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Abstract. We consider dynamical percolation on the complete graph Kn, where each edge refreshes its state at rate μ � 1/n, and is
then declared open with probability p = λ/n where λ > 1. We study a random walk on this dynamical environment which jumps at
rate 1/n along every open edge. We show that the mixing time of the full system exhibits cutoff at 3

2 logn/μ. We do this by showing
that the random walk component mixes faster than the environment process; along the way, we control the time it takes for the walk to
become isolated.

Résumé. Nous considérons le modèle de percolation dynamique sur le graphe complet Kn, où chaque arête réactualise son état au taux
μ � 1/n, et est ensuite déclarée ouverte avec probabilité p = λ/n, où λ > 1. Nous étudions une marche aléatoire sur cet environnement
dynamique qui saute à taux 1/n à travers chaque arête ouverte. Nous montrons que le temps de mélange de tout ce processus a un
cutoff au temps 3

2 logn/μ. Nous l’obtenons en montrant que la composante marche aléatoire mélange plus vite que le processus
d’environnement; au passage nous contrôlons le temps que met la marche avant d’être isolée.
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1. Introduction

In this paper we consider a random walk on a dynamically evolving random graph. Fix an underlying (undirected) graph
G = (V ,E). Write n = |V |. The dynamics of the graph are that of dynamical percolation: edges refresh independently at
rate μ; upon refreshing, the edge is declared open with probability p and closed with probability 1 − p. We denote the
state of the graph at time t by ηt ∈ {0,1}E : 0 corresponds to a closed edge and 1 to an open edge. The location of the
random walker at time t is denoted Xt ∈ V : it moves at rate 1; when its exponential clock rings, it chooses uniformly at
random a neighbour v of its current location, x say, and jumps from x to v if and only if the edge connecting x and v is
open (at this time), otherwise it remains in place.

Write πRW for the invariant distribution of the nearest-neighbour simple random walk on G (ie the degree-biased
distribution) and πp for the product measure on {0,1}E with density p. The full process, (X,η), is reversible with
invariant distribution π = πRW × πp .

We emphasise that the pair (Xt , ηt )t≥0 is Markovian, as is just the graph process (ηt )t≥0, while the location of the
walker alone (Xt )t≥0 is not: indeed, its transitions depend on the current graph. (Note that (ηt )t≥0 is a biased simple
random walk on the hypercube {0,1}E .) For all our results, we take p = λ/n, and emphasise that λ is a fixed constant,
while n and μ = μn vary.

This model was introduced by Peres, Stauffer and Steif in [21]. They used the torus Zd
n (with d fixed) as their under-

lying graph; in this paper we use the complete graph Kn as our underlying graph. Hence from now on we take

V = {1, . . . , n} and E = {
(i, j) | i, j ∈ {1, . . . , n}, i �= j

}
.

Percolation on the complete graph gives precisely the Erdős–Rényi graph, and hence the name ‘dynamical Erdős–Rényi’;
we denote the measure of an Erdős–Rényi graph by πER, and note that in this case πp = πER. Also, we denote the uniform
measure on {1, . . . , n} by πU , and note that in this case πRW = πU .

This research was supported by the EPSRC PS by EP/R022615/1 and ST by Doctoral Training Grant #1885554.

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1057
mailto:p.sousi@statslab.cam.ac.uk
mailto:s.m.thomas@statslab.cam.ac.uk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2746 P. Sousi and S. Thomas

Taking p = λ/n, for a constant λ, corresponds to the sparse regime for percolation, in which the expected degree of a
vertex is order 1 (ie independent of n in the limit). Since the majority of the degrees are order 1, the walker takes steps
on the timescale n (the majority of the time). We consider μ � 1/n so that the walk takes a large number of steps before
seeing a local update to the graph; for bounded degree graphs, we could take μ � 1. Our proofs actually require very
slightly more, namely a polylogarithmic factor: we consider μ � (logn)−α/n for a fixed α > 0; no attempt has been
made to optimise this parameter.

As in [21], we look at the ε-mixing time of the full system (X,η):

tmix(ε) = inf
{
t ≥ 0|max

x0,η0

∥∥Px0,η0

(
(Xt , ηt ) ∈ ·) − π

∥∥
TV ≤ ε

}
.

When the leading order term of tmix(ε) is independent of ε, we say that there is cutoff. The cutoff window is given by the
order of tmix(ε) − tmix(1 − ε), which will depend on ε.

In order to state our mixing result, we must first define some notation for iterated logarithm:

set log(1) n = logn and define inductively log(m+1) n = log(log(m) n) for m ≥ 1.

Our main result considers the supercritical regime of percolation, ie has p = λ/n where λ > 1 is a constant, and states
that the full system (X,η) then exhibits cutoff at time 3

2 (logn)/μ with cutoff window of smaller order than (log(M) n)/μ

for all M .

Theorem 1.1 (Cutoff for Full System). For all λ > 1, all ε ∈ (0,1), all M ∈ N and all n sufficiently large, for p = λ/n

and μ ≤ (logn)−20/n, we have∣∣∣∣tmix(ε) − 3

2

(
logn

)
/μ

∣∣∣∣ ≤ (log(M) n)/μ.

We also consider the ‘mixing’ of the random walk component:

tRW
mix (ε, η0) = sup

{
t ≥ 0|max

x0

∥∥Px0,η0(Xt ∈ ·) − πU

∥∥
TV ≥ ε

}
for η0 ∈ {0,1}E.

Since X is not a Markov chain, we do not have a priori that the total variation distance from uniform is decreasing, hence
we do not define the mixing time to be ‘the first time the total variation distance is below ε’, but rather ‘the last time the
total variation distance is above ε’. (Of course, for a Markov chain, these notions are the same.) Note that, trivially by
projection, tRW

mix (ε, η0) ≤ tmix(ε) for all ε and all η0. We show that ‘the walk mixes faster than the environment’ when the
initial environment is ‘typical’, in the following precise sense.

Theorem 1.2 (Mixing of Random Walk). For all λ > 1, all ε ∈ (0,1), all M ∈N and all n sufficiently large, for p = λ/n

there exists a subset H ⊆ {0,1}E with πER(H) = 1 − o(1) so that, for all η0 ∈ H , for μ ≤ (logn)−20/n, we have

tRW
mix (ε, η0) ≤ log(M) n/μ;

ie, if η0 ∼ πER then, for all ε ∈ (0,1), all M ∈ N and all n sufficiently large, we have

tRW
mix (ε, η0) ≤ log(M) n/μ with probability 1 − o(1).

Remark. From this intuitively it is clear why we get cutoff. First, let the environment mix. This is just a (biased) random
walk on the hypercube {0,1}N where N = (

n
2

)
, and has cutoff at time 1

2 log(N/p)/μ = ( 3
2 logn + O(1))/μ. We prove

this in Proposition 5.2; cf. [17, Example 12.19], where the unbiased case is considered. At this time, the graph is ‘ap-
proximately’ Erdős–Rényi, and so likely to be in the set H (from Theorem 1.2). Finally we let the walk mix. This takes
time little-o of the mixing of the environment. This is indeed the heuristic that we use, but one has to be careful due to
correlations between the walk and environment.

Above we are allowed to choose X0 dependent on η0 (and vice versa). In Section 6, we consider drawing η0 according
to πER, and then choosing X0 independently of η0. By symmetry, we may assume X0 = 1. We then look at the mixing
time of the walk on this (evolving) graph:

tRW
mix (ε) = sup

{
t ≥ 0|∥∥P1,ER(Xt ∈ ·) − πU

∥∥
TV ≥ ε

}
,
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where Px0,ER(·) = ∑
η0
Px0,η0(·)πER(η0) averages the initial environment with respect to the Erdős–Rényi measure. We

prove a sharp, up to constants, result on this mixing time. The result does not require us to consider the supercritical
regime, ie λ > 1, but allows any λ ∈ (0,∞), including the critical case λ = 1. In Section 6, we prove the following.

Theorem 1.3. For all λ ∈ (0,∞), there exists a constant C so that, for all ε ∈ (0,1) and all n sufficiently large, p = λ/n,
we have the following bounds on the mixing time:

tRW
mix (ε) ≥ 1

μ
· 1

2λ
log(1/ε) if ε ∈ (

0, e−3λ ∧ 1
)

for any μ;

tRW
mix (ε) ≤ 1

μ
· C log(1/ε) if ε ∈

(
0,

1

4

)
when μ ≤ 2

3
(1 + λ)−1/n.

Note that once all edges of the graph have been refreshed, the graph has the Erdős–Rényi measure, and is independent
of η0. This is the coupon-collector problem, and takes time concentrated at logN ≈ 2 logn. At first glance, then, it appears
that the idea of the above remark along with Theorem 1.3 can be applied to easily give pre-cutoff at 2 logn. However,
this is not the case: to prove the above statement, it is crucial that X0 is chosen independently of η0; we then exploit
symmetry. At time 2 logn, the walk and environment are correlated, and so the argument does not apply; hence the need
for Theorem 1.2.

The above statement suggests that the upper bound in Theorem 1.2 is probably not sharp. However, the main interest
in Theorem 1.2 compared with Theorem 1.1 is not the specific upper bound, but the fact that ‘most’ η0 have tRW

mix (ε, η0) �
tmix(ε), ie that the walk mixes faster than the full system. This is what allows us to show cutoff.

Remark. For the rest of the paper, with the exception of Section 6, we assume that μ ≤ (logn)−20/n; we shall not repeat
this in the statement of every theorem.

The model of dynamical percolation (without the random walker) was introduced by Häggström, Peres and Steif in
[13]. The model with the random walk was then introduced by Peres, Stauffer and Steif in [21], with underlying graph the
torus Zd

n . They considered the subcritical regime, ie p < pc(Z
d), the critical probability for bond percolation on Zd , and

obtained the correct order for the mixing of the full system, showing further that the order of the mixing of the walk is
the same order as the mixing of the full system (in contrast to our model). While they give a very complete picture of the
subcritical mixing, key to their proofs is that the percolation clusters are all small, and that there is no giant component
(taking up a constant proportion of the vertices).

The supercritical regime, ie p > pc(Z
d) where such a giant does exist, was then considered by Peres, Sousi and Steif

in [20]. They considered the ‘quenched’ case, where a ‘typical’ environment process {ηt }t≥0 is fixed in advance, and the
walker walks on this. They obtained the correct order for the mixing of the walk, up to polylogarithmic factors, but only
in the regime where θ(p) > 1

2 , ie the probability that the component at 0 in Zd is infinite is greater than 1
2 . The case

θ(p) ≤ 1
2 remains open.

Avena, Güldaş, van der Hofstad and den Hollander in [2,3] studied the mixing time of the non-backtracking random
walk on a dynamical configuration model. The configuration model generates a random graph with a prescribed degree
sequence, and the dynamics at every time step ‘rewire’ uniformly at random a given proportion of the edges: this rewiring
involves cutting edges into two half-edges and then randomly repairing the half-edges.

It is straightforward to see that in our model when the walker first crosses a refreshed edge (which is a randomised
stopping time) it is then (almost) uniform. The authors of [2,3] considered an analogous time for the nearest-neighbour
simple random walk, namely the first time the walk crosses a rewired edge, and showed that the distribution of the walk
at this time is (almost) its invariant distribution. In both cases, however, these times are not sufficient to show mixing: it is
not the case that the walk ‘remains close to invariant’; for example, there is significant probability that the walk will cross
back over the same edge to its previous location. It is possible that a more refined analysis of a related stopping time—eg
the first time the walk crosses a rewired edge and then ‘escapes’, not recrossing this edge again (for a long time)—
would work. This approach is not taken in [2,3], though, and is left open. Rather, to resolve this the authors consider
the non-backtracking random walk which, along with the locally tree-like structure of the configuration model, removes
this ‘crossing back’ issue. They then show sharp asymptotics for the mixing time of this non-backtracking random walk,
using the aforementioned stopping time.

In contrast to the above examples, in our work we show cutoff for the full process (X,η) for the entire supercritical
regime, ie consider p = λ/n for any constant λ > 1, and obtain the correct order of the mixing of the walk, up to an
iterated log factor. Furthermore, our methods adapt immediately to the subcritical regime, ie p = λ/n with λ < 1. We
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have not considered the details for this, but with a few concentration results on the structure of a subcritical Erdős–Rényi
graph, a similar mixing result will follow.

Fountoulakis and Reed in [10] and Benjamini, Kozma and Wormald in [4] studied the mixing time of the nearest-
neighbour simple random walk on the giant component of a supercritical Erdős–Rényi random graph, without any graph
dynamics: they prove that the mixing time is order exactly (logn)2. Fountoulakis and Reed carefully studied the ratio
between the size of the edge boundary of a set and the set itself, using a variation of the Lovász-Kannan integral, which
they developed in [9]. Benjamini, Kozma and Wormald used a more geometric approach, defining a stripping process to
analyse the (2-)core and the kernel of the graph; they show the kernel is a (type of) expander, and describe the decorations
attached to the kernel.

The two works above consider mixing from the worst-case starting point. Berestycki, Lubetzky, Peres and Sly in [5]
consider mixing when the starting point is chosen according to the invariant distribution. They show then that the mixing
time is actually order logn, obtaining the correct constant and also showing cutoff; contrast this with order (logn)2 for
the worst-case.

