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Abstract. We consider a Galton–Watson tree with offspring distribution ν of finite mean. The uniform measure on the boundary of the
tree is obtained by putting mass 1 on each vertex of the n-th generation and taking the limit n → ∞. In the case E[ν log(ν)] < ∞, this
measure has been well studied, and it is known that the Hausdorff dimension of the measure is equal to log(m) (J. Lond. Math. Soc. (2)
24 (1981) 373–384; Ergodic Theory Dynam. Systems 15 (1995) 593–619). When E[ν log(ν)] = ∞, we show that the dimension drops
to 0. This answers a question of Lyons, Pemantle and Peres (In Classical and Modern Branching Processes. Proceedings of the IMA
Workshop (1997) 223–237 Springer).

Résumé. Nous considérons un arbre de Galton–Watson dont le nombre d’enfants ν a une moyenne finie. La mesure uniforme sur la
frontière de l’arbre s’obtient en chargeant chaque sommet de la n-ième génération avec une masse 1, puis en prenant la limite n → ∞.
Dans le cas E[ν log(ν)] < ∞, cette mesure est bien étudiée, et l’on sait que la dimension de Hausdorff de la mesure est égale à log(m)

(J. Lond. Math. Soc. (2) 24 (1981) 373–384; Ergodic Theory Dynam. Systems 15 (1995) 593–619). Lorsque E[ν log(ν)] = ∞, nous
montrons que la dimension est 0. Cela répond à une question posée par Lyons, Pemantle et Peres (In Classical and Modern Branching
Processes. Proceedings of the IMA Workshop (1997) 223–237 Springer).
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1. Introduction

Let T be a Galton–Watson tree of root e, associated to the offspring distribution q := (qk, k ≥ 0). We denote by GW the
distribution of T on the space of rooted trees, and ν a generic random variable on N with distribution q . We suppose that
m := ∑

k≥0 kqk ∈ (1,∞): the tree has a positive probability of survival, denoted by ρ. We let GW∗ be the Galton–Watson
measure conditionally on T being infinite. For any vertex u, we write |u| for the height of vertex u (|e| = 0), ν(u) for the
number of children of u, and Zn is the population at height n. We define ∂T as the set of all infinite self-avoiding paths of
T starting from the root and we define a metric on ∂T by d(r, r ′) := e−|r∧r ′| where r ∧ r ′ is the highest vertex belonging
to r and r ′. The space ∂T is called boundary of the tree, and elements of ∂T are called rays. The metric space (∂T , d) is
a random compact ultra-metric space.

When E[ν log(ν)] < ∞ (with 0 log(0) := 0), it is well-known that the martingale m−nZn converges in L1 and almost
surely to a limit which is positive GW∗-a.s. [6]. Seneta [17] and Heyde [4] proved that in the general case (i.e allowing
E[ν log(ν)] to be infinite), there exist constants (cn)n≥0 such that

(a) W∞ := limn→∞ Zn

cn
exists a.s.

(b) W∞ > 0 GW∗-a.s.
(c) limn→∞ cn+1

cn
= m.

In particular, for each vertex u ∈ T , if Zk(u) stands for the number of descendants v of u such that |v| = |u| + k, we
can define

W∞(u) := lim
k→∞

Zk(u)

ck
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and we notice that m−n
∑

|u|=n W∞(u) = W∞(e). Notice that the variables W∞(u) depend on the choice of the constants
(cn)n. We refer to Section 2 for our choice of the constants (cn)n.

Definition. On the event ∂T 	= ∅, the uniform measure (also called branching measure) is the unique Borel measure on
∂T such that

UNIF
({r ∈ ∂T , rn = u}) := m−nW∞(u)

W∞(e)

for any integer n and any vertex u of height n.
We observe that, for any vertex u of height n,

UNIF
({r ∈ ∂T , rn = u}) = lim

k→∞
Zk(u)

Zn+k

.

