
l and r belong to the state space is determined by the behavior of η near the boundaries). Moreover, Y is in natural scale,
and its speed measure on I ◦ is given by the formula

m(dx) = 2

η2(x)
dx.

In this situation a change of variables shows that it holds for all h ∈ (0, h), y ∈ I ◦ that∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) = 2ah(y)2

∫ 1

−1

1 − |z|
η2(y + ah(y)z)

dz. (15)

Condition (A) hence becomes that for every compact subset K of I ◦ it holds that

lim
h→0

(
sup
y∈K

∣∣∣∣ah(y)2

h

∫ 1

−1

1 − |z|
η2(y + ah(y)z)

dz − 1

∣∣∣∣)= 0. (16)

Example 2.1 (Brownian motion). In the special case where Y = W is a Brownian motion (i.e., I = R, η(x) ≡ 1),
Condition (A) requires that for all compact sets K ⊂ R it holds that supy∈K | ah(y)2

h
− 1| → 0 as h → 0. In particular,

Condition (A) is satisfied for the choice ah(y) = √
h, h ∈ (0,∞), y ∈ R, and we recover from Theorem 1.1 Donsker’s

functional limit theorem for the scaled simple random walk.
Moreover, in the case of a Brownian motion it is natural to restrict ourselves to space-homogeneous (i.e., constant)

scale factors ah(y) ≡ ah, h ∈ (0, h), so that Condition (A) takes the form limh→0
a2
h

h
= 1. It is straightforward to show that

the latter condition is also necessary for the weak convergence of approximations (5)–(6) driven by space-homogeneous
scale factors to the Brownian motion.

Example 2.2 (Geometric Brownian motion). Let σ > 0 and assume that η satisfies for all x ∈ (0,∞) that η(x) = σx.
Then the solution Y of (12) with positive initial value Y0 = y ∈ (0,∞) is a geometric Brownian motion. Its state space is
I = (0,∞) and both boundary points are inaccessible. Note that for all y ∈ (0,∞), a ∈ (0, y) it holds that∫ 1

−1

1 − |z|
η2(y + az)

dz = 1

(σy)2

∫ 1

−1

1 − |z|
(1 + az/y)2

dz = − 1

(σa)2
log

(
1 − a2

y2

)
.

Hence, Condition (A) requires that for all compact sets K ⊂ (0,∞) it holds that

lim
h→0

(
sup
y∈K

∣∣∣∣ 1

hσ 2
log

(
1 − ah(y)2

y2

)
+ 1

∣∣∣∣)= 0. (17)

To obtain the EMCEL approximation of Y we solve for all y ∈ (0,∞), h ∈ (0,∞) the equation 1
hσ 2 log(1 − a2

y2 ) + 1 = 0

in a and obtain âh(y) = y
√

1 − e−σ 2h. Note that also the usual choice ah(y) = √
hσy, y ∈ (0,∞), h ∈ (0,1/σ 2), which

corresponds to the weak Euler scheme for geometric Brownian motion, satisfies (17).

Convergence of the weak Euler scheme

Throughout this subsection we assume that I = R. A common method to approximate solutions of SDEs is the Euler
scheme. For equations of the form (12) with initial condition Y0 = y the Euler scheme (X

Eu,h
kh )k∈N0 with time step

h ∈ (0,∞) is given by

X
Eu,h
0 = y and X

Eu,h
(k+1)h = X

Eu,h
kh + η

(
X

Eu,h
kh

)
(W(k+1)h − Wkh), for k ∈N0.

Weak Euler schemes are variations of the Euler scheme, where the normal increments W(k+1)h−Wkh, k ∈ N0, are replaced
by an iid sequence of centered random variables with variance h. Therefore, with the choice ah(y) = √

hη(y), h ∈ (0,∞),
y ∈ R, the Markov chain (Xh

kh)k∈N0 defined in (5) represents a weak Euler scheme with Rademacher increments.



3002 S. Ankirchner, T. Kruse and M. Urusov

In this subsection we show how Theorem 1.1 can be used to derive new convergence results for weak Euler schemes.
To this end let the setting of Section 2 be given and let ah(y) = √

hη(y), h ∈ (0,∞), y ∈ R. Then it follows from (16)
that Condition (A) is equivalent to assuming that for every compact subset K ⊂R we have

sup
y∈K

∣∣∣∣∫ 1

−1

η2(y)(1 − |z|)
η2(y + √

hη(y)z)
dz − 1

∣∣∣∣= sup
y∈K

∣∣∣∣∫ 1

−1

η2(y) − η2(y + √
hη(y)z)

η2(y + √
hη(y)z)

(
1 − |z|)dz

∣∣∣∣→ 0, (18)

as h → 0.
Suppose that η is continuous, let K ⊂ R be compact and let ε > 0. Then η is bounded on K and since every continuous

function is uniformly continuous on compact sets, we obtain that there exists h0 ∈ (0,∞) such that for all h ∈ (0, h0],
y ∈ K , z ∈ [−1,1] it holds that∣∣η(y) − η

(
y + √

hη(y)z
)∣∣≤ ε.

By (13) and the continuity of η the function η2 is strictly bounded away from 0 on every compact subset of R and hence
we obtain that there exists C ∈ [0,∞) such that for all h ∈ (0, h0] it holds that

sup
y∈K

∣∣∣∣∫ 1

−1

η2(y) − η2(y + √
hη(y)z)

η2(y + √
hη(y)z)

(
1 − |z|)dz

∣∣∣∣≤ Cε.

It follows with (18) that Condition (A) is satisfied. Therefore we obtain the following Corollary of Theorem 1.1.

Corollary 2.3. Assume the setting of Section 2 with I = R and that η is continuous. Let ah : R → R satisfy ah(y) =√
hη(y) for all h ∈ (0,∞), y ∈ R. Then for all y ∈ R the distributions of the processes (X

h,y
t )t∈[0,∞) under P converge

weakly to the distribution of (Yt )t∈[0,∞) under Py , as h → 0.

Remark 2.4. Corollary 2.3 complements convergence results for the Euler scheme for example obtained in [45] and [25].
Theorem 2.2 in [45] shows weak convergence of the Euler scheme if η has at most linear growth and is discontinuous
on a set of Lebesgue measure zero. Theorem 2.3 in [25] establishes almost sure convergence of the Euler scheme if η

is locally Lipschitz continuous. Moreover, [25] allows for a multidimensional setting and a drift coefficient. In contrast,
Corollary 2.3 above applies to the weak Euler scheme and does not require linear growth or local Lipschitz continuity
of η.

Remark 2.5. As stated in Corollary 1.5, EMCEL approximations can be constructed for every general diffusion. In
particular, they can be used in cases where η is not continuous and where (weak) Euler schemes do not converge (see,
e.g., Section 5.4 in [4]). In Sections 7 and 8 we consider further irregular examples.

3. Embedding the chains into the Markov process

In this section we construct the embedding stopping times. Throughout the section we assume the setting of Section 1.
We need to introduce an auxiliary subset of I ◦. To this end, if l > −∞, we define, for all h ∈ (0, h),

lh := l + inf

{
a ∈

(
0,

r − l

2

]
: a < ∞ and

1

2

∫
(l,l+2a)

(
a − ∣∣u − (l + a)

∣∣)m(du) ≥ h

}
,

where we use the convention inf∅ = ∞. If l = −∞, we set lh = −∞. Similarly, if r < ∞, then we define, for all
h ∈ (0, h),

rh := r − inf

{
a ∈

(
0,

r − l

2

]
: a < ∞ and

1

2

∫
(r−2a,r)

(
a − ∣∣u − (r − a)

∣∣)m(du) ≥ h

}
.