2. Outline of proof and preliminaries

2.1. Outline of proofs

We now give a brief, informal outline of the proofs of the main results. First consider the following scenario: suppose a
walker is isolated at vertex u (ie the walk is at the vertex u which is an isolated vertex in the current graph), and suppose
it becomes non-isolated by the edge (u, v) opening, where v was isolated immediately before (u, v) opened. Now the
pair {u,v} is a component of the graph. Because μ � 1/n, we see that the walker takes a large number of steps before
this edge closes. If it closes before any other edge incident to {u,v} opens (which has order 1 probability, by counting
open/closed edges), then the walker is approximately uniformly distributed on {u,v}. So it has approximately ‘done a
lazy simple random walker step’.

This motivates the following coupling. First wait for the two walkers to be simultaneously isolated in the same envi-
ronment of two full systems. Then to couple we want to imitate the standard coupling of the lazy simple random walk
on the complete graph; we do this by considering the event that when the walkers become non-isolated they connect to a
vertex that was isolated immediately prior. We give a precise definition of the coupling that we use in Section 5.

In order to find the time it takes for two walkers to be simultaneously isolated in the same environment, we first
consider how long it takes one walker to become isolated. To find this time, we observe that a walker can only become
isolated if it is at a degree 1 vertex and this vertex becomes isolated prior to the walk’s leaving it. This motivates looking
at the rate at which degree 1 vertices are hit. To do this, we compare the number of degree 1 vertices hit by a walker on
the dynamic graph and the same quantity for a walker on a static graph; we then apply a Chernoff-style bound due to
Gillman [12]. We give the precise details of this in Section 4.

A key element in studying the isolation time is to control how long the walk remains in the giant once it has entered.
We show that since the graph updates slowly, as μn � (logn)−19, the walk does not see updates to the graph for some
while; this time is long enough for the walk to become approximately uniform on the giant prior to seeing a change. We
can then use structure results on the Erdős–Rényi graph to see how ‘near the core’ of the giant the walk is.

We then use the fact that an Erdős–Rényi graph with one vertex conditioned to be isolated has the distribution of
an Erdős–Rényi graph on n − 1 vertices (with edge-probability p) union an isolated vertex: this allows us to say that
‘conditioning on one walker’s being isolated has almost no affect on the other walker’, which will allow us to treat the
walkers as almost independent. We give the precise details of this in Section 4.2.

2.2. Notation and terminology

For functions f and g, we write f (n) � g(n), or f (n) = O(g(n)), if there exists a positive constant C so that f (n) ≤
Cg(n) for all n; write f (n) � g(n), or f (n) = �(g(n)), if g(n) � f (n). We write f (n) � g(n), or f (n) = 	(g(n)), if
we have both f (n) � g(n) and g(n) � f (n). Write f (n) � g(n), or f (n) = o(g(n)), if f (n)/g(n) → 0 as n → ∞; write
f (n) � g(n), or f (n) = ω(g(n)), if g(n) � f (n).

For random variables X and Y , we write X � Y if Y stochastically dominates X (from above), ie if P(X ≥ z) ≤ P(Y ≥
z) for all z; write X � Y if Y � X.

For a real number r > 0, we write E(r) for the exponential random variable with rate r .
For real numbers α and β , we write α ∧ β = min{α,β}.
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2.3. Good graphs and Erdős–Rényi structure results

In this section we state some results on Erdős–Rényi graphs. Since a realisation can be any graph, we want to describe
explicitly what we shall mean by a good graph. We now define some notation for graph properties. For the moment, let
c∗ and C∗ be any two constants.

Notation 2.1. Let n ∈ N; in the following, we suppress the n-dependence. For a graph G = (V ,E) with V = {1, . . . , n},
we use the following notation.

(i) For x ∈ V , write d(x) for the degree of x (in G).
(ii) Write G for the (set of vertices in the) largest component, and call it the giant; if there is a tie, choose the option that

includes the smallest labelled vertex.
(iii) For x ∈ V , call an edge a removal edge for x if its removal breaks the component of x in two, leaving x in the smaller

component (breaking ties as above). Write R(x) for the set of removal edges for x, and write R(x) = |R(x)|.
(iv) For M ∈N, write WM for the vertices of the giant with at most C∗ log(M) n removal edges, ie

WM = {
x ∈ G | R(x) ≤ C∗ log(M) n

}
.

(v) Write γ for the spectral gap and 
 for the isoperimetric constant, ie


 = min

{ |∂S|
d(S)

∣∣∣∣S ⊆ V,S �=∅, d(S) ≤ |E|
}
,

where d(S) = ∑
x∈S d(x), ∂S = {(x, y) ∈ E | x ∈ S,y /∈ S}; also write γ for the spectral gap of the transition matrix

of the nearest-neighbour simple random walk on G (ie gap between 1 and the second largest eigenvalue).

If the graph G = ζ , then we use subscript ζ , eg writing Gζ for the giant of ζ . If the graph G = ηt , then we add a subscript
t , eg writing Gt , Rt(x) or dt (x).

Let ω∗ be any function of n. We now define what we mean by a good graph.

Definition 2.2 (Good Graph). Let n ∈ N; in the following, we suppress the n-dependence. We say that a graph G =
(V ,E) with V = {1, . . . , n} is good, and write G ∈ G , if it has a unique component G with |G| ≥ C∗ logn, which we call
the giant, which satisfies the following properties.

(i) Size. We have |G| ≥ c∗n.
(ii) Maximum degree. The maximum degree of G is at most C∗ logn.

(iii) Number of edges. There are at most C∗n edges in G.
(iv) Number of degree 1 vertices. The number of degree 1 vertices in G is at least c∗n.
(v) Removal edges. We have R(x) ≤ C∗ logn for all x ∈ G.

(vi) Vertices far from the core. For all 2 ≤ M ≤ ω∗(n), the proportion of vertices x of G with R(x) ≥ C∗ log(M) n is at
most (log(M−1) n)−4, ie |G \WM |/|G| ≤ (log(M−1) n)−4.

(vii) Expansion properties. We have 
G ≥ c∗(logn)−2 and γG ≥ c∗(logn)−4.

This concept of good depends on the choice of constants c∗ and C∗ and function ω∗. The next proposition says
that we can choose these parameters suitably so that an Erdős–Rényi graph is overwhelmingly likely to be good. Write
Gt = {ηt ∈ G }, and also

G [s, t] = {
ηu ∈ G ∀u ∈ [s, t]} =

⋂
s≤u≤t

Gu.

Proposition 2.3. There exist positive constants c∗ and C∗ and a function ω∗(n) → ∞ so that, for G ∼ πER, we have

P(G /∈ G ) =O
(
n−9) and P

(
1

n

∣∣{x ∈ V | d(x) = 0
}∣∣ ≤ c∗

)
=O

(
n−9).

The claims in this proposition are fairly standard, but usually in the literature the proved decay rate is only o(1),
whereas we desire the quantitative O(n−9). We omit the technical details of this proof, but they can be found in the
appendix of [23]. The proof follows standard arguments and results, particularly from [1,6–8,11,14,16,18,19,22,24,25].
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For the remainder of the paper, we select (ω∗, c∗,C∗) as guaranteed by this proposition and fix them permanently;
whenever ω∗, c∗ or C∗ is written below, it will refer to these constants.

We now consider our graph dynamics. We want not only the starting graph to be good, but we want it to remain good
for a long time.

Definition 2.4. We make the following definitions:

H = {
η0 ∈ {0,1}E |Pη0

(
G [0,1/μ]c) ≤ n−1};

H [s, t] = {
ηu ∈ H ∀u ∈ [s, t]};

H = {
η0 ∈ {0,1}E |Pη0

(
H [0, n/μ]c) ≤ n−1}.

Further, if we are considering two environment processes, η and ξ say, then we (abuse notation slightly and) use the
same notation, eg

H [s, t] = {
ηu, ξu ∈ H ∀u ∈ [s, t]}.

We have the following result on ‘how good’ an Erdős–Rényi graph is.

Proposition 2.5. For all t ≤ n/μ, if η0 ∼ πER, then we have

P
(
H [0, t]c) =O

(
n−3), and hence πER(H) = 1 − o(1).

Moreover, these still hold if we add the condition that at least a proportion c∗ of the vertices are isolated to the definition
of a good graph.

We state a large deviations result on the Poisson distribution, which we use on a number of occasions throughout the
paper.

Lemma 2.6. We have the following bounds, valid for all λ > 0 and all ε ∈ (0,1):

P
(
Po(λ) ≥ (1 + ε)λ

) ≤ exp

(
−1

2
λε2

(
1 − 1

3
ε

))
;

P
(
Po(λ) ≤ (1 − ε)λ

) ≤ exp

(
−1

2
λε2

)
.

Proof of Proposition 2.5. Since πER is the invariant distribution for the environment, using the concentration of the
Poisson distribution and Proposition 2.3 we find that

P
(
G [0,1/μ]c) = P(∃t ≤ 1/μ s.t. ηt /∈ G ) ≤ n2 ·O(

n−9) + exp

(
− 1

12
n2

)
=O

(
n−7).

We now restrict the implicit sum in P from η0 ∈ {0,1}E to η0 ∈ H c:

P
(
G [0,1/μ]c) =

∑
η0∈{0,1}E

Pη0

(
G [0,1/μ]c)πER(η0)

≥
∑

η0∈H c

Pη0

(
G [0,1/μ]c)πER(η0) ≥ n−1 · πER

(
H c

)
.

Hence we deduce that πER(H c) =O(n−6). Repeating the same argument, we find that

πER
(
Hc

) =O
(
n−2). �
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3. Hitting and exit times of the giant

In this section we study the hitting time of the giant, and how long the walk remains in the giant given that it starts there.
Write the following for the hitting and exit times of the giant:

τG = inf{t ≥ 0 | Xt ∈ Gt } and τ ′
G = inf{t ≥ 0 | Xt /∈ Gt }.

Lemma 3.1 (Hitting the Giant). There exists a positive constant c so that, for all n sufficiently large and all (x0, η0), we
have

Px0,η0(τG ≤ 1/μ) ≥ c − Pη0

(
G [0,1/μ]c).

Proof. Write U for the first time an edge incident to the walker refreshes and opens. By the memoryless property,
U ∼ E(λμ(1−1/n)). When such an edge opens, it connects to the giant with probability |GU |/(n−1). Write θt = |Gt |/n.
We then have

Px0,η0(τG ≤ 1/μ) ≥ Px0,η0(τG ≤ U ,U ≤ 1/μ, θU− ≥ c∗)

≥ Px0,η0(τG ≤ U | U ≤ 1/μ, θU− ≥ c∗) · Px0,η0(U ≤ 1/μ, θt ≥ c∗ ∀t ≤ 1/μ)

≥ c∗
(
Px0,η0(U ≤ 1/μ) − Pη0

({θt ≥ c∗ ∀t ≤ 1/μ}c)).
The proof is completed by noting that c∗ ≤ 1 and U ∼ E(λμ(1 − 1/n)) so Px0,η0(U ≤ 1/μ) � 1. �

We now consider how long the walker remains in the giant once it enters. Recall the definition of R and WM from
Section 2.3. Since the number of removal edges satisfies R(x) ≤ C∗ logn for all x ∈ G when the graph is good, while
the graph is good a trivial bound is τ ′

G � E(C∗μ logn). We do a more careful analysis which shows that, for all M ∈ N,

‘most of the time’ Xt ∈ WM
t , ie satisfies R(Xt) ≤ C∗ log(M) n; this is because |WM |/|G| = 1 − o(1) for a good graph.

The precise statement that we prove is as follows.

Proposition 3.2 (Exit Time from the Giant). There exists a constant C so that, for all M ∈ N, all n sufficiently large,
all t with (logn)−5 ≤ μt ≤ 1

10 and all (x0, η0) with η0 ∈ H and x0 ∈ G0, we have

Px0,η0

(
τ ′
G ≤ t

) ≤ Cμt log(M) n.

Since μn � 1, the ‘majority of the time’ the walker takes a step before any edge incident to its location changes state.
This motivates looking at a random walker moving on a static graph, ie one without graph-dynamics. We call such a walk
the static walk, and the original walk (on the dynamic graph) the dynamic walk; we denote them by X̃ and X, respectively.

Consider starting the two walks together. Observe that until the static walk encounters an edge that is in a different
state to its original, the two walks have the same distribution, and hence we can couple them to be the same (until this
time) as follows. Give X and X̃ the same jump clock. When this clock rings, at time t say, both walks choose the same
vertex; X̃ performs the jump if and only if the connecting edge is present in η0, while X performs the jump if and only if
the connecting edge is present in ηt . We call this the static-dynamic coupling.

We define the set of edges seen by the walker (in an interval [s, t]) as the set of all edges (open or closed) that are
incident to the walker at some time (in an interval [s, t]). Until X sees an edge which is in a different state to its original,
we can couple it with X̃, as described above.

Label the edges of the (complete) graph e1, . . . , eN , where N = (
n
2

)
, in an arbitrary ordering (eg lexicographically). At

time t , write Ot = {o1
t , o

2
t , . . .} for the (ordered) set of open edges in ηt and Ct = {c1

t , c
2
t , . . .} for the set of closed ones.

We say that an edge is a bridge for a component if its removal splits the component into two (disconnected) parts. Recall
also from Notation 2.1 the definition of a removal edge, and of R.

Fix ρ = (logn)11. We now define an edge-set process P = (Pt )t≥0, with Pt ⊆ E for all t .

