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Abstract. Shearer’s inequality bounds the sum of joint entropies of random variables in terms of the total joint entropy. We give
another lower bound for the same sum in terms of the individual entropies when the variables are functions of independent random
seeds. The inequality involves a constant characterizing the expansion properties of the system.

Our results generalize to entropy inequalities used in recent work in invariant settings, including the edge-vertex inequality for
factor-of-IID processes, Bowen’s entropy inequalities, and Bollobds’s entropy bounds in random regular graphs.

The proof method yields inequalities for other measures of randomness, including covariance.

As an application, we give upper bounds for independent sets in both finite and infinite graphs.

Résumé. L’inégalité de Shearer limite la somme des entropies conjointes de variables aléatoires en termes d’entropie conjointe totale.
Nous donnons une autre borne inférieure pour la méme somme en termes d’entropies individuelles lorsque les variables sont des
fonctions de nombres aléatoires indépendantes. Le coefficient de 1’inégalité caractérise les propriétés d’expansion du systéme.

Nos résultats se généralisent aux inégalités d’entropie utilisées dans des travaux récents dans des contextes invariants, y compris
I’inégalité aréte-sommet pour les processus de facteur d’IID, les inégalités d’entropie de Bowen et les limites d’entropie de Bollobds
dans des graphes réguliers aléatoires.

La méthode de la preuve produit des inégalités pour d’autres mesures de 1’aléatoire, y compris la covariance.

Comme application, nous donnons des bornes supérieures pour des ensembles indépendants dans des graphes finis et infinis.
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1. Introduction

In recent years entropy inequalities for so-called local algorithms and factor-of-1ID processes have been used to great
effect in proving new results about random regular graphs and regular graphs of large girth. The method of entropy
bounds actually goes back to a 1981 result of Bollobds [8] where he gave an upper bound on the independence ratio of
random regular graphs. The counting argument behind that result essentially proves an edge-vertex entropy inequality in
a special setting. Interestingly, this entropy inequality also comes up in the seminal work of L. Bowen on the f-invariant
[9,10].

All previous proofs for the edge-vertex entropy inequality heavily relied on the fact that the underlying graph does
not contain (short) cycles. One would think that the acyclic property of the graph is not crucial. Indeed, in this paper we
present an approach that directly relates the existence of such entropy inequalities to expansion properties of the graph
allowing us to vastly generalize these inequalities.

1.1. The setup

Throughout the paper X,,, v € V, will denote a finite or infinite system of random variables obtained as follows. Suppose
that we have a collection of independent random variables Z, Z», ... that we will refer to as random seeds. Then for
each v, X, is obtained as a measurable function of some specified subcollection of these random seeds. The main result
is a general entropy inequality involving the Shannon entropies of our random variables X, and the joint entropies of X,
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for given subsets of V. We will see that the best coefficient for which our inequality holds can be expressed as a certain
hyperedge expansion of the system.

One may think of X,,, v € V, as the output of a randomized (local) algorithm on a (large) network, where V denotes the
set of nodes. The algorithm is distributed among the nodes with each node having access only to a certain subcollection
of the random seeds used by the algorithm, usually dictated by the restriction that each node can communicate only with
close-by nodes. The entropy inequalities presented in this paper provide constraints for what can be achieved by such
distributed algorithms.

As we will see, the finite version nicely complements Shearer’s inequality, while the infinite version generalizes the
afore-mentioned edge-vertex entropy inequality.

1.2. The finite version

For the moment let X,,, v € V, denote any random variables indexed by elements of a finite set V such that each X, takes
values from a finite set. Suppose that we have a hypergraph G over the vertex set V. This simply means that we have
an edge set E containing subsets e of V, that is, each hyperedge e € E is a subset e C V. For the sake of simplicity the
reader may think of G as an ordinary graph where each edge e is a pair of vertices. One can consider the joint entropy
H(X,) of the random variables X,, v € e. Given a hypergraph over V with edge set E, Shearer’s inequality [11] says
that

Y H(X,) = kH(Xy), (1

ecE

where k is such that each v € V is contained by at least k hyperedges (i.e. k is the minimum degree of the hypergraph) and
H (Xy) denotes the joint entropy of all X,, v € V. Shearer’s inequality has many elegant applications in various areas,
most notably in set systems and graph homomorphisms.

We would like to complement (1) by proving another lower bound for the same sum of joint entropies but this time in
terms of the individual entropies H(X,). If no additional assumption is made, then only trivial bounds can be obtained
(i.e. bounds that follow from the inequalities H (X,) > H(xy), v € e).

To get a non-trivial inequality, we will work with random variables X, that are measurable functions of independent
random seeds with the sole restriction that each X, “can see” only some specified subcollection of the seeds. We will
prove that

Y HX)=BY H(Xy),

ecE veV

where S is related to the expansion properties of the hypergraph with respect to sets describing which X, can see a given
seed; see Theorem 2.4. To be more specific, but without having to go into too many details, we state our inequality here
for the case when G is a regular graph.

Theorem 1 (Regular graph version). Suppose that G is a d-regular graph with vertex set V and edge set E. Suppose
that Z1, ..., Z,, are independent random variables and a subset W; C V is given for eachi =1, ..., m. Informally, the
random value of Z; is passed on to the vertices in W;, and for each v € V we have a random variable X, that is an
arbitrary measurable function of the values passed on to v. More precisely, for each vertex v € V let X, be a measurable
function of those Z; for which v € W;. Then

Z H(XM,XU)ZﬂZH(XU), whereﬂ:%(d—l— min Wﬂ>

i
I<ism;wew; |W|
{u,v}eE veV
Here O0W denotes the edge boundary of W, that is, the set of edges with one endpoint in W and one endpoint outside W .
The above minimum of |0W|/|W| is the edge Cheeger constant (or isoperimetry number) of G with respesct to the set
system Wi, ..., Wy,.
We will see that this 8 is the largest coefficient for which the theorem holds.

