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Abstract. We study combinatorial connectivity for two models of random geometric complexes. These two models – Čech and
Vietoris–Rips complexes – are built on a homogeneous Poisson point process of intensity n on a d-dimensional torus, d > 1, us-
ing balls of radius rn. In the former, the k-simplices/faces are formed by subsets of (k + 1) Poisson points such that the balls of radius
rn centred at these points have a mutual interesection and in the latter, we require only a pairwise intersection of the balls. Given a (sim-
plicial) complex (i.e., a collection of k-simplices for all k ≥ 1), we can connect k-simplices via (k + 1)-simplices (‘up-connectivity’)
or via (k − 1)-simplices (‘down-connectivity). Our interest is to understand these two combinatorial notions of connectivity for the
random Čech and Vietoris–Rips complexes asymptotically as n → ∞. In particular, we analyse in detail the threshold radius for van-
ishing of isolated k-faces for up and down connectivity of both types of random geometric complexes. Though it is expected that the

threshold radius rn = �((
logn

n )1/d ) in coarse scale, our results give tighter bounds on the constants in the logarithmic scale as well
as shed light on the possible second-order correction factors. Further, they also reveal interesting differences between the phase tran-
sition in the Čech and Vietoris–Rips cases. The analysis is interesting due to non-monotonicity of the number of isolated k-faces (as
a function of the radius) and leads one to consider ‘monotonic’ vanishing of isolated k-faces. The latter coincides with the vanishing
threshold mentioned above at a coarse scale (i.e., logn scale) but differs in the log logn scale for the Čech complex with k = 1 in the
up-connected case. For the case of up-connectivity in the Vietoris–Rips complex and for rn in the critical window, we also show a
Poisson convergence for the number of isolated k-faces when k ≤ d.

Résumé. Nous étudions la connectivité combinatoire pour deux modèles de complexes géométriques aléatoires. Ces deux modèles –
les complexes de Čech et de Vietoris–Rips – sont construits sur la base d’un processus de Poisson homogène d’intensité n sur un tore de
dimension d, d > 1, en utilisant des boules de rayon rn. Dans le premier, les k-simplexes/faces sont formés par les sous-ensembles de
k +1 points du processus de Poisson tels que l’intersection des boules de rayon rn centrées en ces points est non vide, et dans le second,
nous demandons seulement que les intersections deux-à-deux des boules soient non vides. Étant donné un complexe simplicial (c’est-
à-dire une collection de k-simplexes pour tous k ≥ 1), nous pouvons connecter les k-simplexes via les (k + 1)-simplexes (connectivité
par le haut) ou via les (k − 1)-simplexes (connectivité par le bas).

Notre objectif est de comprendre ces deux notions combinatoires de connectivité pour les complexes de Čech et Vietoris–Rips
asymptotiquement lorsque n → ∞.

En particulier, nous analysons en détail le rayon critique pour la disparition des k-faces isolées pour la connectivité par le haut et par

le bas dans les deux types de complexes géométriques aléatoires. Bien qu’il soit attendu que le rayon critique soit rn = �((
logn

n )1/d )

dans une échelle grossière, nos résultats donnent des bornes plus fines sur les constantes dans l’échelle logarithmique et suggère les
possibles facteurs correctifs de second ordre. De plus, ils révèlent aussi des différences intéressantes entre les transitions de phase entre
les cas de Čech et Vietoris–Rips.

L’analyse est intéressante du fait de la non monotonie du nombre de k-faces isolées (comme fonction du rayon) ce qui conduit à
considérer une version monotone de la disparition des k-faces. Cette dernière coïncide avec le seuil de disparition mentionné précé-
demment à une échelle grossière (c’est-à-dire à une échelle logn) mais diffère à l’échelle log logn pour le complexe de Čech avec
k = 1 pour la connectivité par le haut.

Dans le cas de la connectivité par le haut dans le cas du complexe de Vietoris–Rips et pour rn dans la fenêtre critique, nous montrons
aussi une convergence vers un processus de Poisson pour le nombre de k-faces isolées quand k ≤ d.
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1. Introduction

Let Pn = {X1, . . . ,XNn} be a collection of points in the d-dimensional torus U with {Xi}i≥1 being a sequence of i.i.d.
uniform random variables in U and Nn, an independent Poisson random variable with mean n. In other words, Pn is a
homogeneous Poisson point process with intensity n on U . A classical model of random graph G(Pn, r) (for r ∈ (0,∞))
introduced by Gilbert in 1961 [22] called the random geometric graph or Gilbert graph is as follows: The vertex set is
Pn and Xi , Xj share an edge if |Xi − Xj | ≤ 2r . Though Gilbert introduced it on the plane, we shall study it on the torus
U to avoid boundary effects. This is a common simplification especially when studying sharp thresholds for connectivity
properties. A seminal result in the subject was the determining of exact connectivity threshold [1,47,48]. The precise
statement of the sharp phase transition result [48, Theorem 13.10] is that for any sequence w(n) → ∞, the following
holds:

P
{
G(Pn, rn) is connected

} →
{

0 if nθd2drd
n = logn − w(n)

1 if nθd2drd
n = logn + w(n),

(1.1)

where θd denotes the volume of the unit ball in R
d . An important step towards the proof of the above result was a similar

phase transition result for vanishing of Jn,0, the number of isolated nodes in G(Pn, rn) i.e., thresholds for P{Jn,0 ≥ 1}.
That the threshold for vanishing of isolated nodes and threshold for connectivity coincide for a random geometric graph
was inspired by a similar phenomenon observed in the case of the Erdös–Rényi random graphs [20] though the proof in
the former case is a lot more involved.

Jn,0 is nothing but the number of isolated 1-cliques and it is natural to wonder if there is a sharp phase transition
for vanishing of higher-order cliques and if so, is it related to any higher-dimensional topological phase transitions in
random geometric graphs? We denote by Jn,k

3 the number of ‘isolated’ (k + 1)-cliques in G(Pn, r), i.e., the number of
(k + 1)-cliques that do not belong to a (k + 2)-clique. In other words, Jn,k is the number of maximal cliques of order
(k + 1). Due to non-monotonicity of Jn,k in r , a threshold need not even exist.

The question of weak/sharp thresholds for higher-order connectivity entails two steps – (1) Determining the weak/sharp
threshold for vanishing of ‘isolated’ clique counts and (2) Show that this coincides with the weak/sharp threshold of
the corresponding notion of ‘connectivity’. In this article, we shall focus on the first step. One of our results will give
thresholds (i.e., rn) for vanishing of Jn,k on G(Pn, rn) and for the case of 1 ≤ k ≤ d , we shall show that our thresholds
are sharp by showing that Jn,k converges to a suitable Poisson random variable. Of course, such thresholds will have
implications for the second step too i.e., ‘connectivity’ thresholds. In the next subsection (Section 1.1), we shall discuss
in detail about the background literature on these combinatorial notions of connectivity and then preview our results in
Section 1.2 as well as explaining further connections to existing results. The combinatorial topology notions that we shall
need for these two subsections as well as the article are defined rigorously in Section 2.1. Our main results are stated in
Sections 2.2–2.4 and we end with proofs in Section 3. We have included the Appendix describing some basic elements of
simplicial homology and discrete Morse theory for ready reference random topology results in the paper.

1.1. Up, down connectivity and related literature

A natural higher-dimensional generalization of graphs are simplicial complexes, which can be concisely defined as hy-
pergraphs closed under the operation of taking subsets of hyper-edges. We shall give precise definitions in Section 2.1.
The analogous notion of clique counts in simplicial complexes is ‘face counts’. We provide weak thresholds for vanishing
of ‘isolated’ face counts in two models of random geometric complexes – Vietoris–Rips and Čech complexes. In each of
these models, we shall consider two notions of connectivity – up and down – and hence two notions of ‘isolation’. We
shall define them shortly.

First, we would like to mention that our question or answer is not without precedence. Specifically, it was shown
by Kahle in [31,33] that the threshold for vanishing of higher Betti numbers (a notion of higher-order connectivity)
was linked to the threshold for vanishing of ‘isolated’ clique counts of Erdös–Rényi flag/clique complexes. A brief but
formal definition of Betti numbers as well as some simplicial homology results are described in the Appendix. The

3Once we introduce different types of connectivity and complexes, we shall qualify this notation further.
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0th Betti number is nothing but the number of connected components and hence this sharp phase transition result is a
generalization of the result for the connectivity threshold for Erdös–Rényi random graphs. An earlier generalization of
Erdös–Rényi result for a different model of random complexes called the random d-complex was shown by Linial and
Meshulam and later by Meshulam and Wallach [37,38]. Both of these are models that generalize Erdös–Rényi graphs.
We shall not discuss these models of random complexes any further apart from referring the reader to [34] for more
details. The search for a geometric counterpart to the above results is still on despite a significant recent contribution
by Bobrowski and Weinberger [11] which we shall discuss later. This is the broader aim towards which we take a step
in this article. Betti numbers represent an algebraic notion of higher-dimensional connectivity and there are other more
combinatorial notions of connectivity as we have indicated above and shall discuss now.

Let K be a finite simplicial complex (to be abbreviated as complex in future) which is a collection of “faces”. Each face
is assigned a non-negative integer-valued dimension and is composed of lower dimensional faces. Suppose Sk(K) denotes
the set of k-faces in K, and σ ∈ Sk(K) then we must have σ ′ ∈ K for every σ ′ ⊂ σ . In other words, if a face is in the
complex then all lower dimensional faces contained in it are also part of the complex. The simple notion of connectivity
in the graph case generalises to multiple notions of connectivity on complexes. We shall examine two such notions on two
random geometric complexes. Given a complex K, define the graph of ‘up-connectivity’, G

K,U
k as follows: The vertex set

is Sk(K) and σ, τ ∈ Sk(K) have an edge if σ ∪ τ ∈ Sk+1(K). On K, one can also define the graph of ‘down-connectivity’,
G

K,D
k as follows: The vertex set is Sk(K) and σ, τ ∈ Sk(K) have an edge if σ ∩ τ ∈ Sk−1(K). In each of the next four

paragraphs, we shall explain four different and unrelated contexts in which ‘up-connectivity’ and ‘down-connectivity’
have been considered. Thus, we hope to convince the reader that these notions of connectivity are worthy of further
research not only for their intrinsic challenge and interest but also for their applications.

Having defined a graph, one can naturally consider connected components of the graph, random walk on the graph and
the corresponding Laplacian. We shall denote the number of connected components of G

K,U
k and G

K,D
k as Pk (P -vector)

and Qk (Q-vector) respectively, k = 0,1, . . . . Since S−1(K) =∅ by convention, trivially Q0 = 0. The Q-vectors are one
of the central invariants in Q-analysis pioneered by R. Atkins in [2,3] to understand combinatorial connectivity of com-
plexes. It is not possible to describe Q-analysis in detail and so we briefly mention that Q-analysis entails understanding
‘combinatorial holes’ in a complex via Q-vectors and related quantities. This has been later developed into a general
theory of combinatorial connectivity of complexes known as combinatorial homotopy or A-homotopy theory. For more
on this combinatorial homotopy theory and its applications, please refer to [4,5,36]. This is the first context in which the
notion of ‘down-connectivity’ is relevant.

Now to the second context. One procedure to construct a complex from a graph G is to define Sk(K) to be the set of
all (k + 1)-cliques in G. Such a complex is called clique complex of the graph G and we denote it by K(G). Viewing
cliques as communities and to investigate overlapping of communities, Derenyi et al. in [18] studied percolation on the
graph G

K(G),D
k and termed it as clique percolation (though not using the terminology of simplicial complexes). This

and further variants of clique percolation on Erdös–Rényi graphs was studied by [14] and the corresponding question
for percolation in the up-connectivity graph of random geometric complexes was addressed in [7]. For a survey of this
direction of research, see [45].

Even though the notion of down-connectivity has implicitly been used in Q-analysis, combinatorial homotopy and
clique percolation without stating them explicitly, we shall now reference literature where these terms have appeared
explicitly. These are the very recent studies of Laplacians on simplicial complexes [24,29,40,46], which is the third
context where both ‘up’ and ‘down’ connectivity have been studied. Here again, there are two notions of Laplacians
– up and down – and as expected they are related to up and down connectivities respectively. Irreducibility of the two
Laplacians are related to the connectivity of G

K,U
k and G

K,D
k respectively. As we can observe that there are varied

contexts in which the notions of up and down connectivity crop up but barring these few papers on Laplacians of random
complexes and face percolation on random complexes, this is very much a fertile terrain. Our results give a lower bound
on the thresholds for irreducibility of the two Laplacians and triviality of the Q-vector.