If r = ∞, we set rh = ∞. It is worth noting that l is inaccessible if and only if lh = l for all h ∈ (0, h); and, similarly, r is
inaccessible if and only if rh = r for all h ∈ (0, h). This is verified in Remark 4.2 below. The auxiliary subset is defined
by

Ih = (lh, rh) ∪ {y ∈ I ◦ : y ± ah(y) ∈ I ◦}.
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Now we have everything at hand to start constructing a sequence of embedding stopping times. Suppose Y starts at a
point y ∈ I ◦ and fix h ∈ (0, h). Set τh

0 = 0. Let σh
1 = Hy−ah(y),y+ah(y). Recall that we have

Ey

[
σh

1

]= 1

2

∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du)

(see Remark 1.2). We now define τh
1 by distinguishing two cases.

Case 1: y ∈ Ih (i.e., y ∈ (lh, rh) or y ± ah(y) ∈ I ◦). In this case we set τh
1 = σh

1 .

Case 2: y /∈ Ih (i.e., y /∈ (lh, rh) and (y + ah(y) = r or y − ah(y) = l)). In this case we deterministically extend σh
1 so as

to make it have expectation h. Observe that by the definition of lh and rh we have in this case Ey[σh
1 ] ≤ h. Moreover,

we can assume in this case that it must hold that Py(YσN
1

∈ {l, r}) = 1
2 (only in the case max{|l|, |r|} < ∞, y = l+r

2 and
ah(y) = r−l

2 this probability is 1, but we exclude this case by considering a sufficiently small h, so that ah(
l+r

2 ) < r−l
2 ;

notice that Condition (A) implies that, for any y ∈ I ◦, limh→0 ah(y) = 0). We define τh
1 by

τh
1 = σh

1 + 2
(
h − E

[
σh

1

])
1{l,r}(Yσh

1
).

Observe that the definition implies Ey[τh
1 ] = h and that the three random variables Yτh

1
, Yσh

1
and X

h,y
h have all the same

law.
We can proceed in a similar way to define the subsequent stopping times. Let k ∈ N. Suppose that we have already

constructed τh
k . We first define σh

k+1 = inf{t ≥ τh
k : |Yt − Yτh

k
| = ah(Yτh

k
)}. On the event {Yτh

k
∈ Ih} we set τh

k+1 = σh
k+1.

On the event {Yτh
k

/∈ Ih} we extend σh
k+1 as follows. Note that Yτh

k
takes only finitely many values. Let v ∈ I \ (lh, rh)

be a possible value of Yτh
k

such that v − ah(v) = l or v + ah(v) = r . Consider the event A = {Yτh
k

= v}. Observe that

c := Ey[σh
k+1 − τh

k |A] ≤ h. We extend σh
k+1 on the event A by setting

τh
k+1 = σh

k+1 + 2(h − c)1{l,r}(Yσh
k+1

) (19)

(notice that Py(Yσh
k+1

∈ {l, r}|A) = 1
2 ). This implies that Ey[τh

k+1 − τh
k |Fτh

k
] = h on the event {Yτh

k
/∈ Ih}. Moreover, the

processes (Yτh
j
)j∈{0,...,k+1} and (X

h,y
jh )j∈{0,...,k+1} have the same law. To sum up, we have the following.

Proposition 3.1. For all h ∈ (0, h) and y ∈ I ◦ the sequence of stopping times (τh
k )k∈N0 satisfies

1. LawPy (Yτh
k
; k ∈N0) = LawP (X

h,y
kh ; k ∈N0).

2. For all k ∈ N0 we have

Ey

(
τh
k+1 − τh

k |Fτh
k

)
=
⎧⎨⎩

1
2

∫
(Y

τh
k
−ah(Y

τh
k
),Y

τh
k
+ah(Y

τh
k
))
(ah(Yτh

k
) − |u − Yτh

k
|)m(du), if Yτh

k
∈ Ih,

h, if Yτh
k

/∈ Ih.

4. Higher moment estimates for exit times

In this section we provide some moment estimates for the exit times of Y from intervals. We use the estimates in the
next section to prove convergence in probability of supk∈{1,...,�T/h�} |τh

k − kh| to zero, where (τh
k )k∈N0 is the sequence of

embedding stopping times from Section 3. This is a crucial ingredient in the proof of our main result, Theorem 1.1.
We introduce the function q : I ◦ × I → [0,∞] defined by

q(y, x) = 1

2
m
({y})|x − y| +

∫ x

y

m
(
(y,u)

)
du, (20)

where for u < y we set m((y,u)) := −m((u, y)). Notice that, for y ∈ I ◦, the function q(y, ·) is decreasing on [l, y] and
increasing on [y, r]. For our analysis the key property of q is that it makes the process q(y,Yt ) − (t ∧ Hl,r ), t ∈ [0,∞),
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a Py -local martingale (see Lemma 4.1 below). Moreover, q plays a central role in Feller’s test for explosions: for any
y ∈ I ◦,

l is accessible (i.e., l ∈ I ) ⇐⇒ q(y, l) < ∞, (21)

r is accessible (i.e., r ∈ I ) ⇐⇒ q(y, r) < ∞ (22)

(see, e.g., Lemma 2.1 in [2] or Theorem 3.3 in [3]). Consequently, q is finite on I ◦ × I . Notice that for all y, z ∈ I ◦ and
x ∈ I we have

q(z, x) = q(y, x) − q(y, z) − ∂0q

∂x
(y, z)(x − z), (23)

where ∂0q
∂x

(y, x) = 1
2 (

∂+q
∂x

+ ∂−q
∂x

)(y, x).
The following lemma identifies a local martingale associated to Y .

Lemma 4.1. Let y ∈ I ◦. Then the process q(y,Yt ) − (t ∧ Hl,r ), t ∈ [0,∞), is a Py -local martingale.

Proof. Let a, b ∈ I with a < y < b. We first show that q(y,Yt∧Ha,b
)− t ∧Ha,b , t ∈ [0,∞), is a Py -martingale. It follows

from (9) that

EyHa,b = 1

b − a

[∫
(a,y)

(b − y)(x − a)m(dx) +
∫

(y,b)

(b − x)(y − a)m(dx) + (b − y)(y − a)m
({y})]

= b − y

b − a

[∫
(a,y)

(x − a)m(dx) + (y − a)
m({y})

2

]
+ y − a

b − a

[∫
(y,b)

(b − x)m(dx) + (b − y)
m({y})

2

]
= b − y

b − a
q(y, a) + y − a

b − a
q(y, b)

= Eyq(y,YHa,b
),

where, in the third equality, we use the representation
∫
(a,y)

1{u<x} du for x − a (and the similar one for b − x) and apply
Fubini’s theorem. Thus,

EyHa,b = Eyq(y,YHa,b
). (24)

Next, we observe that for all t ∈ [0,∞) it holds

Ey

[
q(y,YHa,b

) − Ha,b|Ft

]= (
q(y,YHa,b

) − Ha,b

)
1{Ha,b≤t} + Ey

[
q(y,YHa,b

) − Ha,b|Ft

]
1{Ha,b>t}. (25)

On the event {Ha,b > t} we have q(y,YHa,b
)−Ha,b = q(y,YHa,b

) ◦ θt −Ha,b ◦ θt − t , where θt denotes the shift operator
for Y (see Chapter III in [39]). The Markov property and (24) imply that on the event {Ha,b > t} we have Py -a.s.

Ey

[
q(y,YHa,b

) − Ha,b|Ft

]= Ez

[
q(y,YHa,b

) − Ha,b

]∣∣
z=Yt

− t

= Ez

[
q(y,YHa,b

) − q(z,YHa,b
)
]∣∣

z=Yt
− t. (26)

Formula (23) yields for all z ∈ I ◦

q(y,YHa,b
) − q(z,YHa,b

) = q(y, z) + ∂0q

∂x
(y, z)(YHa,b

− z).

Since Ez[YHa,b
− z] = 0 for all z ∈ I ◦, equation (26) implies that on the event {Ha,b > t} we have Py -a.s.

Ey

[
q(y,YHa,b

) − Ha,b|Ft

]= q(y,Yt ) − t.