Definition 3.3 (Set Processes). We define the edge-set process P inductively. Throughout the definition, we assume that
the graph is good, ie we define (Ps)s≤t on the event G [0, t]; recall the definition of good and G [0, t] from Definition 2.2
and the display after it.

Suppose we have defined the set process P up until time t , ie have defined (Ps)s∈[0,t). Let V ′ be the most recent
‘update time’ for the process (Ps)s∈[0,t) in the following sense:

V ′ = sup
{
s ∈ [0, t) | an edge of Ps changes state at time s

}
.
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(If t = 0, then we take V ′ = 0. What follows is also used for the base case of the induction.) For r ≥ 0, let A′
r+t

(respectively B′
r+t ) be the set of open (respectively closed) edges seen by X in [V ′, t + r]. For s ≥ 0, write Rs =Rs(Xs).

If |A′
r+t ∪Rr+t | ≤ ρ and |B′

r+t | ≤ ρn, then set

Ar+t =A′
r+t ∪Rr+t ∪ {

o1
r+t , . . . , o

ar+t

r+t

}
and Br+t = B′

r+t ∪ {
c1
r+t , . . . , c

br+t

r+t

}
, (3.1)

where ar+t and br+t are so that |Ar+t | = ρ and |Br+t | = ρn; otherwise, set

Ar+t = {
o1
r+t , . . . , o

ρ
r+t

}
and Br+t = {

c1
r+t , . . . , c

ρn
r+t

}
. (3.2)

Let V be the first update time for the process (Ar+t ∪Br+t )r>0:

V = inf{r ≥ 0 | an edge of Ar+t ∪Br+t changes state at time r + t} + t.

Define Pr+t =Ar+t ∪Br+t for r ∈ [0,V ).
If at time s we use (3.1) to define As and Bs , then we say that the set definitions succeeded at time s, and write Ss for

this event; if we used (3.2), then we say they have failed.
Finally, for t > 0 define the event S[0, t) = (

⋂
s<t Ss) ∩ G [0, t).

Definition 3.4. Set S = n(logn)8 and U0 = 0. We say that P updates (at time t ) when an edge in the set P refreshes and
changes state (at time t ). We inductively define the sequence U1,U2, . . .: for all k ≥ 1, let Vk be the first time after Uk−1

that P updates; set Uk = Vk ∧ (Uk−1 + S).

Work on the event S[0, t), and fix s < t . Then As is a collection of open edges of size ρ and Bs is a collection of
closed edges of size ρn. Hence the set Ps =As ∪Bs updates at rate κμ where

κ = (1 − p)ρ + pρn = (1 − λ/n)ρ + λρ = (1 + λ − λ/n)ρ; note that κ � ρ = (logn)11. (3.3)

By the memoryless property, Uk − Uk−1 ∼iid E(κμ) ∧ S. Observe also that the walk may only leave the giant when the
set P updates, in particular only at one of the times U1,U2, . . ., but note that not all of these times are caused by updates:
some are caused because of the threshold S.

We first look at the probability of the event {τ ′
G ≤ Uk} ∩ S[0,Uk).

Lemma 3.5. For all n, all k and all (x0, η0) with x0 ∈ G0, we have

Px0,η0

(
τ ′
G ≤ Uk,S[0,Uk)

) ≤ k max
η0,x0∈G0

Px0,η0

(
τ ′
G = U1,S[0,U1)

)
.

Proof. Consider any (x0, η0) satisfying x0 ∈ G0. By the union bound and the strong Markov property (applied at time
Uj−1 for the j -th term of the sum), we find that

Px0,η0

(
τ ′
G ≤ Uk,S[0,Uk)

)

≤
k∑

j=1

Px0,η0

(
τ ′
G = Uj ,S[0,Uj )

)

≤ max
η0,x0∈G0

P
(
τ ′
G = U1,S[0,U1)

) ·
k∑

j=1

Px0,η0

(
τ ′
G > Uj−1,S[0,Uj−1)

)
.

Upper bounding the sum by k completes the proof. �

We now determine the uniform mixing time of the static walk on a good giant. For a Markov chain Z with transition
matrix P and invariant distribution π , the uniform mixing time is

tunif(ε,Z) = inf
{
t ≥ 0 | max

x,y

∣∣1 − pt(x, y)/π(y)
∣∣ ≤ ε

}
.
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Lemma 3.6. Let G be a good graph, and let G be its (unique) giant. Consider the static walk, denoted X̃, on the giant.
Write tunif(ε, X̃) for the ε-uniform mixing time of X̃ (on G). Then

tunif

(
1

8
, X̃

)
� n(logn)6.

Proof. To prove this lemma, we compare X̃ with a ‘sped-up’ version. Consider a walk Z on the giant G of a good graph
ζ . Write m = |G|; so m � n. Write d(z) for the degree of z in ζ , and d∗ for the maximum degree; note that d∗ ≤ C∗ logn.
Associate to a vertex z ∈ G the following set:

Vz =Nz ∪ {1, . . . , kz} \ {z} where kz is such that Vz = |Vz| = 2C∗ logn,

where Nz = {z′ ∈ G | ζ(z, z′) = 1} is the (open) neighbourhood of z (in ζ ). (This is possible since d∗ ≤ C∗ logn.) Give
Z a rate 1 jump clock: when this clock rings, if Z is at z then a vertex z′ is chosen uniformly at random from Vz and Z

moves (from z) to z′ if and only if the edge (z, z′) is open, ie ζ(z, z′) = 1. Observe that Z is the same as the static walk
X̃, except that it is sped-up by a factor n/(2C∗ logn). Hence the mixing times are in ratio n/(2C∗ logn), for both total
variation and uniform mixing. We now calculate the uniform mixing time tmix(

1
8 ,Z).

Since Vz = |Vz| = 2C∗ logn ≥ 2d∗ for all z ∈ G, we see that the chain Z is lazy in the sense that if we discretise by its
rate 1 jump clock then the resulting discrete-time chain is lazy, ie p(z, z) ≥ 1

2 for all z ∈ G. Moreover,

πZ(z) = 1/|G| = 1/m and p
(
z, z′) = 1

2C∗ logn
1
(
ζ
(
z, z′) = 1

)
.

Hence Z is reversible. It is then known that

tunif(ε,Z) � 
−2∗
(
log(1/πmin) + log(1/ε)

)
,

where 
∗ = inf{
S | πZ(S) ≤ 1
2 } and 
S = ∑

x∈A,y∈B πZ(x)pZ(x, y)/πZ(S); for a proof of this, see [15]. For any set
S ⊆ G, we have


S = 1

2C∗ logn
· |∂S|

|S| ≥ 1

2C∗ logn
· |∂S|
d(S)

= 1

2C∗ logn
· 
′

S,

where the prime (′) denotes that we are considering the corresponding quantity for the nearest-neighbour discrete-time
random walk. But we know that 
′∗ � (logn)−2 since the graph is good, and hence 
∗ � (logn)−3. Hence

tunif

(
1

8
,Z

)
� (logn)7, and hence tunif

(
1

8
, X̃

)
� n(logn)6. �

We now use this mixing of the static walk along with our static-dynamic coupling to determine where the dynamic
walk is at the update times of P .

Lemma 3.7. There exists a constant C, so that, for all M , all n sufficiently large, we have

max
η0,x0∈G0

Px0,η0

(
τ ′
G = U1,S[0,U1)

) ≤ CμS log(M) n.

Proof. For this whole proof, we only consider the first update time U1; as such, we drop the 1 from the subscript, just
writing U . Also, we write X̃ for the static walk on η0 (as above).

For the walk to leave the giant, we need the time U to be triggered by an update to P , ie we need U < S. If this is the
case, then the walk leaves the giant if and only if the update was caused by the closing of one of the removal edges which,
given RU−(XU), has probability RU−(XU)/κ ; write RU = RU−(XU). Hence

Px0,η0

(
τ ′
G = U,S[0,U)

) = 1

κ
Ex0,η0

(
RU 1(U < S)1

(
G [0,U)

))
. (3.4)

We now set T = n(logn)7; so S = T logn � T . We decompose according to {U < T } or {U ≥ T }. When U < T we use
the trivial bound RU ≤ C∗ logn (which holds whenever the graph is good):

Ex0,η0

(
RU 1(U < T )1

(
G [0,U)

)) ≤ C∗ logn · Px0,η0

(
U < T,G [0,U)

)
.
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Since Wk+1
0 ⊆Wk

0 , for all M and all n sufficiently large, we have

Ex0,η0

(
RU 1(T ≤ U < S)1

(
G [0,U)

))
= Ex0,η0

(
RU 1(T ≤ U < S)1

(
XU ∈ WM

0

)
1
(
G [0,U)

))

+
M−1∑
k=1

Ex0,η0

(
RU 1(T ≤ U < S)1

(
XU ∈Wk

0 \Wk+1
0

)
1
(
G [0,U)

))
. (3.5)

When XU ∈ Wk
0 , we have (by definition) RU ≤ C∗ log(k) n. Hence we have

Ex0,η0

(
RU 1(T ≤ U < S)1

(
G [0,U)

))

≤ C∗P
(
U < S,G [0,U)

) ·
(

log(M) n +
M−1∑
k=1

log(k) n · P(
XU /∈Wk+1

0 | T ≤ U < S,G [0,U
))

).

What is crucial is that, on the event that the graph is good, the update times are independent of the evolution of the
walk: since P always, regardless of the number of edges seen by the walker, contains precisely ρ open edges and ρn

closed edges, the update rate is always κμ. Thus an equivalent way of realising (Pt )t∈[0,U) is the following. Define the
processes (Ar )r≥0 and (Br )r≥0 as in (3.1), (3.2), taking t = 0. Then sample independently V ∼ E(κμ). At time V with
probability q = (1 − p)/(1 − p + λ) choose an edge uniformly at random from AV and change its state from open to
closed, and with probability 1−q choose an edge uniformly at random from BV and change its state from closed to open.
Then set Pr =Ar ∪Br for all r ∈ [0,V ). Finally, set U = V ∧ S.

It remains to calculate this final probability, of XU /∈Wk+1
0 . We want to couple XU with X̃U , as we can then apply the

(uniform) mixing result Lemma 3.6 to obtain good control over its location. However, we can only do this under certain
conditions; sufficient conditions are that none of the edges of PU− have changed throughout the entire interval [0,U).
(Note that an edge could change state before it is added to the set process P .) Write C for this sufficient condition. Then

Px0,η0

(
XU /∈Wk+1

0 | T ≤ U < S,G [0,U)
)

≤ Px0,η0

(
X̃U /∈Wk+1

0 | T ≤ U < S
) + Px0,η0

(
Cc | T ≤ U < S,G [0,U)

)
,

since conditioning on G [0,U) has no effect on the static walk.
Since T � n(logn)6, which is the uniform mixing time of the static walk on a good giant (Lemma 3.6), if U ≥ T

then X̃U has (uniformly) mixed and so, since the invariant distribution of the static walk is uniform (on the giant), for
all k ≤ M , we have

Px0,η0

(
X̃U /∈Wk+1

0 | T ≤ U < S
) ≤ 3

2

∣∣G0 \Wk+1
0

∣∣/|G0| ≤ 3

2
(log(k) n)−4,

with the final inequality holding by definition of a good graph; here we have used crucially that the path (X̃t )t≥0 is
independent of U . Also, since the update rate of P is always κμ � μ(logn)11 and we run for time U ≤ S = n(logn)8,
we find that

Px0,η0

(
Cc | T ≤ U < S,G [0,U)

) ≤ P(E(κμ) < S)

Px0,η0(T ≤ U < S,G [0,U))
≤ κSμ · (1 + o(1)

) � (log(k) n)−4,

by the assumption that μ ≤ (logn)−20/n and the fact that η0 ∈ H . Together, these give

P
(
XU /∈ Wk+1

0 | T ≤ U < S,G [0,U)
) ≤ 2(log(k) n)−4. (3.6)

Also, for any s ≥ 0, we have

Px0,η0

(
U < s,G [0,U)

) ≤ P
(
E(κμ) ≤ s

) = 1 − e−κμs ≤ κμs.

Hence combining these inequalities, for all M and all n for sufficiently large, we have

Px0,η0

(
τ ′
G = U1,S[0,U1)

) ≤ 2C∗μS log(M) n. �
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Let K be the (random) index given by UK ≤ t < UK+1. Note that

Px0,η0

(
τ ′
G ≤ t,K ≤ k − 1,S[0,Uk)

) ≤ Px0,η0

(
τ ′
G ≤ Uk,S[0,Uk)

)
,

by monotonicity of t �→ {τ ′
G ≤ t}, along with the fact that t < UK+1. Hence

Px0,η0

(
τ ′
G ≤ t

) ≤ Px0,η0

(
τ ′
G ≤ Uk,S[0,Uk)

) + Px0,η0

(
K ≥ k,S[0,Uk)

)
+ Px0,η0

(
S[0,Uk)

c,G [0,Uk)
) + Px0,η0

(
G [0,Uk)

c
)
.

We have already dealt with the first term in the previous lemmas; we now just need to show that the three ‘remainder’
terms are sufficiently small. We do this now.

Lemma 3.8. For all n sufficiently large, all t with μt ≥ (logn)−5 and all (x0, η0) with x0 ∈ G0, for k = �5t/S�, we have

Px0,η0

(
K ≥ k,S[0,Uk)

) ≤ n−5.