Now the fourth context, which we have touched upon earlier, is the study of Betti numbers of random complexes.
This is also the direction of more extensive research on random complexes. Betti numbers are another way of quantifying
connectivity of complexes. In fact, Betti numbers has been the main focus of most studies on random complexes. We point
the reader to the surveys [10,34] for details on this growing area lying in the intersection of probability and topology.
Motivated by applications to topological data analysis [15,16], random geometric complexes were introduced in [32]
and among other things, upper bounds for thresholds on vanishing of Betti numbers for the Vietoris–Rips and Čech
complexes on Poisson point processes were given. Similar thresholds were later proven for more general stationary point
processes in [52] and for Poisson point processes on compact, closed manifolds without a boundary in [11]. To briefly
allude to applications of such results in topological data analysis, we mention that a very weak threshold was used in
the pioneering work of [42] to find homology of submanifolds from random samples. Since Betti numbers are algebraic
quantities and the notions of up-connectivity and down-connectivity are combinatorial, apriori it not obvious why the two
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need to be related. However, for the random d-complex, it was shown that the threshold for up-connectivity was same as
the threshold for vanishing of Betti numbers [35, Theorem 1.8]. It is worth repeating that this work is a step towards the
geometric counterpart of such a result 4

1.2. Preview: Coarse-scale asymptotics

Now, we shall survey some results of relevance to us before stating a few of our results. We refer the reader to the Appendix
for a formal definition of Betti numbers and other simplicial homology results referred to below. Our results stated in this
section shall be at the coarse-scale as the finer-scale results involve considerably more notation and are postponed to
Section 2. Now onwards, let Pn be the homogeneous Poisson point process with intensity n on the unit d-dimensional
torus for some d ≥ 2. Also, when we refer to random Vietoris–Rips (R(Pn, rn)) and Čech complex (C(Pn, rn)), we refer
to these complexes constructed on Pn using balls of radius rn (precisely defined in Definitions 2.1 and 2.2). In short, the
k-simplices/faces of the Čech complex (resp. Vietoris–Rips complex) are formed by subsets of (k + 1) distinct points
of Pn such that the mutual interesection (resp. all pairwise intersections) of balls of radius rn centred at these points is
non-empty. For the random Čech complex, a significant contribution refining the afore-mentioned vanishing thresholds
appeared recently in [13]. In particular, it was shown that (see [13, Theorem 5.4]) for a sequence w(n) → ∞, the following
holds: For 1 ≤ k ≤ d ,

E
[
βk

(
C(Pn, rn)

)] →
{

∞ if nθdrd
n = logn + (k − 2) log logn − w(n)

βk(U) if nθdrd
n = logn + k log logn + w(n),

(1.2)

where βk(·) denotes the kth Betti number. Apart from the gap between the upper and lower thresholds, this is an extension
of (1.1) to higher dimensions in the algebraic sense. The above threshold result was extended to a phase transition result
for the event {βk(C(Pn, rn)) �= βk(U)} at a coarser scale [13, Corollary 5.5]: We have for 1 ≤ k ≤ d and any ε ∈ (0,1)

P
{
βk

(
C(Pn, rn)

) = βk(U)
} →

{
0 if nθdrd

n = (1 − ε) logn

1 if nθdrd
n = (1 + ε) logn.

(1.3)

The above threshold also corresponds with that of thresholds for complete coverage [21,27] and surprisingly reveals that
β0 (number of connected components) equals one at a much lower threshold than the other Betti numbers which all vanish
“nearly” together and correspond to the threshold for complete coverage i.e., the event {U ⊂ ⋃

x∈Pn
Bx(rn)}.

As should be obvious by now, the question of connectivity in higher dimensions can be posed in at least three ways
(up, down and Betti numbers) and for at least two different models of geometric complexes (Vietoris–Rips and Čech).
Though thresholds for Betti numbers of random Čech complexes have been partially addressed in [13,32] but thresholds
for other notions of connectivity remain still open. While Betti numbers of Čech complexes are non-trivial only for k ≤ d

but the question of up and down connectivity are relevant for any k.
The specific geometry of random Čech complexes enables one to study them via coverage processes as well as Morse

theory (see the Appendix). Indeed, the key tool in [13] is investigation of the critical points of the distance function
ρn : Rd → R, x �→ min1≤i≤Nn{|x − Xi |}. Since ρ−1

n [0, r] = ⋃
X∈Pn

BX(r), critical points of ρn are related to the Betti

numbers of
⋃

X∈Pn
BX(r) via Morse theory and the later are identical to those of random Čech complexes due to the nerve

theorem (see the Appendix, [6, Theorem 10.7]). However, both these tools are either unavailable or insufficient for study
of other notions of connectivity in the two models of geometric complexes. A possibly more universal approximation for
study of connectivity thresholds in random complexes are ‘isolated’ face counts and this is the main reason why we focus
on these objects in this article.

Let G
p,q
k (Pn, rn), k ≥ 1 denote the up and down connected graphs for q ∈ I2 := {U ,D} and the Čech and Vietoris–

Rips complexes for p ∈ I1 := {C,R}. Recall that our Čech and Vietoris–Rips complexes are formed on Pn using balls
of radius rn. In the above notation, C, R refer to the Čech and Vietoris–Rips cases respectively and U , D refer to the up
and down connectivity respectively. As a trailer for our results, we state the following coarse scale phase transition result
for isolated k-faces in the random Vietoris–Rips and Čech complexes. The constants m

p,q
k that appear in the Theorem are

defined in Section 2.1. In what follows, we abbreviate r
p,q
n,k by rn.

4During the final revision of our draft, a couple of recent works [8,17] have made some progress and we shall briefly remark on these later.
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Theorem 1.1. Let p ∈ I1, q ∈ I2 and k ≥ 1. Let J
p,q
n,k (r) denote the number of isolated nodes in G

p,q
k (Pn, r). Then the

following holds for any ε ∈ (0,1).

P
{
J

p,q
n,k (rn) = 0

} →
{

0 if nm
p,q
k rd

n = (1 − ε) logn

1 if nm
p,q
k rd

n = (1 + ε) logn.
(1.4)

Indeed, for nm
p,q
k rd

n = (1 − ε) logn, we have that E[Jp,q
n,k (rn)] → ∞ and

logJ
p,q
n,k (rn)

logE[Jp,q
n,k (rn)]

P→ 1 as n → ∞.

Since J
p,q
n,k (rn) is a non-monotonic functional in r for k ≥ 1, even presence of a phase transition is not obvious.

However, the above theorem shows a phase-transition for the existence of isolated nodes at a fixed radius rn in the
up/down-connected graphs. To gain a better understanding of the phase-transition, we consider the existence of isolated
nodes for some radii s ≥ rn. This is a monotonic event and at the coarse scale has the same threshold for vanishing as
existence of isolated nodes.

Theorem 1.2. Let p ∈ I1, q ∈ I2 and k ≥ 1. Let J
p,q
n,k (r) denote the number of isolated nodes in G

p,q
k (Pn, r). Then the

following holds for any ε ∈ (0,1)

P

{ ⋂
r≥rn

{
J

p,q
n,k (r) = 0

}} →
{

0 if nm
p,q
k rd

n = (1 − ε) logn

1 if nm
p,q
k rd

n = (1 + ε) logn.
(1.5)

We shall shortly see evidence that at a finer scale the thresholds for the events in Theorems 1.1 and 1.2 need not
coincide at least for the Čech complex. Considering Theorem 1.1 as the first step towards determining thresholds for
up/down-connectivity in both the random geometric complexes, here is the second step. The following theorem shows
that whenever ‘isolated’ nodes vanish in the up/down-connected graphs, components of finite but fixed order also vanish.

Theorem 1.3. Let p ∈ I1, q ∈ I2, k ≥ 1 and L ≥ 1. Let J
p,q
n,k (r,L) denote the number of components in G

p,q
k (Pn, r) with

exactly L vertices. Then for any ε > 0 and nm
p,q
k rd

n = (1 + ε) logn, we have that

E
[
J

p,q
n,k (rn,L)

] → 0.

Vanishing of isolated nodes in G
p,q
k (Pn, rn) is a necessary condition for connectivity of G

p,q
k (Pn, rn) but as mentioned

before, this is also a sufficient condition in many random graph models. It is not completely obvious at this point if this is
true even in the models we have considered above. We conjecture it to be true at least in the coarse scale with Theorem
1.3 as a partial eveidence.

Finer phase transition results for expectations and a distributional result inside the critical window for J
R,U
n,k with k ≤ d

are stated in Section 2. An analogous distributional result is currently unavailable for other cases or similar statistics such
as Morse critical points in random geometric complexes. An important tool in obtaining the distributional result for
the Vietoris–Rips complex is the purely deterministic geometric Lemma 3.2 and such a result is not available for the
Čech complex or Morse critical points. Stating these finer results shall involve considerably more notation and are hence
postponed to Section 2. However, in the special case of k = 1, we can state these results with no additional notation as we
shall do so now. Note that J

R,D
n,1 = J

C,D
n,1 .

Proposition 1.4. Let J
p,q

n,1 (rn) denote the number of isolated nodes in G
p,q

1 (Pn, rn). Let wn be any real sequence con-

verging to ∞ and nrd
n → ∞ as n → ∞. For (p, q) ∈ I1 × I2 \ {(C,U)} we have

E
[
J

p,q

n,1 (rn)
] →

{
∞ if nm

p,q

1 rd
n = logn − wn

0 if nm
p,q

1 rd
n = logn + wn,

(1.6)

whereas

E
[
J
C,U
n,1 (rn)

] →
{

∞ if nm
C,U
1 rd

n = logn − log logn − wn

0 if nm
C,U
1 rd

n = logn − log logn + wn.
(1.7)
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Notice the difference in the thresholds at the level of expectation between Čech and Vietoris–Rips complexes. We shall
also see that there is a difference between the two complexes when we look at a finer phase transition result corresponding
to the event in Theorem 1.2. To be more precise, consider the event

⋃
s≥r{Jp,q

n,1 (s) ≥ 1}. We denote by J
p,q,∗
n,k (r) the

number of k-faces (i.e., k + 1 points) that contribute to the event or in other words, the number of k-faces that are
‘isolated’ for some s ≥ r . This is defined more precisely in (2.12). Clearly, all ‘isolated’ faces at radius r are included i.e.,
J

p,q
n,k (r) ≤ J

p,q,∗
n,k (r) and the latter is non-increasing in r . Thus, we have that

{
J

p,q,∗
n,k (r) = 0

} =
⋂
s≥r

{
J

p,q
n,k (s) = 0

}

and we have shown in Theorems 1.1 and 1.2 that the thresholds for vanishing of J
p,q
n,k (·) and J

p,q,∗
n,k (·) coincide at the

coarse scale. However, we shall see now that at a finer scale whether they coincide or not depends on the geometry of the
complex.

Proposition 1.5. Let p ∈ I1, q ∈ I2 and k = 1. Let J
p,q,∗
n,1 (r) denote the number of 1-faces that are isolated in

G
p,q

1 (Pn, s) for some s ≥ r . Let wn be any real sequence converging to ∞ and nrd
n → ∞ as n → ∞. Then

E
[
J

p,q,∗
n,1 (rn)

] →
{

∞ if nm
p,q

1 rd
n = logn − wn

0 if nm
p,q

1 rd
n = logn + wn.

(1.8)

Note the missing log logn factor for the Čech case i.e., as claimed earlier the thresholds for vanishing of J
C,U
n,1 (·) and

J
C,U ,∗
n,1 (·) do not coincide at least at the level of expectations. More importantly, this means that if we choose wn → ∞

such that wn = o(log logn) and nm
C,U
1 rd

n = logn − log logn + wn, then

E
[
J
C,U
n,1 (rn)

] → 0, but E
[
J
C,U ,∗
n,1 (rn)

] → ∞.

In other words, for any fixed “r ∈ (logn − log logn, logn)” and for n large, we are unlikely to observe an ‘isolated’ face
at r but we expect to see large number of them in the interval.

We shall now explain the consequences of our results for topological phase transitions as well as contrast them with
the related results of [13]. While our results are on thresholds for vanishing of isolated nodes but as mentioned before,
our tendentious view is that these are indicative of similar results for the corresponding connectivity thresholds.

Remark 1.6.

• Since m
C,U
k = θd for all k ≥ 1, we note that at the coarse scale the threshold for vanishing of isolated nodes in

G
C,U
k (Pn, rn) matches with that of βk(Pn, rn). And like we pointed out for Betti numbers, J

C,U
n,0 vanishes much earlier

compared to J
C,U
n,k for k ≥ 1 which all vanish “nearly together”.

• At a finer scale (see Proposition 2.4), the threshold for vanishing of isolated nodes in G
C,U
k (Pn, rn) is analogous to

that of vanishing of homology groups in (1.2) and in the case of k = 1 matches exactly with the lower threshold in
(1.2) (see Proposition 2.6). In [33,37,38], it was shown that thresholds for vanishing of isolated nodes in G

p,U
k (Pn, rn),

p ∈ I1, was same as that of vanishing of homology groups in Erdös-Rènyi-like random complexes. Our results together
with (1.2) offer evidence of such a phenomenon holding true even for random geometric Čech complexes under up-
connectivity.

• Perhaps, a little ambitiously one can conjecture that the threshold for vanishing of isolated nodes in G
C,U
k (Pn, rn)

should be nθdrd
n = logn+ (k −2) log logn, which corresponds to the lower threshold in (1.2). Recently in [8, Theorem

3.1], it is shown that thresholds for monotonic vanishing of Betti numbers (defined similar to J
p,q,∗
n,k ) is nθdrd

n =
logn + (k − 1) log logn and conjectured that the thresholds for vanishing (not monotonic) of Betti numbers will be
at nθdrd

n = logn + (k − 2) log logn (see remarks following [8, Corollary 7.14]). In the light of these recent results,
our results in Propositions 1.4 and 1.5 offer evidence of similar behaviour for up-connectivity in Čech complexes and
actually a proof in the case of k = 1. Further, it indicates that the Vietoris–Rips complexes could exhibit a different
behaviour. The difference between Čech and Vietoris–Rips is not only in that the thresholds are different and the
latter thresholds depend on k but that there could be a difference between vanishing of Betti numbers and monotonic
vanishing of Betti numbers.