Together with (25) this yields for all t ∈ [0,∞)

Ey

[
q(y,YHa,b

) − Ha,b|Ft

]= q(y,Yt∧Ha,b
) − t ∧ Ha,b,

which shows that q(y,Yt∧Ha,b
) − t ∧ Ha,b , t ∈ [0,∞), is a Py -martingale.
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The statement of the lemma follows via a localization argument. If l /∈ I , then choose a decreasing sequence (ln)n∈N ⊆
I with l1 < y and limn→∞ ln = l. If l ∈ I , set ln = l for all n ∈ N. Similarly, if r /∈ I , then choose an increasing sequence
(rn)n∈N ⊆ I with r1 > y and limn→∞ rn = r , and if r ∈ I , then set rn = r for all n ∈ N. The sequence of stopping times
inf{t ≥ 0 : Xt /∈ [ln, rn]}, n ∈N, is then a localizing sequence for the process q(y,Yt ) − (t ∧ Hl,r ), t ∈ [0,∞). �

Remark 4.2. We still owe verifying that, for lh and rh introduced in Section 3, l is inaccessible if and only if lh = l for all
h ∈ (0, h); and r is inaccessible if and only if rh = r for all h ∈ (0, h). Let us prove this equivalence for the left boundary
point. To this end, the following identity is helpful: for y ∈ I ◦ and a ∈ (0,∞) such that y ± a ∈ I , it holds∫

(y−a,y+a)

(
a − |u − y|)m(du) = q(y, y + a) + q(y, y − a). (27)

Indeed, if y ± a ∈ I , then (27) follows from (10) and (24). If we only have y ± a ∈ I , then (27) follows by the monotone
convergence argument.

Now, if l = −∞, then the equivalence is clear. Let l > −∞. Consider a small enough a > 0. For the integral in the
definition of lh, we have due to (27)∫

(l,l+2a)

(
a − ∣∣u − (l + a)

∣∣)m(du) = q(l + a, l) + q(l + a, l + 2a), (28)

where l + a, l + 2a ∈ I ◦, and hence the second term on the right-hand side is finite, i.e., the integral is infinite if and only
if the first term on the right-hans side is infinite. We conclude by applying Feller’s test (21): l is inaccessible if and only
if the integral in (28) is infinite for all small a > 0, and the latter holds if and only if lh = l for all h ∈ (0, h).

The next result provides conditions guaranteeing that moments of a stopping time τ can be bounded against an integral
with respect to the distribution of Yτ .

Theorem 4.3. Let α ∈ [1,∞) and let y ∈ I . Let τ be a stopping time such that τ ≤ Hl,r (Y ), Py -a.s. and the process
(qα(y,Yτ∧t ))t∈[0,∞) is of class (D) under Py . Then τ < ∞, Py -a.s. and it holds that

Ey

[
τα
]≤ ααEy

[
qα(y,Yτ )

]
. (29)

Proof. If y ∈ I \ I ◦, then τ = 0 and (29) is satisfied. For the remainder of the proof we assume that y ∈ I ◦. We first show
by contradiction that τ < ∞ Py -a.s. So assume that Py(τ = ∞) > 0. Since on {τ = ∞} we necessarily have τ = Hl,r (Y ),
we obtain

lim sup
t→∞

qα(y,Yt∧τ ) = ∞ Py-a.s. on {τ = ∞}.

For any n ∈N let σn = inf{t ∈ [0,∞) : qα(y,Yτ∧t ) ≥ n}. Then we obtain that

lim
n→∞qα(y,Yσn∧τ ) = ∞ Py-a.s. on {τ = ∞},

which contradicts the uniform integrability of {qα(y,Yσn∧τ )}n∈N. Thus, we proved that τ < ∞ Py -a.s. and, in particular,
that Yτ on the right-hand side of (29) is well-defined.

According to Lemma 4.1 the process Nt := q(y,Yt ) − (t ∧ Hl,r (Y )), t ≥ 0, is a Py -local martingale. The product
formula yields for all t ∈ [0,Hl,r (Y )]

tα−1q(y,Yt ) = tα−1Nt + tα = (α − 1)

∫ t

0
sα−2Ns ds +

∫ t

0
sα−1 dNs + tα

= (α − 1)

∫ t

0
sα−2q(y,Ys) ds +

∫ t

0
sα−1 dNs + 1

α
tα

≥
∫ t

0
sα−1 dNs + 1

α
tα. (30)

Note that (
∫ t

0 sα−1 dNs)t≥0 is a local martingale and let (τ ′
n)n∈N be a localizing sequence for it. Set τn := n ∧ τ ′

n for all
n ∈ N. In particular, it holds Ey[τα

n ] < ∞ for all n ∈ N. With inequality (30) and Hölder’s inequality we obtain for all
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n ∈N that

Ey

[
(τn ∧ τ)α

]≤ αEy

[
(τn ∧ τ)α−1q(y,Yτn∧τ )

]≤ α
(
Ey

[
(τn ∧ τ)α

]) α−1
α
(
Ey

[
qα(y,Yτn∧τ )

]) 1
α .

This implies for all n ∈N

Ey

[
(τn ∧ τ)α

]≤ ααEy

[
qα(y,Yτn∧τ )

]
. (31)

By monotone convergence the left-hand side converges to Ey[τα] as n → ∞. Since the process (qα(y,Yτ∧t ))t∈[0,∞) is
of class (D), it follows that the family (qα(y,Yτn∧τ ))n∈N is uniformly integrable. Vitali’s convergence theorem implies
that Ey[qα(y,Yτn∧τ )] → Ey[qα(y,Yτ )] as n → ∞. Therefore we obtain

Ey

[
τα
]≤ ααEy

[
qα(y,Yτ )

]
,

which is precisely (32). �

Remark 4.4. Under the assumption of Theorem 4.3 we have equality in (29) for α = 1, i.e., Ey[τ ] = Ey[q(y,Yτ )].
Indeed, the inequality ≤ is provided by (29), while, for the reverse inequality ≥, use that equality holds in (30) for α = 1,
localize (30), compute expectations of the both sides and apply Fatou’s lemma.

From Theorem 4.3 we obtain the following moment estimate for first exit times.

Corollary 4.5. Let α ∈ [1,∞), let y ∈ I and let a ∈ [0,∞) be such that [y − a, y + a] ⊆ I . Then it holds that

Ey

[(
Hy−a,y+a(Y )

)α]≤ αα

2

(
qα(y, y − a) + qα(y, y + a)

)
. (32)

Proof. Clearly, Hy−a,y+a(Y ) ≤ Hl,r (Y ), Py -a.s. Moreover, under Py , the process (qα(y,YHy−a,y+a(Y )∧t ))t∈[0,∞) is
bounded (see (21) and (22)) and hence of class (D). Inequality (32) then follows from Theorem 4.3. �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1 and show that under Condition (A) the processes (Xh)h∈(0,h) converge in distribution
to Y . We use the embedding stopping times (τh

k )k∈N0 constructed in Section 3 and control the temporal errors |τh
k − kh|,

h ∈ (0, h), k ∈ N0. To this end, for every h ∈ (0, h) we apply the Doob decomposition to the process (τh
k − kh)k∈N0 and

write τh
k − kh = Mh

k + Ah
k , k ∈ N0, for a martingale Mh and a predictable process Ah. Condition (A) guarantees that Ah

converges to 0 as h → 0 (see Proposition 5.3 below). We show that also the martingale part Mh can be nicely controlled
(see Proposition 5.2 below).

For all h ∈ (0, h) let (τh
k )k∈N be the sequence of embedding stopping times defined in Section 3. Then we have the

following result about the time lags ρh
k = τh

k − τh
k−1, h ∈ (0, h), k ∈N, between consecutive embedding stopping times.

