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Abstract. We solve the Skorokhod embedding problem for a class of stochastic processes satisfying an inhomogeneous stochastic
differential equation (SDE) of the form dAt = μ(t,At )dt + σ(t,At )dWt . We provide sufficient conditions guaranteeing that for a
given probability measure ν on R there exists a bounded stopping time τ and a real a such that the solution (At ) of the SDE with
initial value a satisfies Aτ ∼ ν. We hereby distinguish the cases where (At ) is a solution of the SDE in a weak or strong sense. Our
construction of embedding stopping times is based on a solution of a fully coupled forward-backward SDE. We use the so-called
method of decoupling fields for verifying that the FBSDE has a unique solution. Finally, we sketch an algorithm for putting our
theoretical construction into practice and illustrate it with a numerical experiment.

Résumé. Nous résolvons le problème de plongement de Skorokhod pour une classe de processus stochastiques satisfaisant une équa-
tion différentielle stochastique (EDS) non homogène de la forme dAt = μ(t,At )dt + σ(t,At )dWt . Nous fournissons des conditions
suffisantes garantissant que, pour une mesure de probabilité ν sur R, il existe un temps d’arrêt borné τ et un réel a tels que la solution
(At ) de l’EDS avec condition initiale a satisfait Aτ ∼ ν. Nous distinguons ici les cas où (At ) est une solution de l’EDS dans un
sens faible ou fort. Notre construction des temps d’arrêt de plongement est basée sur une solution d’une EDS progressive rétrograde
totalement couplée. Nous utilisons la méthode des decoupling fields pour vérifier que l’EDSPR a une solution unique. Enfin, nous
esquissons un algorithme pour mettre en pratique notre construction théorique et l’illustrons par une simulation numérique.
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1. Introduction

Let ν be a probability measure on R, let μ,σ : [0,∞) × R → R be continuous in both arguments and let (At )t≥0 be a
stochastic process satisfying the inhomogeneous stochastic differential equation (SDE)

dAt = μ(t,At )dt + σ(t,At )dWt, (1.1)

where W is a Brownian motion. In this article we consider the Skorokhod embedding problem (SEP) for ν in (At ).
More precisely, we provide sufficient conditions on μ, σ and ν guaranteeing the existence of a stopping time τ and a
real number a such that the solution of the SDE (1.1), in a weak or strong sense, with initial condition A0 = a satisfies
Aτ ∼ ν.
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We solve the embedding problem by reducing it to the forward-backward stochastic differential equation (FBSDE)

X(1)
s = x(1) + Ws

X(2)
s = x(2) +

∫ s

0

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

X(3)
s = x(3) +

∫ s

0
μ
(
X(2)

r , Yr + X(3)
r

) Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

Ys = g
(
X

(1)
1

)− X
(3)
1 −

∫ 1

s

Zr dWr

(1.2)

for s ∈ [0,1] and (x(1), x(2), x(3)) ∈ R
3, where g is a real function chosen such that g(W1) ∼ ν. Notice that the FBSDE

(1.2) is fully coupled, i.e. the second and third forward equation depend on the solution components Y and Z of the
backward equation; and, vice versa, the backward equation depends on the forward components X(1) and X(3).

It is a longstanding challenge to find conditions guaranteeing that a fully coupled FBSDE possesses a solution. Suffi-
cient conditions are provided e.g. in [10,20,21,23,26,28] (see also references therein). The method of decoupling fields,
developed in [12] (see also the precursor articles [13,22] and [21]), is convenient for determining whether a solution
exists. A decoupling field describes the functional dependence of the backward part Y on the forward component X. The
decoupling field for the particular FBSDE (1.2) is, roughly speaking, a function u such that for all s ∈ [0,1]

u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= Ys. (1.3)

Under some nice conditions on the parameters of the FBSDE, there exists a maximal non-vanishing interval possessing a
solution triplet (X,Y,Z) and a decoupling field with nice regularity properties. The method of decoupling fields consists
in analyzing the dynamics of the decoupling field’s gradient in order to determine whether the FBSDE has a solution on
the whole time interval [0,1].

We use the method of decoupling fields to prove that, under some suitable conditions on μ, σ and g, the FBSDE (1.2)
has a unique solution on [0,1] for every initial value. By using the particular solution with initial value (x(1), x(2), x(3)) =
0, we then construct a weak solution of the SDE (1.1) and a stopping time τ embedding ν. Indeed, the second component
X(2) of the forward part in (1.2) can be interpreted as a random time change. One can show that the time change is
invertible, say with inverse clock γ (t). Moreover, there exists a filtration (Gt ) and a (Gt )-Brownian motion B such that,
first, X

(2)
1 is a (Gt )-stopping time and, second, under the inverse clock the solution component Y together with B solve

the SDE (1.1) in a weak sense. By the very construction the time changed process Yγ (·) at X
(2)
1 is equal to g(W1), and

hence X
(2)
1 is a stopping time embedding ν into a weak solution of (1.1).

In a further step we characterize the embedding stopping time X
(2)
1 in terms of a four dimensional Lipschitz SDE

driven by the constructed Brownian motion B . The SDE establishes a mapping from the paths of B to X
(2)
1 , and hence

allows to find stopping times embedding ν into strong solutions of the SDE (1.1).
A major idea of our approach for solving the SEP is to change the time of a stochastic process that has the wanted

distribution at the deterministic time 1. This idea goes back to Bass [4] who solves the SEP for Brownian motion. Indeed,
our approach generalizes Bass’s solution method. If μ is zero and σ constant equal to one, then the component X(3) of
(1.2) vanishes and the solution part Y of the backward equation coincides with the martingale of conditional expectations
of g(W1), which is the process used by Bass. Moreover, the time change X(2) coincides with the quadratic variation of Y ,
the time change used in [4].

The time change idea has been employed in several further articles. In [1] the solution of a quadratic BSDE is time
changed in order to solve the SEP for the Brownian motion with drift. The FBSDE (1.2) simplifies to the BSDE of [1]
if A is a Brownian motion with drift. [2] uses a time change argument to construct stopping times embedding a given
distribution into a stochastic process solving a homogeneous SDE. In [14] a fully coupled FBSDE is solved and then time
changed to obtain a stopping time embedding a distribution into a Gaussian process satisfying an SDE with deterministic
coefficients. [14] also relies on the method for decoupling fields for proving existence of a solution of the FBSDE.

There are more recent articles that are inspired by or related to Bass’ time-change approach for solving the SEP for the
Brownian motion. E.g. the article [5] proves optimality of the Bass solution, among all solutions of the SEP for Brownian
motion, for some minimization problems formulated in terms of associated measure-valued martingales. [11] solve the
SEP for a class of Levy processes via an analytic approach and by extending Bass’ time-change arguments. The process
of conditional expectations of g(X

(1)
1 ), used by Bass, is shown in [30] to minimize a martingale transport problem.



1608 S. Ankirchner et al.

To the best of our knowledge there do not exist any articles that consider the SEP for general inhomogeneous diffusions
of the type (1.1). There are various contributions to the SEP for homogeneous diffusions. The article [27] classifies the
distributions that can be embedded into homogeneous diffusions. The survey [25] collects results on the SEP, including
results for homogeneous diffusions. We remark that in the homogeneous case where the coefficients of the SDE (1.1) do
not depend on time, the FBSDE (1.2) can be decoupled. We explain this in Section 8 below.

The manuscript is organized as follows: In Section 2 we present our main results. In Section 3 we explain the decou-
pling fields technique. In Sections 4 and 5 we compute the dynamics of the decoupling field gradient process and derive
some estimates allowing to conclude the existence of an FBSDE (1.2) on the whole interval. In Sections 6 and 7 we
present the weak and strong solution for the SEP. Illustrative numerical results can be found in Section 8.

2. Main results

Our goal is to solve the Skorokhod embedding problem (SEP) for a stochastic process A solving the SDE (1.1). More
precisely, for a given probability measure ν on R we aim at finding an integrable stopping time τ and a real a such that
the solution A of (1.1), in a weak or strong sense, with initial condition A0 = a fulfills Aτ ∼ ν. Let Fν be the cumulative
distribution function of ν. We set

g := gν := F−1
ν ◦ �,

where � is the cumulative distribution function of the standard normal distribution and F−1
ν the right-continuous gener-

alized inverse of Fν . In the following, for a differentiable function f : Rn → R we denote by ∂xi
f its partial derivative

with respect to the ith coordinate.

Assumption 2.1. Let g, μ and σ be differentiable, σ ≥ ε > 0 and g′, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

as well as ∂aσ
σ

be bounded.
Furthermore, let

inf
(θ,x)∈R+×R

σ · ∂aμ − 2∂aσ · μ
σ 3

(θ, x) > − 1

2‖g′‖2∞
, (2.1)

and one of the following conditions be satisfied:

(i) ∂aσ ≡ 0,
(ii) ∂aσ ≥ 0, 2∂tσ · μ − σ · ∂tμ ≥ 0 or

(iii) ∂aσ ≤ 0, 2∂tσ · μ − σ · ∂tμ ≤ 0.

Our main results are the following theorems.

Theorem 2.2. Let Assumption 2.1 be satisfied. Then there exists a complete filtered probability space (
,F, (Gt )t≥0,P),
a (Gt )-Brownian motion (Bt ), a bounded (Gt )-stopping time τ and a real number a such that for the strong solution A

of the SDE (1.1) with driving Brownian motion B and initial condition A0 = a we have Aτ ∼ ν. Furthermore, τ can be
chosen such that

τ ≤ ε−2
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})−1

a.s. (2.2)

Remark 2.3. In the following we refer to the tuple ((Gt ), (Bt ), τ, a) as a weak solution of the SEP.

Theorem 2.4. Let Assumption 2.1 be satisfied and assume furthermore that σ , 1
g′ and the first, second and third deriva-

tives of g, μ and σ are bounded. Let B be a Brownian motion on a probability space (
,F,P ) and denote by (Ft ) the
augmented Brownian filtration. Then there exists a ∈R and a bounded (Ft )-stopping time τ satisfying (2.2) such that for
the strong solution A of the SDE (1.1) with driving Brownian motion B and initial condition A0 = a we have Aτ ∼ ν.

Remark 2.5. We refer to the pair (τ, a) as a strong solution of the SEP.

Remark 2.6. Note that the combination of Assumption 2.1 and σ being bounded already implies that μ is bounded as
well.
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Remark 2.7. We now comment on Assumption 2.1. In particular, we relate the assumption to some conditions appearing
in the literature that have been shown to be sufficient for a bounded solution of the SEP to exist.

(a) The assumption that g′ is bounded entails that there exists a compact set outside of which the tails of ν are dominated
by the tails of a normal distribution. If, as in Theorem 2.4, we additionally have that g′ is bounded from below by
a positive constant, then the tails of ν also dominate the tails of a normal distribution. For a precise statement, see
Lemma A.1 in the Appendix.

Furthermore, observe that the left hand side of Condition (2.1) is equal to ∂a(
μ

σ 2 ) and in the cases (ii) and (iii) the

term 2∂tσ · μ − σ · ∂tμ equals −σ 3∂t (
μ

σ 2 ); hence Assumption 2.1 imposes conditions on the growth of μ

σ 2 .
(b) Theorem 3.1 in [3] states that the boundedness of g′ is sufficient for the SEP for the BM, possibly with a constant

drift, to possess a bounded solution. Notice that for σ ≡ 1 and constant μ, Inequality (2.2) simplifies to

τ ≤ ∥∥g′∥∥2
∞,

and hence coincides with the estimate on the embedding stopping time provided in Theorem 3.1 in [3]. Moreover,
observe that if σ and μ are constant, then all the other properties of Assumption 2.1 are satisfied trivially.