• The four thresholds corresponding to vanishing of isolated nodes in G
p,q
k (Pn, rn), p ∈ I1, q ∈ I2 are all different even

in the coarser scale, since the corresponding constants m
p,q
k ’s are different.
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• For p ∈ I1 since m
p,U
k ≤ m

p,U
k , it follows that vanishing of isolated nodes in G

p,U
k (Pn, rn) occur for a radius that is at

least as large as that required in G
p,D
k even in the coarse scale. A similar reasoning yields that even in the coarse scale,

the threshold for vanishing of isolated nodes in G
C,q
k (Pn, rn) is larger than in G

R,q
k (Pn, rn) for any q ∈ I2.

• Since m
R,q
k is strictly decreasing in k for k ≤ d , vanishing of isolated nodes of G

R,q
k (Pn, rn) happen later than

G
R,q
j (Pn, rn) for j < k ≤ d even at the coarse scale for any q ∈ I2. This is in contrast to the scenario for G

C,U
k (Pn, rn)

for which m
C,U
k = θd for all k ≥ 1.

We shall now say a few words on our proof methods. While the main tools for obtaining asymptotics for ‘isolated’
faces are the classical Palm theory and Campbell–Mecke formula, the specific geometric analysis pertaining to ‘isolated
faces’ differ from that of Morse critical points. Apart from this, we shall see that the non-monotonicity of ‘isolated’ nodes
complicates the analysis. In such high-density regimes, the asymptotics are usually determined by the ‘minimal config-
uration’ contributing to the functional. However, it is very important to understand the behaviour in the neighbourhood
of the ‘minimal configuration’. This we shall see is far from clear for ‘isolated’ faces in contrast to Morse critical points.
In special cases such as k = 1, we are able to understand the neighbourhood of the ‘minimal configuration’ to be able
to give more detailed results though the techniques vary considerably from case to case. As is evident in our results,
such problems are also a matter of scale. Often in coarse scale, we are able to overcome these issues with respect to ‘the
minimal configuration’ more easily.

The connection between Morse critical points and Betti numbers is a deterministic fact whereas the connection between
‘isolated’ faces and Betti numbers arises mainly in random contexts. This is one reason why translating our results to
thresholds for Betti numbers is incomplete at the moment. However, for the two discrete models of random simplicial
complexes – Erdös–Rényi clique complexes [33] and random d-complexes [37,38] – using different methods it has been
shown that the threshold for vanishing of ‘isolated’ faces in the up-connected graph corresponds to the threshold for
vanishing of homology.

In the graph case, closely related to connectivity threshold is the largest edge-weight on a minimal spanning tree. It
was shown in [47] that asymptotically the longest edge on a minimal spanning tree on the complete graph on Pn with
weights as the Euclidean distance is same as the largest nearest neighbour distance i.e., the smallest radius at which all
the vertices are non-isolated in the random geometric graph on Pn. Simplicial analogues of spanning tree are called as
spanning acycles and their behaviour on randomly weighted complexes have been investigated in [28,51]. In particular,
see [51, Section 3] for relations between spanning acycles, Betti numbers and ‘isolated’ faces. We see our work as another
step towards establishing such relations for random geometric complexes.

To end the introduction, we shall point a few more directions in which our work could be extended apart from the
natural program of computing exact thresholds and investigating the critical window. One important problem would be to
investigate higher-dimensional or distributional analogues of Propositions 1.4 and 1.5. One could also consider geometric
complexes on compact Riemannian manifolds and Poisson point processes with non-uniform densities. For ideas on the
former extension, see [8,12,13,17] and for the latter see [25,30,43,44,48].

2. Main results

2.1. Some combinatorial topology notions

A subset K ⊂ 2X for a finite point-set X is said to be an abstract simplicial complex (abbreviated as complex in future)
if A ∈ K and B ⊂ A implies that B ∈ K. The elements of K are called faces or simplices and the dimension dim σ of a
face σ is |σ | − 1. We shall denote a k-face by [v1, . . . , vk+1]. The maximal faces (faces that are not included in any other
faces) are called facets. By convention, ∅ ∈ K and dim(∅) = −1. The collection of k-faces is denoted by Sk(K) and the
k-skeleton of K is the complex Kk := ⋃k

i=−1 Si(K). A complex is said to be pure if all maximal faces have the same
dimension. Note that K1 is nothing but a graph.

Denote by Bx(r) a closed ball of radius r centered at x. | · | will denote the cardinality of a finite set as well as the
Lebesgue measure and ‖ · ‖ is the Euclidean norm on R

d . There are two types of complexes defined on point processes.
These complexes are the Vietoris–Rips complex and the Čech complex which we now define. Let U = [0,1]d be equipped
with the toroidal metric i.e.,

d(x, y) = inf
{‖x − y + z‖ : z ∈ Z

d
}
, x, y ∈ U.

For x = (x1, . . . , xk+1) ∈ R
d(k+1), let Bx(r) = ⋃k+1

i=1 Bxi
(r), h(x) = h(x1, . . . , xk+1) for h : Rd(k+1) → R and dx =

dx1 . . . dxk+1. Let 1 = (1, . . . ,1). Let X be a finite set in U and we shall use X (k) to denote the set of k-tuples of distinct
points in X .
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Definition 2.1 (Vietoris–Rips complex). The abstract simplicial complex R(X , r) constructed as below is called the
Vietoris–Rips complex associated to X and r .

(1) The 0-simplices of R(X , r) are the points in X .
(2) For k ≥ 1, a k-simplex, or k-dimensional ‘face’, σ = [xi1, . . . , xik+1] is in R(X , r) if Bxij

(r) ∩ Bxim
(r) �=∅ for every

1 ≤ j < m ≤ k + 1 and where (xi1, . . . , xik+1) ∈X (k+1).

Definition 2.2 (Čech complex). The abstract simplicial complex C(X , r) constructed as below is called the Čech com-
plex associated to X and r .

(1) The 0-simplices of C(X , r) are the points in X ,
(2) For k ≥ 1, a k-simplex, or k-dimensional ‘face’, σ = [xi1, . . . , xik+1] is in C(X , r) if

⋂k+1
j=1 Bxij

(r) �= ∅ and where

(xi1, . . . , xik+1) ∈ X (k+1).

Observe that the faces of a Vietoris–Rips complex are nothing but cliques of a random geometric graph and the 1-
skeletons of both the Vietoris–Rips and Čech complexes coincide with the random geometric graph.

The functionals that we study in this paper are the isolated simplex counts in the Čech and the Vietoris–Rips complexes.
In addition there are two notions of connectivity, up and down which in turn determines what constitutes an isolated
simplex. For any k ≥ 0, let Sk(X , r) be the collection of all k-simplices of the Čech complex on X . Consider the graph
G

C,U
k (X , r) with vertex set Sk(X , r) and with an edge between any two elements σ1, σ2 ∈ Sk(X , r) provided they are

up-connected, that is, σ1 ∪ σ2 ∈ Sk+1(X , r). Similarly for any k ≥ 1, we can define the graphs G
C,D
k (X , r) with edges

between elements σ1, σ2 ∈ Sk(X , r) that are down connected, that is, σ1 ∩ σ2 ∈ Sk−1(X , r). The graphs G
R,U
k (X , r) and

G
R,D
k (X , r) are defined similarly by taking Sk(X , r) to be the collection of all k-simplices in the Vietoris–Rips complex.

See Figure 1 for an illustration of the two complexes and their maximal faces. Fix k ≥ 2. For x = (x1, . . . , xk+1) ∈R
d(k+1)

and r > 0 define the functions

hCk (x, r) = 1

[
k+1⋂
j=1

Bxj
(r) �=∅

]
,

hRk (x, r) =
∏

1≤j<m≤k+1

1
[
Bxj

(r) ∩ Bxm(r) �=∅
]
. (2.1)

Recall that I1 = {C,R} and I2 = {U ,D}. We will denote by h
p
k (x) the function h

p
k (x,1) for p ∈ I1, k ≥ 1. For A ⊂ U

and s > 0 let

A(s) := {x ∈ U : there exists y ∈ A such that d(x, y) ≤ s} = {
x + y : x ∈ A,y ∈ BO(s)

}

Fig. 1. {[1,2], [2,3], [3,4], [2,4,5]} are the maximal faces of the Čech complex on the point set X = {1, . . . ,5} whereas {[1,2], [2,3,4], [2,4,5]} are
the maximal faces of the Vietoris–Rips complex on X .
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be the closed s-neighbourhood of the subset A and O denotes the origin. For x ∈ R
d(k+1) and r, s > 0 define the set-valued

functions

Q
C,U
k (x, r, s) =

(
k+1⋂
j=1

Bxj
(r)

)(s)

Q
C,D
k (x, r, s) =

k+1⋃
i=1

(
k+1⋂

j=1,j �=i

Bxj
(r)

)(s)

Q
R,U
k (x, r, s) =

k+1⋂
j=1

(
Bxj

(r)
)(s) =

k+1⋂
j=1

Bxj
(r + s)

Q
R,D
k (x, r, s) =

k+1⋃
i=1

(
k+1⋂

j=1,j �=i

Bxj
(r + s)

)
.

(2.2)

We will also use the abbreviated forms

Q
p,q
k (x, r) = Q

p,q
k (x, r, r) and Q

p,q
k (x) = Q

p,q
k (x,1), p ∈ I1, q ∈ I2. (2.3)

Let

A
p
k := {

y ∈ (
R

d
)k : hp

k (O,y) = 1
}
, (2.4)

be the set of configurations that form a k-simplex with the origin. Clearly A
p
k ⊂ BO(2)k and since our complexes are

defined using closed balls, A
p
k is compact. For any y ∈ A

p
k and finite point set X ⊂ R

d , the k-simplex comprising the
points {O,y} ∈ (Rd)k+1 is isolated in G

p,q
k (X ∪ {O,y},1) provided in Q

p,q
k (O,y) ∩X =∅. Let

m
p,q
k = inf

{∣∣Qp,q
k (O,y)

∣∣ : y ∈ A
p
k

}
, and M

p,q
k = sup

{∣∣Qp,q
k (O,y)

∣∣ : y ∈ A
p
k

}
. (2.5)

Often, the choice of k is clear from the context and hence we shall suppress it. It is easy to see that m
C,U
k = θd and

m
C,D
k = 2dθd for all k ≥ 1. The former occurs for any configuration of points that are as far apart as possible such that the

common intersection of balls is a single point and the latter happens when all the points coincide. Note that m
C,q
k does

not depend on k. For k ≤ d , m
R,U
k is the volume of the lens of intersection of (k + 1) balls of radius 2 that can be placed

in R
d so that their centers are exactly at distance 2 from each other. The region Qp,q(x) for a minimal configuration is

illustrated in Figures 2–4 for the case d = 2 and k = 1. The volume of the shaded region in the figures is mp,q . The balls
in Figure 2 are of unit radii and are of radii 2 in Figures 3, 4.

2.2. Expectation asymptotics for isolated face counts

In this section we present a radius regime under which the expected isolated complex count stabilizes in the limit. This
regime involves a parameter sequence whose asymptotic behavior is described. Later part of the section contains a result
on the rate of convergence of this parameter sequence which has some interesting implications that will be discussed.

Fig. 2. p = C, q = U .
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Fig. 3. p = R, q = U .

Fig. 4. p ∈ I1, q = D.

Definition 2.3 (Isolated face counts). Let k ≥ 1. For p ∈ I1 and q ∈ I2 the number of isolated simplices in the graph
G

p,q
k (X , r) is defined as

J
p,q
k (X , r) := 1

(k + 1)!
∑

x∈X (k+1)

h
p
k (x, r)1

[
X ∩ Q

p,q
k (x, r) = x

]
. (2.6)

For example, J
R,U
k (X , r) counts the number of maximal (k + 1)-cliques in the random geometric graph. As a more

concrete example, in Figure 1, we have that J
R,D
1 (X , r) = J

C,D
1 (X , r) = 0, J

R,U
1 (X , r) = 1, J

C,U
1 (X , r) = 3.

Let Pn be a Poisson point process with intensity n1U(·) where U = [0,1]d is the unit cube with the toroidal metric.
Our first result is on the radius regime rn that stabilizes the expected number of isolated simplices in the connectivity
regime. For any k ≥ 1, α ∈R, p ∈ I1 and q ∈ I2, c > 0 define the sequence of radial functions {rp,q

n (c)}n≥n0 as

rn(c) = r
p,q
n,k (c) =

(
logn + k log logn + log |Ap| + α − k logmp,q − log(k + 1)!

nc

) 1
d

, (2.7)

where n0 is defined so that for all n ≥ n0, rn > 0. Note that n0 does not depend on c.
We will denote J

p,q
k (Pn, r) by J

p,q
n,k (r). We abbreviate A

p
k , M

p,q
k , m

p,q
k , Q

p,q
k (·) by A, M , m, Q respectively.

Proposition 2.4. Let k ≥ 1, α ∈ R, p ∈ I1, q ∈ I2 and rn(c) be as defined in (2.7). Then there exists a sequence cn =
c
p,q
n,k ∈ [m,M] such that cn → m and

E
[
J

p,q
n,k

(
rn(cn)

)] → e−α, as n → ∞. (2.8)

Though the constant cn → m, one cannot replace cn by m in Proposition 2.4 as shown by the following result.