Proof. If we were to not have the thresholding by S, then we would have K ∼ Po(κμt). However, we do have the
thresholding. Set Ũ0 = 0, and inductively define Ũj , for j = 1,2, . . ., by

Ũj − Ũj−1 = S · 1(Uj − Uj−1 = S), and set K̃ = inf{k ≥ 0 | Ũk ≤ t < Ũk+1}.
We have Ũj ≤ Uj for all j ≥ 0, and thus K̃ ≥ K .

Recall that when the set definitions succeed, {Uj − Uj−1}j≥1 is a collection of iid random variables, and are indepen-
dent of the starting point (x0, η0). Recalling from Definition 3.4 that S = n(logn)8 and from (3.3) that κ � (logn)11, note
that

P
(
E(κμ) ≥ S

) = e−κμS = 1 − o(1) ≥ 1

2
,

by the assumption μn � (logn)−19. Also let us write k′ = �t/S�; since μt ≥ (logn)−5 and μn � (logn)−14, we have
t/S � logn, and so k′ � 1 and k′ ≤ 2t/S. Then, on the event that the set definitions succeed, we have K̃ � Po(4t/S),
since P(E(κμ) ≥ S) ≥ 1

2 . Hence

Px0,η0

(
K ≥ k,S[0,Uk)

) ≤ P
(
Po(4t/S) ≥ 5t/S

) ≤ exp

(
− 1

10
t/S

)
,

by Poisson concentration. Since t/S � logn, we deduce our lemma. �

Lemma 3.9. For all n sufficiently large, all k and all (x0, η0) with x0 ∈ G0, we have

Px0,η0

(
S[0,Uk)

c,G [0,Uk)
) ≤ k · exp

(
−1

3
C∗(logn)9

)
.

Proof. By the union bound, we have

Px0,η0

(
S[0,Uk)

c,G [0,Uk)
) ≤ k · max

x0,η0
Px0,η0

(
S[0,U1)

c,G [0,U1)
)
.

Since we work on the event that the graph is good, we have at most C∗ logn removal edges for each vertex; we also have
that there are �(n) open edges and �(n2) closed edges. Hence the only part that can ‘go wrong’ in the definitions is if the
number of open or closed edges seen since the last update is too high. However, the maximum degree is at most C∗ logn

and we walk for a time at most S = n(logn)8, so Poisson concentration will tell us that we do not see too many.
Consider a static walk X̃ on a good graph η0, starting from x0 ∈ G0 and run for a time S = n(logn)8. Let α be

the number of open edges seen in this time, and β the number of closed. Write N for the number of steps taken; by
Poisson thinning, we have N � Po(C∗S logn/n), and S logn/n = (logn)9. On the event N ≤ 2C∗(logn)9, we have
α ≤ 2C2∗(logn)10 � ρ and β ≤ 2C∗n(logn)9 ≤ ρn, as required for the set definitions to succeed. Hence

Px0,η0

(
S[0,U1)

c,G [0,U1)
) ≤ P

(
Po

(
C∗(logn)9) > 2C∗(logn)9) ≤ exp

(
−1

3
C∗(logn)9

)
,

by Poisson concentration. The result now follows from the union bound given above. �
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Corollary 3.10. For all n sufficiently large, all t with μt ≥ (logn)−5 and all (x0, η0) with x0 ∈ G0, for μ ≥ n−8 and
k = �5t/S�, we have

Px0,η0

(
S[0,Uk)

c,G [0,Uk)
) ≤ μt · n−5.

Proof. As in Lemma 3.8 for �t/S�, we have k ≤ 6t/S. Hence

k · exp

(
−1

3
C∗(logn)9

)
≤ 6S−1 · μt · n8 exp

(
−1

3
C∗(logn)9

)
. ≤ μt · n−5. �

We now have all the ingredients to prove Proposition 3.2 for the case μ ≥ n−8.

Proof of Proposition 3.2 (when μ ≥ n−8). Fix M . Combining the above results, we have, for k = �5t/S�, recalling that
Uk ≤ kS ≤ 6t for the times t we are considering, that

Px0,η0

(
τ ′
G ≤ t

) ≤ Px0,η0

(
τ ′
G ≤ Uk,G [0,Uk)

) + Px0,η0

(
K ≥ �5t/S�,S[0,Uk)

)
+ Px0,η0

(
S[0,Uk)

c,G [0,Uk)
) + Px0,η0

(
G [0,6t]c)

≤ Cμt log(M) n + n−5 + μtn−5 + n−1 ≤ 2Cμt log(M) n (3.7)

since η0 ∈ H , μ ≥ n−8 and (logn)−5 ≤ μt ≤ 1
10 . �

It remains to prove the proposition in the case μ ≤ n−8. In this case, ‘almost always’ the static walk mixes on the
entire giant before any of the graph even refreshes; this will make this proof easier. The general idea will be very similar,
particularly to Lemma 3.7.

Proof of Proposition 3.2 (when μ ≤ n−8). Fix M . For this proof, let U1,U2, . . . be the refresh times of the graph; let
U0 = 0. Note then that Uj − Uj−1 ∼iid E(μN) where N = (

n
2

) ≤ n2.
We are now interested in the probability that τ ′

G = U1; as previously, drop the subscript 1. We have U ∼ E(μN),
independent of X.

Suppose η0 ∈ G and x0 ∈ G0. Then, similarly to in (3.4), we have

Px0,η0

(
τ ′
G = U,G [0,U)

) = 1

N
Ex0,η0

(
RU 1

(
U ≥ n2)1

(
G [0,U)

)) + Px0,η0

(
U ≤ n−2).

We know that P(U ≤ n2) = P(E(μN) ≤ n2) ≤ μn2N ≤ n−4. Similarly to in (3.5), we have

Ex0,η0

(
RU 1

(
U ≥ n2)1

(
G [0,U)

))
= Ex0,η0

(
RU 1

(
U ≥ n2)1

(
XU ∈WM

0

)
1
(
G [0,U)

))

+
M−1∑
k=1

Ex0,η0

(
RU 1

(
U ≥ n2)1

(
XU ∈Wk

0 \Wk+1
0

)
1
(
G [0,U)

))
.

When XU ∈ Wk
0 , we have (by definition) RU ≤ C∗ log(k) n. Hence we have

Ex0,η0

(
RU 1

(
U ≥ n2)1

(
G [0,U)

)) ≤ log(M) n +
M−1∑
k=1

log(k) n · P(
XU /∈Wk+1

0 | U ≥ n2,G [0,U)
)
.

Using our static-dynamic coupling, we may couple Xt = X̃t for all t ≤ U = U1, where X̃ is the static walk, since the Uj

are the refresh times of the entire graph. Hence, as in (3.6), but without needing to consider the condition C, we use the
(uniform) mixing of the static walk to obtain

Px0,η0

(
XU /∈Wk+1

0 | U ≥ n2,G [0,U)
) ≤ 2

∣∣G0 \Wk+1
0

∣∣/|G0| ≤ 2(log(k) n)−4.

Hence combining these inequalities, for all M and all n sufficiently large, we have

max
x0,η0

Px0,η0

(
τ ′
G = U1,G [0,U1)

) ≤ 2C∗
1

N
log(M) n.
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As in Lemma 3.5 (except replacing G by S), for all k ∈N, we have

Px0,η0

(
τ ′
G ≤ Uk,G [0,Uk)

) ≤ k max
x0,η0

Px0,η0

(
τ ′
G = U1,G [0,U1)

) ≤ 2C∗k
1

N
log(M) n.

Observe that Uk ∼ �(k,μN); let K be the (random) index given by UK ≤ t < UK+1, and observe then that K ∼
Po(μtN). Set k = �2μtN�. By the same arguments as used in (3.7) (except without the ‘set-definitions’ term) we have

Px0,η0

(
τ ′
G ≤ t

) ≤ Px0,η0

(
τ ′
G ≤ Uk,G [0,Uk)

) + P(K ≥ 2μtN) + P
(
Uk ≥ 3k/(μN)

) + Pη0

(
G [0,7t]c)

≤ 2C∗μt log(M) n + exp

(
−1

3
μtN

)
+ exp(−2μtN) + Px0,η0

(
G [0,7t]c).

We now recall that we restricted consideration of t to satisfy (logn)−5 ≤ μt ≤ 1
10 ; note then that 7t ≤ 1/μ. We also

consider only η0 ∈ H ; as such, the graph remainder term in the final line above is at most 1/n. Since N � n2, we see
that the first term dominates, leaving us with

Px0,η0

(
τ ′
G ≤ t

) ≤ Cμt log(M) n for a constant C. �

4. Isolation times

In this section we prove two main results on isolation times. They will involve, respectively, a single random walker on
a dynamical environment and two independent random walkers on the same dynamical environment. When considering
just one walk, we write τisol for the isolation time; eg for a dynamical percolation system (Z, ζ ) we write

τZ
isol = inf

{
t ≥ 0 | dζ

t (Zt ) = 0
}
.

When the context is clear, we omit the superscript, just writing τisol; similarly, when the context is clear we write d for
the degree, rather than dζ . When we consider two walks, X and Y , on the same system, η, we use superscript X or Y to
indicate which walk we are referring to: define

τX
isol = inf

{
t ≥ 0 | dt (Xt ) = 0

}
and τY

isol = inf
{
t ≥ 0 | dt (Yt ) = 0

}
.

Recall from Definition 2.4 that the event H [0, t] guarantees that the graph is good up until time t .

Theorem 4.1 (Single-Walker Isolation Time). For all M ∈N, all n sufficiently large and all pairs (x0, η0), we have

Px0,η0

(
τisol > t,H [0, t]) ≤ 2 exp(−μt/ log(M) n).

Moreover, if μt ≥ 3, then we may remove the pre-factor of 2.

Once we have proved this, we shall be able to use a type of concentration result to prove a bound on the isolation time
of two independent random walkers on the same environment. When we are considering this, we write Px0,y0,η0 for the
measure. For two walks X and Y on the same (dynamical) environment η, write

τ = inf
{
t ≥ 0 | dt (Xt ) = 0 = dt (Yt )

}
.

Theorem 4.2 (Dual-Walker Isolation Time). For all M ∈N, all n sufficiently large and all triples (x0, y0, η0), we have

Px0,y0,η0

(
τ > t,H [0, t]) ≤ 2 exp(−μt/ log(M) n).

4.1. Single-walker isolation time

In this section we prove Theorem 4.1 on the isolation time of a walk X on a dynamical environment η. In order to find
the isolation time, we wait until the walk joins the giant and then look at becoming isolated from there. It is easier to
consider the giant, rather than subcritical components, because we are able to use concentration results on the structure
of the giant.

We first state the proposition on isolation from the giant, and then show how to conclude Theorem 4.1 from it; we then
prove the proposition to finish. Throughout, M is a positive integer.
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Proposition 4.3 (Isolation from the Giant). There exists a positive constant c so that, for all M , all n sufficiently large
and all (x0, η0) with η0 ∈ H and x0 ∈ G0, we have

Px0,η0

(
τisol ≤ 1

μ log(M) n

)
≥ c · 1

log(M) n
.

Proof of Theorem 4.1. Observe that this trivially holds (for all n large enough) if μt ≤ 3. By monotonicity, replacing M

by M − 1, it suffices to prove an upper bound of exp−cμt/ log(M) n for a positive constant c when μt ≥ 3.
Fix M . For this proof, rescale time so that μ = 1. We prove this theorem by performing independent experiments.

Note that if x0 ∈ G0 then τG = 0, and otherwise we apply Lemma 3.1. By direct calculation, we have

Px0,η0

(
τisol ≤ 2,H [0,1])

≥ Px0,η0

(
τisol ≤ 2, τG ≤ 1,H [0,1])

≥ Px0,η0

(
τisol − τG ≤ 1/ log(M) n, τG ≤ 1,H [0,1])

=
∑
x′

0,η
′
0

Px′
0,η

′
0
(τisol ≤ 1/ log(M) n) · Px0,η0

(
X(τG) = x′

0, η(τG) = η′
0, τG ≤ 1,H [0,1])

≥ c(log(M) n)−1 · (Px0,η0(τG ≤ 1) − Px0,η0

(
H [0,1]c)),

for a positive constant c, where for the final inequality we used that on the event H [0,1] we have η′
0 ∈ H , and hence

we may apply Proposition 4.3. Now applying Lemma 3.1, we obtain

Px0,η0

(
τisol ≤ 2,H [0,1]) ≥ 1

2
cc1/ log(M) n − Px0,η0

(
H [0,1]c),

with the positive constant c1 coming from Lemma 3.1, noting that Px0,η0(G [0,1]c) = o(1) since η0 ∈ H . Rearranging
this, we obtain, for a positive constant c, that

Px0,η0

(
τisol > 2,H [0,2]) ≤ Px0,η0

(
τisol > 2,H [0,1]) ≤ exp(−c/ log(M) n).

Hence, for any k ∈ N, applying the strong Markov property (k − 1 times), we obtain

Px0,η0

(
τisol > 2k,H [0,2k]) ≤ max

x′
0,η

′
0

Px′
0,η

′
0

(
τisol > 2,H [0,2])k ≤ exp(−ck/ log(M) n).

This completes the proof. �

It remains to prove Proposition 4.3. We do this via a sequence of lemmas, using the following rough methodology.
Observe that the only way for the walk to become isolated is to be at a degree 1 vertex and for the one open edge to close
before any closed incident edges open or the walker leaves the vertex. This motivates looking at the rate at which the walk
hits degree 1 vertices.