1.3. Factor-of-1ID processes

The following question arises: can we use our method to say something if not finitely but countably many random

variables X, are given? In this case the sum of all entropies may be infinite. Therefore, to get a meaningful statement,
one needs to assume some kind of invariance. A natural framework to consider is factor-of-I1ID processes.
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Factors of IID are closely related to randomized local algorithms. They are also extensively studied by ergodic theory
under the name of factors of Bernoulli shifts. In short, we start with independent and identically distributed (say [0, 1]
uniform) random variables Z,,, v € V (i.e. the IID process), then we apply a measurable function F': [0, 11V — MV that
is required to be I"-equivariant for some group I' acting on V. The collection of random variables X,, v € V, we obtain
this way is called a factor-of-1ID process. Note that the joint distribution of X,, v € V, is I'-invariant. In this paper the
state space M will usually be finite.

An important special case, mainly because of its connection to random regular graphs and other large-girth regular
graphs, is when V is the vertex set of the d-regular tree 7; equipped with the natural action of the automorpihsm group
I' = Aut(7y). In this setting various entropy inequalities have been known for factor-of-IID processes. The simplest one
is the following edge-vertex inequality:

2(d—1) .
H(X,, Xy) > TH(XU), where (u, v) is an edge. 2)

This inequality played a central role in a couple of intriguing results recently [5,26]. All previous proofs of (2) are based
on counting arguments for random regular graphs or for random permutations, and as such they heavily build on the
acyclic nature of Ty, see [4,10,25]. Further inequalities and generalizations can be found in [3,16].

The new approach presented in this paper does not assume the acyclic property of the system (only certain local
expansion). It provides a clean new proof for (2) and leads to numerous new versions and generalizations. Once again,
we want to avoid too many technicalities at this point so we do not state our result in its most general form. Theorem 2
below is concerned with transitive graphs G satisfying some additional invariance called unimodularity.

There are several equivalent definitions for unimodular transitive graphs. The one most convenient for applications
is the so-called Mass-Transport Principle saying that )\, h(o,v) =) .y h(v, 0) holds for any fixed vertex o of the
vertex set V and for any function 2: V x V — [0, co) that is diagonally Aut(G)-invariant (i.e. h(u, v) = h(p(u), ¢(v))
VYo € Aut(G) Yu,v € V). For an equivalent definition that is easier to check, let m, , denote the size of the orbit of v
under the stabilizer of u, that is, the size of the set {¢(v) : ¢ € Aut(G); ¢(u) = u}. Then a transitive G is unimodular if
and only if m, , = m, , for any pair of vertices.

Theorem 2. Let G be a unimodular transitive graph with vertex set V and with degree d. Suppose that X,,, v € V, is an
Aut(G)-factor-of-I1ID process with a finite state space. Then for an arbitrary o € V we have

1ZH(X X,) > BH(X,), wherep ! d+  inf oW
= , Xy) = , where = - in — ).
24 or e ‘ 2 WCViWi<co |W|

o' ~0
Here 0’ ~ 0 means that o' and o are connected by an edge in G, that is, o' runs through all neighbors of the fixed vertex o.
Note that the infimum of |0W|/|W| over finite sets W is usually called the edge Cheeger constant of G.

In particular, for G = T, the Cheeger constant is d — 2 and we get back the original edge-vertex inequality (2). See
Theorem 3.3 for our general result, which is concerned with quasi-transitive group actions and joint entropies for arbitrary
finite subsets.

1.4. Proof method

In the finite case our strategy is to reveal the independent seeds Z1, Z3, ..., Z, one by one and study how much infor-
mation is gained about X, and X, at each step. After step i, the conditional entropy H(X. | Z1, ..., Z;) indicates the
expected “amount of uncertainty” remaining. So the information gained at step i can be defined as the difference

H(Xc | Zy,...,2Zi-1)—HX. | Z1,...,Z).

It can be seen that this difference must be at least as much as the same difference for X, provided that the vertex v is
incident to e. This observation, combined with the fact that the information gain at step i is zero for vertices outside W;,
leads to Theorem 1.

As for the infinite setting, one needs to reveal the seeds in a random order and take expectation. This ensures that we
have the required invariance to use the Mass-Transport Principle in the argument.

In fact, the approach described above goes beyond entropy. There are other ways of “measuring the uncertainty” in
random variables. If such an uncertainty function satisfies a certain convexity criterion, then we can simply use this
function — instead of entropy — in our arguments and obtain further inequalities of similar flavor. For example, we can get
a bound for the correlation of neighbors in terms of the edge expansion. We will discuss this in detail in Section 4.
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Telescoping sums of conditional entropies, in particular of those in random order, have been used in the literature
before. The recent notion of percolative entropy is also based on this idea, see [2,27].

1.5. Applications

As we have mentioned, these inequalities can be used to get constraints for what can be achieved by factor-of-IID pro-
cesses or randomized local algorithms. They can be applied to various problems; in this paper we will focus on questions
regarding independent sets.

Upper bounds have been known for the density of factor-of-1ID independent sets in Cayley graphs. An infinite ver-
sion of the Hoffman bound provides a non-trivial bound for non-amenable graphs [22, Proposition 3.3]. The same paper
explores possible improvements as well [22, Section 4]. Here, instead of using the spectral radius or other spectral pa-
rameters, we give a bound in terms of the Cheeger constant.

Theorem 3. Suppose that G is a Cayley graph (or more generally, a unimodular transitive graph) with vertex set V and
degree d. Let T denote the normalized edge Cheeger constant:

oW
T= mn S ——
Wcv;|Wi<oo d|W|

1

Then the density of any factor-of-IID independent set in G is at most ¢~ (t), where ¢~
function:

is the inverse of the following

—2qlogg — (1 —2g)log(1 —2q)
—qlogg — (1 —g)log(l —q)

v(q) = —1 forqe(0,1/2).

It is easy to see that ¢ continuously and monotone decreasingly maps (0, 1/2) onto (0, 1), and hence the inverse exists.

It is, of course, very hard to assess the strength of this result without further details or examination. We will discuss the
behaviour of ¢! in Section 5. Note, however, that G is non-amenable if and only if 7 > 0, and the obtained bound ¢! (1)
is strictly less than 1/2 in that case. If G is the d-regular tree T, then we get back the original Bollobas bound: (2logd)/d
asymptotically as d — oo. The exact value of the Cheeger constant is also known for regular tessellations of the hyperbolic
plane [17,19] so Theorem 3 can be applied to obtain good quantitative bounds for these lattices. Asymptotically we get
the following.