Proposition 2.5. Let k ≥ 1, α ∈ R, p ∈ I1, q ∈ I2 and rn be such that nmrd
n = logn + k log logn + w1

n where w1
n is a

sequence bounded from below i.e., lim infn→∞ w1
n > −∞. Then

E
[
J

p,q
n,k

(
rn(m)

)] → 0, as n → ∞. (2.9)

It would be desirable to obtain precise estimates on the sequence cn in Proposition 2.4. We explore this and a few other
results for the case k = 1 in the next subsection.
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2.2.1. The 1-simplex
For the case k = 1, we derive a result on the rate of convergence of the sequence cn. The maximal face in a 1-complex
is an edge. An edge is isolated in the sense of up-connectivity provided it is not part of a triangle i.e., a 2-simplex. By
Definition 2.1, three nodes form a triangle in the Vietoris–Rips complex provided the balls centered at these points have
non-trivial pairwise intersection. In the Čech complex (see Definition 2.2), the balls centered at these vertices must have
a mutual intersection. Down connectivity for both the Rips and the Čech cases are identical. An edge is isolated in the
down sense if it does not share a vertex with any other edge.

From (2.7), we have that

n
(
rn(cn)

)d
cn − logn − log logn

is a bounded sequence. If we re-write rn(cn) in terms of m, then it alters the coefficient of the log logn term. This is the
content of the first claim in the following proposition. A consequence of this result yields a rate of convergence for the
sequence cn.

Proposition 2.6. For any α ∈R let aC,U = 2 and ap,q = 1 for (p, q) ∈ I1 × I2 \ (C,U). Let rn(cn) = r
p,q

n,1 (c
p,q

n,1 ), p ∈ I1

and q ∈ I2 be the sequence as in Proposition 2.4 for which the expected number of isolated edges, E[Jp,q

n,1 (rn(cn))] → e−α

with k = 1. Then

n
(
rn(cn)

)d
m − logn − (

1 − ap,q
)

log logn (2.10)

is a bounded sequence. Further,

lim
n→∞

(
cn

m
− 1

)
logn

log logn
= ap,q . (2.11)

Though the statement of the above theorem covers all the cases via a single equation, the estimates in different cases
require somewhat different ideas. It is somewhat surprising that aC,U = 2 in the contrast to the other cases and the
implication of this for the threshold for vanishing of isolated faces has been mentioned in Remark 1.6.

2.3. Monotonic vanishing of isolated faces

Let p ∈ I1 and q ∈ I2. Given x = (x1, . . . , xk+1) ∈ R
d(k+1), define R

p
k (x) := inf{r : hp(x, r) = 1}. For example, in the

Vietoris–Rips complex, we have that 2RR
k (x) = maxi �=j |xi − xj |. Define the number of isolated faces at r and above as

follows:

J
p,q,∗
k (X , r) := J

p,q
k (X , r) +

∑
x∈X (k+1)

1
[
R

p
k (x) > r

]
1
[
X ∩ Q

p,q
k (x),R

p
k (x)) ≡ x

]
, (2.12)

where the Qp,q ’s are defined in (2.3). By definition, it is clear that J
p,q,∗
k (X , r) ≥ J

p,q
k (X , r). We have already seen

coarse-scale thresholds for vanishing of J
p,q,∗
n,k (r) := J

p,q,∗
k (Pn, r), k ≥ 1 in Theorem 1.2 and a finer threshold for van-

ishing of J
p,q,∗
n,1 (r) in Proposition 1.5. We now give a finer upper bound for the threshold for vanishing of J

p,q,∗
n,k (r) for

all k ≥ 1.

Proposition 2.7. Fix k ≥ 1, p ∈ I1, q ∈ I2 and let J
p,q,∗
n,k (rn) := J

p,q,∗
n,k (Pn, rn) where nmrd

n = logn + k log logn + w1
n

for some sequence w1
n bounded from below i.e., lim infn→∞ w1

n > −∞. Then we have that

E
[
J

p,q,∗
n,k (rn)

] → 0, as n → ∞.

2.4. Poisson convergence for isolated Vietoris–Rips simplices under up-connectivity

Our next result is a weak convergence result for the number of isolated simplices in the Vietoris–Rips complex.

Theorem 2.8. Let α ∈ R, d ≥ 2, 0 ≤ k ≤ d , rn(c) = r
R,U
n,k (c) be as defined in (2.7) and cn = c

R,U
n,k be the sequence as

in Proposition 2.4 i.e., E[JR,U
n,k (rn(cn))] → e−α . Then the number of isolated k-simplices J

R,U
n,k (rn(cn)) converges in

distribution to a Poisson random variable with mean e−α .
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The above distributional result extends to finite connected components in GR,U (Pn, r
R,U
n (cn)). Recall that J

R,U
n,k (r, 
)

denotes the number of components in G
R,U
k (Pn, r) with 
 vertices (see Theorem 1.3).

Theorem 2.9. Let α ∈ R, d ≥ 2 and 0 ≤ k ≤ d . Suppose that cn = c
R,U
n,k is the sequence as in Proposition 2.4 i.e.,

E[JR,U
n,k (rn(cn))] → e−α . Let L ≥ 1. Then

∑L
l=1 J

R,U
n,k (rn(cn), l) converges in distribution to a Poisson random variable

with mean e−α .

3. Proofs

Since in our proofs, we shall be working with a fixed k, we will drop the subscript k unless we want to emphasize the
particular value of k or if there is any ambiguity. For example, we shall denote Q

p,q
k by Qp,q etc. We shall also drop the

superscripts p, q and use, for instance, Jn for J
p,q
n,k unless we are carrying out a case-by-case analysis. In what follows,

C1,C2, . . . will denote finite constants whose values will change from place to place.

3.1. Proofs of results in Section 2.2

Proof of Proposition 2.4. Fix p ∈ I1, q ∈ I2, k ≥ 1 but as mentioned above we shall drop these subscripts and super-
scripts for brevity of notation. For x = (x1, . . . , xk+1), let hn(x) = h(x, rn) and Qn(x) = Q(x, rn) be as defined in (2.1)
and (2.2). Without loss of generality, we can assume that n ≥ n0, where n0 is as chosen in (2.7).

For any sequence of radial functions rn, by the Campbell–Mecke formula (see [48, Theorem 1.6]) we have

E
[
Jn(rn)

] = nk+1

(k + 1)!
∫

Uk+1
hn(x)e−n|Qn(x)| dx. (3.1)

Setting xi = x1 + rnyi , i = 2, . . . , k + 1, in (3.1) and using the fact that |Qn(x)| = rd
n |Q(x)| we get

E
[
Jn(rn)

] = n(nrd
n )k

(k + 1)!
∫

U×((rn)−1(U−x1))
k

h(x1,y)e−nrd
n |Q(x1,y)| dx1 dy, (3.2)

where y = (y2, . . . , yk+1). Let n1 ≥ n0 be such that for all n ≥ n1 such that
⋃

x∈U Bx(1) ⊂ (rn)
−1(U −x1)) for all x1 ∈ U .

Since the metric is toroidal, we obtain for all n ≥ n1 that

E
[
Jn(rn)

] = n(nrd
n )k

(k + 1)!
∫

A

e−nrd
n |Q(O,y)| dy, (3.3)

where A = Ap is as defined in (2.4).
For any c ∈R+ and α ∈ R, recall that rn(c) was defined in (2.7) as follows:

rn(c) =
(

logn + k log logn + log |A| + α − k logm − log(k + 1)!
nc

) 1
d

.

The function

c �→
∫

A

e−nrn(c)d |Q(O,y)| dy

is continuous in c, and for all n > n1, tends to 0 as c → 0 and tends to |A| as c → ∞. Since e−nrn(c)dc ∈ (0,1) does not
depend on c, by the intermediate value theorem there exists a sequence cn such that

∫
A

e−nrn(cn)d |Q(O,y)| dy = |A|e−nrn(cn)dcn . (3.4)
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With the above choice of cn, we obtain from (3.3)–(3.4) that

E
[
Jn

(
rn(cn)

)] = n(nrn(cn)
d)k

(k + 1)! |A|e−nrn(cn)dcn

= n(nrn(cn)
d)k

(k + 1)! |A|e−(logn+k log logn+log |A|+α−k logm−log(k+1)!)

=
(

nrn(cn)
dm

logn

)k

e−α

=
(

logn + k log logn + log |A| + α − k logm − log(k + 1)!
logn

)k(
m

cn

)k

e−α. (3.5)

Thus the proof is complete provided we show that cn ∈ (m,M) and cn → m. From the definition of m, M and the fact
that the function Q(O,y) achieves these values only on a set of zero measure, we have

|A|e−nrn(c)dM <

∫
A

e−nrn(c)d |Q(O,y)| dy < |A|e−nrn(c)dm,

which together with (3.4) implies that cn ∈ (m,M).
Suppose lim supn→∞ cn > m. Then we can choose m1 > m, ε > 0 and a subsequence {nj }j≥1 such that cnj

(1 − ε) >

m1 for all j ≥ 1. From (3.3) we derive by calculations similar to the one in (3.5) that

E
[
Jnj

(
rnj

(cnj
)
)] ≥ nj (nj r

d
nj

)k

(k + 1)!
∫

A∩{Q(O,y)<m1}
e
−nj rd

nj
|Q(O,y)|

dy

≥ Cnj

(
nj r

d
nj

)k exp

(
−m1

cnj

(
lognj + k log lognj + log |A| + α − k logm − log(k + 1)!))

≥ Cnj

(
nj r

d
nj

)k exp
(−(1 − ε)

(
lognj + k log lognj + log |A| + α − k logm − log(k + 1)!)) → ∞.

This contradicts the fact that from (3.5) and cn > m, we must have lim supn→∞ E[Jn(rn(cn))] ≤ e−α . Hence
lim supn→∞ cn = m and since cn ∈ (m,M), it follows that limn→∞ cn = m. �

Proof of Proposition 2.5. Dropping the superscripts p, q we have from (3.3) that

E
[
Jn

(
rn(m)

)] = n(nrd
n )k

(k + 1)! e
−nmrd

n

∫
Ap

e−nrd
n (|Q(O,y)|−m) dy

≤ C1e
−w1

n

∫
Ap

e−nrd
n (|Q(O,y)|−m) dy → 0, n → ∞. (3.6)

The convergence above follows by the bounded convergence theorem because Ap is compact, |Q(O,y)| ≥ m on Ap and
e−nrd

n (|Q(O,y)|−m) → 0 almost surely on Ap . �

In the following proof, we shall use the Steiner’s formula (see [50, (1.2)]) which states that for any non-empty convex
body (compact convex subset) K ⊂R

d and r > 0, we have that

Vd

(
K ⊕ BO(r)

) =
d∑

i=0

rd−ici,dVi(K), (3.7)

where Vi(K) is the ith intrinsic volume of K and ci,d = θd−i , the volume of the (d − i)-dimensional unit ball. Indeed,
the intrinsic volumes can be also defined via the Steiner’s formula once it is shown that Vd(K ⊕ BO(r)) is a polynomial
in r . However, for our purposes, the following properties of the intrinsic volumes will suffice (see [50, Section 14.2]):
(i) monotonicity under set inclusion and additivity for non-empty convex bodies and (ii) homogeneity i.e., Vj (tK) =
t jVj (K) for all t > 0, 0 ≤ j ≤ d and K being a convex body.
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Proof of Proposition 2.6. First, we shall prove (2.10) via a case-by-case analysis. Since k = 1 we need to consider only
three cases as isolated simplex counts for ‘down-connectivity’ in both the Vietoris–Rips and Čech complexes are identical
for k = 1. We shall write J

R,U
n for J

R,U
n,1 and rn(cn) for r

R,U
n,1 (c

R,U
n,1 ) etc.

Case 1. We first consider the case p = R, q = U . Since k = 1, the function QR,U (O,y) in (3.3) equals |BO(2) ∩
By(2)|, where y ∈ A = BO(2). Substituting in (3.3) and changing to polar coordinates we get

E
[
JR,U

n (r)
] = n

(
nrd

)
θd

∫ 2

0
sd−1e−nrd |BO(2)∩Bse1 (2)| ds, (3.8)

where e1 = (1,0, . . . ,0) ∈ R
d is the unit vector along the first coordinate axis. The volume of the lens of intersection

BO(2) ∩ Bse1(2) equals 2dθdη(s) (see [23, (7.5)] and [39, (6)]) where

η(s) = 1 − θd−1

θd

∫ s/2

0

(
1 − t2

4

) d−1
2

, 0 ≤ s ≤ 2. (3.9)

Substituting from (3.9) in (3.8) we get

E
[
JR,U

n (r)
] = n

(
nrd

)
θde−nrdθd2dη(2)

∫ 2

0
sd−1e−nrdθd2d (η(s)−η(2)) ds. (3.10)

For 0 ≤ t ≤ 1 we have 3
4 ≤ (1 − t2

4 ) ≤ 1 and hence

θd−1

θd

(
3

4

) d−1
2

(
1 − s

2

)
≤ η(s) − η(2) ≤ θd−1

θd

(
1 − s

2

)
. (3.11)

Using the lower bound for (η(s) − η(2)) from (3.11) in (3.10) and noting that m = mR,U = θd2dη(2), we obtain

E
[
JR,U

n (r)
] ≤ n

(
nrd

)
θde−nrdm

∫ 2

0
sd−1e−nrd2d θd−1(

3
4 )

d−1
2 (1− s

2 ) ds. (3.12)

Let a = 2d( 3
4 )

d−1
2 θd−1. Making the change of variable u = nrd2dθd−1(

3
4 )

d−1
2 (1 − s

2 ) and replacing r by rn we get

E
[
JR,U

n (rn)
] ≤ C2ne−nrd

n m

∫ anrd
n

0

(
1 − u

anrd
n

)d−1

e−u du.