Since the walk is on a dynamically evolving graph, even though when we require the graph to be good this includes
that the giant has a lot of degree 1 vertices, the location of these degree 1 vertices is changing. This makes using averaging
properties (like a law of large numbers) difficult. However, since we take steps at rate at least 1/n (when non-isolated)
and μn � 1/ logn (the order of the maximum degree), we see that the vast majority of the time the walker takes a step
before any edge incident to its location changes state. This motivates looking at the rate at which a walk (with the same
walk-dynamics) hits degree 1 vertices on a static (good) graph, and then relating this quantity to the relevant quantity for
the walk on the dynamic graph. In Section 3 we referred to this as the static walk and the original as the dynamic walk,
denoting them by X̃ and X, respectively.

With this motivation in mind, we first collect some results regarding a walk with our dynamics on a static graph. To do
this, we use a Chernoff-style bound on the number of visits to a set, which is due to Gillman [12]. It applies to discrete-
time random walks. We do not apply it to a discretisation of our continuous chain, but to the jump chain of the walk (on
a static graph). We state it in a general form; an even more general form is given in [12, Theorem 2.1].

Theorem 4.4 (Gillman [12]). Consider the discrete-time random walk on a weighted, connected graph G = (V ,E) with
any initial distribution. Let π be the unique invariant distribution. Let A ⊆ V , and let Nm be the number of visits to A in



Cutoff for random walk on dynamical Erdős–Rényi graph 2759

m steps. Write γ for the spectral gap. Then

P
(∣∣Nm − mπ(A)

∣∣ ≥ R
) ≤ 3π

−1/2
min exp

(
− 1

20
γR2/m

)
for any ε ∈ [0,m].

We now apply this to a walk on a good (static) giant.

Lemma 4.5. Consider the discrete-time nearest-neighbour simple random walk on a graph G, and write Nm for the
number of visits to the set of degree 1 vertices in m steps. There exists a positive constant c so that, for all n sufficiently
large and all m ≥ (logn)6, if the graph is good, ie G ∈ G , and the walk starts from its giant, then we have

P(Nm ≤ cm) ≤ n−1.

Proof. Note that the invariant measure of this walk, which we denote π ′, is given by πi = di/dG , where dG = ∑
i∈G di .

Since di ≥ 1 for all i ∈ G, we have π ′
min ≥ 1/dG . Now, trivially we have that dG ≤ dG, where dG = ∑

i∈G di , and
dG ≤ 2C∗n by Definition 2.2(iii). Hence 1/π ′

min ≤ dG ≤ 2C∗n.
Let A = {x ∈ G | d(x) = 1} be the set of degree 1 vertices in the giant. Definition 2.2(iv) tells us that |A| ≥ c∗n. Thus,

since d(x) ≥ 1 for all x ∈ G and dG ≤ 2C∗n, we have that π ′(A) ≥ c∗/(2C∗); let c = c∗/(4C∗) so that π ′(A) ≥ 2c.
Recall from Definition 2.2(vii) that the spectral gap γ of a good giant satisfies γ ≥ c∗(logn)−4. We now take R =

1
2π ′(A)m ≤ m in Theorem 4.4 to obtain

P

(∣∣Nm − mπ ′(A)
∣∣ ≥ 1

2
π ′(A)m

)
≤ 3

√
2c∗ · n−1/2 exp

(
− 1

20
c∗(logn)−4 · 1

4
π ′(A)2m

)
.

Since π ′(A) ≥ 2c, taking m ≥ (logn)6 gives super-polynomial decay, completing the proof. �

We now make rigorous the motivation given at the start of this section in the following lemma.

Lemma 4.6. There exists a positive constant q so that, for all n sufficiently large and all (x0, η0) with η0 ∈ G and x0 ∈ G0,
for s = n(logn)6, we have

Px0,η0(τisol ≤ s) ≥ qμs.

Remark 1. Observe that, as a best-case scenario, if the walker were always at a degree 1 vertex until it becomes isolated,
then the isolation time would simply be the time it takes for that one edge to close, which is E(μ(1 − p)). Thus, for
any (x0, η0) with d0(x0) �= 0, we have

Px0,η0(τisol ≤ s) ≤ μs/(1 − p).

Hence, for this s, such a result as Lemma 4.6 is best-possible up to constants.

Proof of Lemma 4.6. Fix a pair (x0, η0) with η0 ∈ G and x0 ∈ G0; for this proof, drop it from the notation, writing P(·)
in place of Px0,η0(·).

Lemma 4.5 tells us the rate at which the static walk hits degree 1 vertices (with high probability). In order to transfer
this result to our dynamic walk, we define a coupling between the two walks; this was given in Section 3, but we recall
it precisely here. Write X̃ for the static walk, walking on the static graph η0. Set X0 = X̃0 = x0. Give X and X̃ the same
jump clock. When the clock rings, at time t say, both walks choose the same vertex; X̃ performs the jump if and only if
the edge is present in η0, while X performs the jump if and only if the edge is present in ηt . We call this the static-dynamic
coupling.

We now define T̃i to be the i-th time that (the static walk) X̃ hits a degree 1 vertex: set T̃0 = T̃ ′
0 = 0 and define

inductively, for i ≥ 1,

T̃i = inf
{
t ≥ T̃ ′

i−1|dt (X̃t ) = 1
}

and T̃ ′
i = inf

{
t ≥ T̃i |X̃(t) �= X̃(T̃i)

}
.

Since the jump rate of X̃ is always at least 1/n, by standard Poisson concentration it takes at least s/(2n) steps in time
s − n with probability 1 − o(1). Along with Lemma 4.5 this says that

P(T̃k ≤ s − n) = 1 − o(1) for k = s/(8n). (4.1)
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For i ≥ 1 define the event that all the (open or closed) edges incident to a vertex that the static walk visited remain in the
same state between visits to degree 1 vertices:

Ei = {
neighbourhood of path of static walk did not change in [T̃i−1, T̃i]

}
.

Similarly, for u ≥ v ≥ 0 define

Eu,v = {
neighbourhood of path of static walk did not change in [u,v]}.

Note that, by definition, on the event {T̃k ≤ s} we have E1 ∩ · · · ∩ Ek ⊇ E0,s .
Write N for the number of steps taken by X̃ in time s. Since η0 ∈ G , the maximum degree is at most C∗ logn. Hence,

by Poisson thinning, N � L ∼ Po(C∗s logn/n). Let α and β be the total number of open and closed edges, respectively,
that are adjacent to the path of the (static) walk by time s. When N ≤ 2C∗s logn/n, we have α ≤ 2C2∗s(logn)2/n and
β ≤ 2C∗s logn. Hence

P
(
E c

0,s

) ≤ P
(
E
(
α(1 − p)μ + βpμ

) ≤ s,N ≤ 2C∗s logn/n
) + P

(
L > 2C∗s logn/n

)
≤ Cs2(logn)2μ/n + exp−cs logn/n,

for positive constants c and C, by Poisson concentration. Hence, since μn � (logn)−14, we have

P(E0,s ) = 1 − o(1)whens = n(logn)6. (4.2)

Note that X can only become isolated when it is at a degree 1 vertex immediately prior. We use our static-dynamic
coupling to lower bound:

P(τisol ≤ s) ≥ P

(
k⋃

i=1

{
τisol ∈ [

T̃i , T̃
′
i

)
, T̃i ≤ s − n, τisol − T̃i ≤ n,

⋂
j≤i

Ej

})

=
k∑

i=1

P

(
τisol ∈ [

T̃i , T̃
′
i

)
, τisol − T̃i ≤ n|T̃i ≤ s − n,

⋂
j≤i

Ej

)
· P

(
T̃i ≤ s − n,

⋂
j≤i

Ej

)
. (4.3)

Using the static-dynamic coupling on the event E1 ∩ · · · ∩ Ei , we see that if the unique open edge adjacent to X at
time T̃i closes before anything else opens or X jumps, then X becomes isolated during [T̃i , T̃

′
i ). Writing E1, E2 and E3 for

independent exponential random variables, we have

P

(
τisol ∈ [

T̃i , T̃
′
i

)
, τisol − T̃i ≤ n|T̃i ≤ s − n,

⋂
j≤j

Ej

)

≥ P
(
E1

(
(1 − p)μ

)
< min

{
E2

(
p(n − 1)μ

)
,E3(1/n)

}
,E1

(
(1 − p)μ

) ≤ n
) � μn,

since μn � 1, by comparing rates. Using this in (4.3) along with (4.1) and (4.2) we obtain

P(τisol ≤ s) � μnkP(T̃k ≤ s − n,E1 ∩ · · · ∩ Ek)

≥ μnk
(
1 − P

(
E c

0,s

) − P(T̃k > s − n)
) � μnk.

Since k = s/(8n), this concludes the proof. �

We now use this to prove our isolation result Proposition 4.3.

Proof of Proposition 4.3. In this proof, we use the following shorthand:

PG(·) = min
η0∈G ,x0∈G0

Px0,η0(·) and PG(·) = max
η0∈G ,x0∈G0

Px0,η0(·).

Consider an initial pair (x0, η0) with η0 ∈ H and x0 ∈ G0. For any s ∈ R and r ∈N, using the Markov property we have

Px0,η0(τisol ∈ (
sr, s(r + 1)],G [0, sr])
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≥ Px0,η0

(
τisol ≤ s(r + 1)|τisol > sr,Xsr ∈ Gsr ,G [0, sr])Px0,η0

(
τisol > sr,Xsr ∈ Gsr ,G [0, sr])

≥ PG(τisol ≤ s) · (Px0,η0

(
τisol > sr,G [0, sr]) − Px0,η0(∃u ≤ sr s.t. Xu /∈ Gu)

)
.

Hence we have

Px0,η0

(
τisol > s(r + 1),G [0, sr])

= Px0,η0

(
G [0, sr]) − Px0,η0

(
τisol ≤ sr,G [0, sr]) − Px0,η0(τisol ∈ (

sr, s(r + 1)],G [0, sr])
≤ Px0,η0

(
G [0, sr]) − Px0,η0

(
τisol ≤ sr,G [0, sr])

− PG(τisol ≤ s) · (Px0,η0

(
τisol > sr,G [0, sr]) − Px0,η0(∃u ≤ sr s.t. Xu /∈ Gu)

)
= Px0,η0

(
τisol > sr,G [0, sr]) · PG(τisol > s)

+ PG(τisol ≤ s) · Px0,η0(∃u ≤ sr s.t. Xu /∈ Gu).

Hence, upon iterating, we obtain

Px0,η0

(
τisol > sr,G [0, sr])

≤ Px0,η0

(
τisol > sr,G

[
0, s(r − 1)

])
≤ PG(τisol > s)r + r · PG(τisol ≤ s)Px0,η0(∃u ≤ sr s.t. Xu /∈ Gu). (4.4)

Observe that, by the memoryless property, we have

PG(τisol ≤ s) ≤ μs. (4.5)

We now set s = n(logn)6, t = γ (log(M) n)−1/μ for a constant γ , to be chosen later, and r = �t/s�; note then that
2
3 t ≤ rs ≤ t as μn � (logn)−5. Since η0 ∈ H , we may apply Proposition 3.2 for this t to obtain a constant C so that

Px0,η0(∃u ≤ sr s.t. Xu /∈ Gu) ≤ Cμt log(M) n. (4.6)

Using (4.5) and (4.6) along with Lemma 4.6 in (4.4), we find that

Px0,η0

(
τisol > t,G [0, t]) ≤ (1 − qμs)r + C(μt)2 log(M) n ≤ 1 − 1

3
qμt + C(μt)2 log(M) n,

valid for any (x0, η0) with η0 ∈ H and x0 ∈ G0. We then take γ = q/(6C) and obtain

Px0,η0

(
τisol > t,G [0, t]) ≤ 1 − q2

36C
· 1

log(M) n
.

Since we can take C ≥ 1 and q ≤ 1, we then have

Px0,η0

(
τisol >

1

Cμ log(M) n
,G

[
0,

1

Cμ log(M) n

])

≤ Px0,η0

(
τisol >

q

3Cμ log(M) n
,G

[
0,

q

3Cμ log(M) n

])
.

Hence there exists a positive constant c so that

Px0,η0

(
τisol >

1

μ log(M) n
,G

[
0,

1

μ log(M) n

])
≤ 1 − c · 1

log(M) n
.

Finally, η0 ∈ H , so Pη0(G [0, (log(M) n)−1/μ]c) ≤ n−1, and the result follows. �

Remark. Observe that, as in the remark after Lemma 4.6, for this time-scale the result of Proposition 4.3 is best-possible,
up to constants.



2762 P. Sousi and S. Thomas

4.2. Dual-walker (joint) isolation time

In this section we prove Theorem 4.2 on the joint isolation time of two walkers on a single dynamical environment. We
start by introducing some more notation. Consider two walks X and Y , which start from x0 and y0 respectively, walking
independently on the same environment η. Let

τ = inf
{
t ≥ 0 | dt (Xt ) = 0 = dt (Yt )

}
.

Let τX
0 = τY

0 = τ̂ X
0 = 0, and for k ≥ 1 define inductively

τX
k = inf

{
t ≥ τ̂ X

k−1 | dt (Xt ) = 0
}
, τ̂X

k = inf
{
t ≥ τX

k | dt (Xt ) �= 0
}

and

τY
k = inf

{
t ≥ τX

k | dt (Yt ) = 0
}
.