Corollary 4. Consider the regular tessellation of the hyperbolic plane by polygons with k sides and with d polygons at
each vertex for some positive integers k and d satisfying (k — 2)(d — 2) > 4. Let G4 denote the corresponding planar
graph, that is, each face is a k-cycle and each degree is d. For any fixed k, the density of a factor-of-I1ID independent set
in G4k is at most

242 o) 2L g
—_— — 00.
k—2 o d as (0, ]

To compare this to the spectral approach, we note that the Hoffman bound is, at best, of order 1/+/d for any d-
regular infinite graph, which is significantly weaker than the result above. In general, we cannot say that our bound (given
by Theorem 3) is always better: the Cheeger inequalities relate the spectral radius to the Cheeger constant, and these
inequalities do not exclude the possibility that the spectral approach gives slightly better results but this is probably not
the typical case. Moreover, we rarely have exact values or even good estimates for the spectral radius of the adjacency
operator. It tends to be a somewhat easier task to find the Cheeger constant.

Finally, we mention another application that shows that we can get results even in amenable graphs using local (or
small set) expansion.

Theorem 5. Let X be a factor-of-IID process with finite radius R over the integer lattice 7" taking values 0 or 1. If
X defines an independent set (i.e. the values of two neighboring vertices cannot be both 1), then the density of this
independent set (i.e. the probability that a given vertex takes value 1) is bounded above by

1 cn

2 Rlog(R/n)

provided that R > Cn, where ¢ and C are absolute constants.
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Outline of the paper

In Section 2 we present and prove our entropy inequalities for a finite system of random variables, while in Section 3 we
deal with the infinite case under the unimodularity condition. Section 4 explores possible generalizations, while Section 5

discusses applications. For the reader’s convenience we also include an Appendix with some definitions and lemmas
regarding entropy and conditional entropy.

2. Finite setting

2.1. Expansion for hypergraphs

Let V be a finite set and let G be a hypergraph over V, where the set of hyperedges is denoted by E. In other words, each
hyperedge e € E is a subset of V. First we define a certain hyperedge expansion that will appear as a coefficient in our
entropy inequality.

Definition 2.1. Given a set W C V, we define its closure W as the set of hyperedges incident to W:

W:={ecE:enW # ).

Then the hyperedge expansion of G with respect to the sets Wy, ..., W, C V is defined as
w
B = min u
I<i<m;Wew; |W|

More generally, we will consider hypergraphs with a nonnegative edge weight assigned to each e € E, in which case we
will need to replace |W| with the sum of weights in W.

Remark 2.2. Note that the most standard edge expansion definition for graphs uses the edge boundary oW consisting of
edges with one endpoint in W and one endpointin V \ W. If G is a d-regular graph, then the two notions are essentially
the same:

d|W| = 2(#edges inside W)+ |dW| and |W|= (#edges inside W) + [dW]|,

and hence

diW|+10W| 1 |oW|
B= min _— = — min — ).
l<i<m:WCW,; 2|W| 2 I<ism;wew; |W|

2.2. An entropy inequality for finitely many random variables

Let V be a finite set and X,, v € V, be random variables, each X, taking finitely many values. For any subset U C V
one can consider the joint entropy of the random variables X,,, v € U. This is simply defined as the Shannon entropy of
the joint distribution of Xy := (X,),ey and will be denoted by H (Xy ). Usually we will think of such a subset U as a
hyperedge and use the notatione C V.

Throughout this section we will work under the following assumption.

Assumption 2.3. Let Zy, ..., Z,, be independent random variables. For each Z; a subset W; C V is given, and for every
v € V we assume that X, is a measurable function of Z;, v € W;.

An equivalent formulation would be the following. Let WV denote the set of all subsets of all W;. Then given countably
many independent random bits, each bit is sent to X,,, v € W, for some W € W, and every X, is a measurable function
of the bits received.

For random variables X, obtained as above, the next theorem bounds any given sum of joint entropies in terms of the
sum of the individual entropies. Note that Shearer’s inequality (1) provides a lower bound for the same sum in terms of
the joint entropy of all X,,.
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Theorem 2.4 (Hypergraph version). Under Assumption 2.3 the following inequality is true for any set E of hyperedges

overV:
ZH(X8)>,BZH(XU), Whereﬂ: min @
- I<ism;Wew; |W|

ecE veV

Recall that W is defined as {e € E :e N W # &}.

When our hypergraph is a d-regular graph, then the coefficient 8 can be expressed using the standard edge expansion
with respect to subsets of W; (see Remark 2.2) so in that case we get back Theorem 1 stated in the Introduction.

Also note that in the d-regular case § = d /2 would be a trivial lower bound following from the fact that H (X,,, X)) >
(H(Xy,) + H(X,))/2. Similarly, a trivial upper bound (8 = d) can be deduced using H (X, X,) < H(X,) + H(Xy).

Finally, we state and prove the most general version of our inequality where nonnegative weights are assigned to the
hyperedges. In fact, we will assign a weight to each subset U C V, thinking of zero weights as non-edges.

Theorem 2.5 (Weighted hypergraph version). Suppose that to each subset U C V a nonnegative weight ay € [0, 00)
is assigned. Then, under Assumption 2.3, the following inequality holds:

S auHXu) =Y H(X), where = mip  ZUSUOW£0 3)

I<i<sm;WCW; [W|
ucv veV

Moreover, the above inequality is sharp: B is the largest coefficient for which (3) holds for any random variables satisfying
Assumption 2.3.

Proof. The idea is to reveal Zy, ..., Z,, one by one and look at how much information is gained on average about X at
each step. To be more precise, for any i and U the following conditional entropy can be defined:

HXy | Z1,...,Zi).

(See the Appendix for basic definitions regarding Shannon entropy and for how the above conditional entropy can be
defined if Z; is not discrete.) For i = O this is simply H(Xy), while for i = m we get 0 because Zi, ..., Z, fully
determine Xy . Then the average information gained at step i can be defined as:

Wi, U):=HXy | Z1,..., Zic)) — HXy | Z1, ..., Z0).