If nrd
n → ∞ as n → ∞, then

∫ anrd
n

0

(
1 − u

anrd
n

)d−1

e−u du → 1,

and hence

E
[
JR,U

n (rn)
] ≤ e−nrd

n m+logn+C3 . (3.13)

Since E[JR,U
n (rn(cn))] → e−α ∈ (0,∞), we must have

n
(
rn(cn)

)d
m − logn ≤ C4.

Similarly using the upper bound for (η(s) − η(2)) from (3.11) in (3.10) and proceeding as above will yield

E
[
JR,U

n (rn)
] ≥ e−nrd

n m+logn+C5 , (3.14)

and again using the fact that E[JR,U
n (rn(cn))] → e−α , we obtain

n
(
rn(cn)

)d
m − logn ≥ C6.
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Case 2. Let p = C, q = U . For k = 1, QC,U (O,y) = Vd((BO(1)∩By(1))⊕BO(1)) where Vd denotes the volume in R
d .

Substituting in (3.3) and changing to polar coordinates we obtain

E
[
J C,U

n (r)
] = n

(
nrd

)
θd

∫ 2

0
sd−1e−nrd |Vd((BO(1)∩Bse1 (1))⊕BO(1))| ds. (3.15)

By the Steiner’s formula (3.7), we have that

Vd

((
BO(1) ∩ Bse1(1)

) ⊕ BO(1)
) = θd +

d∑
j=1

cj,dVj

(
BO(1) ∩ Bse1(1)

)
. (3.16)

For 0 ≤ s ≤ 2, the lens BO(1) ∩ Bse1(1) contains the line segment 
(s) joining the points s
2e1 −

√
1 − ( s

2 )2e2 and s
2e1 +√

1 − ( s
2 )2e2. To see this, consider the projection of the balls BO(1), Bse1(1) on the coordinate plane determined by the

first two coordinates. Hence,

V1
(
BO(1) ∩ Bse1(1)

) ≥ V1
(

(s)

) = √
(2 − s)(2 + s) ≥ √

2(2 − s). (3.17)

Using (3.16) in (3.15) and the lower bound from (3.17), we obtain

E
[
J C,U

n (r)
] ≤ n

(
nrd

)
θd2d−1e−nrdθd

∫ 2

0
e−nrdc1,d

√
2(2−s) ds. (3.18)

Making the change of variables u = nrdc1,d

√
2(2 − s), we obtain

E
[
J C,U

n (r)
] ≤ C1

1

rd
e−nrdθd . (3.19)

(3.19) along with the fact that E[J C,U
n (rn(cn))] → e−α ∈ (0,∞) implies that

nrd
n θd + log rd

n ≤ C2. (3.20)

Substituting for rn from (2.7) with k = 1 in the above inequality with Cα = log |A| + α − logm − log 2 we obtain

nrd
n θd + log

(
logn + log logn + Cα

ncn

)
≤ C2.

Adding and subtracting log logn in the above expression, we obtain

nrd
n θd − logn + log logn ≤ C2 − log

(
logn + log logn + Cα

logn

)
+ log cn ≤ C3 < ∞,

since cn is bounded.
To obtain the bound in the other direction, note that the lens BO(1)∩Bse1(1), 0 ≤ s ≤ 2, is contained in a ball of radius√

4−s2

2 centered at s
2e1. Hence

Vj

(
BO(1) ∩ Bse1(1)

) ≤
(√

4 − s2

2

)j

Vj

(
BO(1)

) ≤ (2 − s)
j
2 Vj

(
BO(1)

)
. (3.21)

Substituting from (3.16) in (3.15) and then using the upper bound from (3.21) yields

E
[
J C,U

n (r)
] ≥ nθd

(
nrd

)
enθd rd

∫ 2

0
sd−1e

−nrd
∑d

j=1 cj,d (2−s)
j
2 Vj (BO(1))

ds. (3.22)

Changing variables to u = c1,d (2 − s)
1
2 V1(BO(1))nrd = C1nrd(2 − s)

1
2 we obtain

E
[
J C,U

n (rn)
] ≥ C2

n(nrd
n )

(nrd
n )2

e−nθdrd
n

∫ √
2C1nrd

n

0

(
2 −

(
u

C1nrd
n

)2)d−1

ue
−(u+∑d

j=2 cj,d ( u

C1nrdn
)j Vj (BO(1))nrd

n )
du

≥ C3
1

rd
n

e−nθd rd
n , (3.23)
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where the last inequality holds for all n sufficiently large provided nrd
n → ∞ and by the dominated convergence theorem.

From (3.23) and the fact that E[J C,U
n (rn(cn))] → e−α we get

nrd
n θd + log rd

n ≥ C4.

Comparing with (3.20) we observe that the inequality is reversed and we have a different constant. Thus, the lower bound
is obtained by a computation similar to the one following (3.20).

Case 3. Finally we consider the case p ∈ I1, q = D. Computations here are similar to those in the case p = R,
q = U and so we will skip some of the details. We start by observing that for k = 1, Qp,D(O,y) = Vd(BO(2) ∪ By(2)),
y ∈ BO(2) and mp,D = 2dθd . For y of the form se1, 0 ≤ s ≤ 2, we have the bounds

BO(1) ∪ B(2+ s
2 )e1

(
s

2

)
⊂ BO(2) ∪ Bse1(2) ⊂ B s

2 e1

(
2 + s

2

)
. (3.24)

Since BO(2) ∩ B(2+ s
2 )e1

( s
2 ) =∅, the inclusion on the left in (3.24) implies the following inequality.

Vd

(
BO(2) ∪ Bse1(2)

) ≥ Vd

(
BO(2) ∪ B(2+ s

2 )

(
s

2

))
= Vd

(
BO(2)

) +
(

s

2

)d

Vd

(
BO(1)

)
. (3.25)

Changing to polar coordinates in (3.3) and using (3.25) we get,

E
[
J

p,D
n (r)

] ≤ n
(
nrd

)
θde−nrd2d θd

∫ 2

0
sd−1e−nθdrd ( s

2 )d ds. (3.26)

Making the change of variable u = nθdrd( s
2 )d in (3.26) and simplifying as we did in the first two cases, we get

E
[
J

p,D
n (r)

] ≤ C1ne−nrd2d θd (3.27)

The rest of the proof is by now a standard computation as in Case 1 (see computation following (3.13)). For a bound in
the other direction we use the right hand inclusion in (3.24) to write

E
[
J

p,D
n (r)

] ≥ n
(
nrd

)
θde−nrd2d θd

∫ 2

0
sd−1e−nrdθd ((2+ s

2 )d−2d ) ds. (3.28)

Now using the binomial expansion for ((2 + s
2 )d − 2d) and making the change of variable u = nrdθd sd

2d , we obtain

E
[
J

p,D
n (r)

] ≥ C1ne−nrd2d θd

∫ nrdθd

0
e
−u−∑d−1

j=1 cj,d ( u

nrd
)

j
d
du.

Proceeding as in the proof for the lower bound (3.23), we derive that

E
[
J

p,D
n (rn)

] ≥ C2ne−n2d θd rd
n , (3.29)

where the last inequality holds for all n sufficiently large provided nrd
n → ∞. This completes the proof of (2.10).

We now prove (2.11). We have from (2.10) that

C1 ≤ n
(
rn(cn)

)d
m − logn − (1 − a) log logn ≤ C2, (3.30)

for some finite constants C1, C2. Substituting from (2.7) in (3.30) with Cα := log |A| + α − logm − log 2, we obtain

C1 ≤ (logn + log logn + Cα)
m

cn

− logn − (1 − a) log logn ≤ C2,

which simplifies to

C1 ≤
(

m

cn

− 1

)
logn +

(
m

cn

− (1 − a)

)
log logn + m

cn

Cα ≤ C2.

The result now follows since m
cn

→ 1 as n → ∞ by Proposition 2.4. This completes the proof of Proposition 2.6. �
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3.2. Proof of result in Section 2.3

Proof of Proposition 2.7. Let us fix k ≥ 1 and q ∈ I2. We first consider the case p = R. So, we shall again drop these
subscripts and superscripts for rest of the calculation. Further set Ĵn(r) = J ∗

n (r) − Jn(r). Given a r > 0, using (2.12) and
Campbell–Mecke formula, we derive an upperbound for E[Ĵn(r)].

E
[
Ĵn(r)

] = nk+1

(k + 1)!
∫

Uk+1
1
[
R(x) > r

]
e−n|Q(x,R(x))| dx

= nk+1

(k + 1)!
∫

Uk+1

k+1∑
i,j=1,i �=j

1
[
R(x) > r,2R(x) = |xi − xj |

] × e−n|Q(x,|xi−xj |/2)| dx

= nk+1

2(k − 1)!
∫

Uk+1
1
[
2R(x) = |x1 − x2|

]
1
[|x1 − x2| > 2r

] × e−n|Q(x,|x1−x2|/2)| dx

(
x → x − (x1, . . . , x1)

) ≤ nk+1

2(k − 1)!
∫

Uk

1
[
2R(O,x) = |x2|

]
1
[|x2| > 2r

]
e−n|Q((O,x),|x2|/2)| dx,

where x = (x2, . . . , xk+1) in the final expression. Changing the variable x → rx yields

E
[
Ĵn(r)

] ≤ n(nrd)k

2(k − 1)!
∫

(Rd )k
1
[
2R(O,x) = |x2|, |x2| > 2

]
e−nrd |Q((O,x),|x2|/2)| dx.

Changing the variable x2/2 to polar co-ordinates and then x → sx, we obtain (with x = (x3, . . . , xk+1))

E
[
Ĵn(r)

] ≤ n2dθd(nrd)k

2(k − 1)!
∫ ∞

1
sd−1 ds

∫
BO(2s)k−1

1
[
R

(
(O,2se1,x)

) = s
]

× e−nrd |Q((O,2se1,x),s))| dx

= n2dθd(nrd)k

2(k − 1)!
∫ ∞

1
sdk−1 ds

∫
BO(2)k−1

1
[
R

(
(O,2e1,x)

) = 1
]

× e−nrd sd |Q((O,2e1,x),1))| dx.

Since Q(·) ≥ m for R(·) = 1, we have

E
[
Ĵn(r)

] ≤ C1n
(
nθd2drd

)k
∫ ∞

1
sdk−1e−nrd sdm ds.

Making the change of variables t = nrdsdm, we obtain

E
[
Ĵn(r)

] ≤ C2 × n

∫ ∞

nrdm

tk−1e−t dt

≤ C3 × ne−nrdm
k−1∑
j=0

(nrdm)j

j ! ,

where in the last inequality we have used integral formulas for the upper gamma function. A simple substitution now
yields that if nmrd

n = logn + k log logn + w1
n for some sequence w1

n bounded from below, we have that

E
[
Ĵn(rn)

] ≤ C4e
−w1

n−log logn → 0.

From Proposition 2.5, we know that if nmrd
n = logn + k log logn + w1

n for some sequence w1
n bounded from below, then

E
[
Jn(rn)

] → 0.
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Thus, if nmrd
n = logn + k log logn + w1

n for some sequence w1
n bounded from below, then

E
[
J
R,q,∗
n,k (rn)

] = E
[
Jn(rn)

] +E
[
Ĵn(rn)

] → 0,

for any q ∈ I2.
We now consider the Čech case i.e., p = C. In this case, the computation is a little more involved but more along

the lines of that for critical points in the proof of [13, Proposition 6.1]. Define Ĵ C
n (r) = J

C,q,∗
n (r) − J

C,q
n (r). By def-

inition of the Čech complex, RC(x0, . . . , xk) = inf{r : ∩k
i=0Br(xi) �= ∅} and further we have that {C(x0, . . . , xk)} =⋂k

i=0 BRC(x0,...,xk)
(xi) for some point C(x0, . . . , xk) ∈ R

d . Now using this observation and proceeding as in the Vietoris–
Rips complex case using translation and scaling we have that (dropping the superscripts C, q as usual)

E
[
Ĵn(r)

] ≤ nk+1rdk

(k + 1)!
∫

(Rd )k
1
[
R(O,x) > 1

]
e−nrd |Q((O,x),R(O,x))| dx

The RHS in the above equation is exactly of the form [13, (8.8)] with h1(O,x) there replaced by 1[R(O,x) > 1] and
θdR(O,x)d replaced by |Q((O,x),R(O,x))| in the exponent. Observe that both |Q((O,x),R(O,x))| and R(O,x) are
rotation invariant and also |Q((O, sx),R(O, sx))| = sd |Q((O,x),R(O,x))| for any s > 0. So, we can now follow the
derivations in [13, (8.8)–(8.10)] and using the bound that Q((O,x),1) ≥ m derive that

E
[
Ĵn(r)

] ≤ C1n
(
nrd

)k
∫ ∞

1
sdk−1e−nrd sdm ds.