We prove a result on the joint-isolation time of two walks, X and Y , walking independently on the same (dynamic)
environment η. For the probability measure associated to this system (X,Y,η), when it is started from (x0, y0, η0), we
write Px0,y0,η0 .

In order to prove the dual-walker isolation result, we first state two lemmas that we use. We prove the theorem using
the lemmas, then prove the lemmas. Throughout, M is a positive integer.

Lemma 4.7. There exists a positive constant c1 so that, for all M , all n sufficiently large and all (x0, y0, η0), we have

Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

]) ≤ exp(−c1/ log(M) n).

Lemma 4.8. There exists a positive constant c2 so that, for all M , all n sufficiently large and all (x0, η0), we have

Px0,η0

(
τX
K+1 > t,H [0, t]) ≤ exp

(
−2

3
K

)
when K = �c2μt/ log(M) n�.

Proof of Theorem 4.2. By monotonicity, replacing M by M − 1, it suffices to find a positive constant c so that the
probability is upper bounded by 2 exp−cμt/(log(M) n)2 for a positive constant c. Hence we may assume that μt ≥
(log(M) n)2, as otherwise the result trivially holds.

For any t ≥ 0 and for K = �c2μt/ log(M) n�, using Lemma 4.8 we have

Px0,y0,η0

(
τ > t,H [0, t]) ≤ Px0,y0,η0

(
τ > t, τX

K+1 ≤ t,H [0, t]) + exp

(
−2

3
K

)
. (4.7)

Since τX
K+1 ≤ t implies τ̂X

K ≤ t , on the event {τX
K+1 ≤ t} we have H [0, t] ⊆ H [0, τ̂X

K ]. We then use the strong Markov
property at time τ̂ X

1 to iterate:

Px0,y0,η0

(
τ > t, τX

K+1 ≤ t,H [0, t])
≤ Px0,y0,η0

(
K⋂

k=1

{
τY
k > τ̂X

k

}
,H

[
0, τ̂X

K

])

≤ Px0,y0,η0

(
K⋂

k=2

{
τY
k > τ̂X

k

}
,H

[
τ̂ X

1 , τ̂X
K

]|τY
1 > τ̂X

1 ,H
[
0, τ̂X

1

])

× Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

])

≤ max
x′

0,y
′
0,η

′
0

Px′
0,y

′
0,η

′
0

(
K−1⋂
k=1

{
τY
k > τ̂X

k

}
,H

[
0, τ̂X

K−1

]) · Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

])

≤ · · · ≤ max
x′

0,y
′
0,η

′
0

Px′
0,y

′
0,η

′
0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

])K
. (4.8)
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Since μt ≥ (log(M) n)2, we have K ≥ 1
2c2μt/ log(M) n. Using (4.8) and Lemma 4.7 in (4.7), we have

Px0,y0,η0

(
τ > t,H [0, t]) ≤ max

x′
0,y

′
0,η

′
0

Px′
0,y

′
0,η

′
0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

])K + exp

(
−2

3
K

)

≤ exp(−c1K/ log(M) n) + exp

(
−2

3
K

)
≤ 2 exp

(
−1

2
c1c2μt/(log(M) n)2

)
. �

It remains to prove Lemmas 4.7 and 4.8.

Proof of Lemma 4.7. By the strong Markov property, used in the same way as above, and recalling that τY
1 is the first

time after τX
1 that Y becomes isolated, we have

max
x0,y0,η0

Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
τX

1 , τ̂X
1

]) ≤ max
x0,y0,η0
d0(x0)=0

Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
0, τ̂X

1

])
. (4.9)

For the moment, we emphasise that our underlying graph has n vertices: we do this by using super- and subscript n,
eg Pn and Gn. Recall Theorem 4.1, which says that

Pn
y0,η0

(
τY

isol > t,H [0, t]) ≤ exp(−μt/ log(M) n) when μt ≥ 3.

We wish to bound (the related quantity)

Pn
x0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
0, τ̂X

1

]|τ̂ X
1

)
.

This is trivially 0 for x0 = y0; consider x0 �= y0. To bound this, we observe that, conditional on the value of τ̂ X
1 = T , this

is conditioning the vertex x0 to be isolated until time τ̂ X
1 = T ; the rest of the graph is unaffected.

Let ηn be a dynamical environment on n vertices, and let x0 ∈ {1, . . . , n} be a vertex. Define η̃n by conditioning on
the event that the vertex x0 is isolated until time T . Write η̂n for the restriction of η̃n to {1, . . . , n} \ {x0}. Observe then
that η̂n ∼ ηn−1 (where ηn−1 is a dynamical environment on n − 1 vertices), up to relabelling of vertices. (In words, this
says that if a vertex is conditioned to be isolated, then the rest of the graph behaves as a dynamical environment on n − 1
vertices.) Note also that two edges do not update at the same time, so we cannot have τY

1 = τ̂ X
1 (since the first requires an

edge to close and the second an edge to open).
Hence, (Yt | t ≤ τ̂ X

1 ) is a walk on the environment η̂n, which has the distribution of ηn−1. Note that Y may still pick
the (conditioned to be isolated) vertex x0 (with probability 1/(n − 1)), in which case it does not move; thus, under this
conditioning, (Y, η̂n) is simply a realisation of dynamical percolation on n−1 vertices, but with added laziness: when Y ’s
E(1) clock rings, with probability 1/(n − 1) it does nothing; with the remaining probability, it performs the usual step.

Note that we can rescale μ to get rid of the laziness of Y . Indeed, the laziness has the effect of changing the walker’s
clock from rate 1 to rate 1 − 1/(n − 1). As such, if we replace μ by μ′ = μ(1 − 1/(n − 1)), then the ratio of the rate
edge-clocks to the rate of the walker-clock is μ: we have simply slowed both down. We then speed up everything by a
factor 1 − 1/(n− 1). We apply previous results with μ replaced by μ′. The restrictions on μ are satisfied by μ′ also, since
μ′ ≤ μ.

For all m, define G ′
m by replacing c∗ and C∗ in Definition 2.2 by 1

2c∗ and 2C∗, respectively; define H ′ in terms of G ′
as in Definition 2.4. We then have that if ηn

0 ∈ Gn and the vertex x0 is isolated (in ηn
0 ), then η̃n

0 = ηn
0 − {x0} defined by

removing the vertex x0 satisfies η̃n
0 ∈ G ′

n−1 (for n sufficiently large). Hence we have the following inequality: let (Z, ζ )

be a full system, independent of X and Y , on n − 1 vertices, and start it from (Z0, ζ0) = (y0, η̂
n
0); we then have

Pn
x0,y0,η

n
0

(
τY

1 > τ̂X
1 ,Hn

[
0, τ̂X

1

]|τ̂ X
1

) ≤ Pn−1
y0,η̂

n
0

(
τZ

1 > τ̂X
1 ,H ′

n−1

[
0, τ̂X

1

]|τ̂ X
1

)
.

Note that Theorem 4.1 still holds if we replace H by H ′ in its statement. Combining all the above considerations,
applying Theorem 4.1, on the event {μτ̂X

1 ≥ 3} we have

Pn
x0,y0,η

n
0

(
τY

1 > τ̂X
1 ,Hn

[
0, τ̂X

1

]|τ̂ X
1

)
≤ Pn−1

y0,η̂
n
0

(
τZ

1 > τ̂X
1 ,H ′

n−1

[
0, τ̂X

1

]|τ̂ X
1

)
≤ exp

(
−μτ̂X

1

(
1 − 1

n

)
/ log(M)(n − 1)

)
≤ exp

(
−1

2
μτ̂X

1 / log(M) n

)
.
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We now calculate the unconditioned value. Fix (x0, y0, η0) with d0(x0) = 0. We have

Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
0, τ̂X

1

]|τ̂ X
1

)
≤ Ex0,y0,η0

(
Px0,y0,η0

(
τY

1 > τ̂X
1 ,H

[
0, τ̂X

1

]|τ̂ X
1

) · 1
(
τ̂ X

1 ≥ 3/μ
)) + Px0,η0

(
τ̂ X

1 < 3/μ
)

≤ Px0,η0

(
τ̂ X

1 ≥ 3/μ
) · exp

(
−1

2
μ(3/μ)/ log(M) n

)
+ Px0,η0

(
τ̂ X

1 < 3/μ
)

≤ 1 − Px0,η0

(
τ̂ X

1 < 3/μ
)
/ log(M) n ≤ exp

(−Px0,η0

(
τ̂ X

1 < 3/μ
)
/ log(M) n

)
,

where we have used the inequality exp− 3
2x ≤ 1 − x, valid for sufficiently small x. Since d0(x0) = 0, we have τ̂ X

1 ∼
E(λμ(1 − 1/n)), and hence we have Px0,η0(τ̂

X
1 ≥ 3/μ) � 1. Substituting this into (4.9) gives the required bound. �

Proof of Lemma 4.8. We may assume that K ≥ 1, otherwise the result is trivial.
For this lemma we only consider one walker, X; as such, we drop the X superscripts. We define

τisol(s) = inf
{
t ≥ s | dt (Xt ) = 0

}
and τ̂isol(s) = inf

{
t ≥ τisol(s) | dt (Xt ) > 0

};
also write τisol = τisol(0) and τ̂isol = τ̂isol(0).

For k = 0, . . . ,3K , set tk = t
3K

and t ′k = tk + 1
2 t/(3K); also, for k = 1, . . . ,3K , write

Hk = H
[
tk−1, t

′
k−1

]
and Jk = {

τ̂isol(tk−1) ≤ tk
}
.

If Jk occurs then at some point in the interval [tk−1, tk] the walk is isolated and at a later point (in the same interval) is
not. Observe that we have

{τK+1 > t} ∩ H [0, t] ⊆
{

3K∑
k=1

1(Jk) ≤ K

}
∩ H [0, t]

=
{

3K∑
k=1

1
(
J c

k

) ≥ 2K

}
∩ H [0, t] ⊆

{
3K∑
k=1

1
(
J c

k ∩ Hk

) ≥ 2K

}
.

Write J = ∑3K
k=1 1(J c

k ∩ Hk). Note that by the Markov property we have J � Bin(3K,q) where

q = max
x0,η0

Px0,η0

(
J c

1 ∩ H1
)
.

We shall show, for a suitable constant c2 in the definition of K , that q ≤ 1
3 , and then deduce that

Px0,η0

(
τK+1 > t,H [0, t]) ≤ P

(
Bin

(
3K,

1

3

)
≥ 2K

)
≤ exp

(
−2

3
K

)
.

Observe that we have{
τ̂isol >

t

3K
,τisol ≤ t

6K

}
⊆

{
τ̂isol − τisol >

t

6K

}
.

Thus we have, for any (x0, η0), that

Px0,η0

(
J c

1 ∩ H1
) ≤ Px0,η0

(
τ̂isol − τisol >

t

6K

)
+ Px0,η0

(
τisol >

t

6K
,H1

)
.

The first term is simply

P

(
E
(
(n − 1)λμ/n

)
>

t

6K

)
≤ P

(
E(μ) >

t

6K

)
= exp

(
−1

6
μt/K

)

since there are n − 1 edges that can open, and λ > 1. Applying Theorem 4.1, we have

Px0,η0

(
τisol >

t

6K
,H1

)
≤ 2 exp

(
−1

6
μt/(K log(M) n)

)
.
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Combining these two bounds, we then find that

q = max
x0,η0

Px0,η0

(
J c

1 ∩ H1
) ≤ exp

(
−1

6
μt/K

)
+ 2 exp

(
−1

6
c∗

1μt/(K log(M) n)

)

≤ 3 exp

(
−1

6
c∗

1μt/(K log(M) n)

)
.

Hence there exists a positive constant c2 so that if K = �c2μt/ log(M) n� then q ≤ 1
3 . �

5. Coupling

5.1. Statement and application of coupling to mixing

For this section only, we call a graph good if it satisfies the conditions of Definition 2.2 and in addition the condition
that at least a proportion c∗ of its vertices are isolated. Since this is an additional condition, the probability that a graph
is good decreases, and hence all our isolation results (from Section 4) still hold with this extra condition. Recall also the
definition of H from Definition 2.4, and in particular that πER(H) = 1 − o(1).

In this section, (X,η) and (Y, ξ) are two realisations of the dynamical percolation system; we shall define a Markovian
coupling of the two systems, and find a tail bound on the coupling time. We look first at the case when the environments
η and ξ start with η0 = ξ0.

Proposition 5.1 (Coupling Tail Bound). There exists a Markovian coupling, which we denote by P(x0,η0),(y0,η0) when
(X,η) and (Y, ξ) start from (x0, η0) and (y0, ξ0) respectively, so that, for all M ∈ N, all n sufficiently large, all t and
all (x0, y0, η0), we have

P(x0,η0),(y0,η0)

(
(Xt , ηt ) �= (Yt , ξt )

) ≤ 3 exp(−μt/ log(M) n).

From Proposition 5.1 we are able to deduce the upper bounds in Theorems 1.1 and 1.2.

Proof of Theorem 1.2. Observe that we have

∥∥Px0,η0(Xt = ·) − Py0,η0(Yt = ·)∥∥TV ≤ ∥∥Px0,η0(Xt = ·, ηt = ·) − Py0,η0(Yt = ·, ξt = ·)∥∥TV.

While the walk component alone is not a Markov chain, the full system is. It is then standard to upper bound the total
variation distance by the tail probability of the coalescence time:

∥∥Px0,η0(Xt = ·, ηt = ·) − Py0,η0(Yt = ·, ξt = ·)∥∥TV ≤ P(x0,η0),(y0,η0)(τc > t).