In the case of one-element sets U = {v} we will simply write A (i, v).
If we add up all 4 (i, U) for a given U, then we get a telescoping sum and obtain that

H(Xy) =) _h(i.U).
i=1

We will also need the following observation: whenever U’ C U we have h(i, U") < h(i, U) for each i. This is clear heuris-
tically since for larger U we should gain more information about Xy at each step. For a rigorous proof see Lemma A.1
in the Appendix. In particular, it holds for any given i and U that

h(i,U) = maxh(i, v).
velU

It follows that

m
Z ayH(Xy) = Z Z ay Iglea[}(h(z, v).
ucv i=1UCV
As for the right-hand side of the inequality (3), we have

BY H(Xy)=BY Y hiiv).

veV i=1veV
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Therefore it suffices to show that it holds for each i that

> ay max (i, v) > f > hiiv).

ucv veV

Note that, for fixed i, h(i, v) isa V — [0, co) function that is supported on W;. Hence the following claim completes the
proof.

Claim. For any function f: V — [0, 00) it holds that

Y vcy dy maxyey f(v) . 2UCV:UNWe QU
= >  min
D ovey f(V) W Ssupp f W]

In other words, the fraction on the left-hand side is minimized by an indicator function Ly .

To prove this claim we take the following unique decomposition of f into the sum of indicator functions: there exist
sets supp f = A1 2 Ay 2 --- 2 Ag and positive real numbers cy, ..., ¢y > 0 such that

k
f= ZCJ'HA/'
=1

For such a decomposition one can always interchange taking maximum over a set U with taking sum:

k k
max (v)ZZC'maX]lA-ZZC']lUﬂA' .
el f J U j J i*

=1 j=1

Now considering the fraction in the claim, the total contribution of the jth term to the numerator and denominator
is ¢; ZUgV;UmAj;éz ay and c;|A/|, respectively. The claim follows by using that ) a;/» b; > min;a;/b; for any
a; = 0,b > 0.

There is a slightly different way to finish the proof after having defined the values h(i, U) for a given process X.
We include this ending, too, partly because it is a nice argument and partly because it easily implies that our inequality
is sharp. For the sake of simplicity we first present the proof under the additional assumption that 4 (i, v) is an integer
multiple of log 2 for each i and v. First we define a new set of random variables: let Z; consist of a finite but sufficiently
large number of independent “bits” (taking values 0 and 1 with probability 1/2 each), and let X,, be the collection of the
first h(i, v)/log?2 bits of Zl- foreachi =1, ..., m. Itis clear that

H(X,) =) h(i,v) =H(X,)

i=1

and

H(XU)_Zmaxh(z v)<Zh(l U)=H(Xy).

i=1

It follows that it suffices to prove (3) for this new set of random variables X,. Now let us consider an arbitrary bit of Z;.
This bit is present in the random variables X,, v € W, for some subset W C W;. Therefore its entropy (log2) will appear
> UCV:UnWz QU times on the left-hand side and 8|W| times on the right-hand side of (3). The former will be clearly
larger than or equal to the latter provided that we choose § as in the theorem.

If the values h(i, v)/log2 are not necessarily integers, then we need to slightly modify the above argument. Let Zi be
a sequence of independent discrete random variables with prescribed entropies. We can clearly choose these entropies in
such a way that for any v € V the value k(i, v) can be obtained as the sum of the first k(i, v) of these entropies for some
nonnegative integer k(i, v). Then X, can be defined as the collection of the first k(i, v) elements of Z;,i =1, ..., m. The
rest of the proof remains essentially the same.

To see sharpness, take a subset W € W; with (ZUQV;UQW7£@ ay)/|W| = B, that is, W has “minimal expansion”. Let
X, be the same measurable function of Z; for all v € V, and let X, be almost surely constant for v ¢ W. It is easy to
see that (3) holds with inequality in this case. Usually there are many W with minimal expansion in which case one can
consider combinations of these examples for different W. (Much as in the construction of X, above.) ([l
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2.3. The general problem

All the inequalities proved in this section, and Shearer’s inequality as well, fit into the following general problem. Two
weighted sums of joint entropies of finitely many random variables are given along with sets W; describing which vari-
ables can use the same random seed. The task is to find the strongest inequality (the one with the best coefficient) between
the two sums. Solving the problem in full generality is probably too much to ask for, but there might exist a common
generalization of (3) and Shearer’s inequality, which would already be very interesting.

In fact, it is not crucial for our approach to have individual entropies on the right-hand side of the inequality. The key
observation in our proof was that the information gain is always larger for larger sets, that is, 2 (i, U’) < h(i, U) provided
that U’ C U. Note that we only used this fact in the case when U’ was a one-element set {v}. If we make full use of this
fact, more complicated inequalities can be obtained. For example, one could deduce an inequality between the entropies
corresponding to the stars in a graph and the entropies corresponding to the edges. By a star we mean a vertex v and its
neighbors N (v). Given a simple graph G = (V, E), a straightforward modification of the proof above yields the following
star-edge entropy inequality:

S HXove) 2 B3 H(X,), where f= min (3 ETstveC)] “)

vev ecE 1<i<m; FCW; |F|

An infinite version of this inequality for factor-of-IID processes on T says that the entropy of a star is at least d/2 times
the entropy of an edge [4,5].

3. Unimodular setting

In this section we investigate what can be said for infinitely many random variables. It turns out that our approach can be
adapted provided that X,,, v € V, are obtained from the seeds in a certain invariant way. We start with the simplest setup.

3.1. Transitive graphs

Let G be a connected infinite graph that is transitive meaning that its automorphism group Aut(G) acts transitively on
its vertex set V. First we recall the definition of factor-of-IID processes on G. We start with an IID process over V: this
is simply a collection of independent random variables Z,,, v € V, each uniformly distributed on [0, 1]. Then we apply a
measurable Aut(G)-equivariant [0, 11V — MY mapping. The result is a collection of random variables X, v € V, each
taking values in M. A process that can be obtained this way is called a factor-of-IID process on G. Note that in this paper
the state space M is usually assumed to be finite.

Such a process is said to be a block factor if it can be obtained in a way that each (or, equivalently, any given) X,
is influenced only by finitely many Z,,’s. In other words, there exists a finite radius R such that X, is a function of Z,,
u € Bg(v), where Bg(v) denotes the ball of radius R around v w.r.t. the graph distance in G. Block factors are also called
finite-radius factors. For a more detailed introduction to factors of IID, see [3, Section 2].

We will also need to assume unimodularity for G, which is equivalent to the Mass-Transport Principle, see Section 1.3
for definitions and [1] for details.