The above integral can be simplified and evaluated as in the Vietoris–Rips case above to obtain that

E
[
Ĵn(r)

] ≤ C2 × ne−nrdm

k−1∑
j=0

(nrdm)j

j ! .

Thus again combining with the Proposition 2.5, we have that if nmrd
n = logn + k log logn + w1

n for some sequence w1
n

bounded from below, then E[J C,q,∗
n,k (rn)] → 0 for any q ∈ I2. �

3.3. Proofs of results in Section 1.2

Proof of Theorem 1.1. Fix p ∈ I1, q ∈ I2 and we shall drop the superscripts p, q in the rest of the proof. Let nmrd
n =

(1 + ε) logn. Substituting in (3.3) and observing that |Q(O,y)| ≥ m and A is bounded, we obtain

E
[
Jn(rn)

] ≤ C1n
(
nrd

n

)k
e−nrd

n m

≤ C2
(logn)k

nε
. (3.31)

By the Markov’s inequality and the bound obtained in (3.31), we have

P
{
Jn(rn) ≥ 1

} ≤ C2
(logn)k

nε
→ 0,

as n → ∞. This proves the second assertion in (1.4).
Let nmrd

n = (1 − ε) logn. To prove the first assertion we use the second moment approach. Since

P
{
Jn(rn) ≥ 1

} ≥ (E[Jn(rn)])2

E[Jn(rn)2] ,

to prove the first assertion it suffices to show that

(E[Jn(rn)])2

E[Jn(rn)2] → 1, as n → ∞. (3.32)
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To this end, we evaluate E[J 2
n ]. From (2.6) we can write

Jn(rn)
2 = C1

∑
x,y∈Pk+1

n

h(x, rn)h(y, rn)1
[
Pn

(
Q(x, rn) ∪ Q(y, rn)

) = 0
]

=
k+1∑
j=0

J
(j)
n , (3.33)

where

J
(j)
n = C1

∑
x,y∈Pk+1

n ,

|x∩y|=j

h(x, rn)h(y, rn)1
[
Pn

(
Q(x, rn) ∪ Q(y, rn)

) = 0
]
, j = 0,1,2, . . . , (k + 1), (3.34)

is the contribution to J 2
n when the two complexes share j vertices. For j = 1, . . . , (k + 1), we have by the Campbell–

Mecke formula

E
[
J

(j)
n

] ≤ C2n
2k+2−j

∫
x∈U(k+1)

∫
z∈U(k+1−j)

h(x, rn)h(y, rn)e
−|Q(x,rn)∪Q(y,rn)| dxdz,

where y = (x1, . . . , xj , z), z = (z1, . . . , zk+1−j ). In the last inequality, h(y, rn) = 0 if any of the variables zi , i =
1, . . . , (k + 1 − j) lies outside a ball of radius 6krn from x1 and hence, we derive that

E
[
J

(j)
n

] ≤ C3
(
nrd

n

)k+1−j
nk+1

∫
x∈U(k+1)

h(x, rn)e
−|Q(x,rn)| dx. (3.35)

Comparing the right hand side of (3.35) with (3.1) and using the definition of rn we obtain

E
[
J

(j)
n

] ≤ C4(logn)k+1−j
E[Jn], j = 1,2, . . . (k + 1). (3.36)

Now consider E[J (0)
n ]. By the Campbell–Mecke formula we have

E
[
J (0)

n

] = [
(k + 1)!]−2

n2k+2
∫

x∈U(k+1)

∫
z∈U(k+1)

h(x, rn)h(z, rn)e−|Q(x,rn)∪Q(z,rn)| dxdz. (3.37)

Divide the inner integral in (3.37) into two parts, one over the region where min1≤r,s≤(k+1) |xr −zs | ≤ 6krn and the second
its complement. Over the first region we proceed as in (3.35), (3.36) to obtain the bound

n2k+2
∫

x∈U(k+1)

∫
z∈U(k+1)

1
[

min
1≤r,s≤(k+1)

|xr − zs | ≤ 6krn

]
h(x, rn)h(z, rn)e−|Q(x,rn)| dxdz

≤ C5(logn)k+1
E[Jn]. (3.38)

Over the region where min1≤r,s≤(k+1) |xr − zs | > 6krn, we have |Q(x, rn) ∪ Q(z, rn)| = |Q(x, rn)| + |Q(z, rn)| which
yields the bound

[
(k + 1)!]−2

n2k+2
∫

x∈U(k+1)

∫
z∈U(k+1)

1
[

min
1≤r,s≤(k+1)

|xr − zs | > 6krn

]
h(x, rn)h(z, rn)e−|Q(x,rn)|+|Q(z,rn)| dxdz

≤ (
E[Jn]

)2
. (3.39)

From (3.33), (3.36)–(3.39) we obtain

E
[
J 2

n

] ≤ C7(logn)k+1
E[Jn] + (

E[Jn]
)2

. (3.40)

Choose δ > 0 sufficiently small so that (m+δ)(1−ε)
m

= 1 − ε
2 . With this choice of δ, substituting for rn in (3.3) we obtain

E[Jn] ≥ n(nrd
n )k

(k + 1)!
∫

A

1
[∣∣Q(O,y)

∣∣ ≤ m + δ
]
e−nrd

n |Q(O,y)| dy

≥ C8n(logn)ke− (m+δ)(1−ε) logn
m

= C8n
ε
2 (logn)k. (3.41)
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It now follows from (3.40) and (3.41) that

lim inf
n→∞

(E[Jn])2

E[J 2
n ] ≥ 1.

This proves (3.32) and hence the first assertion in (1.4). For any δ ∈ (0,1), we have by Chebyshev’s inequality

P
(
Jn ≥ E[Jn]1+δ

) ≤ E[J 2
n ]

(E[Jn])2(1+δ)
→ 0,

where the convergence follows from (3.41) and (3.32). This proves

P

(
logJn

logE[Jn] ≤ 1 + δ

)
→ 1.

Now, we prove the converse bound. From (3.41), (3.32), and the Paley–Zygmund inequality we have for any sequence
θn ∈ (0,1) such that θn → 0 and θnE[Jn] → ∞,

P
(
Jn ≥ θnE[Jn]

) ≥ (1 − θn)
2 (E[Jn(rn)])2

E[Jn(rn)2] → 1, as n → ∞.

In particular, taking θn = (E[Jn])−δ for some δ ∈ (0,1) in the above inequality and using (3.41) we obtain

P

(
logJn

logE[Jn] ≥ 1 − δ

)
→ 1.

Thus, we derive that logJn

logE[Jn]
P→ 1. �

Proof of Theorem 1.2. The first statement in (1.5) follows trivially from the corresponding statement in (1.4) and the
second statement now follows from Proposition 2.7 and Markov’s inequality. �

Proof of Theorem 1.3. Fix p ∈ I1, q ∈ I2, k ≥ 1 and L ≥ 1. We shall now onwards drop superscripts p, q in the rest
of the proof except to avoid ambiguity. For M ≥ 1 let (L,M) denote the set of feasible (up/down)-connected graphs �

formed by L k-faces of the Čech or Vietoris–Rips complex such that there are a total of M vertices in the k-faces and each
of the M vertices is present in at least one of the k-faces. More precisely, � ∈ (L,M) if there exists {x1, . . . , xM} ⊂R

d

with Sk({x1, . . . , xM},1) = L,Gk({x1, . . . , xM},1) ∼= � and further each xi,1 ≤ i ≤ M belongs to at least one k-face.
Note that it is possible that (L,M) =∅ for certain choices of M and L either due to the combinatorics or the geometry.
Trivially, (L,M) =∅ for M > L(k +1) and M ≤ k. Hence setting (L) = ⋃L(k+1)

M=k+1 (L,M), we see that (L) is the
set of all feasible (up/down)-connected graphs that can be formed on L faces. Note that both (L,M) and (L) depend
on p and q but we omit the same. Thus, we have that

Jn(r,L) =
L(k+1)∑
M=k+1

∑
�∈(L,M)

J̄n(r,�), (3.42)

where J̄n(r,�) is the number of induced � components in Gk(Pn, r) formed by M vertices i.e.,

J̄n(r,�) :=
∑

{X1,...,XM }⊂Pn

1
[
Gk

({X1, . . . ,XM}, r) ∼= �
]
1
[
Pn

(
L⋃

i=1

Q
((

Xi
)
, r

)) = {X1, . . . ,XM}], (3.43)

where Xi is a (k + 1)-subset of {X1, . . . ,XM} such that the Xi , i = 1, . . . ,L are the vertices in Gk({X1, . . . ,XM}, r)
i.e., the k-faces in the corresponding geometric complex. Since (L) is a finite set, it is enough if we show that for all
� ∈ (L,M),

E
[
J̄n(rn,�)

] → 0

for rn such that nmrd
n = (1 + ε) logn for any ε > 0.
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Set h�,r := 1[Gk({x1, . . . , xM}, r) ∼= �] and h� := h�,1. Since � is connected, we note that there exists a K > 0
(possibly depending on M , L) such that h�(O,x2, . . . , xM) = 0 if maxi=2,...,M |xi | > K .

Further, whenever Gk({x1, . . . , xM}, r) ∼= �, we denote the L vertices (i.e., k-faces) by x1, . . . ,xL. Let r > 0. As usual,
we start with the Campbell–Mecke formula and then use translation and scaling relations in the below derivation:

E
[
J̄n(r,�)

] = nM

M!
∫

UM

h�,r (x1, . . . , xM)e−n|∪L
i=0Q(xi ,r)| dx1 . . . dxM

(change xi → xi + rx1, i ≥ 1) ≤ n(nrd)M−1

M!
∫

(Rd )M−1
h�(O,x2, . . . , xm)e−nrd |∪L

i=0Q(xi )| dx2 . . . dxM

(
by

∣∣∣∣∣
L⋃

i=0

Q(xi )

∣∣∣∣∣ ≥ m

)
≤ n(nθdKdrd)M−1

M! e−nrdm.

Now choosing rn such that nmrd
n = (1 + ε) logn for an ε > 0, we have using the above bound that

E
[
J̄n(rn,�)

] ≤
(

θdKd(1 + ε)d

m

)M−1

n−ε(logn)M−1 → 0. �

Proof of Proposition 1.4. The results are a straightforward consequence of the inequalities (3.13), (3.14), (3.27), (3.29),
(3.19) and (3.23) obtained in the proof of Theorem 2.6. �

Proof of Proposition 1.5. Fix a p ∈ I1, q ∈ I2. Recall that Ĵn,1(r) = J ∗
n,1(r) − Jn,1(r). We note that R(x1, x2) =

|x1 − x2|/2. Again, we know asymptotics of E[Jn,1(r)] from Proposition 2.6. So, we shall only derive asymptotics for
E[Ĵn,1(r)]. Again, starting with Campbell–Mecke formula and using translation, change to polar coordinates as in the
above calculations

E
[
Ĵn,1(r)

] = n2

2

∫
U2

1
[
R(x) > r

]
e−n|Q(x,R(x))| dx

= n2

2

∫
U

dx0

∫
U−x0

1
[|x − x0| > 2r

]
e−n|Q((x0,x),|x|/2)| dx

(
(x0, x) → (O,x − x0)

) = n2

2

∫
U

1
[|x| > 2r

]
e−n|Q((O,x),|x|/2|) dx

(change x/2r to polar co-ordinates) = n2θd2d−1rd

∫ ∞

1
sd−1e−nrd |Q((O,2se1),s)| ds

= n2θd2d−1rd

∫ ∞

1
sd−1e−nrd sd |Q((O,2e1),1)| ds

(by definition of m1) = n2θd2d−1rd

∫ ∞

1
sd−1e−nrd sdm1 ds

= 2d−1θd

dm1
ne−nrdm1 .

Thus, combining with Proposition 1.4, the proof is complete. �

3.4. Proofs of results in Section 2.4

Theorem 2.8 is proved using the criterion derived in [49, Theorem 3.1], a simpler version of which is stated below. In
order to state this Theorem, we need some notation. Let η be a finite Poisson point process in R

d with intensity measure
μ and N be the space of all finite subsets of Rd with the sigma-algebra on N generated by the functions ξ → |ξ ∩ B| for
all bounded Borel sets B ⊂R

d . Let k ∈N and let f : (Rd)k ×N → {0,1} be a measurable function. For any ξ ∈ N , set

F(ξ) :=
∑

ψ⊂ξ :|ψ |=k

f (ψ, ξ \ ψ).

For x1, . . . , xk ∈ R
d , set p(x1, . . . , xk) = E[f ({x1, . . . , xk}, η)].
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Theorem 3.1 ([49, Theorem 3.1]). Let W = F(η) with η and F as defined above. Suppose that w : (Rd)k → [0,∞) is a
measurable function and that for μk-almost every x = (x1, . . . , xk) ∈ (Rd)k with p(x) > 0, we can find coupled random
variables Ux, V x such that

• Ux d= W

• 1 + V x d= F(
⋃k

i=1{xi} ∪ η)|f ({x1, . . . , xk}, η) = 1
• E[|Ux − V x|] ≤ w(x).

Then the total variation distance between the law of W and a Poisson random variable with mean E[W ] satisfies

dTV
(
W,Poi

(
E[W ])) ≤ 1 ∧ (E[W ])−1

k!
∫

w(x)p(x)μk(dx).