The coupling is coalescent, and so this tail bound is monotone in t . Proposition 5.1 now implies that this is o(1) when
t = 1

μ
log(M) n, since η0 ∈ H (and replacing M with M + 1 in the proposition).

Now recall that the uniform distribution πRW is invariant for our walk on any graph. Hence

PπRW,η0(Yt = ·) = πRW

for any η0. Thus we obtain our result: for t = 1
μ

log(M) n and any η0 ∈ H , we have

max
x0

∥∥Px0,η0(Xt = ·) − πRW
∥∥

TV ≤ max
x0,y0

∥∥Px0,η0(Xt = ·) − Py0,η0(Yt = ·)∥∥TV

≤ max
x0,y0

P(x0,η0),(y0,η0)(τc > t) = o(1). �

In order to prove the mixing of the full system (X,η), we also need to know the mixing of the environment by itself.
First recall that the environment process is simply a p-biased walk on the hypercube {0,1}N , where N = (

n
2

)
and p = λ/n,

and where each coordinate refreshes at rate μ. We state the result now, then prove it at the end of the subsection.
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Proposition 5.2 (Hypercube Mixing). Consider the rate-1 p-biased random walk on the hypercube {0,1}N , with 1/N �
p ≤ 1

2 ; denote it η = (ηt )t≥0, and its invariant distribution πp . There is cutoff at 1
2 log(N/p) with window order 1: for all

ε ∈ (0,1), there exists a constant Cε so that

max
η0

∥∥Pη0(ηt = ·) − πp

∥∥
TV ≤ ε if t ≥ 1

2
log(N/p) + Cε,

min
η0

∥∥Pη0(ηt = ·) − πp

∥∥
TV ≥ 1 − ε if t ≤ 1

2
log(N/p) − Cε.

Since we work in continuous time, we can apply this directly when the refresh-rate is μ.

Proof of Theorem 1.1. We consider first a lower bound on tmix(ε). Observe that, trivially,∥∥Px0,η0

(
(Xt , ηt ) ∈ ·) − πU × πER

∥∥
TV ≥ ∥∥Pη0(ηt ∈ ·) − πER

∥∥
TV.

Thus it suffices to only show that the environment has not mixed by time t . This follows immediately from the lower
bound in Proposition 5.2, since 1

2 log(N/p) = 3
2 logn + 	(1).

Now consider the upper bound. Fix (x0, η0) and (y0, ξ0). By Chapman–Kolmogorov, we have

Px0,η0

(
(Xs+t , ηs+t ) ∈ ·) = Ex0,η0

(
PXs,ηs

(
(Xt , ηt ) ∈ ·)).

Hence for any coupling Q of Px0,η0((Xs, ηs) = ·) and Py0,ξ0((Ys, ξs) = ·) we have∥∥Px0,η0

(
(Xs+t , ηs+t ) ∈ ·) − Py0,ξ0

(
(Ys+t , ξs+t ) ∈ ·)∥∥TV

≤ Q(ηs �= ξs) + P(ηs /∈ H) + max
x′

0,y
′
0,η

′
0∈H

∥∥Px′
0,η

′
0

(
(Xt , ηt ) ∈ ·) − Py′

0,η
′
0

(
(Yt , ξt ) ∈ ·)∥∥TV.

In particular, consider the following such coupling Q: fix s ≥ 0, and couple (ηs, ξs) using the optimal coupling when
started from (η0, ξ0); given ηs (and the fixed η0), sample Xs conditional on ηs (and η0); do similarly (and independently)
for Ys with ξs (and ξ0). This then has

Q(ηs �= ξs) = ∥∥Pη0(ηs ∈ ·) − Pξ0(ξs ∈ ·)∥∥TV.

Now fix M ∈ N and choose s so that μs = 3
2 logn + log(M+2) n, which has μs ≥ 1

2 log(N/p) + log(M+2) n. Then by
the upper bound in Proposition 5.2 and the triangle inequality, we have

Q(ηs �= ξs) = o(1) and P(ηs /∈ H) ≤ πER
(
Hc

) + o(1) = o(1).

Since our coupling P·,· from Proposition 5.1 is Markovian and coalescent, we have∥∥Px0,η0

(
(Xt , ηt ) ∈ ·) − Py0,η0

(
(Yt , ξt ) ∈ ·)∥∥TV ≤ P(x0,η0),(y0,η0)(τc > t).

Noting the conditions of Proposition 5.1, this implies that

P(x0,η0),(y0,ξ0)(τc > t) ≤ ε2 when t = 1

μ
log

(
3/ε2) log(M+1) n.

Combining these three bounds we obtain, for these s and t , that∥∥Px0,η0

(
(Xs+t , ηs+t ) ∈ ·) − Py0,ξ0

(
(Ys+t , ξs+t ) ∈ ·)∥∥TV ≤ ε2 + o(1) + o(1) ≤ ε.

Hence for all ε ∈ (0,1) we have

μ · tmix(ε) ≤ 3

2
logn + log(M) n.

This completes the proof of the upper bound. �

It remains to prove Proposition 5.2.
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Proof of Proposition 5.2. We prove the upper bound first. We do this by relating the TV distance to the L∞ distance.
The probability an edge is in the same state z ∈ {0,1} as initially is exactly

e−t + (
1 − e−t

)
P
(
Bern(p) = z

) = pz(1 − p)1−z + e−t
(
1 − pz(1 − p)1−z

)
.

Also, it is well-known that for a reversible transition kernel P = (Pt )t≥0 with invariant distribution π , writing dp(t) for
the p-norm at time t (for p ∈ [1,∞]), we have

dTV(t) = 1

2
d1(t) ≤ 1

2
d2(t) and d∞(2t) = (

d2(t)
)2 = max

x
P2t (x, x)/π(x) − 1;

see [17, Exercise 4.5 and Proposition 4.15]. We hence deduce that

d∞(2t) = max
η0

∥∥Pη0(η2t ∈ ·) − πER
∥∥∞ = max

η0
Pη0(η2t = η0)/πER(η0) − 1.

Calculating this directly, recalling that N = (
n
2

)
and p = λ/n with λ a constant, we see that

d∞(2t) = (
1 + e−2t (1/p − 1)

)N − 1 ≤ exp
(
e−2tN/p

) − 1.

Hence if we set t = 1
2 log(N/p) + 1

2Cε , for some large constant Cε , then we obtain

d∞(2t) ≤ exp(1/Cε) − 1 ≤ 2/Cε.

Finally we deduce that dTV(t) ≤ 1
2

√
d∞(2t) ≤ 1/

√
2Cε , proving the upper bound.

We now pursue the lower bound. For this, we consider the statistic Nt = ∑N
e=1 1(ηt (e) = 1), ie the number of open

edges at time t . Observe that Nt ∼ Bin(N,p) when η0 ∼ πER. Consider starting η0 from the all-1 state, which we denote
1 ∈ {0,1}N . Then write

qt = e−t + (
1 − e−t

)
p = p + e−t (1 − p),

and observe that Nt ∼ Bin(N,qt ) when η0 = 1. Now define the set

At =
{

ζ ∈ {0,1}N |
N∑

e=1

1
(
ζ(e) = 1

) ≥ 1

2
(p + qt )N

}
.

This will be our distinguishing statistic/set. Recall that

E
(
Bin(N, r)

) = Nr and Var
(
Bin(N, r)

) = Nr(1 − r) ≤ Nr.

Take t = 1
2 log(N/p)− 1

2 logCε , for some large constant Cε . Note that qt −p ≥ 1
2

√
Cεp/N ; also qt ≤ 2p since

√
p/N �

p. (This is where we use the condition p � 1/N .) Hence, by Chebyshev,

P1(ηt /∈ A) ≤ P

(∣∣Bin(N,qt ) − qtN
∣∣ ≥ 1

2
(qt − p)N

)
≤ 4Nqt

(qt − p)2N2
≤ 50p

(Cp/N) · N = 50

Cε

;

similarly, PπER(ηt ∈ A) ≤ 50/Cε . Hence dTV(t) ≥ 1 − 100/Cε , proving the lower bound. �

It remains to prove Proposition 5.1. To prove this, we carefully define a coupling, and use the result on dual-walker
isolation, Theorem 4.2, that we proved in the previous section.

5.2. Coupling description and proof of tail bound

Below, we write (x, y) for the undirected edge with endpoints x and y; in particular, (x, y) = (y, x). We only use the
coupling below once the environments have coupled and the two walks have subsequently become then jointly isolated.
We now define the coupling.

Definition 5.3. Suppose that (X,η) and (Y, ξ) are in the states (x, η0) and (y, ξ0), respectively. Assume that η0 = ξ0 and
both x and y are isolated vertices in the environment η0 = ξ0. Let η evolve in the standard way. Couple ξ to η as follows.
Suppose that edge (u, v) refreshes in η:
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Fig. 1. The dotted lines represent the closed edges incident to x and y (recall that they are both isolated initially). The full line indicates opening an
edge to another vertex z; the dashed line indicates leaving it closed. The dotting/dashing is reversed in ξ compared with η.

Fig. 2. The full line indicates an open edge; the dashed line indicates a closed edge. The walkers move along the open edges, moving together. On the
left-hand side the filled dots represent where the walkers start; on the right-hand side the filled dots represent where the walkers end; the empty circles
indicate empty sites.

• if {u,v} ∩ {x, y} =∅ or {u,v} = {x, y}, then perform the same update to (u, v) in ξ as in η;
• if u = x and v /∈ {x, y}, then perform the same update to (y, v) in ξ as to (u, v) in η;
• if u /∈ {x, y} and v = y, then perform the same update to (u, x) in ξ as to (u, v) in η.

This corresponds to a relabelling of x and y in ξ . [See Figure 1 for an illustration.]
While the environments are run like this, the environment η from the perspective of the walk X looks exactly the

same as ξ from the perspective of Y , modulo the label difference x–y. This allows us to couple X and Y , modulo the
relabelling. [See Figure 2 for an illustration.] So at every time, we have one of the following three situations:

• both X and Y are at some vertex z /∈ {x, y};
• X is at x and Y is at y;
• X is at y and Y is at x.

Observe that this defines a genuine Markovian coupling. When the systems (X,η) and (Y, ξ) start from (x, η0) and
(y, ξ0), respectively, we denote this coupling P(x,η0),(y,ξ0).

We now describe how to couple two processes (X,η) and (Y, ξ), when the environments are initially the same, but the
walks are not necessarily isolated. (This is the setup of Proposition 5.1.) In the below algorithm, we define a time τc at
which (X,η) and (Y, ξ) agree.

(i) Run the environments together (in the natural coupling, without any relabelling) and the walks independently until
the two walks are jointly isolated, ie until time

τ0 = inf
{
t ≥ 0 | dη

τ0
(Xτ0) = 0 = dξ

τ0
(Yτ0)

}
.

Note that ητ0 = ξτ0 . Write x = Xτ0 and y = Yτ0 .
(ii) Set k = 1. Use the coupling from Definition 5.3: run until x becomes non-isolated in η (and hence y becomes non-

isolated in ξ ), and then on until the first time after that both x and y are isolated (in both η and ξ ); call this first time
σk and the final time τk . That is, set

σk = inf
{
t ≥ τ0 | dη

t (x) > 0
}

and τk = inf
{
t ≥ σk | dη

t (x) = 0 = d
η
t (y)

};
by the relabelling of the coupling, in the above definition we could swap (X,η) ↔ (Y, ξ) and the times would be the
same.

(iii) If Xτk
/∈ {x, y}, then Xτk

= Yτk
(and vice versa). In this case, we have successfully coalesced the full processes. We

then stop, setting τc = τk . (Also set K = k.)
Otherwise, we have {Xτk

,Yτk
} = {x, y}. Then the walks are not at the same vertex, but the environments are in

the same state and the walks are jointly isolated. Hence we can increment k → k + 1 and return to Step (ii). By
symmetry, assume Xτk

= x and Yτk
= y.
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This means that, once we have the walks simultaneously isolated in the same environment, we can control their
evolution very carefully. It will be straightforward to see that the probability that Step (ii) ‘succeeds’, ie ends with Xτk

=
Yτk

is 1
2 + o(1); hence we run Step (ii) an order 1 number of times to couple. It remains to analyse how long Steps (i) and

(ii) take (Step (iii) only makes definitions, and so takes no time to ‘run’). Step (i) is given precisely by Theorem 4.2.

Lemma 5.4. The probability Step (ii) ends with Xτk
= Yτk

is at least 1
3 , and hence K � Geo( 1

3 ).

The intuition behind this lemma is as follows. Consider just X and the vertex x = Xτ0 . In the (random) time interval
between when x has degree 1 and when it becomes isolated, the component of x has size at least 2, and moreover
1/μ � n, so the walk takes a large number of steps if it is in this component, and so has probability 1

2 + o(1) of being
at x when x becomes isolated. This heuristic is made rigorous in the proof of Lemma 6.5, where an analogous claim is
considered. From this we deduce that K � Geo( 1

3 ).
We still need to find the distribution of τ1 − τ0. (Note that (τk − τk−1)k≥1 are iid.)

Lemma 5.5. There exists a constant C so that, for all L ≥ 1 and all n sufficiently large, we have

P(τ1 − τ0 > CL/μ) ≤ e−L.