Theorem 3.1. Let G be a unimodular transitive graph with vertex set V and with degree d. Suppose that X,, v € V,
is a block factor-of-1ID process with radius R and with a finite state space. For an arbitrary fixed vertex o € V, let
Br = Bg(0) denote the R-ball around o. Then we have

1 1 . [oW]
E ZH(X(),XO/)zﬂH(XO), Whereﬁ—i(d—i—wrréllrglk W)
o' ~0
Theorem 2 stated in the Introduction follows immediately considering the fact that any factor-of-IID process is the
weak limit of block factors. A short argument proving this fact for transitive graphs can be found in [18, Proof of Propo-
sition 4.4].

Proof of Theorem 3.1. Let Z,, u € V, denote an IID process on the vertex set V of G. Suppose that the process X,
v € V, is obtained as an Aut(G)-equivariant function of the IID process in such a way that each X, is the function of Z,,
u € Br(v).



2436 E. Csoka, V. Harangi and B. Virdg

The proof will go along the same lines as in the finite setting. The first step is to define the value i (u, v) for any pair of
vertices u, v. Loosely speaking, it will denote the average information gained about X, when the seed Z,, of vertex u is
revealed. We should specify the order in which we reveal the seeds. In the finite setting an arbitrary order could be chosen.
We have to be more careful here since we will need that the function 2: V x V — [0, 00) is diagonally Aut(G)-invariant,
ie. h(yu, yv) =h(u,v) for all y € Aut(G) and u, v € V. To this end when defining . (u, v) we will take a random order
of the vertices in the ball Bg(v): a uniform random bijection 7 : {1,..., N} — Bg(v), where N denotes the number of
vertices in Bg(v). For a fixed bijection = we define

ha(u,v) = H(Xy | Zztys - s Zni—1)) — H(Xy | Zz(tys -+, Zri),  wherei =7~ (u).
We get h(u, v) by taking expectation in 7:
h(u,v) :=E;hy(u,v).

This defines A (u, v) whenever the distance of u and v is at most R. If the distance is larger than R, we set i(u, v) =0.
The function £ is clearly diagonally Aut(G)-invariant with the property that

H(X,)= h(u,0) foranyoeV,
ueV

because the same holds for A, (u, 0) for any fixed 7. It is also easy to see that if 0 and o’ are neighbors (o’ ~ o in notation),
then

H(X,, Xy) > Zmax(h(u,o),h(u,o’)). )
ueV

Again, it suffices to see that the same holds for & (i, 0) and h/(u, 0'), where = and 7’ are the “restrictions” of any fixed
order of the vertices in Bg(0) U Bgr(0').
Using (5) and switching sums we get that for any fixed vertex o

Z H(X,, Xy) > Z Zmax(h(u, 0),h(u,0')) = Z Z max (h(u, 0), h(u, ). (6)

o'~o o'~oueV ueVo'~o

g(u,0):=

Now we use the Mass-Transport Principle for the function g(u, 0) defined above. We obtain that the right-hand side of
(6) is equal to the following for any fixed u € V:

Zg(u, 0) = Z Z max (h(u, 0), h(u,0')) =2 Z max (h(u, 0), h(u,0")). @)

oeV o€V o'~o (0,0)€E(G)

Since for fixed u the function A (u, -) is supported on Bg(u), we can use the Claim in the proof of the finite setting to get
the following lower bound for (7):

W AW+ 0w
min —_— = B —
WCBru) |W|  WCBgru) 2|W|

28 Zh(u, 0), where 8=

oeV
Putting these together and applying the Mass-Transport Principle again, this time for the function %, we get the following
for any fixed o:
D H(Xo, Xy) 228 )  h(u,0)=28H(X,),
o'~o ueV

and the proof is complete. ]
3.2. The general theorem

As in the finite setting one may consider joint entropies of more than two vertices. Actually, at this point it is more natural
to forget the graph structure completely. From this point on, V will denote an arbitrary countable set with a left I"-action
for some group I'. We will assume the action to be quasi-transitive (i.e. having finitely many orbits) and to satisfy the
following unimodularity-type condition.
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Definition 3.2. A function f: V x V — [0, co] is said to be diagonally I"-invariant if
flyu,yv) = f(u,v) Yu,veVVyel.

We say that the Mass-Transport Principle holds for a I'-action with respect to a measure u on the orbit classes if for all
diagonally I'-invariant function f it holds that

E/L(O) Z fo,v)= E;L(o) Z f(,o0).
veV veV
This is actually equivalent to the following statement on the orbit sizes of the stabilizers:

| Stab(0)o’|  u(o")

= for any pair o, 0’.
|Stab(o)o|  p1(0) y pare.o

Next we introduce the weight function «: P(V) — [0, co) that assigns nonnegative real numbers to subsets of V. We
require « to satisfy the following properties:

e o is [-invariant: oy =)y forany U C V and y € T';
e ( is supported on finite sets: oy = 0 if U is not finite;
e « is “locally finitely supported”: for any v € V there are finitely many U such that v € U and oy = 0.

Now we are in a position to state the most general form of our theorem in the infinite setting. We started with the transitive
graph version (Theorem 3.1) because both the statement and the proof are much easier to digest in that special case. The
proof itself is a straightforward modification of that of Theorem 3.1, and we leave the details to the reader.

Theorem 3.3. Let V, ', u, a be as above, and let Z,,, u € V, be an IID process on G. Suppose that X,, v €V, is a
[-factor of Z with finite state space such that for any vertex u the value of Z,, influences only the labels X,, v € Wy, for
some finite set W,, C V. Then

oy . ZUCV;UﬂW o QU
Buw 3 rHX0) 2 BB H(Xo). where = _min ~SEEECIE
U:oeU e

3.3. Corollaries

We mention a couple of consequences of Theorem 3.3 in this section.
The first special case concerns factors of IID over Cayley graphs of finitely-generated groups.

Theorem 3.4. Let " be an infinite group with a finite symmetric generating set S. We denote the unit element of I by e.
Suppose that X,,, y € I, is a I'-factor-of-1ID process over (the Cayley diagram of) I, where X,, takes values from a finite
set. Given arbitrary nonnegative real numbers a; > 0, 0 € S, with ay = a1 we have the following inequality:

. Y oes WU W|
WCT,|W|<oo [W]|

D o H(Xe.Xg) = PH(X,).  where p =

oeS

Remark 3.5. When I is a free group and the weights are all equal, we get back an inequality that was known by Bowen
[10] as the fact the so-called f-invariant is nonnegative for factors of the Bernoulli shift. See also [16, Theorem 2.3],
where this inequality is explicitly stated.