Lemma 5.1. Let α ∈ [1,∞), h ∈ (0, h) and y ∈ I ◦. Then it holds that

sup
k∈N

∥∥ρh
k

∥∥
Lα(Py)

≤ 2h + 21−1/αα sup
z∈I

(
Ez

[
Hz−ah(z),z+ah(z)(Y )

])
. (33)

Proof. By construction of the sequence (τh
k )k∈N0 (in particular, recall (19)) it holds for all k ∈ N that

ρh
k = τh

k − τh
k−1 ≤ inf

{
t ≥ τh

k−1 : |Yt − Yτh
k−1

| = ah(Yτh
k−1

)
}+ 2h.

This and the strong Markov property of Y imply for all k ∈ N that

Ey

[(
τh
k − τh

k−1

)α]≤ Ey

[
Ez

[(
Hz−ah(z),z+ah(z)(Y ) + 2h

)α]∣∣
z=Y

τh
k−1

]
≤ sup

z∈I

Ez

[(
Hz−ah(z),z+ah(z)(Y ) + 2h

)α]
. (34)
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Notice that

aα + bα ≤ (a + b)α for a, b ∈ [0,∞), (35)

because the function x �→ xα , x ∈ [0,∞), is convex, increasing and starts in zero. It follows from the triangle inequality,
Corollary 4.5 and (35) that for all z ∈ I it holds∥∥Hz−ah(z),z+ah(z)(Y ) + 2h

∥∥
Lα(Pz)

≤ (
Ez

[
Hz−ah(z),z+ah(z)(Y )α

]) 1
α + 2h

≤ 2−1/αα
(
qα
(
z, z − ah(z)

)+ qα
(
z, z + ah(z)

)) 1
α + 2h

≤ 2−1/αα
(
q
(
z, z − ah(z)

)+ q
(
z, z + ah(z)

))+ 2h

= 21−1/ααEz

[
Hz−ah(z),z+ah(z)(Y )

]+ 2h.

Combining this with (34) completes the proof. �

Below, for a random variable ξ , it is convenient to use the notation

‖ξ‖Lα(Py) = (
Ey |ξ |α)1/α

for all α ∈ (0,∞), even though it is not a norm for α ∈ (0,1). Notice that ‖ξ‖Lα(Py) ≤ ‖ξ‖Lβ(Py) for 0 < α < β by the
Jensen inequality.

Proposition 5.2. Let α ∈ (0,∞). Then there exists a constant C(α) ∈ (0,∞) such that, for all T ∈ (0,∞), y ∈ I ◦ and
h ∈ (0, h), it holds that∥∥∥∥∥ sup

k∈{1,...,�T/h�}

∣∣∣∣∣τh
k −

k∑
n=1

E
[
ρh

n |Fτh
n−1

]∣∣∣∣∣
∥∥∥∥∥

Lα(Py)

≤ C(α)
√

T

(√
h + supz∈I (Ez[Hz−ah(z),z+ah(z)(Y )])√

h

)
. (36)

Proof. Without loss of generality we consider α ∈ [2,∞). Throughout the proof we fix T ∈ (0,∞), y ∈ I ◦, h ∈ (0, h)

and let N = �T/h�. For all k ∈ {0, . . . ,N} we define Gk = Fτh
k

and Mk = τh
k − ∑k

n=1 E[ρh
n |Gn−1]. Notice that

(Mk)k∈{0,...,N} is a (Gk)k∈{0,...,N}-martingale. The Burkholder–Davis–Gundy inequality ensures that there exists a con-
stant C̃(α) ∈ (0,∞) (only depending on α) such that

Ey

[
sup

k∈{1,...,N}

∣∣∣∣∣τh
k −

k∑
n=1

E
[
ρh

n |Gn−1
]∣∣∣∣∣

α]
≤ C̃(α)Ey

[(
N∑

k=1

(Mk − Mk−1)
2

) α
2
]

= C̃(α)Ey

[(
N∑

k=1

(
ρh

k − E
[
ρh

k |Gk−1
])2) α

2
]
.

This, together with Jensen’s inequality, proves that

Ey

[
sup

k∈{1,...,N}

∣∣∣∣∣τh
k −

k∑
n=1

E
[
ρh

k |Gk−1
]∣∣∣∣∣

α]
≤ C̃(α)N

α
2 −1

N∑
k=1

Ey

[∣∣ρh
k − E

[
ρh

k |Gk−1
]∣∣α]

≤ C̃(α)2αN
α
2 −1

N∑
k=1

Ey

[∣∣ρh
k

∣∣α]
≤ C̃(α)2αN

α
2 sup

k∈N
Ey

[∣∣ρh
k

∣∣α]
≤ C̃(α)2αT

α
2

(
supk∈N ‖ρh

k ‖Lα(Py)√
h

)α

. (37)

Then Lemma 5.1 proves (36). �
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Proposition 5.3. Let α ∈ (0,∞). Then, for all T ∈ (0,∞), y ∈ I ◦ and h ∈ (0, h), it holds that∥∥∥∥∥ sup
k∈{1,...,�T/h�}

∣∣∣∣∣
(

k∑
n=1

E
[
ρh

n |Fτh
n−1

])− kh

∣∣∣∣∣
∥∥∥∥∥

Lα(Py)

≤ T

h
sup
z∈Ih

∣∣Ez

[
Hz−ah(z),z+ah(z)(Y )

]− h
∣∣. (38)

Proof. Without loss of generality we consider α ∈ [1,∞). Throughout the proof we fix T ∈ (0,∞), y ∈ I ◦, h ∈ (0, h)

and let N = �T/h�. For all k ∈ {0, . . . ,N} we define Gk =Fτh
k

. The triangle inequality ensures that

∥∥∥∥∥ sup
k∈{1,...,N}

∣∣∣∣∣
(

k∑
n=1

E
[
ρh

n |Gn−1
])− kh

∣∣∣∣∣
∥∥∥∥∥

Lα(Py)

=
∥∥∥∥∥ sup

k∈{1,...,N}

∣∣∣∣∣
(

k∑
n=1

E
[
ρh

n |Gn−1
]− h

)∣∣∣∣∣
∥∥∥∥∥

Lα(Py)

≤
N∑

n=1

∥∥(E[ρh
n |Gn−1

]− h
)∥∥

Lα(Py)
. (39)

By Proposition 3.1, on the event {Yτh
n−1

∈ Ih} we have

∣∣Ey

[
ρh

n |Gn−1
]− h

∣∣
=
∣∣∣∣12
∫

(Y
τh
n−1

−ah(Y
τh
n−1

),Y
τh
n−1

+ah(Y
τh
n−1

))

(
ah(Yτh

n−1
) − |u − Yτh

n−1
|)m(du) − h

∣∣∣∣
≤ sup

z∈Ih

∣∣∣∣12
∫

(z−ah(z),z+ah(z))

(
ah(z) − |u − z|)m(du) − h

∣∣∣∣
= sup

z∈Ih

∣∣Ez

[
Hz−ah(z),z+ah(z)(Y )

]− h
∣∣. (40)

On the event {Yτh
n−1

/∈ Ih} we have |Ey[ρh
n |Gn−1] − h| = 0. Therefore,

∥∥∥∥∥ sup
k∈{1,...,N}

∣∣∣∣∣
(

k∑
n=1

E
[
ρh

n |Gn−1
])− kh

∣∣∣∣∣
∥∥∥∥∥

Lα(Py)

≤ N sup
z∈Ih

∣∣Ez

[
Hz−ah(z),z+ah(z)(Y )

]− h
∣∣

≤ T

h
sup
z∈Ih

∣∣Ez

[
Hz−ah(z),z+ah(z)(Y )

]− h
∣∣. (41)

This proves (38). �

By combining the two preceding theorems we obtain a result about uniform in k convergence of the embedding
stopping times (τh

k ) in spaces Lα(Py), as h → 0. To this end, we impose a slightly stronger condition than Condition (A),
namely,

sup
y∈Ih

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) − h

∣∣∣∣ ∈ o(h), h → 0. (42)

Corollary 5.4. Assume (42). Let α ∈ (0,∞), T ∈ (0,∞) and y ∈ I ◦. Then it holds

sup
k∈{1,...,�T/h�}

∣∣τh
k − kh

∣∣ Lα(Py)−−−−→ 0, h → 0.