The following geometric lemma is crucial in the proofs of Theorems 2.8 and 2.9. The lemma essentially says that two
‘near-minimal’ configurations of points that form ‘isolated cliques’ are well seperated from each other. The lack of such
a geometric lemma hinders extending these results to the Čech complex.

Lemma 3.2. For δ ≥ 0, j ≤ k, define

Dj,δ := {
(x, z) ∈ BO(2)k × BO(6)k−j+1 : 2 − δ ≤ |xi |, |xi − xj |, |zi |, |xi − zj |, |zi − zj |,

∀i �= j,h
(
(O,x)

) = h(y) = 1
}
,

where x = (x2, . . . , xk+1) ∈ R
dk , z = (z1, . . . , zk−j+1) ∈ R

d(k−j+1) and y = (xk−j+2, . . . , xk+1, z1, . . . , zk−j+1) ∈
R

d(k+1). Then there exists a δ0 > 0 such that for any 0 ≤ δ < δ0, we can find a β := β(δ) > 0 for which |Q(y)\Q(O,x)| ≥
β on the set Dj,δ .

Proof. Since the function |Q(y) \ Q(O,x)| is continuous in (x, z), it suffices to show the result with δ = 0. Then any
(x, z) ∈ Dj,0 must satisfy the following conditions. Firstly, since h((O,x)) = h(y) = 1, we have that |xi |, |xi − x
|, |zi −
z
| = 2, ∀i �= 
 and also |xi − z
| = 2,∀
 and ∀i ∈ {k − j + 2, . . . , k + 1}. Secondly, |z
|, |xi − z
| ≥ 2,∀
 and ∀i ∈
{2, . . . , k − j + 1}. Since Q(O,x) ⊂ BO(2), it suffices to show |Q(y) \ BO(2)| ≥ β for some β > 0.

We now state two geometric claims for generic points in R
d which will be proven later.

Claim 1: Define δ1 := min{max |ui − u
| : ui ∈ R
d,1 ≤ i, 
 ≤ d + 2, |ui − u
| ≥ 2, ∀i �= 
} − 2. The first claim is that

δ1 > 0.
Claim 2: Let δ1 > 0 be as in Claim 1. If u1, . . . , ud+1 ∈ R

d are such that |ui − u
| = 2, ∀i �= 
, then there exists an
u′ ∈R

d such that |u′ − u1| ≥ 2 + δ1 and |u′ − ui | = 2 for all i ∈ {2, . . . , d + 1}.
Claim 1 is fairly intuitive in that it asserts that no collection of (d + 2) points in R

d can have all pairwise distances to be
exactly two and by continuity, we have that the maximum of pairwise distances is at least 2+ δ1 for some δ1 > 0. Suppose
we have (d + 1) points in R

d with all pairwise distances being exactly two. Then Claim 2 asserts that there exists a point
x with distance at least 2 + δ1 from one point and distance exactly two from all other points. Using the above two claims,
we now complete the proof.

First consider the case when k = d . Since δ = 0, xk−j+2, . . . , xk+1, z1, . . . , zk−j+1 are at distance exactly two from
each other and |xi | = 2 for all 1 ≤ i ≤ k + 1. Now applying Claim 1 to {O,xk−j+2, . . . , xk+1, z1, . . . , zk−j+1}, we
have that |zi | > 2 + δ1 for some i ∈ {1, . . . , k − j + 1}. Without loss of generality, let us assume that |z1| > 2 + δ1.
Hence Bz1(δ1/2) ∩ BO(2) = ∅. Further, since Q(y) is an intersection of at most d + 1 balls of radius 2 whose centers
(one of which is z1) are exactly at distance two apart from each other, we have that |Bz1(δ1/2) ∩ Q(y)| ≥ β > 0 for
some β > 0. Indeed, Bz′(δ1/8) ⊂ Bz1(δ1/2) ∩ Q(y) for z′ = (1 − 3δ1/8)z1. Thus, we get that |Q(y) \ BO(2)| ≥ β for
some β > 0. We have illustrated this argument in the case d = 2 and j = 1 in Figure 5. Next, consider the case when
k < d . Since we are interested in minimizing |Q(y) \ BO(2)|, we can assume that |zi | = 2 for all i ∈ {1, . . . , k + 1}.
Further, if k < d − 1 choose additional points ζ1, . . . , ζd−k−1 all on the boundary of BO(2) so that (O, ζ ) forms a
d-simplex with side lengths 2 where ζ = (xk−j+2, . . . , xk+1, z1, . . . zk−j+1, ζ1, . . . , ζd−k−1). When k = d − 1, we set
ζ = y = (xk−j+2, . . . , xk+1, z1, . . . , zk−j+1) and observe that it still holds that (O, ζ ) forms a d-simplex with side
lengths 2. From Claim 2, we can choose x ∈ R

d such that |x| ≥ 2 + δ1 and (ζ, x) forms a d-simplex with side lengths 2.
Since x ∈ Q(y), we can argue as in the case k = d in the above paragraph that |Q(y) \ BO(2)| ≥ |Bx(δ1/2) ∩ Q(y)| ≥ β

for some β > 0. We have illustrated this in Figure 6.
This completes the proof except the two claims which will be proven next.
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Fig. 5. Illustration of Lemma 3.2 for d = k = 2, j = 1, δ = 0: Here, x = (x2, x3) and y = (x3, z1, z2). Further, h(O,x) = h(y) = 1,
|x2| = |x3| = |x3 − z1| = |x3 − z2| = |z1 − z2| = 2 and |z1|, |z2| ≥ 2. Claim 1 in the proof below implies that |z1| ≥ 2 + δ1 for some δ1 > 0 and
we have that Bz′ (δ1/8) ⊂ Bz1 (δ1/2) ∩ Q(y) for z′ = (1 − 3δ1/8)z1.

Fig. 6. Illustration of Lemma 3.2 for d = 2, k = j = 1, δ = 0: Here, x = (x2) and y = ζ = (x2, z1). Further, h(O,x) = h(y) = 1, |x2| = |x2 − z1| = 2
and |z1| ≥ 2. By Claim 2, there exists |x| ≥ 2 + δ1 for some δ1 > 0 and consequently, we have that Bz′ (δ1/8) ⊂ Bz1 (δ1/2) ∩ Q(y).

Proof of Claim 1: Without loss of generality, we can choose u1 = O . We can further assume that |ui | ≤ 3 for all i =
2, . . . , d +1 as minimum will be attained by such a configuration of points. Since maxi �=
 |ui −u
| is a continuous function
of u2, . . . ud+1 on BO(3)d , the minimum δ1 is attained. If δ1 = 0, we have a contradiction that there is a configuration of
(d + 2) points which form a (d + 1)-simplex in R

d with side-lengths 2.
Proof of Claim 2: To show this, we will make a specific choice of u = (u1, . . . , ud+1) and show existence of u.

Any other choice will be a rotation and translation of this configuration. To simplify notation we relabel u to be
(O,u1, . . . , ud). Let ei , i = 1, . . . , d be the unit vectors along the coordinate axes. Let v = ∑d

i=1 ei and write for
i = 1, . . . , d , ui = aei + bv for some a, b ∈ R to be chosen later. Since u forms a simplex with side lengths two, the
constants a, b must satisfy the following two conditions: (i) |ui | = 2, i = 1, . . . , d and (ii) |ui −u
| = 2, i, 
 = 1,2, . . . , d ,
i �= 
. In other words, to obtain ui we start with the vector of length two along ei and rotate it towards v.

From condition (ii) above, it follows that a = √
2 and from (i) b is the positive solution of the quadratic equation

(a + b)2 + (d − 1)b2 = 4 and thus

b = −√
2 + √

2
√

1 + d

d
⇒ a + db√

d
= √

2

√
1 + d

d
> 1. (3.44)

Denote by C =
∑d

i=1 ui

d
= ( a

d
+ b)v the centroid of the points in u1, . . . , ud . Choose u′ = 2C. Thus C is on the hyperplane

containing the points in u1, . . . , ud and O , C and u′ are collinear with C being the mid point of the line segment joining
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O and u′. From (3.44) we obtain

∣∣u′∣∣ = 2

(
a

d
+ b

)√
d = 2

a + db√
d

> 2.

O is at a distance two from all the points u1, . . . , ud and by symmetry, the point u′ is also at a distance two from all the
points in u1, . . . , ud . Thus, O,u1, . . . , ud, u′ satisfy the assumptions of Claim 1 and so |u′| > 2 + δ1 by Claim 1. �

Proof of Theorem 2.8. Throughout this proof, we take p = R, q = U and fix 0 ≤ k ≤ d . So, we omit the superscripts
and subscripts as usual and denote r

R,U
n (cn) by rn and J

R,U
n,k (r

R,U
n (cn)) by Jn. Recall that the sequence {cn} satisfies

βn = E
[
Jn

(
rn(cn)

)] → e−α as n → ∞. (3.45)

Recall that QR,U (x, rn) = ⋂k+1
i=1 Bxi

(2rn) and let m = mR,U . Also, we set hn(y) = h(y, rn), Qn(y) = Q(y, rn),
Q̃n(y) = Qn(y) \ {y}. The proof follows by verifying the criterion given in Theorem 3.1. To invoke this criterion, take
η = Pn, f (y, η) = hn(y)1[η(Qn(y)) = 0]. So, Wn = F(Pn) is the number of isolated Rips k-simplices or equivalently
isolated vertices in the graph Gk(Pn, rn) and more explicitly,

Wn = Jn

(
rn(cn)

) = F(Pn) =
∑

y∈P(k+1)
n

f (y,Pn \ y) =
∑

y∈P(k+1)
n

hn(y)1
[
Pn

(
Q̃n(y)

) = 0
]
. (3.46)

For any x ∈ (Rd)k+1, set Px
n = (Pn ∩ Qn(x)c) ∪ {x}. Set Ux

n = Wn and define V x
n as

V x
n =

∑
y∈(Px

n)(k+1)

y�=x

f
(
y,Px

n

) =
∑

y∈(Px
n)(k+1)

y�=x

hn(y)1
[
Px

n

(
Q̃n(y)

) = 0
]
,

where y �= x denotes that y differs from x in at least one co-ordinate. Let x be such that pn(x) := E[f (x,Pn)] > 0. In
particular, this implies hn(x) = 1. Further, we have that

1 + V x
n = f

(
x,Px

n \ x
) + V x

n = F
(
Px

n

) d= F(Pn ∪ x)|{f (x,Pn) = 1
}
.

The first equality follows because hn(x) = 1 and Px
n(Q̃n(x)) = 0, the second equality follows from definition of F(Px

n)

(see (3.46)) and the third equality follows because Pn ∪{x}|{f (x,Pn) = 1} =Pn ∪{x}|{Pn(Q̃n(x)) = 0} d=Px
n . We define

W(1)
n (x) :=

∑
y∈P(k+1)

n
Qn(y)∩Qn(x)�=∅

f (y,Pn), W(2)
n (x) :=

∑
y∈(Px

n)(k+1),y�=x
Qn(y)∩Qn(x)�=∅

f
(
y,Px

n

)
,

W(3)
n (x) :=

∑
y∈P(k+1)

n
Qn(y)∩Qn(x)=∅

f (y,Pn) =
∑

y∈(Px
n)(k+1)

Qn(y)∩Qn(x)=∅

f
(
y,Px

n

)
,

(3.47)

where the last equality follows by observing that y �= x and f (y,Px
n) = f (y,Pn) if Qn(y) ∩ Qn(x) = ∅. Now, we can

write Ux
n = W

(1)
n (x) + W

(3)
n (x) and V x

n = W
(2)
n (x) + W

(3)
n (x). This yields |U(x) − V (x)| ≤ W1(x) + W2(x).

We let wn(x) = w
(1)
n (x) + w

(2)
n (x) with w

(i)
n (x) = E[W(i)

n (x)], i = 1,2. Then applying Theorem 3.1, we obtain

dTV
(
Jn,Poi(βn)

) ≤ 1 ∧ β−1
n

(k + 1)! (I1 + I2), (3.48)

where

Ii = nk+1
∫

Uk+1
w(i)

n (x)pn(x) dx, i = 1,2. (3.49)

The result now follows from (3.45) and (3.48) provided we show that Ii → 0 as n → ∞ for i = 1,2. Recall that

pn(x) = E
[
f (x,Pn)

] = hn(x)e−n|Qn(x)|.
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By the Campbell–Mecke formula applied to w1(x) as in (3.1), (3.2) and noting that Qn(y)∩Qn(x) �=∅ as well as setting
Q(O,y) := Q((O,y),1), we obtain

I1 = C1n
k+1

∫
Uk+1

dxpn(x)nk+1
∫

{y:Qn(y)∩Qn(x)�=∅}
pn(y) dy

≤ C1n
2(k+1)

∫
x∈Uk+1

∫
y∈Bx1 (6rn)×Uk

hn(x)hn(y)e−n(|Qn(x)|+|Qn(y)|) dxdy

≤ C2r
d
n

(
n
(
nrd

n

)k
∫

(r−1
n U)k

h(O,y)e−nrd
n |Q(O,y)| dy

)2

= C2r
d
n β2

n → 0, (3.50)

from (3.3), (3.45) and the fact that rn → 0 as n → ∞.
To analyse I2, we will write it as a sum depending on the number of coordinates common to x and y.