(c) The ratio on the left-hand side of (2.1) is equal to ∂a(
μ

σ 2 ). Thus, (2.1) is somewhat weaker than requiring that μ

σ 2 is
non-decreasing in a. For some mean-reversion processes, e.g. the Ornstein–Uhlenbeck process, ∂a(

μ

σ 2 ) is unbounded
from below. A mean reversion effect can imply that at any time the tails of the diffusion A are lighter than the tails of
ν; in this case ν can not be embedded into A in bounded time.

A condition related to (2.1) appears in Theorem 6 of the article [2] studying the SEP in the special case where
μ and σ do only depend on x. The theorem states that if − 2μ

σ
+ σ ′ is non-increasing and g′

σ(g)
is bounded, then

there exists a bounded solution of the SEP. Note that if, in addition, σ is constant, the assumption of Theorem 6, [2],
coincides with our Assumption 2.1.

(d) In [14] the authors consider the special case when μ, σ do not depend on a, but on time only. To obtain weak solutions
for the SEP using the FBSDE approach the authors of that work assume that σ is bounded away from zero as well as

that g′ and δ′ are bounded, where δ′(r) = μ(H−1(r))

σ 2(H−1(r))
and where H−1 is the inverse of the mapping t �→ ∫ t

0 σ 2(s) ds.

This boundedness of δ′(r) is equivalent to our assumption that μ

σ 2 is bounded.

In order to derive Theorem 2.2 and 2.4 we consider the FBSDE (1.2). To this end let W be a Brownian motion
on a probability space (
,F,P) and denote by (Ft )t≥0 the associated augmented Brownian filtration. In Section 4
and 5 we show that under Assumption 2.1 there exists a unique solution of the FBSDE (1.2) with initial condition
(X

(1)
0 ,X

(2)
0 ,X

(3)
0 ) = (0,0,0). We then use this solution and a time transformation to prove Theorem 2.2 (see Section 6

and in particular Theorem 6.1). More precisely, we construct a filtration (Gt ), a (Gt )-Brownian motion (Bt ), a bounded
(Gt )-stopping time τ and find a real number a such that for the strong solution A of the SDE (1.1) with driving Brownian
motion B and initial condition A0 = a we have Aτ ∼ ν.

In order to find a strong solution of the SEP, we transform the FBSDE (1.2) via a time change into an SDE driven
by the new Brownian motion B . The new SDE allows to characterize the stopping time τ as a path functional of B , and
hence to prove Theorem 2.4 (see Section 7 and in particular Theorem 7.1 and Proposition 7.7).

In Section 8 we show that solving the system

Ws =
∫ s

0

σ(X
(2)
r , Yr + X

(3)
r )

Zr

dB
X

(2)
r

X(2)
s =

∫ s

0

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

X(3)
s =

∫ s

0
μ
(
X(2)

r , Yr + X(3)
r

) Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

Ys = g(W1) − X
(3)
1 −

∫ 1

s

Zr dWr

(2.3)

for all s ∈ [0,1] and setting τ := X
(2)
1 also yields a strong solution. Furthermore, we propose a scheme, based on the

system (2.3), to numerically simulate a solution of the SEP (see Section 8).
In the next section we recall some facts concerning decoupling fields and explain the method we use for proving the

existence of a unique solution for the FBSDE (1.2).
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3. The method of decoupling fields

In this section we briefly summarize the key results of the abstract theory of Markovian decoupling fields, we rely on
later in the paper. The presented theory is derived from the SLC theory (standing for Standard Lipschitz Conditions) of
Chapter 2 of [12] and is proven in [14].

We consider families (M,�,f ) of measurable functions, more precisely

M : [0, T ] ×R
n ×R

m ×R
m×d −→ R

n,

� : [0, T ] ×R
n ×R

m ×R
m×d −→R

n×d ,

f : [0, T ] ×R
n ×R

m ×R
m×d −→R

m,

where n,m,d ∈ N and T > 0. Let further (
,F,P) be a probability space with a d-dimensional Brownian motion
(Wt)t∈[0,T ] and denote by (Ft )t∈[0,T ] the augmented Brownian filtration.

For x ∈R
n and measurable ξ :Rn → R

m we consider the FBSDE

Xt = x +
∫ t

0
M(s,Xs,Ys,Zs)ds +

∫ t

0
�(s,Xs,Ys,Zs)dWs

Yt = ξ(XT ) +
∫ T

t

f (s,Xs,Ys,Zs)ds −
∫ T

t

Zs dWs.

The aim is to study existence and uniqueness properties of the above FBSDE. The basic idea is to find a “good” function
u such that Yt = u(t,Xt ), thereby establishing a pathwise relation between the processes X and Y .

Note that contrary to Chapter 2 of [12] we allow deterministic mappings M , �, f and ξ : Rn → R
m only. In this,

so-called Markovian, case we can somewhat relax the Lipschitz continuity assumptions of Chapter 2 of [12] and still
obtain local existence together with uniqueness. What makes the Markovian case so special is the property

“Zs = ux(s,Xs) · �(s,Xs,Ys,Zs)”

which comes from the fact that u will also be deterministic. This property allows us to bound Z by a constant if we
assume that � and ux are bounded. This boundedness of Z in the Markovian case motivates the following definition,
which allows to develop a theory for non-Lipschitz problems.

For a stochastic process A : 
 × I → R
N , where I is an interval in [0, T ] and N ∈N, we introduce the norm

‖A‖∞,I := ess sup
(s,ω)∈I×


∣∣As(ω)
∣∣,

with regard to the product measure λ × P and for a function f : I ×R
N → R

M with N,M ∈N we define

‖f ‖∞,I := sup
s∈I

sup
x∈RN

∣∣f (s, ·)∣∣.
We simply write ‖A‖∞,t1 and ‖f ‖∞,t1 if I = [t1, T ] and ‖A‖∞ and ‖f ‖∞ if I = [0, T ].

Definition 3.1. Let ξ : Rn →R
m be measurable and let t ∈ [0, T ]. We call a function u : [t, T ]×R

n → R
m with u(T , ·) =

ξ a Markovian decoupling field for (ξ, (M,�,f )) on [t, T ] if for all t1, t2 ∈ [t, T ] with t1 ≤ t2 and any Ft1 -measurable
Xt1 : 
 →R

n there exist progressive processes X, Y , Z on [t1, t2] such that

• Xs = Xt1 + ∫ s

t1
M(r,Xr,Yr ,Zr)dr + ∫ s

t1
�(r,Xr,Yr ,Zr)dWr a.s.,

• Ys = Yt2 − ∫ t2
s

f (r,Xr,Yr ,Zr)dr − ∫ t2
s

Zr dWr a.s.,
• Ys = u(s,Xs) a.s.

for all s ∈ [t1, t2] and such that ‖Z‖∞,[t1,t2] < ∞ holds. In particular, we want all integrals to be well-defined and X, Y ,
Z to have values in R

n, Rm and R
m×d respectively.

Furthermore, we call a function u : (t, T ] ×R
n → R

m a Markovian decoupling field for (ξ, (M,�,f )) on (t, T ] if u

restricted to [t ′, T ] is a Markovian decoupling field for all t ′ ∈ (t, T ].
We refer to the stated property that Ys = u(s,Xs) a.s. as the decoupling condition.
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In the following we work with weak derivatives. This allows us to obtain variational differentiability (i.e. w.r.t. the
initial value x ∈ R

n) of the processes X, Y , Z for Lipschitz (or locally Lipschitz) continuous M , �, f , ξ . We start by
fixing notation and giving some definitions:

If x ∈ R
m×d or x ∈ R

n×d , the expression |x| denotes the Frobenius norm of the linear operator x, i.e. the square root
of the sum of the squares of its matrix coefficients.

We denote by Sn−1 := {x ∈ R
n | |x| = 1} the (n − 1)-dimensional sphere. If x ∈R

n×n or x ∈ R
m×n or x ∈ R

m×d×n or
x ∈ R

n×d×n, we define |x|v := |x · v| for all v ∈ Sn−1, where · is the application of the linear operator x to the vector v

such that x · v is in R
n or Rm or Rm×d or Rn×d respectively. We refer to supv∈Sn−1 |x|v as the operator norm of x.

For a measurable map ξ : Rn →R
m we define

Lξ := inf
{
L ≥ 0 | ∣∣ξ(x) − ξ

(
x′)∣∣≤ L

∣∣x − x′∣∣ for all x, x′ ∈R
n
}
,

where inf∅ := ∞. We also set Lξ := ∞ if ξ is not measurable. Lξ < ∞ implies that ξ is Lipschitz continuous. For a
map u : [t, T ] ×R

n → R
m we define Lu,x := sups∈[t,T ] Lu(s,·).

Now, consider a mapping X : M × � → R, where (M,A, ρ) is some measure space with finite measure ρ and
� ⊆ R

N is open, N ∈ N. We say that X is weakly differentiable w.r.t. the parameter λ ∈ �, if for almost all ω ∈ M the
mapping X(ω, ·) : � → R is weakly differentiable. This means that there exists a mapping ∂λX : M× � → R

1×N such
that ∫

�

ϕ(λ)∂λX(ω,λ)dλ = −
∫

�

X(ω,λ)∂λϕ(λ)dλ, (3.1)

for any real valued test function ϕ ∈ C∞
c (�), for almost all ω ∈ M. In particular, X(ω, ·) and the weak derivative

∂λX(ω, ·) have to be locally integrable for a.a. ω. This of course includes measurability w.r.t. λ for almost every fixed ω.
We remark that weak differentiability for vector valued mappings is defined component-wise. We refer to Section 2.1.2

of [12] for more on weak derivatives.
Note that if Lu,x < ∞ is satisfied and, therefore, u is Lipschitz continuous in x then u is weakly differentiable in x

(see e.g. Lemma A.3.1. of [12]) and even classically differentiable almost everywhere. If not otherwise specified we refer
to ∂xu : [t, T ] ×R

n → R
m×n as the particular version of the weak derivative which is identical to the classical derivative

in all points for which a classical derivative exists and is zero in all other points. See for instance the statement and proof
of Lemma A.3.1. of [12] for details.

We denote by L�,z the Lipschitz constant of � w.r.t. the dependence on the last component z (and w.r.t. the Frobenius
norms on R

m×d and R
n×d ), by which we mean the minimum of all Lipschitz constants or ∞ in case � is not Lipschitz

continuous in z. In case L�,z < ∞ we denote by L−1
�,z = 1

L�,z
the value 1

L�,z
if L�,z > 0 and ∞ otherwise.