Proof. The proof is an application of Propositions 5.2 and 5.3. The fact that the right-hand side of (38) converges to zero
as h → 0 is a direct consequence of (42) (also recall Remark 1.2). Similarly, (42) implies

supz∈Ih
(Ez[Hz−ah(z),z+ah(z)(Y )])√

h
→ 0, h → 0.
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The remaining property

supz∈I\Ih
(Ez[Hz−ah(z),z+ah(z)(Y )])√

h
→ 0, h → 0

(cf. (36)), follows from the fact that, by the definition of Ih, we have

Ez

[
Hz−ah(z),z+ah(z)(Y )

]≤ h, z ∈ I \ Ih.

This concludes the proof. �

Proof of Theorem 1.1. For any h ∈ (0, h), we define the continuous-time process Yh = (Y h
t )t∈[0,∞) by linear interpola-

tion of (Yτh
k
)k∈N0 . More precisely, we set

Yh
t = Yτh�t/h�

+ (
t/h − �t/h�)(Yτh

�t/h�+1
− Yτh�t/h�

), t ∈ [0,∞).

Notice that Yh
kh = Yτh

k
, k ∈ N0, and Proposition 3.1 easily extends to

LawPy

(
Yh

t ; t ∈ [0,∞)
)= LawP

(
X

h,y
t ; t ∈ [0,∞)

)
.

Therefore, in order to prove Theorem 1.1, it is sufficient to show that the processes Yh = (Y h
t )t∈[0,∞) converge to the

process Y = (Yt )t∈[0,∞) in probability Py uniformly on compact intervals, i.e., that, for all T ∈ (0,∞), it holds

∥∥Yh − Y
∥∥

C[0,T ]
Py−→ 0, h → 0,

where ‖ · ‖C[0,T ] denotes the sup norm in C([0, T ],R). In what follows, we use the notation

Yh
ucp(Py)−−−−→ Y, h → 0, (43)

for this mode of convergence.
1. In the first step, we prove (43) under assumption (42), which is stronger than Condition (A). To this end, fix

T ∈ (0,∞) and ε > 0. Take an arbitrary T ′ ∈ (0,∞), T ′ > T , and choose δ ∈ (0, T ′−T
2 ) such that Py(A(δ)) > 1 − ε

2 ,
where

A(δ) =
{
|Yt − Ys | < ε

2
for all s, t ∈ [0, T ′] such that |t − s| < 3δ

}
.

Corollary 5.4 implies

sup
k∈{1,...,�T ′/h�}

∣∣τh
k − kh

∣∣ Py−→ 0, h → 0,

hence, there exists γ ∈ (0, h) such that Py(C(h, δ)) > 1 − ε
2 whenever h ∈ (0, γ ), where

C(h, δ) =
{

sup
k∈{1,...,�T ′/h�}

∣∣τh
k − kh

∣∣< δ
}
.

A somewhat tedious check shows that, if h ∈ (0, δ),∥∥Yh − Y
∥∥

C[0,T ] < ε on A(δ) ∩ C(h, δ).

Thus, we get Py(‖Yh − Y‖C[0,T ] > ε) < ε whenever h ∈ (0, γ ∧ δ). This completes the proof of the first step.
2. We now prove (43) under Condition (A). Consider strictly monotone sequences {ln}n∈N and {rn}n∈N with ln ↘ l and

rn ↗ r . We define compact subintervals Kn of I ◦ by setting Kn = [ln, rn], n ∈ N, and modified scale factors ãn
h : I →

[0,∞) by setting

ãn
h(y) =

{
ah(y), y ∈ Kn,

âh(y), y ∈ I \ Kn,
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n ∈ N, h ∈ (0, h), where the scale factors âh, h ∈ (0, h), are the ones from the EMCEL algorithm (recall (11)). Let
(̃τ

n,h
k )k∈N0 be the associated sequences of the embedding stopping times and Ỹ n,h = (Ỹ

n,h
t )t∈[0,∞) the analogues of the

process Yh = (Y h
t )t∈[0,∞) for the modified scale factors ãn

h , n ∈ N, h ∈ (0, h). Since the scale factors (ah)h∈(0,h) satisfy
Condition (A), the modified scale factors (̃an

h)h∈(0,h) satisfy (42) for each n ∈ N. By the first step of the proof,

Ỹ n,h
ucp(Py)−−−−→ Y, h → 0, (44)

for any fixed n ∈N.
Fix T ∈ (0,∞) and ε > 0. For any n ∈N, we define the events

An = {
Hl,r (Y ) ≤ T + 2 and ∃t ∈ [Hln,rn(Y ),Hl,r (Y )

]
such that |Yt − YHl,r (Y )| > ε

}
,

Bn = {
Hl,r (Y ) > T + 2 and Hln,rn(Y ) ≤ T + 1

}
.

Notice that the expression YHl,r (Y ) in the above formula for An is well-defined and finite. Indeed, this is the position of
Y at an accessible boundary (because Hl,r (Y ) ≤ T + 2 < ∞), while an infinite boundary cannot be accessible (because
Y is in natural scale). As Hln,rn(Y ) ↗ Hl,r (Y ) Py -a.s., as n → ∞, and Y is continuous, we can choose a sufficiently big
n0 ∈ N such that Py(An0) < ε

3 and Py(Bn0) < ε
3 . We also take an arbitrary T ′ ∈ (T ,T + 1). Corollary 5.4 applied to the

modified scale factors (̃a
n0
h )h∈(0,h), which satisfy (42), yields that there exists γ > 0 such that, for any h ∈ (0, γ ), we have

Py

(̃
τ

n0,h

�T ′/h� ≤ T + 1
)
> 1 − ε

3
.

For h ∈ (0, h), we define the event

Ch = {
τ̃

n0,h

�T ′/h� ≤ T + 1
}∩ (An0 ∪ Bn0)

c

(the notation Dc means the complement of an event D). Notice that Py(Ch) > 1 − ε whenever h ∈ (0, γ ). Furthermore,
on Ch we have either

Hl,r (Y ) > T + 2, Hln0 ,rn0
(Y ) > T + 1, hence Yh

t = Ỹ
n0,h
t , t ∈ [0, T ],

or

Hl,r (Y ) ≤ T + 2, |Yt − YHl,r (Y )| ≤ ε for t ∈ [Hln0 ,rn0
(Y ),Hl,r (Y )

]
,

hence
∣∣Yh

t − Yt

∣∣≤ ε whenever Yh
t �= Ỹ

n0,h
t , t ∈ [0, T ].

Together with (44), this proves ‖Yh −Y‖C[0,T ]
Py−→ 0 as h → 0. As T ∈ (0,∞) is arbitrary, we obtain (43). This concludes

the proof. �

6. Reflecting boundaries

Throughout the preceding sections we assume that if a boundary point is accessible, then it is absorbing. In this section
we explain how one can drop this assumption, i.e. how one can extend our functional limit theorem, Theorem 1.1, to
Markov processes with reflecting boundaries.

The idea is to reduce the reflecting case to the inaccessible or absorbing case. Indeed, for every Markov process Z with
reflecting boundaries one can find a Markov process Y on an extended state space and a Lipschitz function f such that Y

has inaccessible or absorbing boundaries and Z
d= f (Y ).

We illustrate the reduction for a Markov process Z in natural scale with state space IZ = [l,∞), where l > −∞ is a
reflecting boundary. We denote by mZ the speed measure of Z. Since l is non-absorbing, it must hold that mZ({l}) < ∞.
Notice that mZ({l}) = 0 corresponds to instantaneous reflection, while mZ({l}) ∈ (0,∞) to slow reflection.