In particular, it does not depend on the particular choice of the constants (cn)n. The uniform measure can be seen infor-
mally as the probability distribution of a ray taken uniformly in the boundary. This paper is interested in the Hausdorff
dimension of UNIF, defined by

dim(UNIF) := min
{
dim(E),UNIF(E) = 1

}
,

where the minimum is taken over all subsets E ⊂ ∂T of UNIF-measure 1 and dim(E) is the Hausdorff dimension of
set E. The case E[ν log(ν)] < ∞ has been well studied. In the seminal paper [5], then in [3] and in [14] for a simple
proof, it is shown that dim(UNIF) = log(m) GW∗-almost surely. Exact Hausdorff and packing measures are given in
[2,7,8,19,20]. A description of the multifractal spectrum is available in [9,16,18]. The case E[ν log(ν)] = ∞ presented as
Question 3.1 in [15] was left open. This case is proved to display an extreme behaviour.

Theorem 1.1. If E[ν log(ν)] = ∞, then dim(UNIF) = 0 for GW∗-a.e. tree T .

It is known (see [11]) that the Hausdorff dimension of ∂T is logm as soon as m ∈ (1,∞). Therefore the theorem tells
us that the uniform measure is concentrated on a thin part of the boundary. Indeed we will see that for UNIF-a.e. ray r ,
the number of children of rn is greater than (m − o(1))n for infinitely many n, and it is easy to see that the Hausdorff
dimension of the set of such rays is zero. The proof relies on the construction of a particular measure Q, under which the
distribution of the number of children of a uniformly chosen ray is more tractable. Using a size-biased measure to gain
information on the uniform ray already appears in the paper of Duquesne [2], see Lemma 3.1 there.

Section 2 contains the description of the new measure in terms of a spine decomposition. Then we prove Theorem 1.1
in Section 3. Section 4 contains some open questions.

2. A spine decomposition

For k ≥ 1 and s ∈ (0,1), we call φk(s) the probability generating function of Zk

φk(s) := E
[
sZk

]
.

We denote by φ−1
k (s) the inverse map on (q0,1). Recall that ρ is the survival probability hence the unique solution in

[0,1) of φ(s) = s. Let s ∈ (ρ,1). Then Mn := φ−1
n (s)Zn defines a martingale and converges in L1 to some M∞ > 0 a.s.

[4]. Therefore we can take for the Seneta–Heyde norming in (a)

cn := −1

log(φ−1
n (s))

,

which we will do from now on. Hence we can rewrite equivalently Mn = e−Zn/cn and M∞ = e−W∞(e). Notice that Mn

depends on our choice of s. In [10], Lynch introduces the so-called derivative martingale (because it is the martingale
obtained by differentiating with respect to s)

Dn := e1/cn
Zn

φ′
n(φ

−1
n (s))

Mn. (2.1)
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The fact that it is a martingale is straightforward by differentiation. It is nonnegative hence converges almost surely to
some D∞. Let us follow the argument of Lynch (restricted to our case E[ν] < ∞) to give some properties of this martin-
gale. Since (Mn)n is a martingale, (−Mn log(Mn))n defines a (nonnegative) supermartingale. Therefore its expectation is
nonincreasing. Notice that

−Mn log(Mn) = φ′
n

(
φ−1

n (s)
) 1

cn

e−1/cnDn. (2.2)

Taking the expectation implies that φ′
n(φ

−1
n (s)) 1

cn
e−1/cn is nonincreasing hence converges. We show now that the limit

is nonzero. In view of (2.1), since Dn and Mn converge almost surely (and cn goes to +∞), Zn

φ′
n(φ−1

n (s))
converges almost

surely. Since Zn/cn converges almost surely to a nondegenerate random variable, the limit of φ′
n(φ

−1
n (s))/cn is nonzero

indeed. From (2.1), we see that D∞ is positive GW∗-almost surely and (Dn)n is bounded by some constant. In particular,
it converges in L1.

We proved that φ′
n(φ

−1
n (s))/cn converges to some positive constant. It follows from (c) that

lim
n→∞

φ′
n+1(φ

−1
n+1(s))

φ′
n(φ

−1
n (s))

= m. (2.3)

We are interested in the probability measure Q on the space of rooted trees defined by

dQ

dGW
:= D∞.