To see that Theorem 3.4 is indeed a special case of Theorem 3.3, we set V =I" and consider the natural left action
of T" on itself. It is a well-known fact that this is a unimodular transitive action. Using o, we define our weight function
o: P(V) — [0, co) as follows: for two-element sets of the form U ={y, yo},y € ',o € §, we assign oy := &, and we
set oy = 0 for any other set U. This yields Theorem 3.4 for block factors. By taking weak limit, we get the inequality for
any factor-of-1ID process.

The other special case we briefly mention concerns factor-of-IID processes on T;. The edge-vertex inequality (2)
compares the entropy of a vertex to the joint entropy of two neighboring vertices. One could compare the vertex entropy
to the entropy H (Xy,) for any finite set Uy C V (1), and ask for the largest coefficient ¢ = ¢(Up) such that

H(Xy,) = cH(Xy)
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holds for any factor-of-IID process X. Setting I' = Aut(7y), V = V(Ty), and «(U) = 1 whenever U can be mapped to Uy
via an automorphism of T, we can apply Theorem 3.3 to get the above inequality with some coefficient c. It is actually
not straightforward to see that the obtained coefficient is optimal. We omit the details here but it can be shown that the
coefficient Theorem 3.3 provides is actually equal to

|Br(Uo)|
|Br(v)|

It is easy to construct factor-of-1ID processes for which the ratio H (Xy,)/H (X,) tends to the above coefficient, see the
example described in [16, Section 5.1], showing that this coefficient is indeed the best possible.

c=c(Up) = irI%f where By (Up) is the R-neighborhood of Uy.

4. Beyond entropy: Possible generalizations

The goal of this section is to explore what properties of entropy were crucial in our arguments to see if there are any other
quantities (assigned to random variables) that our proofs would work for.

4.1. Uncertainty functions

Let us consider the space M of probability measures on some measurable space (A, .A). This space is clearly closed
under convex combination. Therefore we can talk about the convexity and concavity of M — R functions.

Definition 4.1. We say that a function §: M — R is an uncertainty function if § is concave and §(v) = 0 holds for any
measure v concentrated on one point (i.e. unit mass).

The concavity of § essentially means that the §-value of a mixture distribution must be greater than or equal to the
expectation of the §-values.

To keep things simple, here we restrict our attention to the finite simple graph case: let G be a finite graph with vertex
set V and edge set E. Suppose that X,,, v € V, are (A, A)-valued random variables satisfying Assumption 2.3. This time,
however, X, does not need to be discrete. Let § be an uncertainty function for probability measures over A as described
above. Now we can talk about the uncertainty corresponding to a vertex: the §-value of (the distribution of) the random
variable X,. To be able to talk about the uncertainty corresponding to an edge ¢ = (u, v) as well, we need to choose an
uncertainty function A for probability measures over A x A. Of course, § and A should be compatible in some sense. It
turns out that the only assumption we need is the following.

Assumption 4.2. Let § and A be uncertainty functions over A and A x A, respectively. Furthermore, for a measure & on
A x A, let () and mp (1) denote the marginals of p. We assume that

A—8om and A —GJ8om are both concave. ®)

Under this assumption, essentially the same proof works as in Theorem 2.5. For the sake of simplicity, let us assume
that the random seeds Z1, ..., Z,, are discrete. Then for any event Z; = z1, ..., Z; = z; with positive probability, we can
consider the distribution of X, conditioned on this event and take the §-value of this conditional distribution. By taking
expectation in z, ..., z; we get the expected uncertainty of the vertex v after revealing the first i seeds. We denote this
by &(i, v). Since § is assumed to be concave, it is easy to see that § (7, v) is monotone decreasing in i, and hence for any
fixed i, h(i,v) :=6(@{ — 1,v) — 6(i, v) is a nonnegative V — [0, co) function (supported on W;).

Similarly, for an edge e = (u, v), we define A(i,e) by the expectation of the A-value of the joint distribution of
(X4, Xyp) conditioned on the first i seeds. Then we define A (i, ¢) as A(i — 1, e) — A(i, e). The crucial fact our proof relied
on was that

h(i,e) > max(h(i, u); h(i, v)),

which easily follows from (8). The rest of the proof remains the same yielding the following result.

Theorem 4.3. Suppose that G = (V, E) is a finite graph, and X,, v € V, are (A, A)-valued random variables satisfying
Assumption 2.3. Furthermore, let § and A be uncertainty functions as in Assumption 4.2. Then
Wi
in —.
I<ism;wWew; |W|

D AX)ZBY 8(Xy). where f=

ecE veV

Recall that W is defined as {e € E : e N W # @}.
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As for the infinite setting, Theorem 2 can be generalized similarly.

When A is finite, we can use entropy for both § and A, and we get back our original inequality. Note that conditional
entropy can be obtained as the expectation of entropies of conditional distributions; see the Appendix. Therefore §(i, v)
and A(i, e) in this case are the same conditional entropies that came up in the original proof.

4.2. Correlation bound

Another natural way to measure uncertainty of a distribution is variance. Next we study what Theorem 4.3 gives if we set
8(v) to be the variance of v.

Suppose that A = R equipped with the Borel o -algebra. We will work under the assumption that the random variables
Xy, v € V, have finite variance. For a real-valued random variable v of finite variance, §(v) simply denotes the variance

of v:
2
8(v):/x2dv(x)—</xdv(x)> .
R R

It is easy to see that this § is indeed concave. (Note that the first term is linear in v and hence does not influence convex-
ity/concavity.)

A natural candidate for A, the uncertainty function over R x R, would be the covariance of the two coordinates.
Some constant multiples of the variances of the marginals should be added to the covariance so that (8) holds true. More
precisely, let i be a probability measure on R x R with marginals @ = 71 () and py = o (). We want to find an
uncertainty function of the following form:

A(u)=a(8(m)+8(uz))+b(/ xydu«(x7y)—</xdm(x)></yduz(y)>>.
RxR R R

It is easy to see that (8) is satisfied if and only if

a>1 and |b|<2Va(@—1).