To proceed with the construction, we first remark that it holds

mZ

(
(l, l + 1)

)
< ∞. (45)

Indeed, in terms of the Feller boundary classification (see Table 15.6.2 in [31]), as the accessible boundary point l is
reflecting, it can only be regular, which implies (45).
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Now let Y be a Markov process in natural scale with state space IY =R and speed measure mY satisfying

mY (A) = mZ(A), for all A ∈ B(R),A ⊆ (l,∞),

mY (A) = mZ(2l − A), for all A ∈ B(R),A ⊆ (−∞, l),

mY

({l})= 2mZ

({l}),
which is a valid speed measure on IY = R (i.e., (4) holds) due to (45). Then l + |Y − l| has the same distribution as Z

(see Proposition VII.3.10 in [39]).
Let (ah)h∈(0,h) satisfy the assumptions of Theorem 1.1. Then (Xh)h∈(0,h) converges in distribution to Y as h → 0. This

implies that the processes (l + |Xh − l|)h∈(0,h) converge in distribution to Z as h → 0.
In a similar way, a Markov process Z on a bounded interval IZ with endpoints l and r (l < r), where l ∈ IZ is reflecting

and r is inaccessible (resp., absorbing), can be reduced to a Markov process Y with state space IY , which is the interval
with endpoints 2l − r and r , where both these endpoints are inaccessible (resp., absorbing).

A Markov process Z with two reflecting boundaries can be reduced to a Markov process with state space R. To explain
this, suppose for simplicity that the state space of Z is [0,1]. Define Y as the Markov process on R with speed measure
mY satisfying

mY (A) = mY (−A) = mZ(A), for all A ∈ B
(
(0,1)

)
,

mY (A + 2k) = mZ(A), for all A ∈ B
(
(−1,0) ∪ (0,1)

)
and k ∈ Z,

mY

({2k})= 2mZ

({0}), for all k ∈ Z,

mY

({2k + 1})= 2mZ

({1}), for all k ∈ Z.

Let f : R → [0,1] be the periodic function with period 2 satisfying f (x) = |x|, x ∈ [−1,1]. Then the process f (Y ) has
the same distribution as Z (cf. Proposition VII.3.10 in [39]).

7. Examples with sticky points

In this section we apply Theorem 1.1 to sticky Brownian motions on R and on [0,∞), where the sticky point is zero. In
the latter case one also speaks about slow (or sticky) reflection at 0. Recent years have witnessed an increased interest in
the sticky Brownian motion and related processes, see [7,12,14,26,29] and references therein. Newly, diffusions with slow
reflection were applied in [13] to provide bounds (via sticky couplings) for the distance between two multidimensional
diffusions with different drifts. Stickiness is a convenient concept for modeling repulsive interactions between particles,
and, motivated by natural questions from physics, it is discussed in multi- and infinitedimensional situations in [18,23,
24,33,34]. Diffusions with slow reflection also attracted interest in economic theory, where such processes characterize
optimal continuation values in dynamic principal-agent problems (see, e.g., [46] and [38]).

On the contrary, the literature on approximations of diffusions with atoms in the speed measure is scarce. We remark
that [1] provides a sequence of random walks that converges in distribution to the Brownian motion on R sticky at zero.
The random walks considered there are forced to stay in zero for some time whenever they visit zero. In contrast to our
approach, the approximating processes are not Markov chains. [19] constructs Markov chains that converge in distribution
to the Brownian motion on [0,∞) with slow reflection at 0. The approximating Markov chains considered there exhibit
sticky behavior in zero in the sense that once the Markov chains reach zero they stay there with positive probability also
in the next time period. The recent work [9] proposes an approximation of the Brownian motion on [0,∞) with slow
reflection at 0 by continuous-time pure jump Markov processes Y δ , δ ∈ (0,∞), with uniform grids {0, δ,2δ, . . .} as state
spaces. The jump times are exponentially distributed and the mean waiting time at the interior points {δ,2δ, . . .} is of
order δ2 whereas it is of order δ at the origin 0.

7.1. Brownian motion on R with sticky point 0

Brownian motion on R sticky at 0 is a Markov process Y in natural scale with state space I =R and speed measure

m(dx) = 2

σ 2
λ(dx) + 2

θ
δ0(dx), (46)
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where σ, θ ∈ (0,∞) and λ(dx) denotes the Lebesgue measure.3 Such a process Y behaves like σ times a Brownian
motion outside zero, but spends a positive amount of time at zero having no intervals of zeros. Notice that the bigger θ is,
the less time Y spends at zero; θ = ∞ corresponds to a standard Brownian motion (times σ ).

It is instructive to compute the function q(y, x), y, x ∈R, of (20)

q(y, x) =

⎧⎪⎪⎨⎪⎪⎩
(x−y)2

σ 2 + 2 x−
θ

if y > 0,

x2

σ 2 + |x|
θ

if y = 0,

(x−y)2

σ 2 + 2 x+
θ

if y < 0

(x+ = max{x,0}, x− = −min{x,0}) and to observe that, for any y ∈ R, the function q(y, ·) has a kink at zero.
We now determine, for every h ∈ (0,∞), a function âh : R→ (0,∞) such that the associated Markov chain (X̂h

hk)k∈N0 ,
defined in (5), belongs to EMCEL(h). Indeed, one can explicitly determine for all y ∈ R the real number âh(y) satisfying

1

2

∫
(y−âh(y),y+âh(y))

(̂
ah(y) − |u − y|)m(du) = h. (47)

We state the closed-form representations of âh in the next Lemma.

Lemma 7.1. For all h ∈ (0,∞) and y ∈ R let

âh(y) =
⎧⎨⎩σ

√
h if |y| ≥ σ

√
h,

σ (

√
h + |y|

θ
+ ( σ

2θ
)2 − σ

2θ
) if |y| < σ

√
h.

Then Equation (47) is satisfied for all h ∈ (0,∞) and y ∈R.

Proof. Throughout the proof fix h ∈ (0,∞) and y ∈R. For every a ∈ [0,∞) it holds that

1

2

∫
(y−a,y+a)

(
a − |u − y|)m(du) = a2

σ 2
+ a − |y|

θ
1(y−a,y+a)(0) = a2

σ 2
+ a − |y|

θ
1[0,a)

(|y|).
Assume first that |y| ≥ σ

√
h. Then it holds that |y| ≥ âh(y) and hence (47) is satisfied. Next assume that |y| < σ

√
h. In

this case it holds that âh(y) > |y|. Moreover it holds that

âh(y)2

σ 2
+ âh(y) − |y|

θ
= h. (48)

This proves (47) in the case |y| < σ
√

h. The proof is thus completed. �

Since âh satisfies Equation (47) exactly, it follows that Condition (A) is satisfied. Theorem 1.1 implies that the pro-
cesses (Xh) converge in distribution to Y as h → 0. Figure 1 depicts two realizations of a Brownian motion on R sticky
at 0 with σ = 1 and different values for θ as well as the empirical distribution function of X̂h

1 with h = 10−3.

7.2. Brownian motion on [0,∞) with slow reflection at 0

In this section we consider a Brownian motion on [0,∞) with slow reflection at 0. We first define this process, as in
Warren [44], as the solution of SDE (49) below. We subsequently show that its distribution is identical to the distribution
of |Y |, where Y is the general diffusion analyzed in Section 7.1. From this perspective, the main difference between the
processes studied in this section and those in Section 7.1 is the state space.

Let σ, θ ∈ (0,∞). According to Theorem IV.7.2 in [27] the stochastic differential equation

dZt = θ1{Zt=0} dt + σ1{Zt>0} dWt , Z0 = 0, (49)

possesses a weak solution that is unique in law. However, it is worth noting that neither existence of a strong solution nor
pathwise uniqueness hold for (49) (see [14] and references therein). The next result shows that Z is a regular diffusion on
[0,∞) and identifies the associated speed measure.