Let us describe this change of measure. We call a marked tree a couple (T , r) where T is a rooted tree and r a ray of the
tree T . Let (T, ξ) be a random variable in the space of all marked trees (equipped with some probability P(·)), whose
distribution is given by the following rules. Conditionally on the tree up to level k and on the location of the ray at level
k, (which we denote respectively by Tk and ξk),

• the number of children of the vertices at generation k are independent;
• the vertex ξk has a number ν(ξk) of children such that for any �

P
(
ν(ξk) = �

) = q̃s
� := q�� exp

(
−� − 1

ck+1

)
φ′

k(φ
−1
k (s))

φ′
k+1(φ

−1
k+1(s))

; (2.4)

• the number of children of a vertex u 	= ξk at generation k verifies for any �

P
(
ν(u) = �

) = q̃� := q�e
1/ck exp

(
− �

ck+1

)
; (2.5)

• the vertex ξk+1 is chosen uniformly among the children of ξk .

We call the ray ξ the spine. We refer to [12,13] for motivation on spine decompositions. In our case, we can see T as a
Galton–Watson tree in varying environment and with immigration. The fact that (2.4) and (2.5) define probabilities come
from the equations (remember that by definition e−1/ck = φ−1

k (s))

E
[(

φ−1
k+1(s)

)ν] = φ−1
k (s),

E
[
ν
(
φ−1

k+1(s)
)ν−1] = φ′

k+1(φ
−1
k+1(s))

φ′
k(φ

−1
k (s))

.

When s = 1, equations (2.4) and (2.5) become P(ν(ξk) = �) = �q�/m and P(ν(u) = �) = q�, which is the size-biased
Galton–Watson tree of [13].

Proposition 2.1. Under Q, the tree T has the distribution of T. Besides, for P-almost every tree T, the distribution of ξ

conditionally on T is the uniform measure UNIF. In other words, for any nonnegative measurable function F ,

E

[
D∞

∫
∂T

UNIF(dr)F (T , r)

]
= EP

[
F(T, ξ)

]
.
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Proof. For any tree T , we define Tn the tree T obtained by keeping only the n first generations. Let T be a tree. We will
prove by induction that, for any integer n and any vertex u at generation n,

P(Tn = Tn, ξn = u) = Dn

Zn

GW(Tn = Tn). (2.6)

For n = 0, it is straightforward since T0 and T0 are reduced to the root. We suppose that this is true for n − 1, and we

prove it for n. Let
←
u denote the parent of u, and, for any vertex v at height n − 1, let k(v) denote the number of children

of v in the tree T . We have

P(Tn = Tn, ξn = u|Tn−1 = Tn−1, ξn−1 = ←
u )

= 1

k(
←
u )

q̃s

k(
←
u )

q̃
k(

←
u )

∏
|v|=n−1

q̃k(v)

= e1/cn

e1/cn−1

φ′
n−1(φ

−1
n−1(s))

φ′
n(φ

−1
n (s))

eZn−1/cn−1

eZn/cn

∏
|v|=n−1

qk(v)

= e1/cn

e1/cn−1

φ′
n−1(φ

−1
n−1(s))

φ′
n(φ

−1
n (s))

eZn−1/cn−1

eZn/cn
GW(Tn = Tn|Tn−1 = Tn−1).

We use the induction assumption to get

P(Tn = Tn, ξn = u) = e1/cn
1

φ′
n(φ

−1
n (s))

e
−Zn
cn GW(Tn = Tn),

which proves (2.6). Summing over the n-th generation of T gives

P(Tn = Tn) = DnGW(Tn = Tn) = Q(Tn = Tn).

This computation also shows that P(ξn = u|Tn) = 1/Zn which implies that ξ is uniformly distributed on the boundary
∂T. �

3. Proof of Theorem 1.1

Proposition 3.1. Suppose that E[ν log(ν)] = ∞. Then we have P-a.s.

lim sup
n→∞

1

n
log

(
ν(ξn)

) = log(m).