We write Et,∞[X] for ess supE[X|Ft ] in the following definition:

Definition 3.2. Let u : [t, T ] ×R
n → R

m be a Markovian decoupling field to (ξ, (M,�,f )). We call u weakly regular,
if Lu,x < L−1

�,z and sups∈[t,T ] |u(s,0)| < ∞.
Furthermore, we call a weakly regular u strongly regular if for all fixed t1, t2 ∈ [t, T ], t1 ≤ t2, the processes X,

Y , Z arising in the defining property of a Markovian decoupling field are a.e. unique for each constant initial value
Xt1 = x ∈R

n and satisfy

sup
s∈[t1,t2]

Et1,∞
[|Xs |2

]+ sup
s∈[t1,t2]

Et1,∞
[|Ys |2

]+Et1,∞
[∫ t2

t1

|Zs |2 ds

]
< ∞ ∀x ∈R

n. (3.2)

In addition X, Y , Z must be measurable as functions of (x, s,ω) and even weakly differentiable w.r.t. x ∈ R
n such that

for every s ∈ [t1, t2] the mappings Xs and Ys are measurable functions of (x,ω) and even weakly differentiable w.r.t. x

such that

ess sup
x∈Rn

sup
v∈Sn−1

sup
s∈[t1,t2]

Et1,∞
[∣∣∣∣ ∂

∂x
Xs

∣∣∣∣2
v

]
< ∞,

ess sup
x∈Rn

sup
v∈Sn−1

sup
s∈[t1,t2]

Et1,∞
[∣∣∣∣ ∂

∂x
Ys

∣∣∣∣2
v

]
< ∞,

ess sup
x∈Rn

sup
v∈Sn−1

Et1,∞
[∫ t2

t1

∣∣∣∣ ∂

∂x
Zs

∣∣∣∣2
v

ds

]
< ∞,

(3.3)

where Sn−1 is the (n − 1)-dimensional sphere.
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We say that a Markovian decoupling field u on [t, T ] is strongly regular on a subinterval [t1, t2] ⊆ [t, T ] if u restricted
to [t1, t2] is a strongly regular Markovian decoupling field for (u(t2, ·), (M,�,f )).

Furthermore, we say that a Markovian decoupling field u : (t, T ] ×R
n →R

m

• is weakly regular if u restricted to [t ′, T ] is weakly regular for all t ′ ∈ (t, T ],
• is strongly regular if u restricted to [t ′, T ] is strongly regular for all t ′ ∈ (t, T ].

For the following class of problems an existence and uniqueness theory is developed:

Definition 3.3. We say that ξ , M , �, f satisfy modified local Lipschitz conditions (MLLC) if

• M , �, f are
– Lipschitz continuous in x, y, z on sets of the form [0, T ] ×R

n ×R
m × B , where B ⊂R

m×d is an arbitrary bounded
set

– and such that ‖M(·,0,0,0)‖∞,‖f (·,0,0,0)‖∞,‖�(·, ·, ·,0)‖∞,L�,z < ∞,
• ξ :Rn → R

m satisfies Lξ < L−1
�,z.

The following natural concept introduces a type of Markovian decoupling field for non-Lipschitz problems (non-
Lipschitz in z), to which nevertheless standard Lipschitz results can be applied.

Definition 3.4. Let u be a Markovian decoupling field for (ξ, (M,�,f )). We call u controlled in z if there exists a
constant C > 0 such that for all t1, t2 ∈ [t, T ], t1 ≤ t2, and all initial values Xt1 , the corresponding processes X, Y , Z from
the definition of a Markovian decoupling field satisfy |Zs(ω)| ≤ C, for almost all (s,ω) ∈ [t, T ] × 
. If for a fixed triple
(t1, t2,Xt1) there are different choices for X, Y , Z, then all of them are supposed to satisfy the above control.

We say that a Markovian decoupling field u on [t, T ] is controlled in z on a subinterval [t1, t2] ⊆ [t, T ] if u restricted
to [t1, t2] is a Markovian decoupling field for (u(t2, ·), (M,�,f )) that is controlled in z.

Furthermore, we call a Markovian decoupling field on an interval (s, T ] controlled in z if it is controlled in z on every
compact subinterval [t, T ] ⊆ (s, T ] (with C possibly depending on t ).

Definition 3.5. Let IM
max ⊆ [0, T ] for (ξ, (M,�,f )) be the union of all intervals [t, T ] ⊆ [0, T ] such that there exists a

weakly regular Markovian decoupling field u on [t, T ].

Theorem 3.6 (Existence and uniqueness on a maximal interval, Theorem 3.21 in [14]). Let M , �, f , ξ satisfy MLLC.
Then there exists a unique weakly regular Markovian decoupling field u on IM

max. This u is also controlled in z, strongly
regular and continuous.

Furthermore, either IM
max = [0, T ] or IM

max = (tMmin, T ], where 0 ≤ tMmin < T .

Existence of weakly regular decoupling fields implies existence and uniqueness of classical solutions:

Lemma 3.7 (Theorem 3.18 in [14]). Let M , �, f , ξ satisfy MLLC and assume that there exists a weakly regular
Markovian decoupling field u on some interval [t, T ].

Then for any initial condition Xt = x ∈R
n there is a unique solution (X,Y,Z) of the FBSDE on [t, T ] such that

sup
s∈[t,T ]

E
[|Xs |2

]+ sup
s∈[t,T ]

E
[|Ys |2

]+ ‖Z‖∞,t < ∞.

The following result basically states that for a singularity tMmin to occur ∂xu has to “explode” at tMmin. It is the key to
showing well-posedness for particular problems via contradiction.

Lemma 3.8 (Lemma 3.22 in [14]). Let M , �, f , ξ satisfy MLLC. If IM
max = (tMmin, T ], then

lim
t↓tMmin

Lu(t,·) = L−1
�,z,

where u is the unique weakly regular Markovian decoupling field from Theorem 3.6.

In the following sections we will use the aforementioned theoretical results to study the solvability and regularity of
system (1.2). This FBSDE naturally implies parameter functions M , �, f and ξ such that n = 3, d = m = 1 and T = 1.
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Note that in our case f vanishes, while � is, in some sense, degenerate. We have L�,z = 0 and L−1
�,z = ∞. Our aim

is to rigorously conduct the following steps and arguments: Considering the maximal interval IM
max associated with our

problem, we employ Theorem 3.6 to obtain a decoupling field u on an arbitrary non-empty interval [t, T ] ⊆ IM
max such that

u is Lipschitz continuous in x with a Lipschitz constant possibly depending on t . By studying the object ∂xu(s,Xs) we
derive a bound for the Lipschitz constant of u which is independent of t . The final step is to use Lemma 3.8 to conclude
that the case IM

max = (tMmin, T ] cannot be fulfilled and hence, by Theorem 3.6, IM
max = [0, T ] must hold, which means that

our FBSDE has a solution.

4. Gradient dynamics of the decoupling field

In this section we investigate the dynamics of the spatial gradient of the decoupling field for the FBSDE (1.2). Based on
the findings of this section we will derive, in the subsequent section, a uniform bound for the Lipschitz constant of the
decoupling field.

Let g, μ and σ be differentiable, σ ≥ ε > 0 and g′, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

as well as ∂aσ
σ

be bounded.
It is straightforward to verify that the associated FBSDE satisfies (MLLC) such that the theory of the previous section

is applicable. By Theorem 3.6 the maximal interval IM
max contains an interval [t,1] with t < 1. Let x ∈ R

3 and denote

by X = (X(1),X(2),X(3))�,Z,Y the solution of the FBSDE (1.2) on [t,1] with initial condition (X
(1)
t ,X

(2)
t ,X

(3)
t ) = x.

Moreover, denote by u the decoupling field associated to the FBSDE (1.2). From Theorem 3.6 we also know that the
partial derivatives ∂x1u, ∂x2u, ∂x3u and the process Z are bounded on [t,1].

For shorter notation we define for all s ∈ [t,1]

σs := σ
(
X(2)

s , Ys + X(3)
s

)
, μs := μ

(
X(2)

s , Ys + X(3)
s

)
,

σt,s := ∂tσ
(
X(2)

s , Ys + X(3)
s

)
, σa,s := ∂aσ

(
X(2)

s , Ys + X(3)
s

)
,

μt,s := ∂tμ
(
X(2)

s , Ys + X(3)
s

)
, μa,s := ∂aμ

(
X(2)

s , Ys + X(3)
s

)
and

u(1)
s := ∂x1u

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

u(2)
s := ∂x2u

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

u(3)
s := ∂x3u

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
.

In the following we refer to u(1), u(2), u(3) as the gradient processes associated to the initial value x at time t . The
next result describes the dynamics of the gradient processes. For its derivation we first argue that the processes are Itô
processes and then match the coefficients appropriately. In contrast to the approach of [14], we do not explicitly compute
the dynamics of the inverse of the Jacobi matrix of X.

Lemma 4.1. Let g, μ and σ be differentiable, σ ≥ ε > 0 and g′, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

as well as ∂aσ
σ

be bounded. Then the

gradient processes u(1), u(2) and u(3) have the dynamics

u(1)
s = g′(X(1)

1

)+ ∫ 1

s

u(1)
r

Z2
r

σ 2
r

(
u(3)

r

(
μa,r − 2μr

σa,r

σr

)
− 2u(2)

r

σa,r

σr

)
dr −

∫ 1

s

Z̃(1)
r dW̃r

u(2)
s =

∫ 1

s

u(3)
r

Z2
r

σ 2
r

(
u(2)

r μa,r + μt,r

)− 2
Z2

r

σ 2
r

(
σt,r

σr

+ u(2)
r

σa,r

σr

)(
u(2)

r + u(3)
r μr

)
dr −

∫ 1

s

Z̃(2)
r dW̃r (4.1)

u(3)
s = −1 +

∫ 1

s

(
u(3)

r + 1
)Z2

r

σ 2
r

(
u(3)

r μa,s − 2
σa,r

σr

(
u(2)

r + u(3)
r μr

))
dr −

∫ 1

s

Z̃(3)
r dW̃r ,

for all s ∈ [t,1], where Z̃(1), Z̃(2), Z̃(3) are locally square integrable processes. Moreover, the process

W̃s := Ws −
∫ s

t

2
Zr

σ 2
r

(
u(2)

r + u(3)
r μr

)
dr
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is a Brownian motion under an equivalent probability measure, and the Jacobi matrix

∂xXs :=
⎛⎜⎝∂x1X

(1)
s ∂x2X

(1)
s ∂x3X

(1)
s

∂x1X
(2)
s ∂x2X

(2)
s ∂x3X

(2)
s

∂x1X
(3)
s ∂x2X

(3)
s ∂x3X

(3)
s

⎞⎟⎠
is invertible for every s ∈ [t,1] almost surely.

Proof. For x′ = (x′
1, x

′
2, x

′
3)

� ∈R
3, y, z ∈R we define

M
(
x′, y, z

) :=

⎛⎜⎜⎝
0
z2

σ 2(x′
2,y+x′

3)

μ(x′
2, y + x′

3)
z2

σ 2(x′
2,y+x′

3)

⎞⎟⎟⎠ , � :=
⎛⎝1

0
0

⎞⎠
and

ξ
(
x′) := g

(
x′

1

)− x′
3.

Then

Xs = x +
∫ s

t

M(Xr,Yr ,Zr)dr +
∫ s

t

� dWr

and

Ys = ξ(X1) −
∫ 1

s

Zr dWr.

Now, define a stopping time τ via

τ := inf
{
s ∈ [t,1]|det(∂xXs) ≤ 0

}∧ 1.

Notice that τ > t since det(∂xXt ) = 1. For all s ∈ [t, τ ) we have that ∂xXs is invertible with (∂xXs)
−1 being an Itô

process. By setting

Us := ∂xu(s,Xs) = (∂x1u, ∂x2u, ∂x3u
)
(s,Xs)

which is the gradient process we get

∂xYs = Us · ∂xXs

for all s ∈ [t, τ ) by the chain rule in Lemma A.3.1 in [12]. Hence, Us = ∂xYs · (∂xXs)
−1 is an Itô process and thus there

exist (bs) and (Z̃s) such that

Us = U1 +
∫ τ

s

br dr −
∫ τ

s

Z̃r dWr

for all s ∈ [t, τ ).
For the following we also introduce for an Itô process Is = I0 + ∫ s

0 ir dr + ∫ s

0 jr dWr the two operators Dt and Dw

defined via (Dt I )s := is and (Dw I)s := js . Using this notation we have

∂xZs = Dw ∂xYs

= Dw(Us · ∂xXs)

= Us · Dw ∂xXs + Dw Us · ∂xXs.