3Since there exist different conventions concerning the normalization of the speed measure (cf. Footnote 1), our representation of m in (46) may differ
by a factor of 2 from related representations found in the literature (cf., e.g., [7]).
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Fig. 1. Left: Two trajectories of the approximation of the sticky Brownian motion. The black line depicts one realization of (X̂h
t )t∈[0,1] with h = 10−3,

σ = 1 and θ = 0.5. The gray line shows one realization of (X̂h
t )t∈[0,1] with h = 10−3, σ = 1 and θ = 1. Both trajectories are generated by the same

sample of random increments (ξk)k∈N. Observe that the smaller the value of θ is, the more the process sticks to 0. Right: Empirical distribution

function of the approximation of the sticky Brownian motion. The figure depicts the function F : R → [0,1], F(x) = 1
M

∑M
i=1 1(−∞,x](X̂h,i

1 ), where
(X̂

h,i
1 )i∈{1,...,M} are M = 106 independent realizations of X̂h

1 with h = 10−3, σ = 1 and θ = 1. Observe that a jump at 0 becomes apparent. This

reflects the fact that the (weak) limit Y1 of X̂h
1 is with positive probability equal to 0. Notice that the distribution function of Y1 is known in closed

form (cf. Lemma 7.3 below). We refrain from plotting it in the figure on the right-hand side because with the current image scaling it is visually nearly
indistinguishable from F .

Lemma 7.2. The solution Z of (49) is a regular continuous strong Markov process in natural scale with state space
IZ = [0,∞) and with speed measure

mZ(dz) = 2

σ 2
λ(dz) + 1

θ
δ0(dz). (50)

Proof. Strong Markov property of Z is implied by the uniqueness in law for (49). Clearly, Z is regular with state space
IZ = [0,∞) and in natural scale. By Itô’s formula, we have

f (Zt ) = f (Z0) +
∫ t

0

(
θf ′(0)1{Zs=0} + σ 2

2
f ′′(Zs)1{Zs>0}

)
ds +

∫ t

0
σf ′(Zs)1{Zs>0} dWs

for C2 functions f : [0,∞) → R. Therefore, the generator A of Z takes the form

Af (z) =
{

θf ′(0) if z = 0,

σ 2

2 f ′′(z) if z > 0
(51)

for f ∈ C2
0([0,∞)) (this means that the function itself and its first and second derivative vanish at infinity) satisfying the

boundary condition

θf ′(0) = σ 2

2
f ′′(0).

By Theorem VII.3.12 in [39], we have Af (z) = d
dmZ

f ′(z) in the interior of the state space, i.e., for z > 0, while, by
Proposition VII.3.13 in [39], it holds f ′(0) = m({0})Af (0) on the boundary. Together with (51), this implies (50) and
concludes the proof. �

It follows from Section 6 that Z
d= |Y |, where Y is a diffusion in natural scale with state space IY = R and speed

measure mY (dz) = 2
σ 2 λ(dz) + 2

θ
δ0(dz), i.e., Y is the process studied in Section 7.1 (cf. (46)). In particular, Z can be

approximated by (|X̂h|)h∈(0,∞), where each X̂h is the EMCEL(h) constructed in Section 7.1.
Warren [44] determines for all t ∈ (0,∞) the conditional law of Zt given the driving Brownian motion W . As a conse-

quence, we obtain for all t ∈ (0,∞) closed form representations of the cumulative distribution function and the expected
value of Zt . The precise formulas are provided in Lemma 7.3 below, where we, without loss of generality, consider σ = 1.
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Fig. 2. The parameter values are σ = 1 and θ = 1/2 for both plots. Left: Empirical rate of convergence of the distribution function. The circles de-

pict the five data points {(− log2(h), log2 | 1
M

∑M
i=1 1[0,0.1](|X̂h,i

1 |) − FZ(0.1;1)|), h = 2−6, . . . ,2−10}, where FZ(0.1;1) = P0[Z1 ≤ 0.1] ≈ 0.5741

(see Lemma 7.3) and (X̂
h,i
1 )i∈{1,...,M} are M = 108 independent realizations of X̂h

1 . The straight line is the linear best fit. Its
slope is approximately −0.62. Right: Empirical rate of convergence of the expected value. The circles depict the five data points

{(− log2(h), log2 | 1
M

∑M
i=1 |X̂h,i

1 | − E0[Z1]|), h = 2−6, . . . ,2−10}, where E0[Z1] ≈ 0.3210 (see Lemma 7.3) and (X̂
h,i
1 )i∈{1,...,M} are M = 108

independent realizations of Xh
1 . The straight line is the linear best fit. Its slope is approximately −0.59.

The notations P0 for the probability measure and E0 for the corresponding expectation operator emphasize that the for-
mulas are given for the case Z0 = 0. We use these formulas to analyze the empirical rate of convergence of EMCEL
approximations. The results are presented in Figure 2.

Lemma 7.3. Let Z be a solution of (49) with σ = 1. For every t ∈ (0,∞) the cumulative distribution function
F(·; t) : [0,∞) → [0,1] of Zt satisfies

FZ(z; t) := P0[Zt ≤ z] = 2�

(
z√
t

)
− 1 + 2e2θ(z+θt)�

(
−2θ

√
t − z√

t

)
, z ∈ [0,∞), (52)

where �(x) = ∫ x

−∞
1√
2π

e−y2/2 dy is the cumulative distribution function of the standard normal distribution. Moreover,
it holds that

E0[Zt ] =
√

2t

π
− 1

2θ
+ e2θ2t

θ
�(−2θ

√
t) = E0

[|Wt |
]− 1

2θ
+ e2θ2t

θ
�(−2θ

√
t). (53)

Proof. Fix t ∈ (0,∞) throughout the proof. Lévy’s distributional theorem implies Wt + sups∈[0,t](−Ws)
d= |Wt | (see

Theorem VI.2.3 in [39]). Then it follows from Theorem 1 in [44] that for all z ∈ [0,∞) it holds

P0[Zt ≤ z] = E0
[
e−2θ(Wt+sups∈[0,t](−Ws)−z)+]= E0

[
1[0,z)

(|Wt |
)+ e−2θ(|Wt |−z)1[z,∞)

(|Wt |
)]

= 2�

(
z√
t

)
− 1 + 2√

2π

∫ ∞

z/
√

t

e−2θ(
√

ty−z)e− y2

2 dy

= 2�

(
z√
t

)
− 1 + 2√

2π
e2θ(z+θt)

∫ ∞

z/
√

t

e− (y+2θ
√

t)2

2 dy

= 2�

(
z√
t

)
− 1 + 2e2θ(z+θt)�

(
−2θ

√
t − z√

t

)
.

This proves (52). Moreover, this implies that the density function of Zt starting in 0 satisfies

F ′
Z(z; t) = 2√

t
�′
(

z√
t

)
+ 4θe2θ(z+θt)�

(
−2θ

√
t − z√

t

)
− 2√

t
e2θ(z+θt)�′

(
−2θ

√
t − z√

t

)
(54)

for all z ∈ (0,∞). Observe that for all z ∈ (0,∞) it holds

e2θ(z+θt)�′
(

−2θ
√

t − z√
t

)
= 1√

2π
e2θ(z+θt)e−

(2θ
√

t+ z√
t
)2

2 = 1√
2π

e− z2
2t = �′

(
z√
t

)
. (55)
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This implies for all z ∈ (0,∞) that

F ′
Z(z; t) = 4θe2θ(z+θt)�

(
−2θ

√
t − z√

t

)
. (56)

This and Fubini’s theorem prove that

E0[Zt ] =
∫ ∞

0
zF ′

Z(z; t) dz = 4θe2θ2t

√
2π

∫ ∞

0
ze2θz

∫ −2θ
√

t− z√
t

−∞
e− y2

2 dy dz

= 4θe2θ2t

√
2π

∫ −2θ
√

t

−∞
e− y2

2

∫ −y
√

t−2θt

0
ze2θz dz dy

= e2θ2t

θ
√

2π

∫ −2θ
√

t

−∞
e− y2

2
[
1 − e−2θ(y

√
t+2θt)