Setting b = +24/a(a — 1), we get the following from Theorem 4.3 for d-regular graphs:

+2/a@—1) Y cov(Xy,X,) <d(a—B/d) Y var(X,).

(u,v)eE veV
Easy calculations show that the best inequality is obtained by setting a = zﬂﬂ/%, and we get the following result.

Theorem 4.4. Let G be a d-regular graph with vertex set V and edge set E. The random variables X, v € V, and the
coefficient B are as in Theorem 1. If var(X,) < oo for each v € V, then

<VBW—PB))_ var(X,).

veV

> cov(Xu. Xy)

(u,v)eE

This means that if each X, has the same variance, then the average correlation is at most 2./ 8(d — f8)/d. Note that the
same bound could be deduced for factor-of-IID processes over unimodular transitive graphs with 8 = (d + {)/2 where
¥ is the edge Cheeger constant. In this infinite transitive graph setting, however, there is another way to prove this bound
by combining the following known results.

e The average correlation is bounded by the spectral radius of the adjacency operator divided by d. This follows from
the results of [6] on the covariance structure of factor-of-IID processes.
e By a Cheeger-tpye inequality [23, Theorem 6.7], the spectral radius is bounded by

Va2 =2 =/(d+y)(d—¥) =2/Bd - p).
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4.3. Specific problems

It is an intriguing question whether there are other general uncertainty functions that satisfy Assumption 4.2 and lead to
useful inequalities. Instead of looking for further general inequalities, another approach is that, given a specific applica-
tion, we try to find the best functions § and A to use. In fact, there is hope that this approach might provide the optimal
bound for factor-of-1ID independent sets.

In the setting of independent sets, each vertex can have two states (0, 1) and vertices of state 1 cannot be neighbors.
So the state space is A = {0, 1}, and § can be described by a concave function f: [0, 1] — R with f(0) = f(1) =0.
Furthermore, the measures u in question are concentrated on A x A\ {(1, 1)} = {(0, 0); (0, 1); (1, 0)}. Such a measure
can be represented by a point (x, y) of the triangle T = {(x, y) : x,y > 0; x + y < 1} C R?, where x, y, and 1 — x — y are
the probabilities of (1, 0), (0, 1), and (0, 0), respectively. Then A corresponds to a function F: T — R with F(0,0) =
F(0,1) = F(1,0) = 0 such that the functions F(x, y) — f(x) and F(x,y) — f(y) are both concave on T'. For d-regular
graphs, if each vertex is included in the independent set with probability g, then we get that F (g, q) > (28/d) f(q). In
particular, we get the following for factor-of-IID independent sets in Ty, in which setting we have g =d — 1.

Lemma4.5. Let g be the (maximum) density of a factor-of-1ID independent set over the d-regular tree Ty. By T we denote
the triangle {(x,y) : x,y > 0; x + y < 1} C R2. Suppose that f: [0, 1] = R is a concave function with f(0) = f(1) =0
and F: T — Ris such that F(0,0) = F(0,1)=F(,0)=0and F(x,y) — f(x) and F(x,y) — f(y) are both concave
on T. Then the following holds true:

2(d—-1)

p f(@).

F(q,q) =

This gives the following upper bound for the maximum density ¢:

inf{g : F(q,q) < (2d — 1)/d) f(9)}.

So we need to find functions f, F such that the above infimum is as small as possible. Solving this convex optimization
problem, even numerically for a given d, would be very interesting. The question to determine the independence ratio of
a random d-regular graph and the closely related problem of finding the maximum density of a factor-of-I1ID independent
set on Ty have been thoroughly studied; see Section 5 for details. Note that if we use entropy for § and A, then we get
the well-known Bollobas bound. In recent years there has been a lot of activity, especially regarding the case d = 3: see
[12,13,20] for lower bounds and [7,21,24] for upper bounds. Finding the optimal f and F may lead to a breakthrough in
this problem. The above optimization problem can also be written as an LP problem in terms of the second derivatives
of f and F'. Its dual solution provides necessary and sufficient conditions for a factor-of-IID independent set to reach the
obtained bound. Therefore the bound must be optimal provided that these conditions can be satisfied with an arbitrarily
small error.

5. Applications

Entropy inequalities can be used to acquire bounds for the size of different combinatorial structures (such as minimum or
maximum cuts) on graphs. Bounds for independent sets have the most extensive literature. In this section we demonstrate
how the new inequalities presented in this paper lead to results concerning random independent sets.

One of the first results in this direction is due to Bollobds who gave an upper bound for the independence ratio
of random d-regular graphs [8]. The counting argument behind this result essentially proves the edge-vertex entropy
inequality in this special setting. The upper bound obtained is asymptotically sharp: 2log(d)/d as d — oco. The lower
bound is due to Frieze and Luczak [14]. Later Gamarnik and Sudan showed [15] that so-called local algorithms cannot
produce independent sets of this optimal size on large-girth graphs. Then in [26] the edge-vertex entropy inequality was
used in a non-trivial way to prove that independent sets provided by local algorithms can have density at most log(d)/d
(asymptotically as d — 00). This is equivalent to saying that factor-of-IID independent sets on 7; have density at most
(I+0(1))log(d)/d.

5.1. Random independent sets and fractional colorings

The graph parameter fractional chromatic number can be defined as the inverse of the maximum “homogeneous density”
of a random independent set. More precisely, let G be a finite graph and let g be the largest real number with the property
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that there exists a random independent set / on G such that any given vertex lies in I with probability at least g. Then ¢
coincides with the inverse 1/x¢(G) of the fractional chromatic number.

It is natural to consider random independent sets that are obtained by local algorithms; one could define the corre-
sponding local fractional chromatic number. We will treat the finite and infinite settings simultaneously.

Infinite setting: given a unimodular transitive graph and a finite radius R, we consider radius-R factor-of-IID pro-
cesses X such that X, takes values 0, 1 and {v : X, = 1} is an independent set, that is, X, = X, = 1 cannot happen for
neighboring vertices u, v. The probability g that X, = 1 is the same for each v due to invariance.

Finite setting: given a d-regular finite graph G and subsets Wy, ..., W, of the vertex set V, we consider random
variables X, v € V, as in Assumption 2.3 such that {v : X, = 1} is an independent set. Let ¢ be such that X, =1
with probability at least g for each vertex v € V. One can easily modify such an algorithm in a way that each of these
probabilities is actually equal to g.