Since Dw ∂xXs = 0, we further obtain ∂xZs = Z̃s · ∂xXs and thus we get

Z̃s = ∂xZs · (∂xXs)
−1
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for all s ∈ [t, τ ). Also,

∂x

[
M(Xs,Ys,Zs)

]= ∂xM(Xs,Ys,Zs)∂xXs + ∂yM(Xs,Ys,Zs)∂xYs + ∂zM(Xs,Ys,Zs)∂xZs

= ∂xM(Xs,Ys,Zs)∂xXs + ∂yM(Xs,Ys,Zs)Us∂xXs + ∂zM(Xs,Ys,Zs)Z̃s∂xXs

and

0 = Dt ∂xYs = Dt (Us∂xXs) = −bs · ∂xXs + Us · ∂x

[
M(Xs,Ys,Zs)

]
yielding

bs = Us

[
∂xM(Xs,Ys,Zs) + ∂yM(Xs,Ys,Zs)Us + ∂zM(Xs,Ys,Zs)Z̃s

]
for all s ∈ [t, τ ) with

∂xM(x, y, z) =

⎛⎜⎜⎝
0 0 0

0 −2z2 ∂t σ (x2,y+x3)

σ 3(x2,y+x3)

∂tμ(x2,y+x3)·z2

σ 2(x2,y+x3)
− 2z2 ∂t σ (x2,y+x3)

σ (x2,y+x3)
μ(x2,y+x3)

σ 2(x2,y+x3)

0 −2z2 ∂aσ (x2,y+x3)

σ 3(x2,y+x3)

∂aμ(x2,y+x3)·z2

σ 2(x2,y+x3)
− 2z2 ∂aσ (x2,y+x3)

σ (x2,y+x3)
μ(x2,y+x3)

σ 2(x2,y+x3)

⎞⎟⎟⎠
T

,

∂yM(x, y, z) =
⎛⎜⎝ 0

−2z2 ∂aσ (x2,y+x3)

σ 3(x2,y+x3)
∂aμ(x2,y+x3)·z2

σ 2(x2,y+x3)
− 2z2 ∂aσ (x2,y+x3)

σ (x2,y+x3)
μ(x2,y+x3)

σ 2(x2,y+x3)

⎞⎟⎠ ,

∂zM(x, y, z) =
⎛⎜⎝ 0

2z

σ 2(x2,y+x3)

2z
μ(x2,y+x3)

σ 2(x2,y+x3)

⎞⎟⎠
being the derivatives of M .

Next we turn our attention to the question whether ∂xX is invertible. We use that on the interval [t,1] the pro-
cesses U and Z as well as the functions 1

σ
, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

and ∂aσ
σ

are bounded, giving that ∂xM(Xr,Yr ,Zr),
∂yM(Xr,Yr ,Zr)Ur and ∂zM(Xr,Yr ,Zr) are bounded, too. Thus, there exist some bounded processes α and β depending

on U , X, Y and Z, such that for every stopping time τ̃ < τ , i = 1,2,3 and s ∈ [t,1] the process u
(i)

·∧τ̃
has dynamics

u
(i)

s∧τ̃
= u

(i)
t +

∫ s

t

(
α(i)

r + β(i)
r · Z̃(i)

r

)
1{r<τ̃ } dr +

∫ s

t

Z̃(i)
r 1{r<τ̃ } dWr.

Standard results on linear BSDEs (see e.g. Theorem A.1.11 in [12]) yield, for every stopping time τ̃ < τ and i = 1,2,3,
that Z̃(i) has a bounded BMO(P)-norm which is independent of τ̃ . Hence,

E

[∫ τ

t

|Z̃r |2 dr

]
< ∞. (4.2)

Now observe that

∂xXs = Id+
∫ s

t

∂x

[
M(Xr,Yr ,Zr)

]
dr

= Id+
∫ s

t

[
∂xM(Xr,Yr ,Zr) + ∂yM(Xr,Yr ,Zr)Ur + ∂zM(Xr,Yr ,Zr)Z̃r

]
∂xXr dr

implying that

∂xXs = exp

(∫ s

t

[
∂xM(Xr,Yr ,Zr) + ∂yM(Xr,Yr ,Zr)Ur + ∂zM(Xr,Yr ,Zr)Z̃r

]
dr

)
.

Together with Inequality (4.2) this implies that ∂xXs is invertible for all s ∈ [t, τ ], which again yields that τ = 1 and ∂xX

is invertible on the whole interval [t,1].
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What remains to do is to calculate the explicit dynamics of U . Observe that

bs = Us

[
∂xM(Xs,Ys,Zs) + ∂yM(Xs,Ys,Zs)Us + ∂zM(Xs,Ys,Zs)Z̃s

]
= (u(1)

s , u(2)
s , u(3)

s

)⎡⎢⎢⎣
⎛⎜⎜⎝

0 0 0

0 −2Z2
s

σ 2
s

σt,s

σs
−2Z2

s

σ 2
s

σa,s

σs

0 μt,s
Z2

s

σ 2
s

− 2μs
Z2

s

σ 2
s

σt,s

σs
μa,s

Z2
s

σ 2
s

− 2μs
Z2

s

σ 2
s

σa,s

σs

⎞⎟⎟⎠

+

⎛⎜⎜⎝
0

−2Z2
s

σ 2
s

σa,s

σs

μa,s
Z2

s

σ 2
s

− 2μs
Z2

s

σ 2
s

σa,s

σs

⎞⎟⎟⎠(u(1)
s , u(2)

s , u(3)
s

)+
⎛⎜⎝ 0

2Zs

σ 2
s

2Zs

σ 2
s

μs

⎞⎟⎠(Z̃(1)
s , Z̃(2)

s , Z̃(3)
s

)⎤⎥⎥⎦

=

⎛⎜⎜⎜⎝
−2u

(1)
s u

(2)
s

Z2
s

σ 2
s

σa,s

σs
+ u

(1)
s u

(3)
s

Z2
s

σ 2
s
(μa,s − 2μs

σa,s

σs
)

−2u
(2)
s

Z2
s

σ 2
s

σt,s

σs
+ u

(3)
s

Z2
s

σ 2
s
(μt,s − 2μs

σt,s

σs
) − 2(u

(2)
s )2 Z2

s

σ 2
s

σa,s

σs
+ u

(2)
s u

(3)
s

Z2
s

σ 2
s
(μa,s − 2μs

σa,s

σs
)

−2u
(2)
s

Z2
s

σ 2
s

σa,s

σs
+ u

(3)
s

Z2
s

σ 2
s
(μa,s − 2μs

σa,s

σs
) − 2u

(2)
s u

(3)
s

Z2
s

σ 2
s

σa,s

σs
+ (u

(3)
s )2 Z2

s

σ 2
s
(μa,s − 2μs

σa,s

σs
)

⎞⎟⎟⎟⎠
T

+

⎛⎜⎜⎝
2Zs

σ 2
s

(u
(2)
s + u

(3)
s μs)Z̃

(1)
s

2Zs

σ 2
s

(u
(2)
s + u

(3)
s μs)Z̃

(2)
s

2Zs

σ 2
s

(u
(2)
s + u

(3)
s μs)Z̃

(3)
s

⎞⎟⎟⎠
T

Using that Y1 = ξ(X1) and hence U1 = ∇ξ(X1) we obtain for the gradient processes the dynamics

u(1)
s = g′(X(1)

1

)+ ∫ 1

s

u(1)
r

Z2
r

σ 2
r

(
u(3)

r

(
μa,r − 2μr

σa,r

σr

)
− 2u(2)

r

σa,r

σr

)
dr −

∫ 1

s

Z̃(1)
r dW̃r

u(2)
s =

∫ 1

s

u(3)
r

Z2
r

σ 2
r

(
u(2)

r μa,r + μt,r

)− 2
Z2

r

σ 2
r

(
σt,r

σr

+ u(2)
r

σa,r

σr

)(
u(2)

r + u(3)
r μr

)
dr −

∫ 1

s

Z̃(2)
r dW̃r

u(3)
s = −1 +

∫ 1

s

(
u(3)

r + 1
)Z2

r

σ 2
r

(
u(3)

r μa,s − 2
σa,r

σr

(
u(2)

r + u(3)
r μr

))
dr −

∫ 1

s

Z̃(3)
r dW̃r ,

where W̃s := Ws − ∫ s

t
2Zr

σ 2
r

(u
(2)
r + u

(3)
r μr)dr for all s ∈ [t,1]. Since furthermore 2Zs

σ 2
r

(u
(2)
s + u

(3)
s μs) is bounded for all

s ∈ [t,1], where t ∈ IM
max, we get by Girsanov’s theorem that W̃ is a Brownian motion for an equivalent probability

measure. �

5. Bounding the gradient of the decoupling field

In this chapter we use the notations and definitions of Chapter 4.
In the following we derive bounds for the gradient processes that do not depend on the starting time t ∈ IM

max and initial
value x ∈R

3. In particular, we obtain global estimates for the space derivatives ∂xi
u, i ∈ {1,2,3}, of the decoupling field

u. By appealing to Lemma 3.8, we then conclude that FBSDE (1.2) has a solution on the whole interval [0,1].

Lemma 5.1. Assume that g, μ and σ are differentiable, σ ≥ ε > 0 and g′, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

, ∂aσ
σ

are bounded. Let u be

the unique decoupling field to FBSDE (1.2) on IM
max.

Furthermore, let t ∈ IM
max, x ∈ R

3 and (X(1),X(2),X(3), Y,Z) be the solution of FBSDE (1.2) with initial condition x

at time t , and let u(1), u(2), u(3) be the associated gradient processes. Then for s ∈ [t,1]

|Zs | ≤ sup
r∈(s,1]

sup
x∈R3

∣∣∂x1u(r, x)
∣∣ a.s.

and in particular ‖Z‖∞,t ≤ ‖∂x1u‖∞,t .
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Furthermore, if the weak derivative ∂x1u has a version whose restriction to the set [t,1) ×R
3 is continuous in the first

two components t and x1, and ∂x1u is bounded, then

Zs(ω) = ∂x1u
(
s,X(1)

s (ω),X(2)
s (ω),X(3)

s (ω)
)= u(1)

s (ω)

for almost all (s,ω) ∈ [t,1] × 
.

Proof. Observe that with Itô’s formula we get for h > 0 and s, s + h ∈ [t,1]
1

h
E
[
Ys+h(Ws+h − Ws)|Fs

]= 1

h
E

[∫ s+h

s

Yr dWr +
∫ s+h

s

(Wr − Ws)Zr dWr +
∫ s+h

s

Zr dr

∣∣∣Fs

]
= 1

h
E

[∫ s+h

s

Zr dr

∣∣∣Fs

]
→ Zs a.s. for h → 0.