(
2θ(y

√
t + 2θt) + 1

)]
dy

= e2θ2t

θ
�(−2θ

√
t) − 1

θ
√

2π

∫ −2θ
√

t

−∞
e− (y+2θ

√
t)2

2
(
2θ

√
t(y + 2θ

√
t) + 1

)
dy

= e2θ2t

θ
�(−2θ

√
t) − 1

θ
√

2π

∫ 0

−∞
e− y2

2 (2θ
√

ty + 1) dy

= e2θ2t

θ
�(−2θ

√
t) − 1

2θ
− 2

√
t√

2π

∫ 0

−∞
ye− y2

2 dy = e2θ2t

θ
�(−2θ

√
t) − 1

2θ
+
√

2t

π
. (57)

This completes the proof. �

Remark 7.4. Another possibility to get (52) and (53) is as follows. An explicit formula for the transition density of a
sticky Brownian motion is provided in Part I, Appendix 1, Section 8 of [8]. This yields formula (56) for the density of Zt

(notice that the factor 4, which is not present in [8], is due to the facts that the mentioned formula in [8] is given for a
sticky Brownian motion on R and the transition density in [8] is given with respect to the speed measure, i.e., twice the
Lebesgue measure outside zero). Now (53) follows by the same calculation as above, while the distribution function (52)
can be recovered by integrating the density and taking into account the atom at zero.

8. Brownian motion slowed down on the Cantor set

In this section we apply our results to construct a family of Markov chains (Xh)h∈(0,1) that converge in distribution to
the general diffusion Y on R with speed measure m(dx) = mC(dx) + 2dx, where mC is the Cantor distribution. Such a
process Y can be understood as a Brownian motion slowed down on the Cantor set.

For later reference we briefly recall a way to construct the Cantor distribution. To this end let C be the collection of all
subsets of [0,1] and let � : C → C be the map given by

�(A) = A

3
∪ A + 2

3
, A ⊆ [0,1]. (58)

Next, we define recursively a sequence (Cn)n∈N0 of subsets of [0,1]. Let C0 = [0,1] and for n ∈N let

Cn = �(Cn−1). (59)

The Cantor set is defined as C =⋂
n∈N Cn.

We define for all n ∈ N the probability measure mn on (R,B(R)) by mn(dx) = ( 3
2 )n1Cn(x) dx. Note that mn is

absolutely continuous with respect to the Lebesgue measure μL. It follows from the proof of Theorem 3.1 in [41] that the
sequence (mn)n∈N converges in distribution to a probability measure mC on (R,B(R)) and that for all n ∈N it holds

sup
x∈R

∣∣mC

(
(−∞, x])− mn

(
(−∞, x])∣∣≤ 2−(n−1). (60)

Moreover, it holds that mC(C) = 1 (in particular, mC is concentrated on [0,1]), μL(C) = 0 and, for all x ∈ R, mC({x}) =
0, i.e., mC is a singular-continuous measure.
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Proposition 8.1. Let m be the measure on R given by m(dx) = mC(dx)+ 2dx and let Y be the associated diffusion. Let
n : (0,1) →N be a function satisfying limh→0 2n(h)

√
h = ∞. Then there exists for all h ∈ (0,1), y ∈R a unique solution

ah(y) ∈ (0,
√

h] of the equation

1

2

(
3

2

)n(h) ∫ y+ah(y)

y−ah(y)

1Cn(h)
(u)
(
ah(y) − |u − y|)du + a2

h(y) = h. (61)

Let (Xh)h∈(0,1) be the family of Markov chains defined in (5) and (6) (with scale factors ah, h ∈ (0,1), given by the

solution of (61)). Then for all y ∈ R the distributions of (X
h,y
t )t∈[0,∞), h ∈ (0,1), under P converge weakly to the

distribution of (Yt )t∈[0,∞) under Py , as h → 0.

Proof. First observe that for all y ∈ R the mapping

[0,∞) � a �→ 1

2

(
3

2

)n(h) ∫ y+a

y−a

1Cn(h)
(u)
(
a − |u − y|)du + a2 ∈ [0,∞) (62)

is continuous and strictly increasing. This ensures existence of a unique solution ah(y) ∈ [0,∞) of (61). It follows from

a2
h(y) ≤ 1

2

(
3

2

)n(h) ∫ y+ah(y)

y−ah(y)

1Cn(h)
(u)
(
ah(y) − |u − y|)du + a2

h(y) = h (63)

that ah(y) ≤ √
h for all h ∈ (0,1), y ∈R. Moreover, it follows that for all h ∈ (0,1) and y ∈R it holds

1

2

∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mn(h) + 2)(du)

= 1

2

(
3

2

)n(h) ∫ y+ah(y)

y−ah(y)

1Cn(h)
(u)
(
ah(y) − |u − y|)du + a2

h(y) = h. (64)

Next, observe that formula (27), definition (20) of q and the fact that mC and mn(h) do not possess atoms ensure that it
holds for all h ∈ (0,1) and y ∈R that

∫
(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mC − mn(h))(du)

=
∫ y+ah(y)

y

[
mC

(
(y,u)

)− mn(h)

(
(y,u)

)]
du +

∫ y

y−ah(y)

[
mC

(
(u, y)

)− mn(h)

(
(u, y)

)]
du

=
∫ y+ah(y)

y

[
mC

(
(−∞, u])− mn(h)

(
(−∞, u])]du −

∫ y

y−ah(y)

[
mC

(
(−∞, u])− mn(h)

(
(−∞, u])]du. (65)

This, (60) and the fact that ah(y) ≤ √
h show that, for all h ∈ (0,1) and y ∈R, we have

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mC − mn(h))(du)

∣∣∣∣
≤ ah(y) sup

u∈R

∣∣mC

(
(−∞, u])− mn(h)

(
(−∞, u])∣∣≤ √

h2−(n(h)−1). (66)
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Fig. 3. Left: Normalized scale factor for the approximation of the Brownian motion slowed down on the Cantor set. The black line depicts the function

R � y �→ an(h)(y)√
h

∈ R, where for all y ∈ R the real number an(h)(y) is the solution of (61) with h = 10−4 and n(h) = 4. The gray bars depict the 16

subintervals of the set Cn(h). We see that the black line interpolates smoothly between 1 and considerably smaller values around the gray bars. Right:
A realization of an approximation of the Brownian motion slowed down on the Cantor set (CBM) and of a Brownian motion (BM). The black line
depicts a trajectory of (Xh

t )t∈[0,1] defined in (5) and (6) with scale factor a given by the solution of (61) with h = 10−4 and n(h) = 4. The gray line

shows a realization of (Xh
t )t∈[0,1] defined in (5) and (6) with scale factor ah given by ah ≡ √

h and h = 10−4. Both trajectories are generated from
the same sample of random increments (ξk)k∈N. The horizontal light gray bars show again the 16 subintervals of the set Cn(h). We see that on the set
Cn(h) the CBM is indeed slowed down (compared with the BM).

Combining (64) and (66) and using the assumption limh→0 2n(h)
√

h = ∞ shows that

sup
y∈R

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)m(du) − h

∣∣∣∣
≤ sup

y∈R

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mC − mn(h))(du)

∣∣∣∣
+ sup

y∈R

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mn(h) + 2)(du) − h

∣∣∣∣
= sup

y∈R

∣∣∣∣12
∫

(y−ah(y),y+ah(y))

(
ah(y) − |u − y|)(mC − mn(h))(du)

∣∣∣∣ ∈ o(h). (67)

Hence, Condition (A) is satisfied and weak convergence of Xh to Y follows from Theorem 1.1. �

Proposition 8.1 provides the way to simulate approximations of the Brownian trajectories slowed down on the Cantor
set (see Figure 3).
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