Proof. Let 1 < a < b < m and n ≥ 0. We get from (2.4)

P
(
ν(ξn) ∈ (

an, bn
)) = φ′

n(φ
−1
n (s))

φ′
n+1(φ

−1
n+1(s))

E
[
νe−(ν−1)/cn+1, ν ∈ (

an, bn
)]

≥ φ′
n(φ

−1
n (s))

φ′
n+1(φ

−1
n+1(s))

e−bn/cnE
[
ν, ν ∈ (

an, bn
)]

.

From (c) and (2.3), we deduce that for n large enough, we have

P
(
ν(ξn) ∈ (

an, bn
)) ≥ 1

2m
E

[
ν, ν ∈ (

an, bn
)]

.

Therefore, under the condition E[ν log(ν)] = ∞, we have

∑
n≥0

P
(
ν(ξn) ∈ (

an, bn
)) = ∞. (3.1)
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We use the standard converse of the Borel–Cantelli lemma to see that ν(ξn) > an infinitely often. Then let a go to m to
prove the lower bound of the proposition. The upper bound is easy since ν(ξn) ≤ Zn+1, and we know that Zn

mn goes to 0
almost surely. �

We turn to the proof of the theorem.

Proof. Proof of Theorem 1.1 By Proposition 3.1, we have

P

(
lim sup
n→∞

1

n
log

(
ν(ξn)

) = log(m)

)
= 1.

In particular, for P-a.e. T,

P

(
lim sup
n→∞

1

n
log

(
ν(ξn)

) = log(m)

∣∣∣∣T
)

= 1.

By Proposition 2.1, the distribution of ξ given T is UNIF. Therefore, for P-a.e. T,

UNIF
(

r ∈ ∂T : lim sup
n→∞

1

n
log

(
ν(rn)

) = log(m)

)
= 1. (3.2)

Again by Proposition 2.1, the distribution of T is the one of T under Q. We deduce that (3.2) holds for Q-a.e. tree T .
Since Q and GW∗ are equivalent, equation (3.2) holds for GW∗-a.e. tree T . To finish the proof, we just need to prove
that the set F := {r ∈ ∂T : lim supn→∞ 1

n
log(ν(rn)) = log(m)} has Hausdorff dimension 0. Let α > 0. For a vertex u, let

Bu be the set of rays r such that u ∈ r . Then Bu is a ball in the metric space (∂T , d) with diameter diam(Bu) = e−|u|.
For any integer k ≥ 1, notice that we can cover F with a countable number of balls Bui

, where (ui)i are vertices of height
greater than k such that ν(ui) ≥ m|ui |e−|ui |α/2. Finally, observe that

∑
i

(
diam(Bui

)
)α =

∑
�≥0

e−�α
∑

i

1{|ui |=�}.

For any �, Z�+1 ≥ ∑
i 1{|ui |=�}ν(ui) ≥ m�e−�α/2 ∑

i 1{|ui |=�}. Therefore

∑
i

(
diam(Bui

)
)α ≤

∑
�≥0

e−�α/2 Z�+1

m�
< ∞.

It yields that the Hausdorff dimension of F is smaller than α, which completes the proof by letting α → 0. �

4. Questions

These questions concern the case E[ν log(ν)] = ∞.

Question 1. What is the packing dimension of UNIF?

Question 2. Can we give an exact Hausdorff measure for the boundary ∂T ? This question is answered in the case
E[ν log(ν)] < ∞ by Liu [7] and Watanabe [20] in great generality. See also Duquesne [2] for an elementary proof.

Question 3. We know from [11] that the Hausdorff dimension of the boundary is log(m). What would be a “natural”
measure on the boundary ∂T with Hausdorff dimension log(m)?

We saw that the measure UNIF was putting its mass on exceptional rays. Therefore, one could thing of removing
“bad” rays in order to construct a well spread out measure. This is the goal of the last question.

Question 4. Let (an)n be a sequence of integers going to ∞, such that limn→∞ an+1
an

= a ∈ [1,m]. Consider the Galton–
Watson process in varying environment, with offspring distribution at generation n given by ν1{ν≤an}. It is associated with
a uniform measure (see Theorem 3 of [1]). What is the Haudorff dimension of this measure?
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