On the other hand we get, using the decoupling condition Yr = u(r,X
(1)
r ,X

(2)
r ,X

(3)
r ), that

Ys+h(Ws+h − Ws)

= u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)
(Ws+h − Ws)

= u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)

+ (u(s + h,X
(1)
s+h,X

(2)
s+h,X

(3)
s

)− u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

))
(Ws+h − Ws)

+ (u(s + h,X
(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

))
(Ws+h − Ws). (5.1)

At first let us take a look at the third summand on the right hand side of (5.1). Since u is Lipschitz continuous in
its fourth argument on [t,1] with some constant Lt

u,x3
that might depend on t and since furthermore X

(3)
s+h = X

(3)
s +∫ s+h

s
μr

Z2
r

σ 2(X
(2)
r ,Yr+X

(3)
r )

dr we can estimate the absolute value of the third summand against

1

h

∣∣E[(u(s + h,X
(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

))
(Ws+h − Ws)|Fs

]∣∣
≤ 1

h
E
[∣∣u(s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

)∣∣|Ws+h − Ws ||Fs

]
≤ 1

h
E

[
Lt

u,x3

∣∣∣∣∫ s+h

s

μr

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

∣∣∣∣|Ws+h − Ws |
∣∣∣Fs

]

≤ 1

h
Lt

u,x3
h

∥∥∥∥ μ

σ 2

∥∥∥∥∞
‖Z‖2∞,tE

[|Ws+h − Ws ||Fs

]
,

which clearly goes to 0 as h → 0 because ‖ μ

σ 2 ‖∞ and ‖Z‖∞,t are finite on [t,1].
With analogous arguments we also get that

1

h

∣∣E[(u(s + h,X
(1)
s+h,X

(2)
s+h,X

(3)
s

)− u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

))
(Ws+h − Ws)|Fs

]∣∣
≤ 1

h
E
[∣∣u(s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

)− u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)∣∣|Ws+h − Ws ||Fs

]
≤ 1

h
E

[
Lt

u,x2

∣∣∣∣∫ s+h

s

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

∣∣∣∣|Ws+h − Ws |
∣∣∣Fs

]
≤ 1

h
Lt

u,x2
h‖Z‖2∞,t ε

−2
E
[|Ws+h − Ws ||Fs

]
→ 0 a.s. for h → 0,

where Lt
u,x2

is the Lipschitz constant of u in the third argument on the time interval [t,1].
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Now consider the remaining first term on the right hand side of Equation (5.1). For this remember

• X
(1)
s , X

(2)
s , X

(3)
s are Fs measurable,

• X
(1)
s+h = X

(1)
s + (Ws+h − Ws),

• Ws+h − Ws is independent of Fs ,
• u is deterministic, i.e. is a function of (s, x(1), x(2), x(3)) ∈ [t,1] ×R×R×R only.

Using integration by parts these properties imply

E
[
u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]
=
∫
R

u
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

)
z
√

h
1√
2π

e− 1
2 z2

dz

=
∫
R

∂x1u
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

)
h

1√
2π

e− 1
2 z2

dz.

Hence∣∣∣∣1hE[u(s + h,X
(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]∣∣∣∣
=
∣∣∣∣∫

R

∂x1u
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

) 1√
2π

e− 1
2 z2

dz

∣∣∣∣
≤
∫
R

sup
x∈R3

∣∣∂x1u(s + h,x)
∣∣ 1√

2π
e− 1

2 z2
dz = sup

x∈R3

∣∣∂x1u(s + h,x)
∣∣.

Putting everything together we get

|Zs | = lim
h↘0

∣∣∣∣1hE
[∫ s+h

s

Zr dr

∣∣∣Fs

]∣∣∣∣
= lim

h↘0

∣∣∣∣1hE[Ys+h(Ws+h − Ws)|Fs

]∣∣∣∣
= lim

h↘0

∣∣∣∣1hE[u(s + h,X
(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]
+ 1

h
E
[(

u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

)− u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

))
(Ws+h − Ws)|Fs

]
+ 1

h
E
[(

u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

))
(Ws+h − Ws)|Fs

]∣∣∣∣
≤ lim sup

h↘0
sup
x∈R3

∣∣∂x1u(s + h,x)
∣∣+ |0| + |0| ≤ sup

r∈(s,1]
sup
x∈R3

∣∣∂x1u(r, x)
∣∣.

If we have that ∂x1u is continuous in the first two arguments, we can derive, by using dominated convergence since
u(1) is bounded on [t,1], the more precise result

Zs = lim
h↘0

1

h
E
[
u
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]
=
∫
R

lim
h↘0

∂x1u
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

) 1√
2π

e− 1
2 z2

dz

= ∂x1u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)
almost surely. �

To obtain estimates for the gradient processes we use the following result.
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Lemma 5.2 (See [24], p. 362). Let the function f be continuous and non-negative on J = [α,β], a, b ≥ 0, and n be a
positive integer (n ≥ 2). If

f (t) ≤ a + b

∫ t

α

f n(s)ds, t ∈ J,

then

f (t) ≤ a

[
1 − (n − 1)

∫ t

α

an−1b ds

] 1
1−n

, α ≤ t ≤ βn,

where βn = sup{t ∈ J : (n − 1)
∫ t

α
an−1b ds < 1}.

Lemma 5.3. Assume that g, μ and σ are differentiable, σ ≥ ε > 0 and g′, μ

σ 2 , ∂tμ

σ 2 , ∂aμ

σ 2 , ∂t σ
σ

, ∂aσ
σ

are bounded. Let u be

the unique decoupling field of the FBSDE (1.2). Then for any t ∈ IM
max and initial condition (X

(1)
t ,X

(2)
t ,X

(3)
t ) = x ∈ R

3

the associated gradient process u(3) satisfies for all s ∈ [t,1]

u(3)
s = −1.

If we additionally assume that σa,s · u(2)
s ≥ 0 a.s. for all s ∈ [t,1] and

inf
(θ,x)∈R+×R

σ · ∂aμ − 2∂aσ · μ
σ 3

(θ, x) > − 1

2‖g′‖2∞
,

then it also holds that

0 ≤ u(1)
s ≤

(
1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

< ∞

for all s ∈ [t,1].

Proof. By interpreting (4.1) as a system of BSDEs we get for u(3) the trivial solution u
(3)
s = −1 for all s ∈ [t,1] as the

unique bounded solution of this BSDE.
Also note that g′ ≥ 0 since g = F−1

ν ◦ � and Fν as well as � are non-decreasing. Thus ǔs = 0 is the trivial and unique
solution to

ǔs = 0 +
∫ 1

s

−ǔr

Z2
r

σ 2
r

(
−μa,r + 2μr

σa,r

σr

− 2u(2)
r

σa,r

σr

)
dr −

∫ 1

s

Z̃(1)
r dW̃r ,

which implies by comparison that 0 = ǔs ≤ u
(1)
s for all s ∈ [t,1].

For the upper bound of u(1) remember that u
(1)
s = ∂x1u(s,X

(1)
s ,X

(2)
s ,X

(3)
s ) for all s ∈ [t,1] and in particular for any

fixed t ∈ IM
max and all starting conditions x = (x(1), x(2), x(3)) ∈ R

3 we have

∂x1u(t, x) = u
(1)
t = g′(X(1)

1

)− ∫ 1

t

u(1)
r

Z2
r

σ 2
r

(
μa,r − 2μr

σa,r

σr

+ 2u(2)
r

σa,r

σr

)
dr −

∫ 1

t

Z̃(1)
r dW̃r .

Using this and that Z is bounded on every interval [t,1] ⊂ IM
max, we get

u
(1)
t = E

[
u

(1)
t |Ft

]
= E

[
g′(X(1)

1

)− ∫ 1

t

u(1)
r

Z2
r

σ 2
r

(
μa,r − 2μr

σa,r

σr

+ 2u(2)
r

σa,r

σr

)
dr

∣∣∣Ft

]

≤ E

[
g′(X(1)

1

)− ∫ 1

t

u(1)
r

Z2
r

σ 2
r

(
μa,r − 2

σa,r

σr

μr

)
dr

∣∣∣Ft

]



1620 S. Ankirchner et al.

for all t ∈ IM
max and (x(1), x(2), x(3)) ∈R

3, where we use that σa,r · u(2)
r ≥ 0. Next we use the inequality

−σsμa,s − 2σa,sμr

σ 3
s

≤ max

{
0,− inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

}
=: β

and the estimate from Lemma 5.1 for Z to obtain

u
(1)
t ≤ ∥∥g′∥∥∞ + β

∫ 1

t

sup
x∈R3

∂x1u(r, x) sup
θ∈[r,1]

sup
x∈R3

(∂x1u)2(θ, x)dr.

Thus we can derive the inequality

sup
ρ∈[t,1]

sup
x∈R3

∂x1u(ρ, x) ≤ ∥∥g′∥∥∞ + β sup
ρ∈[t,1]

{∫ 1

ρ

sup
x∈R3

∂x1u(r, x) sup
θ∈[r,1]

sup
x∈R3

(∂x1u)2(θ, x)dr

}

≤ ∥∥g′∥∥∞ + β

∫ 1

t

sup
θ∈[r,1]

sup
x∈R3

(∂x1u)3(θ, x)dr.

Note that inf(θ,x)∈R+×R
σ ·∂aμ−2∂aσ ·μ

σ 3 (θ, x) > − 1
2‖g′‖2∞

implies β < 1
2‖g′‖2∞

. Hence, we obtain by setting f (t) =
supρ∈[t,1] supx∈R3 ∂x1u(ρ, x) and applying Lemma 5.2 that

sup
ρ∈[t,1]

sup
x∈R3

∂x1u(ρ, x) ≤
(

1

‖g′‖2∞
− 2β(1 − t)

)− 1
2

and thus,

∥∥u(1)
∥∥∞,t

≤ ‖∂x1u‖∞,t ≤
(

1

‖g′‖2∞
− 2β

)− 1
2

< ∞. �

Theorem 5.4. Let g, μ and σ fulfill Assumption 2.1. Then, for FBSDE (1.2), we have IM
max = [0,1] and there exists a

unique, strongly regular Markovian decoupling field u on the whole interval [0,1]. This u is a continuous function on
[0,1] ×R

3.
Furthermore let (X(1),X(2),X(3), Y,Z) be the solution of FBSDE (1.2) with an arbitrary initial condition x ∈R

3 and
u(1), u(2), u(3) be the associated gradient processes on [0,1]. Then we have u(3) ≡ −1 and the finite estimates

0 ≤ u(1) ≤
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

, (5.2)

∥∥u(2)
∥∥∞ ≤ exp

[
‖Z‖2∞

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

(∥∥∥∥∂aσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+ 1

ε2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

))]
· ‖Z‖2∞

(
2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+
∥∥∥∥∂tμ

σ 2

∥∥∥∥∞

)
(5.3)

and

‖Z‖∞ ≤ ∥∥u(1)
∥∥∞ ≤

(
1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

. (5.4)

Proof. Using Lemma 3.8 we only need to show that the weak derivative of u with regard to the initial value x ∈ R
3 is

bounded by some constant which is independent of the time interval [t,1] ⊂ IM
max on which it is defined. Then it follows

that IM
max = [0,1] and hence t can be chosen to equal 0 and the estimates (5.2), (5.3) and (5.4) hold true for corresponding

processes on the whole interval [0,1].
For now fix t ∈ IM

max and x ∈ R
3 and let u(1), u(2), u(3) be the associated gradient processes. Lemma 5.3 yields

u(3) ≡ −1. In order to derive Estimate (5.2) we show that σa,s ·u(2)
s ≥ 0 a.s. for all s ∈ [t,1] which then allows us to apply
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Lemma 5.3 yielding the estimate. Consider the three cases (i), (ii) and (iii) of Assumption 2.1: With ∂aσ ≡ 0 of case (i)
this is obviously true. For the remaining two cases observe that

u(2)
s =

∫ 1

s

Z2
r

σ 2
r

[(
u(2)

r

)2(−2
σa,r

σr

)
+ u(2)

r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
+
(

2
σt,r

σr

μr − μt,r

)]
dr

−
∫ 1

s

Z̃(2)
r dW̃r .