I2 =
k∑

j=0

I2j ,

where

I2j :=
(

k + 1
j

)
n2(k+1)−j

∫
x∈Uk+1

∫
z∈(U\Q(x,rn))k−j+1

hn(x)hn(y)e−n|Qn(x)∪Qn(y)| dxdz, (3.51)

y = (xk−j+2, . . . , xk+1, z1, . . . zk−j+1) and z = (z1, . . . zk−j+1). Note that x, y have j coordinates (xk−j+2, . . . , xk+1) in
common. Since the metric is toroidal, for any x1 ∈ U the integration with respect to the remaining variables yields a
function that does not depend on x1. Hence we can fix the first variable to be the origin O . Bounding (3.51) as in (3.50),
we obtain

I2j ≤ C2n
(
nrd

n

)2k−j+1
∫

BO(2)k
dx

∫
(BO(6)\Q(O,x))k−j+1

dzh
(
(O,x)

)
h(y)e−nrd

n |Q(O,x)∪Q(y)| = L1j + L2j , (3.52)

where x = (x2, . . . , xk+1), y, z are as above and

L1j := C2n
(
nrd

n

)2k−j+1
∫

BO(2)k
dx

∫
(BO(6)\Q(O,x))k−j+1

dz1
(∣∣Q(O,x)

∣∣ ∨ ∣∣Q(y)
∣∣ > m + ε

)
× h

(
(O,x)

)
h(y)e−nrd

n |Q(O,x)∪Q(y)|, (3.53)

L2j := C2n
(
nrd

n

)2k−j+1
∫

BO(2)k
dx

∫
(BO(6)\Q(O,x))k−j+1

dz 1
(∣∣Q(O,x)

∣∣ ∨ ∣∣Q(y)
∣∣ ≤ m + ε

)
× h

(
(O,x)

)
h(y)e−nrd

n |Q(O,x)∪Q(y)| (3.54)

and ε > 0 is arbitrary. Using the restriction |Q(O,x)| ∨ |Q(y)| > m + ε and substituting for rn in (3.53) yields the bound

L1j ≤ C3n
(
nrd

n

)2k−j+1
e
− m+ε

cn
(logn+(k−1) log logn+α)

. (3.55)

Since cn → m, we can choose η ∈ (0, ε
m

) such that m + ε > (1 + η)cn for all n sufficiently large. Using this in (3.55) we
obtain that as n → ∞

L1j ≤ C4
n(logn)2k−j+1

n1+η
→ 0. (3.56)

It remains to show that L2j → 0. Denote by

D̃j,ε = {
(x, z) ∈ BO(2)k × (

BO(6) \ Q(O,x)
)k−j+1 :∣∣Q(O,x)

∣∣ ∨ ∣∣Q(y)
∣∣ ≤ m + ε,h

(
(O,x)

) = 1, h(y) = 1
}
, (3.57)

the region of integration in (3.54), where x = (x2, . . . , xk+1) ∈ R
dk , z = (z1, . . . , zk−j+1) ∈ R

d(k−j+1), and y =
(xk−j+2, . . . , xk+1, z1, . . . , zk−j+1) ∈ R

d(k+1).
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Since |Q(O,x)| ∨ |Q(y)| is continuous in D̃j,ε and the minimum m is achieved in Dj,δ for any δ > 0 (see Lemma
3.2 for definition), we can choose an ε small enough such that there exists a δ0 small enough with D̃j,ε ⊂ Dj,δ0 . It then
follows from Lemma 3.2, (3.54), (3.45) and (2.7) that for ε > 0 sufficiently small,

L2j ≤ C2n
(
nrd

n

)2k−j+1
∫

D̃j,ε

dxdz e−nrd
n (|Q(O,x)|+|Q(y)\Q(O,x)|)

≤ C5n
(
nrd

n

)2k−j+1
∫

D̃j,ε

dx dz e−nrd
n (|Q(O,x)|+β)

≤ C6βn

(
nrd

n

)k−j+1
e−nrd

n β ≤ C7(logn)k−j+1n−β/cn → 0, (3.58)

as cn → m > 0. This completes the proof of Theorem 2.8. �

Proof of Theorem 2.9. We shall again fix 1 ≤ k ≤ d , p = R, q = U and omit these subscripts and supersctipts. Further,
let rn = r

R,U
n (cn). By Slutksy’s lemma [26, Chapter 6, Theorem 6.5] and Theorem 2.8, it suffices to show that for any

L ≥ 2, E[Jn(rn,L)] → 0. Now, fix L ≥ 2 and let � ∈ (L,M). (Recall the notation in (3.42) and (3.43) from the proof
of Theorem 1.3.) We shall show that

E
[
Jn(rn,�)

] → 0.

Deriving as in the proof of Theorem 1.3 (and using the same notation), we have the following bound:

E
[
Jn(rn,�)

] ≤ n(n(rn)
d)M−1

M!
∫

(BO(K))M−1

L∏
i=1

h
(
xi

)
e−n(rn)d |∪L

i=0Q(xi )| dx2 . . . dxM,

where for all 1 ≤ i ≤ L, xi is a (k + 1)-subset of {x1, . . . , xM} where we have set x1 = O . Now, we shall break the proof
into three cases. Fix ε > 0 which will be chosen later. We shall break the integral into three cases i.e., define

A1 :=
{

x ∈ (
BO(K)

)M−1 : max
i=1,...,L

∣∣Q(
xi

)∣∣ > m + ε
}
,

A2 :=
{

x ∈ (
BO(K)

)M−1 : max
i=1,...,L

∣∣Q(
xi

)∣∣ ≤ m + ε, max
1≤i<j≤M

|xi − xj | > 2
}
,

A3 :=
{

x ∈ (
BO(K)

)M−1 : max
i=1,...,L

∣∣Q(
xi

)∣∣ ≤ m + ε, max
1≤i<j≤M

|xi − xj | ≤ 2
}
.

Thus, we write E[Jn(rn,�)] ≤ I1 + I2 + I3, where Ii ’s are defined as

Ii := n(n(r∗
n)d)M−1

M!
∫

Ai

L∏
i=1

h
(
xi

)
e−n(r∗

n )d |⋃L
i=0 Q(xi )| dx2 . . . dxM.

Now we shall show that Ii → 0 as n → ∞ for i = 1,2,3 and thus complete the proof.
First consider I1. Here we have that maxi=1,...,L |Q(xi )| > m + ε. This is the easiest of the three cases. Here using a

bound similar to L1j in (3.55), we can show that I1 converges to 0 as in (3.56).
The analysis of the remaining two cases will follow along similar lines to the bounds obtained for L2j in the proof of

Theorem 2.8 using Lemma 3.2.
Next consider I2. Here we have that maxi=1,...,L |Q(xi )| ≤ m + ε but max1≤i<j≤M |xi − xj | > 2.
Without loss of generality, re-write x1 = (O,x) = (O,x2, . . . , xk+1), x2 = y = (xk−j+2, . . . , xk+1, z1, . . . , zk−j+1) for

some j ≥ 1 with |z1| > 2. Setting z = (z1, . . . , zk−j+1), we have that (x, z) ∈ D̃j,ε , where D̃j,ε is as defined in (3.57).
Now, as we argued below (3.57) using continuity of Q(.) as well as minimum being achieved in Dj,δ , we again have that
for ε small enough, there exists δ0 > 0 such that D̃j,ε ⊂ Dj,δ0 and hence from the geometric Lemma 3.2, we have that
the following inequality holds for some β > 0:∣∣Q(

x1) ∪ Q
(
x2)∣∣ ≥ ∣∣Q(

x1)∣∣ + β. (3.59)

Thus we have that for some constant C,

I2 ≤ C
(
n
(
r∗
n

)d)M−k−1
e−βn(r∗

n )d × n
(
n
(
r∗
n

)d)k
∫

(BO(K))k
e−n(r∗

n )d |Q(O,x2,...,xk+1)| dx2 . . . dxk+1.
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Since the convergence of the latter term on the RHS follows by Proposition 2.4 and the first term converges to 0, we have
that I2 → 0.

Finally, consider I3 and here we have that maxi=1,...,L |Q(xi )| ≤ m + ε but max1≤i<j≤M |xi − xj | ≤ 2.
Firstly note that this means that M ≤ d + 1 but because � is a component of order at least two, M ≥ k + 2. Thus,

A3 =∅ unless we assume that k + 2 ≤ M ≤ d + 1. Further, L = (
M

k+1

)
since all (k + 1)-tuples will form k-simplices.

Since for all k-simplices xi we have that |Q(xi )| ≤ m + ε and by continuity of |Q(xi )|, there exists δ > 0 (depending
on ε) such that 2 − δ ≤ |xi − xj | ≤ 2 for all 1 ≤ i < j ≤ M . Again using geometric Lemma 3.2, we have that for ε

sufficiently small, there exists β > 0 such that (3.59) holds. Now, by proceeding as in case of I2, we conclude that I3 → 0
as n → ∞. �

Appendix: Simplicial homology and Morse critical points

In this appendix, to help the reader to understand the connections to other random topology literature referenced in the
introduction, we shall quickly introduce some basic notions from simplicial homology. For more details, refer to [19,41].

We shall use the definitions and notations from Section 2.1. Most results in random topology assume that the coeffi-
cients are from a field F. For ease of exposition, we shall further assume that F = Z2 = {0,1}. Let K be a finite simplicial
complex. We assume k ≥ 0. A simplicial k-chain is a formal sum

∑
i ciσi with σi ∈ Sk(K) and ci ∈ F. The collection

of all simplicial k-chains is the free abelian group Ck and we set C−1 = {0}. Now we define the k-th boundary operator
∂k : Ck → Ck−1 by defining it on simplices as follows and then extending it linearly:

∂k

([v1, . . . , vk+1]
) :=

k+1∑
j=1

[v1, . . . , v̂j , . . . , vk+1],

where [v1, . . . , v̂j , . . . , vk+1] is to denote that the j th vertex has been deleted from the simplex. The key property of the
boundary operators is that ∂k∂k+1 = 0. We now define the cycle group as Zk := ker ∂k and boundary group Bk := im∂k+1
where ker and im denote kernel and image respectively. Finally, we define the kth homology group as Hk := Zk/Bk and it
is well-defined because of the property of boundary operators. Since our coefficients are from a field, all the above-defined
groups are actually vector spaces and hence we can define the kth Betti number as βk := rank(Hk) = rank(Zk)−rank(Bk).
Intuitively, rank(Zk) is the number of ‘linearly independent’ k-cycles and βk is the number of ‘linearly independent’ non-
trivial k-cycles or more geometrically, the number of non-trivial holes.

Given a locally finite-set of points X and r ≥ 0, we have defined the Čech complex C(X , r) in Definition 2.2. Further,
we also have the Euclidean subset ∪x∈XBx(r). The homology groups for the latter are defined via the so-called singular
homology which we shall not introduce here. However, from the important nerve theorem [6, Theorem 10.7], we have that
the homology groups of

⋃
x∈X Bx(r) and the corresponding Čech complex are isomorphic. Indeed, they are shown to be

homotpy equivalent to each other but for our purposes isomorphism of homology groups suffices. Since ∪x∈XBx(r) ⊂R
d ,

we have that Hk(C(X , r)) = 0 for k ≥ d . However, in our case, we consider X ⊂ [0,1]d and with the toroidal metric.
Hence

⋃
x∈X Bx(r) is actually embedded in R

d+1 and so Hk(C(X , r)) = 0 for k > d .
A very important tool in understanding topology of geometric complexes has been discrete Morse theory. Classically

Morse theory has dealt with critical points of smooth functions and in discrete Morse theory, this is extended to non-
smooth functions. The specific approach for Čech complexes is discussed in detail in [9] and we sketch the same here.
For a finite point process X , define the distance function dX :Rd →R+ as

dX (x) := min
X∈X

‖x − X‖, x ∈R
d .

Though this is non-smooth, the critical points are defined as follows. Index 0 critical points are the points where dX = 0
(local and global minima) which are nothing but points of X . We will need a little notation before defining higher index
critical points. The points xi,1 ≤ i ≤ k + 1 are said to lie in general position if the points do not lie in a (k − 1)-
dimensional affine space. In such a case, C({x1, . . . , xk+1}) denote the center of the unique k − 1 dimensional sphere,
R({x1, . . . , xk+1}) be the radius of this unique ball and convo({x1, . . . , xk+1}) denotes the interior of the convex hull
formed by the points of {x1, . . . , xk+1}. For higher indices 1 ≤ k ≤ d , a point c ∈R

d is said to be an index k critical point
if there exists a {x1, . . . , xk+1} ⊂ X which lie in general position such that C({x1, . . . , xk+1}) ∈ convo({x1, . . . , xk+1})
and X (BC({x1,...,xk+1})(R({x1, . . . , xk+1})) = 0. We shall also be interested in critical points c which are at most at a
distance r from X i.e., dX (c) ≤ r and denote the number of such critical points as Nk(X , r). One has the trivial Morse
inequality that βk(C(X , r)) ≤ Nk(X , r) and further if Nk(X , r) = Nk(X , s) and Nk+1(X , r) = Nk+1(X , s) for r > s,
then βk(C(X , r)) = βk(C(X , s)). These two facts are crucially used in understanding Betti numbers of random Čech
complexes via Morse critical points in [9,12,13].
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