5.2. Bounds via entropy inequalities

Our goal is to find an upper bound for g in terms of the edge expansion of G. For each vertex v we clearly have
H(Xy) =—qlogg — (1 —¢q)log(l —¢).

Moreover, for any pair of neighboring vertices u, v:
H(Xy, Xy) = —2qlogq — (1 —2¢) log(1 —2¢).

Let

H(Xu, Xy) 1= —2qlogg — (1 —2g)log(l —2q)
H(Xy) —qlogg — (1 —gq)log(1 —¢q)

It is easy to see that this function is continuous and monotone decreasing on (0, 1/2) with lim,_o4 ¢(q) =1 and
limg_, 12— ¢(g) = 0. Straightforward calculations show that the behavior of ¢ around 0 and 1/2 is as follows:

q q
plg) =1+ + 0( );
logg (logg)?

—2tlogt
o(12-="—""50 1L 0(n).
log2

v(q) =

Therefore one can define a monotone decreasing inverse function ¢~ : [0, 1] — [0, 1/2] such that asymptotically at 0
and 1 we have

log2 x
2 logx

1
(p_l(x)—ifv as x — 0;

(p_l(l —x)~—xlogx asx—0.

For an explicit upper bound near 0 and 1, one can use the following estimates for ¢!

1 log2 .
ol <2 =5 710gx+2f0g(710gx) if0 <x <1/30,
(1 —=x)log(1 —x) if2/3<x<1.

Now let T denote the edge expansion (w.r.t. the R-ball or Wy, ..., W,,) normalized by d:

. [oW] . [oW|
T = min and 1= min
WCBgr d|W| I<i<sm;wew; d|W|

in the infinite and finite setting, respectively. Then our entropy inequalities (Theorem 1 and Theorem 3.1) say that

HXu X0
HX) =

It follows that ¢(g) > t must hold. Equivalently, we get the upper bound

g<¢ (D).
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In the infinite setting we get Theorem 3 stated in the Introduction. Corollary 4 is concerned with the special case when
our graph corresponds to a regular tessellation of the hyperbolic plane. The Cheeger constant of the graph G4 x is known
[17,19] to be

(d—2)\/1 . S
(k—=2)(d—-2)

If k is fixed and d — oo, then we have T = 1 — (2 4+ 2/(k — 2))/d + o(1). Using the asymptotics of ¢~ at 7 =1,
Corollary 4 follows.

Furthermore, we can get something non-trivial even over amenable graphs. Let G be the standard Cayley graph of Z"
which is a d-regular transitive graph for d = 2n. Although G is amenable, the normalized edge expansion t with respect
to a finite-radius ball By is at least cnR™! for some positive constant ¢, and hence Theorem 5 follows. (Note that one can
easily prove — simply by using that labels of vertices at distance 2R + 1 are independent — the upper bound 1/2 — ¢/R
for any n. Therefore the bound given in Theorem 5 is interesting when R is sub-exponential in n. Also note that it is easy
to construct a factor-of-1ID independent set on Z" with radius R and density 1/2 —cn/R.)

Lastly, we mention one immediate corollary of the finite version.

Theorem 5.1. Let G be a random d-regular bipartite graph on 2N vertices. Then for any § > 0 there exists a positive
& such that the following holds true for G with high probability as N goes to infinity: a randomized algorithm on G for
which each seed influences at most 1 — § fraction of the vertices cannot produce an independent set of homogeneous
density at least 1/2 — & (that is, at least one vertex will be included in the independent set with probability less than
1/2 —¢).

Appendix
Entropy and conditional entropy

Let X be a discrete random variable taking m distinct values with probabilities py, ..., py. Then the Shannon entropy of
X is defined as

H(X):=)_ —p;log(pi).
i=1

The joint entropy of finitely many random variables is the entropy of their joint distribution.

One can define the conditional entropy of X conditioned on Y by H(X|Y)=H(X,Y) — H(Y), where H(X, Y) is the
joint entropy of X and Y. This conditional entropy can be expressed as as the expectation (in Y) of the entropy of the
(conditional) distribution of X conditioned on Y, that is,

n m
HX|Y)=) P¥=y)) -P(X=x|Y=y)logP(X=x|Y=y)),
j=1 i=1

where x1,...,x, and yi,..., y, denote the values taken by X and Y, respectively. In other words, if f; denotes the
mapping y — P(X =x; | Y = y), then

H(X|Y)=E) —fi(Y)log f;(Y).
i=1

This second definition of conditional entropy can be generalized even when the random variable is not discrete: for
an event A the mapping y — P(A | Y = y) needs to be replaced by the conditional expectation E(14 | Y), which is a
measurable function of Y.

Lemma A.1. Let X1, X2, Y1, Y2 be random variables such that X1 and X, take finitely many values. Then

H(X1, X2 | Y1) - H(X1,X2|Y1,Y2) > H(X | Y1) — H(X; | Y1, Y2).
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Proof. We will refer to the left-hand side and the right-hand side of the above inequality as LHS and RHS, respectively.
Let us notice that

H(X1, X2 | Y)=HX | Y1)+ H(X2| X1, Y1);
H(X1, X2 | Y1,Y2)=H(X1 | Y1,Y2) + H(X2 | X1, Y1, o).
By taking the difference of the above equations we get

LHS=RHS+ H(X, | X1,Y1) — H(X3 | X1,Y1,Y2) > RHS

>0

Note that the above argument works even if Y| and Y, are not necessarily discrete. (]
Next we state a weighted version of Shearer’s inequality and we include a short proof.

Theorem A.2 (Shearer’s inequality, weighted version). Ler X,, v € V, be finitely many random variables. Suppose
that for each U C V a nonnegative weight ay is given. Then

> auH(Xy) = AH(Xy), where i=min >  ay.
veV

Uucv veUCV
Proof. We may assume that V = {1,...,n} for some positive integer n. For a sequence 1 <k; <--- <k, <n we
decompose the joint entropy H (Xy) corresponding to the subset U = {k1, ..., k- } in the following way:

r r
H(Xy) =Y HXp | Xooo X ) = D HXp | X1o oo Xp 1),

i=1 i=1

It follows that

DayHXp) =Y Y ey HXi | X1y, Xem1) = AH(Xy).

ucv k=1keUCV
—_———
> O
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