Because u
(2)
r is bounded on every interval [t,1] ⊂ IM

max, we can view u(2) as fulfilling a Lipschitz BSDE. This allows us
to use the comparison theorem by changing 2σt,r

σr
μr − μt,r to zero and hence compare with the trivial solution which is

constantly 0. Thus in the case (ii) we have u(2) ≥ 0 and in case (iii) u(2) ≤ 0. Therefore, we have ∂aσ · u(2) ≥ 0 for the
cases (ii) and (iii) as well. Hence we can apply Lemma 5.3 to obtain, for s ∈ [t,1],

0 ≤ u(1)
s ≤

(
1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

.

In addition with Lemma 5.1 this yields

‖Z‖∞,t ≤ ∥∥u(1)
∥∥∞,t

≤
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

< ∞.

Since, as stated before, in case (ii) we have u(2) ≥ 0 and ∂aσ ≥ 0 and in case (iii) u(2) ≤ 0 and ∂aσ ≤ 0, we again can
apply the comparison theorem to see that in case (ii) we have 0 ≤ u(2) ≤ ū and in case (iii) ū ≤ u(2) ≤ 0, where ū is the
solution of the linear BSDE

ūs =
∫ 1

s

ūr

Z2
r

σ 2
r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
+ Z2

r

σ 2
r

(
2
σt,r

σr

μr − μt,r

)
dr −

∫ 1

s

Z̄r dW̃r .

In case (i) we have that u(2) = ū giving that u(2) is bounded by ū as well.
By estimating

|ūs | =
∣∣∣∣E[∫ 1

s

exp

(∫ r

s

Z2
r

σ 2
r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
dρ

)
Z2

r

σ 2
r

(
2
σt,r

σr

μr − μt,r

)
dr

∣∣∣Fs

]∣∣∣∣
≤ exp

[
‖Z‖2∞

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

(∥∥∥∥∂aσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+ 1

ε2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

))]
· ‖Z‖2∞

(
2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+
∥∥∥∥∂tμ

σ 2

∥∥∥∥∞

)
we have found a finite bound for u(2) that is independent of t .

Thus u(1), u(2) and u(3) are bounded independently of t . Hence there exists a solution on the whole interval [0,1] =
IM

max. Therefore, we also have that all bounds are valid on this interval. �

6. Weak solution

In this section we show that a weak solution of the SEP can be obtained from the solution of the FBSDE (1.2). Recall
that if Assumption 2.1 is fulfilled, then by Theorem 5.4 FBSDE (1.2) has a solution on the whole interval [0,1] and the
gradient processes are bounded.

In the following we sometimes use the fact that for two Itô processes A and B and a time change γ , in the sense of
Definition 1.2 in Chapter V, [29], it holds that∫ γ (t)

0
Ar dBr =

∫ t

0
Aγ(r) dBγ(r)

(see e.g. Proposition 1.4, Chapter V, [29]).
The next theorem is a version of Theorem 2.2 with an explicit weak solution of the SEP.
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Theorem 6.1. Let g, μ and σ fulfill Assumption 2.1. Furthermore let (X(1),X(2),X(3), Y,Z) be the solution of the

FBSDE (1.2) with initial value (X
(1)
0 ,X

(2)
0 ,X

(3)
0 ) = (0,0,0). Define the random time

τ̃ := X
(2)
1 ,

the time change

γ (t) :=
{

inf{s ≥ 0|X(2)
s > t} if 0 ≤ t < τ̃ ,

1 if t ≥ τ̃ ,

the filtration Gt := Fγ (t) and the process At := Yγ (t) + X
(3)
γ (t) on [0, τ̃ ].

Then τ̃ is a (Gt )-stopping time satisfying

τ̃ ≤ ε−2
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})−1

a.s.

Furthermore, on [0, τ̃ ], the process Bt := ∫ t

0
1

σ(X
(2)
γ (r)

,Yγ (r)+X
(3)
γ (r)

)
dYγ (r) is a (Gt )-Brownian motion, A fulfills the SDE

At = Y0 +
∫ t

0
μ(r,Ar)dr +

∫ t

0
σ(r,Ar)dBr

and we have

Aτ̃ ∼ ν.

Proof. By standard results it follows that τ̃ is a (Gt )-stopping time (see e.g. Proposition 1.1, Chapter V, [29]). With

γ −1(s) := X(2)
s (6.1)

for all s ∈ [0,1] we have for all t ∈ [0, τ̃ ] that X
(2)
γ (t) = γ −1(γ (t)) = t . Therefore, and because dYr = Zr dWr , we obtain

〈B,B〉t =
∫ γ (t)

0

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr = γ −1(γ (t)
)= t.

By Levy’s characterization of Brownian motion we get that (Bt ) is a (Gt )-Brownian motion on [0, τ̃ ].
Note that for all ω ∈ 
 the function γ is λ-a.e. differentiable on [0, τ̃ ] with

γ ′(t) = ((γ −1)−1)′
(t) = 1

(γ −1)′(γ (t))
= σ 2(X

(2)
γ (t), Yγ (t) + X

(3)
γ (t))

Z2
γ (t)

(6.2)

and hence

At = X
(3)
γ (t) + Yγ (t) − Y0 + Y0

= Y0 +
∫ γ (t)

0
μ
(
X(2)

r , Yr + X(3)
r

) Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr +
∫ γ (t)

0

σ(X
(2)
r , Yr + X

(3)
r )

σ (X
(2)
r , Yr + X

(3)
r )

dYr

= Y0 +
∫ t

0
μ
(
X

(2)
γ (r), Yγ (r) + X

(3)
γ (r)

)
dr +

∫ t

0
σ
(
X

(2)
γ (r), Yγ (r) + X

(3)
γ (r)

)
dBr

= Y0 +
∫ t

0
μ(r,Ar)dr +

∫ t

0
σ(r,Ar)dBr

for all t ∈ [0, τ̃ ]. Also

Aτ̃ = Yγ (τ̃ ) + X
(3)

γ (τ̃ )
= Y1 + X

(3)
1 = g(W1) ∼ ν.

The bound for τ̃ follows with the bound for ‖Z‖∞ stated in Theorem 5.4 and by σ ≥ ε. �
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The next lemma characterizes the stopping time τ̃ = γ −1(1) of Theorem 6.1 in terms of the solution of an FBSDE
driven by the Brownian motion B . We use the lemma later to show existence of strong solutions of the SEP.

Lemma 6.2. Assume g, μ and σ to fulfill Assumption 2.1. Let the decoupling field u of the FBSDE (1.2) have a continuous
weak derivative ∂x1u > 0. Also let (X(1),X(2),X(3), Y,Z), γ and B be defined as in Theorem 6.1. Moreover, let B̂ be any

Brownian motion coinciding with B on [0,X
(2)
1 ]. Then γ , W , X(3) and Y solve the system

γ (t) =
∫ t

0

σ 2(r, Yγ (r) + X
(3)
γ (r))

(∂x1u)2(γ (r),Wγ (r), r,X
(3)
γ (r))

dr

Wγ (t) =
∫ t

0

σ(r,Yγ (r) + X
(3)
γ (r))

∂x1u(γ (r),Wγ (r), r,X
(3)
γ (r))

dB̂r

X
(3)
γ (t) =

∫ t

0
μ
(
r, Yγ (r) + X

(3)
γ (r)

)
dr

Yγ (t) = Y0 +
∫ t

0
σ
(
r, Yγ (r) + X

(3)
γ (r)

)
dB̂r

(6.3)

for all t ≥ 0 such that γ (t) ≤ 1. Additionally, for γ −1 defined as in (6.1) we have

γ −1(1) ≤ ‖∂x1u‖2∞
ε2

≤ ε−2
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})−1

. (6.4)

Proof. Note that Theorem 5.4 implies the bound (6.4). Since ∂x1u is continuous we get with Lemma 5.1 that Zs =
∂x1u(s,X

(1)
s ,X

(2)
s ,X

(3)
s ) > 0 for all s ∈ [0,1] and hence both γ and γ −1 are strict monotone increasing and continuous.

Moreover, Lemma 5.1, Equation (6.2) and the fact that X
(2)
γ (t) = t yield

γ ′(t) = σ 2(X
(2)
γ (t), Yγ (t) + X

(3)
γ (t))

Z2
γ (t)

= σ 2(t, Yγ (t) + X
(3)
γ (t))

(∂x1u)2(γ (t),X
(1)
γ (t),X

(2)
γ (t),X

(3)
γ (t))

for all 0 ≤ t ≤ γ −1(1).
Furthermore, X

(1)
s = Ws yields that

Wγ(t) =
∫ t

0
1 dWγ(r)

=
∫ t

0

σ(X
(2)
γ (r), Yγ (r) + X

(3)
γ (r))

Zγ (r)

dB̂r

=
∫ t

0

σ(r,Yγ (r) + X
(3)
γ (r))

∂x1u(γ (r),X
(1)
γ (r),X

(2)
γ (r),X

(3)
γ (r))

dB̂r

=
∫ t

0

σ(r,Yγ (r) + X
(3)
γ (r))

∂x1u(γ (r),Wγ (r), r,X
(3)
γ (r))

dB̂r .

Also

Yγ (t) = Y0 +
∫ γ (t)

0
Zr dWr

= Y0 +
∫ t

0
Zγ(r) dWγ(r)

= Y0 +
∫ t

0
σ
(
r, Yγ (r) + X

(3)
γ (r)

)
dB̂r ,
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X
(3)
γ (t) =

∫ γ (t)

0
μ
(
X(2)

r , Yr + X(3)
r

) Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

=
∫ t

0
μ
(
X

(2)
γ (r), Yγ (r) + X

(3)
γ (r)

) Z2
γ (r)

σ 2(X
(2)
γ (r), Yγ (r) + X

(3)
γ (r))

σ 2(X
(2)
γ (r), Yγ (r) + X

(3)
γ (r))

Z2
γ (r)

dr

=
∫ t

0
μ
(
r, Yγ (r) + X

(3)
γ (r)

)
dr

and

γ (t) =
∫ t

0
γ ′(r)dr

=
∫ t

0

σ 2(r, Yγ (r) + X
(3)
γ (r))

(∂x1u)2(γ (r),X
(1)
γ (r),X

(2)
γ (r),X

(3)
γ (r))

dr

=
∫ t

0

σ 2(r, Yγ (r) + X
(3)
γ (r))

(∂x1u)2(γ (r),Wγ (r), r,X
(3)
γ (r))

dr

for all t ∈ [0, γ −1(1)]. �

7. Strong solution

We use the definitions and constructions of the former chapters. In particular let u be the unique strongly regular decou-
pling field of the FBSDE (1.2) which exists on the whole interval [0,1] if Assumption 2.1 is fulfilled.

Theorem 7.1. Let g, μ and σ fulfill Assumption 2.1 and μ, σ and their derivatives be bounded. Denote by u the de-
coupling field of FBSDE (1.2) and assume the partial derivative ∂x1u with respect to the first space variable to be
Lipschitz continuous in every argument and ∂x1u ≥ δ > 0. Let B be an arbitrary Brownian motion and denote by
(FB) = (FB

s )s∈[0,∞) the augmented filtration generated by B . Then there exists a bounded stopping time τ with respect
to the filtration FB such that for the process A given by

At = Y0 +
∫ t

0
μ(r,Ar)dr +

∫ t

0
σ(r,Ar)dBr,

for all t ∈ [0, τ ], we have that Aτ ∼ ν and the stopping time τ satisfies

τ ≤ ε−2
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})−1

a.s.