The intuition behind this lemma is as follows. There are 2n − 3 edges incident to {x, y}, in the complete graph; in
equilibrium, in expectation p(2n − 3) ≈ 2λ will be open. The number of edges open is well approximated by a birth and
death chain with birth rate λμ and death rate μ. For this chain, the return time to 0 has mean order 1/μ and an exponential
tail. This heuristic is made rigorous in the proof of Lemma 6.3, where a similar claim is considered – there only one vertex
is considered, and some random number of edges are open initially; the same argument applies here. To go from τ1 − τ0
to τk − τ0 = ∑k

�=1(τ� − τ�−1), we use the simple fact that if a random variable has an exponential tail, then so does a
sum. This can be proved by applying Chernoff; cf. the proof of Lemma 6.4. (Note that these statements and proofs do not
require the graph to be ‘good’.)

From these two lemmas, we immediately get the following corollary.

Corollary 5.6. There exists a constant C so that, for all L ≥ 1 and all n sufficiently large, we have

P(τc − τ0 > CL/μ) ≤ e−L.

Now that we know bounds on both τ0 and τc − τ0, given by Theorem 4.2 and Corollary 5.6 respectively, the bound
on τc in Proposition 5.1 follows immediately. (For the application of Theorem 4.2, recall from Definition 2.4 that
Pη0(H [0, n/μ]c ≤ n−1) ≤ n−1 for all η0 ∈ H .) Note also that we may assume μt ≥ 3 log(M) n, else the claim holds
trivially.

6. Invariant initial environment

In this section we prove Theorem 1.3, which concerns the case where we draw η0 according to πER and set X0 = 1; the
reader should recall the precise statement. Throughout this entire section we consider the measure P1,ER(·); for ease of
notation, we drop the subscript and just write P(·).

Proof of Theorem 1.3 (lower bound). Suppose the walk starts from an isolated vertex: it cannot have mixed before an
incident edge opens. We make this idea precise and rigorous. We have

P
(
d0(1) = 0

) = (1 − p)n = e−λ
(
1 − o(1)

)
.

Let τ be the first time an edge incident to X0 = 1 opens. By counting edges and their respective rates, we see that
τ ∼ E(λμ(1 − 1/n)) � E(λμ). Let T = λμt , and observe that

P
(
τ > t | d0(1) = 0

) ≥ P
(
E(λμ) > T/(λμ)

) = e−T .

On the event {d0(1) = 0} ∩ {τ > t}, we have Xt = 1 (in fact Xs = 1 for all s ≤ t ), and hence

∥∥P(Xt ∈ ·) − πU

∥∥
TV ≥ P(Xt = 1) − πU(1) ≥ P

(
d0(1) = 0, τ > t

) − πU(1) ≥ e−(T +λ) − 1

n
.
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We desire T so that ‖P(Xt ∈ ·) − πU‖TV ≥ ε. By the above, we may take T = − log(ε + 1/n) − λ. If ε < e−3λ, then
T ≥ 1

2 log(1/ε). This proves the lower bound, as t = T/(λμ). �

The aim of the remainder of this section is to prove the upper bound in Theorem 1.3; herein we assume that μ ≤
2
3 (1 + λ)−1/n. To this end, let τ be the first time our initial vertex is isolated and the walk is not there, ie

τ = inf
{
t ≥ 0 | dt (X0) = 0,Xt �= X0

}
.

The idea is that at time τ we are nearly uniform and have lost information about where we started, and so our total
variation does not become large in the future. We show this rigorously.

Proposition 6.1. For all n and all t , we have

∥∥P(Xt ∈ ·) − πU

∥∥
TV ≤ P

(
Xt = 1, τ ≤ t ∧ (n/μ)

) + P
(
τ > t ∧ (n/μ)

) + 1

n
.

Proof. Note that by construction and the symmetry of the graph, at all times t ≥ 0 we must have that P(Xt = x) is
constant over x ∈ V \ {1} = {2, . . . , n}: define ρt = P(Xt = 1); then P(Xt = x) = (1 − ρt )/(n − 1) for all x ∈ {2, . . . , n}.
We then have

2
∥∥P(Xt ∈ ·) − πU

∥∥
TV = (n − 1)

∣∣∣∣1 − ρt

n − 1
− 1

n

∣∣∣∣ +
∣∣∣∣ρt − 1

n

∣∣∣∣ = 2

∣∣∣∣ρt − 1

n

∣∣∣∣ ≤ 2

(
ρt + 1

n

)
.

Decomposing according to the event {τ > t ∧ (n/μ)} completes the proof. �

Proposition 6.2. There exists a constant C so that, for all K ≥ 2 and all n sufficiently large, we have

P(τ > CK/μ) ≤ e−K.

Before we prove this, we define some preliminary notation, and then state three claims. First, let σ0 = σ ′
1 = 0, and let

σ1 be the first time the initial vertex, 1, becomes isolated, ie

σ1 = inf
{
t ≥ 0 | dt (1) = 0

}
,

and for i ≥ 1 define inductively

σ ′
i+1 = inf

{
t ≥ σi | dt (1) > 0

}
, σi+1 = inf

{
t ≥ σ ′

i+1 | dt (1) = 0
}

and

σ ′′
i = inf

{
t ≤ σi | ds(1) = 1 ∀s ∈ [t, σi)

}
.

In words, σi is the i-th time the vertex 1 becomes isolated, σ ′
i is the first time after this that it becomes non-isolated and

[σ ′′
i , σi) is the interval in which it is degree 1 immediately before becoming isolated for the i-th time. By the memoryless

property, σ ′
i − σi−1 ∼iid E(λμ(1 − 1/n)).

Define τi := σi − σi−1 for i ≥ 1; then τ1 is the time it takes to become isolated initially, and, for i ≥ 2, τi is the time
between the (i − 1)-st and i-th times we become isolated. Note that the random variables {τi}i≥2 are all independent and
identically distributed.

We now state three lemmas which we use to deduce Proposition 6.2.

Lemma 6.3. There exists a constant C so that, for all K ≥ 1 and all n sufficiently large, we have

P(τ1 > CK/μ) ≤ e−K.

Lemma 6.4. There exists a constant C so that, for all K ≥ 2 and all n sufficiently large, we have

P

(
K∑

i=2

τi > CK/μ

)
≤ e−K.
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Lemma 6.5. For all n sufficiently large and all i ≥ 1, we have

P(Xσi
= 1 | Xσj

= 1 ∀j < i) ≤ 2

3
.

We now show how to conclude our tail bounds on τ from these three lemmas.

Proof of Proposition 6.2. Consider an integer K ≥ 2. Lemma 6.5 tells us that

P(Xσi
= 1 ∀i ≤ K) =

K∏
i=1

P(Xσi
= 1 | Xσj

= 1 ∀j < i) ≤ (2/3)K.

Combining this with Lemma 6.3 and Lemma 6.4 tells us that

P
(
σK ≤ C′K/μ,∃k ≤ K s.t. Xσk

�= 1
) ≥ 1 − e−K − e−K − (3/2)−K

for a suitably large constant C′. From this we deduce our claim. �

To complete the proof of our tail bound, it remains only to prove our three lemmas; we do this at the end of the section.
For now, we turn to upper bounding P(Xt = 1, τ ≤ t ∧ (n/μ)).

Lemma 6.6. There exists a constant C so that, for all n sufficiently large and all t , we have

P
(
Xt = 1, τ ≤ t ∧ (n/μ)

) ≤ C/n.

Proof. Write It for the set of isolated vertices at time t . Write s = t ∧ (n/μ). First we lower bound the number of isolated
vertices at time τ on the event {τ ≤ s}. From Proposition 2.5,

P

(∣∣Iτ \ {Xτ }
∣∣ ≤ 1

2
c∗n, τ ≤ s

)
=O

(
n−2).

By the symmetry of the complete graph, we must have that P(Xt = x | Fτ ) is constant over x ∈ Iτ \ {Xτ } on the event
{τ ≤ s}; let ξt be this (random) value. (ξt is an Fτ -measurable random variable.) Now, by construction of τ , we have that
X0 = 1 ∈ Iτ \ {Xτ }. This says that

ξt = P(Xt = 1 | Fτ )1(τ ≤ s) and hence P(Xt = 1, τ ≤ s) = E(ξt ).

It remains to bound E(ξt ), which we now do. Note that we have

1 ≥ P(τ ≤ s) ≥ E
(∣∣Iτ \ {Xτ }

∣∣ · P(Xt = 1 |Fτ )1(τ ≤ s)
)
.

Letting A = {|Iτ \ {Xτ }| ≥ 1
2c∗n}, we have P(Ac, τ ≤ s) =O(n−2), as above. Hence

1 ≥ E
(∣∣Iτ \ {Xτ }

∣∣ · P(Xt = 1 | Fτ )1(τ ≤ s)1(A)
)

≥ 1

2
c∗nE

(
ξt1(A)

) ≥ 1

2
c∗n

(
E(ξt ) − P

(
Ac, τ ≤ s

))
.

Rearranging completes the proof:

P(Xt = 1, τ ≤ s) = E(ξt ) ≤
(

1

2
c∗n

)−1

+O
(
n−2) ≤ 3c−1∗ /n. �

We can now give the proof of the upper bound in Theorem 1.3.

Proof of Theorem 1.3 (upper bound). Lemma 6.6 says that, for all t , we have

P
(
Xt = 1, τ ≤ t ∧ (n/μ)

) ≤ C′/n,
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for a constant C′. Hence we have∥∥P(Xt ∈ ·) − πU

∥∥
TV ≤ P

(
τ > t ∧ (n/μ)

) + (
C′ + 1

)
/n.

Observe that this upper bound is (weakly) monotone-decreasing in t , and Proposition 6.2 gives us a constant C so that∥∥P(Xt ∈ ·) − πU

∥∥
TV ≤ ε2 + (

C′ + 1
)
/n ≤ ε when t = 2C log(1/ε)/μ.

Hence we deduce that tmix(ε) ≤ 2C log(1/ε)/μ. �

Proof of Lemma 6.3. Write dt = dt (1). Also rescale time by μ, so as to remove the μ factors from the workings. Observe
that the jump-rates of d are as follows:

k → k + 1 at rate q+(k) = (n − 1 − k)p = (
λ − λ(1 + k)/n

);
k → k − 1 at rate q−(k) = k(1 − p) = (k − λk/n).

Let q(k) = q+(k) + q−(k), and observe that q(k) ≥ q(0) ≥ 1 for all k ≥ 0. We now couple d with an auxiliary process
d ′, which has rate-1 jumps. Above 3λ, d ′ has probability 2

3 of going up and 1
3 of going down; below 3λ, it has the same

probabilities as d , ie q+(k)/q(k) for up and q−(k)/q(k) for down. Set d ′
0 = d0, and write τ ′

1 for the hitting time of 0 by
d ′. We then have τ1 � τ ′

1.
Note that once d ′ reaches �3λ�, it moves directly to 0 (in �3λ� steps) with probability bounded away from 0. The

hitting time of �3λ� is that of a biased simple random walk. Since d0 ∼ Bin(n − 1, λ/n), we may assume that d0 ≤ CK

for some sufficiently large constant C with a penalty e−K to the probability. Given this, we see that the hitting time of
�3λ� has mean 	(1) and an exponential tail. Once d ′ hits �3λ�, we perform a geometric number of excursions, the length
of which have an exponential tail. Hence τ ′

1 has mean 	(1) and an exponential tail. �

Proof of Lemma 6.4. Again, drop the μ factors. Note that τi � τ1, and τ1 has mean 	(1) with an exponential tail. Since
the τi are independent, we then apply the Chernoff bound to a sum of K independent τ1 random variables to deduce the
lemma. �

Proof of Lemma 6.5. Fix i ≥ 1. For t ∈ (σ ′′
i , σi) we have that dt (1) = 1; write xi for the neighbour of 1 in the interval

(σ ′′
i , σi). Note that all the σ -times depend only on the environment, not also on the walk. We describe a coupling between

X and an auxiliary walk X′ which is confined to the pair {1, xi}. The coupling will have the property that

P(Xσi
= 1 | Xσj

= 1 ∀j < i) ≤ P
(
X′

σi
= 1 | Xσj

= 1 ∀j < i
)
.

In particular, X′ will be the usual simple random walk on {1, xi}, jumping at rate 1/(n − 1). Thus we shall see that the
probability on the right-hand side is ‘approximately’ 1

2 .
We now explicitly define the coupling. Start X′ from 1. If both X and X′ are at 1, then move them together; if both X

and X′ are at xi and X chooses vertex 1 to jump to, then move them together; otherwise let them evolve independently.
Observe that, wherever X is at time σ ′′

i , we always have for t ∈ [σ ′′
i , σi] that Xt = 1 implies X′

t = 1. Hence our desired
inequality holds.

Observe that X′ is at 1 if it has taken an even number of steps (and at xi if odd). Hence

P
(
X′

σi
= 1 | Xσj

= 1 ∀j < i
) = P

(
Po(r) is even

) = 1

2

(
1 +E

(
e−2r

))
where r = (

σi − σ ′′
i

)
/(n − 1).

We have σi − σ ′′
i ∼ E((λ + 1 − 3p)μ) by counting edges and rates, and so the lemma follows since

E
(
e−2r

) = (λ + 1 − 3p)μ

(λ + 1 − 3p)μ + 2/(n − 1)
≤ 1

2
(λ + 1)μn ≤ 1

3
. �
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