By solving the Lipschitz SDE

γ (r) =
∫ r

0

σ 2(s,�s + �s)

(∂x1u(γ (s),�s, s,�s))2
ds

�r =
∫ r

0

σ(s,�s + �s)

∂x1u(γ (s),�s, s,�s)
dBs

�r =
∫ r

0
μ(s,�s + �s)ds

�r = Y0 +
∫ r

0
σ(s,�s + �s)dBs

(7.1)

for all r ≥ 0 such that γ (r) ≤ 1 and where Y0 is the starting value of the process Y in the FBSDE (1.2) and setting
τ := inf{r ≥ 0|γ (r) = 1} we can obtain such a stopping time.
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Proof. Since any solution of FBSDE (1.2) has a unique distribution independent of the driving Brownian motion, we
know that the constant Y0 is always the same and does not depend on the driving Brownian motion.

Let us take a look at the system (7.1). Note that for all a, b ∈ [0,1] ×R
3∣∣∣∣ 1

∂x1u(a)
− 1

∂x1u(b)

∣∣∣∣= ∣∣∣∣∂x1u(b) − ∂x1u(a)

∂x1u(a) · ∂x1u(b)

∣∣∣∣≤ Lu,x1

δ2
|b − a|,

yielding that (∂x1u)−1 is Lipschitz continuous. Since hence both (∂x1u)−1 and σ are Lipschitz continuous and bounded we
get that σ · (∂x1u)−1 and σ 2 · (∂x1u)−2 are Lipschitz and bounded as well. Thus, we have that all coefficients of the system
(7.1) are Lipschitz continuous. Therefore, there exists a unique solution (γ,�,�,�) of (7.1) which is progressively
measurable w.r.t. (FB

t ). Hence, τ := inf{r ≥ 0|γ (r) = 1} is a stopping time w.r.t. (FB
t ) because γ is continuous.

Furthermore, the systems (6.3) and (7.1) just differ by notation and the driving Brownian motion. By the principle
of causality (see [17]) the distributions of (γ,Wγ ,X

(3)
γ , Yγ ) from Lemma 6.2 and (γ,�,�,�) are the same. Hence, we

immediately have the bound for τ as stated in Lemma 6.2 and also for At := �t + �t that

Aτ = �τ + �τ = �γ −1(1) + �γ −1(1) ∼ X
(3)

γ (γ −1(1))
+ Yγ (γ −1(1)) = X

(3)
1 + Y1 = g(W1) ∼ ν

and

At = �t + �t

= Y0 +
∫ t

0
μ(s,�s + �s)ds +

∫ t

0
σ(s,�s + �s)dBs

= Y0 +
∫ t

0
μ(s,As)ds +

∫ t

0
σ(s,As)dBs. �

What remains to do is to find sufficient conditions for the assumptions of Theorem 7.1 to hold true. For this we use
that the decoupling field u of FBSDE (1.2) is three times weakly differentiable. To show this we extend FBSDE (1.2)
by the dynamics of the gradient processes and view this system as a extended FBSDE, for which we can show the weak
differentiability of its decoupling field.

Let a := max(‖∂x1u‖∞,‖∂x2u‖∞,‖∂x3u‖∞) and define the truncation operator T : R → R by T (z) := min(max(z,

−a), a). Note that the map T is uniformly Lipschitz. Assume that g, μ, σ and their first derivatives are Lipschitz contin-
uous and consider the FBSDE

X(1)
s = x(1) +

∫ s

t

1 dWr,

X(2)
s = x(2) +

∫ s

t

(Z
(0)
r )2

σ 2
r

dr,

X(3)
s = x(3) +

∫ s

t

μr

(Z
(0)
r )2

σ 2
r

dr,

Y (0)
s = g

(
X

(1)
1

)− X
(3)
1 −

∫ 1

s

Z(0)
r dWr,

Y (1)
s = g′(X(1)

1

)+ ∫ 1

s

T
(
Y (1)

r

) (Z(0)
r )2

σ 2
r

(
T
(
Y (3)

r

)(
μa,r − 2μr

σa,r

σr

)
− 2T

(
Y (2)

r

)σa,r

σr

)
dr

+
∫ 1

s

2
Z

(0)
r

σ 2
r

T
((

Y (2)
r

)+ T
(
Y (3)

r

)
μr

)
Z(1)

r dr −
∫ 1

s

Z(1)
r dWr (7.2)

Y (2)
s = 0 +

∫ 1

s

−2
(Z

(0)
r )2

σ 2
r

(
σt,r

σr

+ T
(
Y (2)

r

)σa,r

σr

)(
T
(
Y (2)

r

)+ T
(
Y (3)

r

)
μr

)
dr

+
∫ 1

s

T
(
Y (3)

r

) (Z(0)
r )2

σ 2
r

(
T
(
Y (2)

r

)
μa,r + μt,r

)
dr
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+
∫ 1

s

2
Z

(0)
r

σ 2
r

(
T
(
Y (2)

r

)+ T
(
Y (3)

r

)
μr

)
Z(2)

r dr −
∫ 1

s

Z(2)
r dWr

Y (3)
r = −1 +

∫ 1

s

(
T
(
Y (3)

r

)+ 1
) (Z(0)

r )2

σ 2
r

(
T
(
Y (3)

r

)
μa,s − 2

σa,r

σr

(
T
(
Y (2)

r

)+ T
(
Y (3)

r

)
μr

))
dr

+
∫ 1

s

2
Z

(0)
r

σ 2
r

(
T
(
Y (2)

r

)+ T
(
Y (3)

r

)
μr

)
Z(3)

r dr −
∫ 1

s

Z(3)
r dWr

with the decoupling condition

Y (0)
s = u(0)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

Y (1)
s = u(1)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

Y (2)
s = u(2)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

Y (3)
s = u(3)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)
,

where

μr := μ
(
X(2)

r , Y (0)
r + X(3)

r

)
, σr := σ

(
X(2)

r , Y (0)
r + X(3)

r

)
and

μt,r := ∂tμ
(
X(2)

r , Y (0)
r + X(3)

r

)
, μa,r := ∂aμ

(
X(2)

r , Y (0)
r + X(3)

r

)
,

σt,r := ∂tσ
(
X(2)

r , Y (0)
r + X(3)

r

)
, σa,r := ∂aσ

(
X(2)

r , Y (0)
r + X(3)

r

)
.

Lemma 7.2. Let g, μ and σ fulfill Assumption 2.1. In addition, suppose that g, μ and σ are twice differentiable and that
the second derivatives are bounded. Then, for the FBSDE (7.2), we have IM

max = [0,1] and there exists a unique, strongly
regular Markovian decoupling field (u(0), u(1), u(2), u(3)) on the whole interval [0,1]. Furthermore,

u(0) = u, u(1) = ∂x1u, u(2) = ∂x2u and u(3) = ∂x3u,

a.e., where u is the unique decoupling field to FBSDE (1.2). In particular, u is twice weakly differentiable w.r.t. the initial
value x with uniformly bounded derivatives.

Proof. It is straightforward to verify that FBSDE (7.2) satisfies (MLLC), and hence Theorem 3.6 is applicable. Let u(i),
i = 0,1,2,3 be the corresponding unique weakly regular Markovian decoupling field on IM

max. u(i), i = 0,1,2,3, are
continuous functions on IM

max ×R
3. In order to show that IM

max = [0,1] we again need to prove that every partial derivative
of u(i) for i = 0,1,2,3 is bounded independently with regard to the interval [t,1] ⊂ IM

max where we consider it.
Let t ∈ IM

max. For an arbitrary initial condition x̄ ∈ R
3 consider the corresponding processes

X(1),X(2),X(3), Y (0), Y (1), Y (2), Y (3),Z(0),Z(1),Z(2),Z(3)

on [t,1]. Note that X(1), X(2), X(3), Y (0), Z(0) solve FBSDE (1.2), which implies that they coincide with the processes
X(1), X(2), X(3), Y , Z from (1.2) since strong regularity of Markovian decoupling fields guarantees uniqueness. Now
Y (0) = Y implies u(t ′, x′) = u(0)(t ′, x′) for all t ′ ∈ [t,1], x′ ∈ R

3.
Note that a truncation with T does not effect any gradient process of FBSDE (1.2). Thus, (Y

(1)
s ), (Y

(2)
s ), (Y

(3)
s ) fulfill

the same dynamics resp. BSDEs as the gradient processes (u
(1)
s ), (u

(2)
s ), (u

(3)
s ) in (4.1). Therefore, we can apply the

same arguments and conclude that they also satisfy the estimates (5.2), (5.3) and (5.4) (see Theorem 5.4). In particular
Y

(3)
s = −1 = u

(3)
s for all s ∈ [t,1] and therefore also Z

(3)
s = 0 = Z̃

(3)
s . Hence,

Y (2)
s − u(2)

s =
∫ 1

s

((
Y (2)

r

)2 − (u(2)
r

)2) (Z(0)
r )2

σ 2
r

(
−2

σa,r

σr

)
dr

+
∫ 1

s

(
Y (2)

r − u(2)
r

) (Z(0)
r )2

σ 2
r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
dr



SEP for inhomogeneous diffusions 1627

+
∫ 1

s

2Z
(0)
r

σ 2
r

((
Y (2)

r − μr

)
Z(2)

r − (u(2)
r − μr

)
Z̃(2)

r

)
dr −

∫ 1

s

(
Z(2)

r − Z̃(2)
r

)
dWr

=
∫ 1

s

((
Y (2)

r

)2 − (u(2)
r

)2) (Z(0)
r )2

σ 2
r

(
−2

σa,r

σr

)
dr −

∫ 1

s

(
Z(2)

r − Z̃(2)
r

)
dWr

+
∫ 1

s

(
Y (2)

r − u(2)
r

) (Z(0)
r )2

σ 2
r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
dr

+
∫ 1

s

2Z
(0)
r

σ 2
r

((
Y (2)

r − u(2)
r

)
Z(2)

r + (u(2)
r − μr

)(
Z(2)

r − Z̃(2)
r

))
dr.

Since 2Z
(0)
r

σ 2
r

(u
(2)
r − μr) is bounded we have that W̃s := Ws − Wt − ∫ s

t
2Z

(0)
r

σ 2
r

(u
(2)
r − μr)dr , s ∈ [t,1], is a Brownian motion

under some probability measure equivalent to P. Under the new measure the process pair (Y
(2)
s − u

(2)
s ,Z

(2)
s − Z̃

(2)
s ) is a

solution of the following linear BSDE with bounded coefficients

Ŷs =
∫ 1

s

Ŷr

(
Y (2)

r + u(2)
r

) (Z(0)
r )2

σ 2
r

(
−2

σa,r

σr

)
dr

+
∫ 1

s

Ŷr

(Z
(0)
r )2

σ 2
r

(
−μa,r + 2

σa,r

σr

μr − 2
σt,r

σr

)
dr

+
∫ 1

s

Ŷr

2Z
(0)
r

σ 2
r

Z(2)
r dr −

∫ 1

s

Ẑr dW̃r .

Note that (0,0) is the unique solution of the previous BSDE. Consequently, Y (2) and u(2) are indistinguishable and
Z(2) = Z̃(2), λ ⊗ P -almost everywhere on [t,1] × 
.

Similarly, we can show that Y (1) and u(1) as well as Z(1) and Z̃(1) coincide. Thus, we have

∂x1u
(0)
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= ∂x1u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= u(1)
s = Y (1)

s ,

∂x2u
(0)
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= ∂x2u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= u(2)
s = Y (2)

s ,

∂x3u
(0)
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= ∂x3u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= u(3)
s = Y (3)

s

a.e. on [t,1].
It remains to show that IM

max = [0,1]. Define for x = (x1, x2, x3)
T ∈ R

3, y = (y0, y1, y2, y3)
T ∈ R

4, z = (z0, z1, z2,

z3)
T ∈ R

4

X̄s :=
⎛⎜⎝X

(1)
s

X
(2)
s

X
(3)
s

⎞⎟⎠ , Ȳs :=

⎛⎜⎜⎜⎝
Y

(0)
s

Y
(1)
s

Y
(2)
s

Y
(3)
s

⎞⎟⎟⎟⎠ , Z̄s :=

⎛⎜⎜⎜⎝
Z

(0)
s

Z
(1)
s

Z
(2)
s

Z
(3)
s

⎞⎟⎟⎟⎠

M̄(x, y, z) :=

⎛⎜⎜⎝
0
z2

0
σ 2(x2,y0+x3)

μ(x2, y0 + x3)
z2

0
σ 2(x2,y0+x3)

⎞⎟⎟⎠ , �̄ :=
⎛⎝1

0
0

⎞⎠ , ξ̄ (x) :=

⎛⎜⎜⎝
g(x1) − x3

g′(x1)

0
−1

⎞⎟⎟⎠
and

F̄ (x, y, z)

:=

⎛⎜⎜⎜⎝
0

y1
(z0)

2

σ 2(x2,y0+x3)
(∂aμ(x2, y0 + x3) − 2μ(x2, y0 + x3)

∂aσ (x2,y0+x3)
σ (x2,y0+x3)

+ 2y2
∂aσ (x2,y0+x3)
σ (x2,y0+x3)

)

2 (z0)
2

σ 2(x2,y0+x3)
(
∂t σ (x2,y0+x3)
σ (x2,y0+x3)

+ y2
∂aσ (x2,y0+x3)
σ (x2,y0+x3)

)(y2 − μ(x2, y0 + x3))

0

⎞⎟⎟⎟⎠
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+

⎛⎜⎜⎜⎝
0
0

(z0)
2

σ 2(x2,y0+x3)
(y2∂aμ(x2, y0 + x3) + ∂tμ(x2, y0 + x3))

0

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
0

− 2z0
σ 2(x2,y0+x3)

(y2 − μ(x2, y0 + x3))z1

− 2z0
σ 2(x2,y0+x3)

(y2 − μ(x2, y0 + x3))z2

0

⎞⎟⎟⎟⎠ .

Then

X̄s = x̄ +
∫ s

t

M̄(X̄r , Ȳr , Z̄r )dr +
∫ s

t

�̄ dWr

and

Ȳs = ξ̄ (X̄1) −
∫ 1

s

F̄ (X̄r , Ȳr , Z̄r )dr −
∫ 1

s

Z̄r dWr.

By setting

Ūs := ∂x

⎛⎜⎜⎝
u(0)

u(1)

u(2)

u(3)

⎞⎟⎟⎠ (s, X̄s) =

⎛⎜⎜⎝
u(1) u(2) u(3)

∂x1u
(1) ∂x2u

(1) ∂x3u
(1)

∂x1u
(2) ∂x2u

(2) ∂x3u
(2)

∂x1u
(3) ∂x2u

(3) ∂x3u
(3)

⎞⎟⎟⎠ (s, X̄s)

we get

∂xȲs = Ūs · ∂xX̄s .

Since (∂xX̄s)
−1 is a multidimensional Itô process on [t,1] (see Lemma 4.1 and its proof) we get that Ūs = ∂xȲs ·(∂xX̄s)

−1

is also an Itô process and hence there exist (bs) and (Ẑs) such that

Ūs = Ū1 −
∫ 1

s

br dr −
∫ 1

s

Ẑr dWr.

For the following we also introduce for an Itô process Is = I0 − ∫ s

0 ir dr − ∫ s

0 jr dWr the two operators Dt and Dw via
(Dt I )s := is and (Dw I)s := js . Using this notation we have

∂xZ̄s = Dw ∂xȲs

= Dw(Ūs · ∂xX̄s)

= Ūs · Dw ∂xX̄s + Dw Ūs · ∂xX̄s

= Ẑs · ∂xX̄s,

∂x

[
F̄ (X̄s, Ȳs , Z̄s)

]= Dt ∂x Ȳs

= Dt (Ūs · ∂xX̄s)

= Ūs · Dt ∂xX̄s + Dt Ūs · ∂xX̄s + Dw Ūs · Dw ∂xX̄s

= Ūs · ∂x

[
M̄(X̄s, Ȳs , Z̄s)

]+ bs · ∂xX̄s,

where we can further specify

∂x

[
M̄(X̄s, Ȳs , Z̄s)

]
= ∂xM̄(X̄s, Ȳs , Z̄s)∂xX̄s + ∂yM̄(X̄s, Ȳs , Z̄s)∂xȲs + ∂zM̄(X̄s, Ȳs , Z̄s)∂xZ̄s

= ∂xM̄(X̄s, Ȳs , Z̄s)∂xX̄s + ∂yM̄(X̄s, Ȳs , Z̄s)Ūs∂xX̄s + ∂zM̄(X̄s, Ȳs , Z̄s)Ẑs∂xX̄s
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and likewise

∂x

[
F̄ (X̄s, Ȳs , Z̄s)

]
= ∂xF̄ (X̄s, Ȳs , Z̄s)∂xX̄s + ∂yF̄ (X̄s, Ȳs , Z̄s)Ūs∂xX̄s + ∂zF̄ (X̄s, Ȳs, Z̄s)Ẑs∂xX̄s .

Thus, we get

Ẑs = ∂xZ̄s · (∂xX̄s)
−1

and

bs = ∂xF̄ (X̄s, Ȳs , Z̄s) + ∂yF̄ (X̄s, Ȳs, Z̄s)Ūs + ∂zF̄ (X̄s, Ȳs, Z̄s)Ẑs

+ Ūs

[
∂xM̄(X̄s, Ȳs , Z̄s) + ∂yM̄(X̄s, Ȳs , Z̄s)Ūs + ∂zM̄(X̄s, Ȳs , Z̄s)Ẑs

]
, (7.3)

where the derivatives of M̄ and F̄ are bounded due to the assumptions made. Therefore, we see that the dynamics of Ū

are linear with exception to the quadratic terms Ūs∂yM̄(X̄s, Ȳs, Z̄s)Ūs and ∂zM̄(X̄s, Ȳs , Z̄s)Ẑs . However, we claim that
we can reduce the dynamics of Ū to a linear BSDE.

It is straightforward to see that

∂yM̄(X̄s, Ȳs , Z̄s) =

⎛⎜⎜⎝
0 0 0 0

−2 (Z
(0)
s )2

σ 2
s

σa,s

σs
0 0 0

(Z
(0)
s )2

σ 2
s

μa,s − 2 (Z
(0)
s )2

σ 2
s

σa,s

σs
μs 0 0 0

⎞⎟⎟⎠ .

Note that α := −2 (Z
(0)
s )2

σ 2
s

σa,s

σs
and β := (Z

(0)
s )2

σ 2
s

μa,s − 2 (Z
(0)
s )2

σ 2
s

σa,s

σs
μs are both uniformly bounded, and we have

∂yM̄(X̄s, Ȳs , Z̄s)Ūs =
⎛⎝ 0 0 0

α · u(1)
s α · u(2)

s α · u(3)
s

β · u(1)
s β · u(2)

s β · u(3)
s

⎞⎠ ,

which is bounded independently of [t,1] (cf. in Theorem 5.4).
Moreover, note that

∂zM̄(X̄s, Ȳs , Z̄s) =

⎛⎜⎜⎝
0 0 0 0

2Z
(0)
s

σ 2
s

0 0 0

μs
2Z

(0)
s

σ 2
s

0 0 0

⎞⎟⎟⎠
only depends on the solution components (X(2),X(3), Y (0),Z(0)). Hence, together with the estimates of Theorem 5.4,
we conclude that ∂xM̄(X̄s, Ȳs , Z̄s) is bounded. Since Ū is bounded on [t,1], the term Ūs∂zM̄(X̄s, Ȳs, Z̄s)Ẑs in Equation
(7.3) can be shifted, via a Girsanov measure change, into the Brownian motion W . Similarly, the term ∂zF̄ (X̄s, Ȳs , Z̄s)Ẑs

in Equation (7.3) can be shifted into W . To sum up, there exists a Brownian motion Ŵ under an equivalent probability
measure such that (Ū , Ẑ) solves the BSDE on [t,1] driven by Ŵ with linear driver

f (s, y, z) = ∂xF̄ (X̄s, Ȳs, Z̄s) + ∂yF̄ (X̄s, Ȳs , Z̄s)y + y
[
∂xM̄(X̄s, Ȳs , Z̄s) + ∂yM̄(X̄s, Ȳs , Z̄s)Ūs

]
and terminal condition ∇ ξ̄ (X̄1). Observe that the terminal condition and all coefficients are bounded by some constant
independent of t and x. Therefore, also Ū is bounded independently of t and x. By Lemma 3.7 this yields that IM

max =
[0,1]. �

Remark 7.3. The second and third derivatives do not have to be bounded. It would suffice if the second and third
derivatives of μ divided by σ 2 and the second and third derivatives of σ divided by σ are bounded.

Lemma 7.4. Let g, μ and σ fulfill Assumption 2.1 and their second and third derivatives be bounded. Then the decoupling
field u of FBSDE (1.2) is three times weakly differentiable w.r.t. to the initial condition x ∈ R

3 with uniformly bounded
derivatives.
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Proof. This proof is completely analogous the proof of Lemma 7.2. Therefore, we only give a sketch.
Extend the system (7.2) by the dynamics of Ȳ (ij) := u(ij) := ∂xj

u(i) for all i, j ∈ {1,2,3} as obtained in the proof of
Lemma 7.2 and by the corresponding entries in the decoupling field. Then argue analogously to the proof of Lemma 7.2
that for every i ∈ {0,1,2,3} the u(i) of FBSDE (7.2) coincides with the u(i) of the extended system. Redefine, if necessary,
the vectors X̄, Ȳ , Z̄ and the functions M̄ , �̄, ξ̄ , F̄ such that for the extended system we have

X̄s = x +
∫ s

t

M̄(X̄r , Ȳr , Z̄r )dr +
∫ s

t

�̄ dWr

and

Ȳs = ξ̄ (X̄1) −
∫ 1

s

F̄ (X̄r , Ȳr , Z̄r )dr −
∫ 1

s

Z̄r dWr.

Also define Ūs as the partial derivatives of the decoupling field u(s, X̄s) of the extended system for all s ∈ [t,1]. Again
there exist (bs) and (Ẑs) such that

Ūs = Ū1 −
∫ 1

s

br dr −
∫ 1

s

Ẑr dWr.

By the same calculation as in the proof of Lemma 7.2 we obtain that

Ẑs = ∂xZ̄s · (∂xX̄s)
−1

and

bs = ∂xF̄ (X̄s, Ȳs , Z̄s) + ∂yF̄ (X̄s, Ȳs , Z̄s)Ūs + ∂zF̄ (X̄s, Ȳs , Z̄s)Ẑs

+ Ūs

[
∂xM̄(X̄s, Ȳs , Z̄s) + ∂yM̄(X̄s, Ȳs , Z̄s)Ūs + ∂zM̄(X̄s, Ȳs, Z̄s)Ẑs

]
.

Analogous to the proof above, ∂xF̄ , ∂yF̄ , ∂zF̄ , ∂xM̄ , ∂yM̄ and ∂zM̄ are bounded while additionally ∂yM̄ only has entries
in the first column which allows us to conclude that ∂yM̄(X̄s, Ȳs , Z̄s)Ūs is bounded. Furthermore, every coefficient in
front of Ẑ is bounded on every Interval [t,1] ⊂ IM

max and can therefore be transformed away with Girsanov’s Theorem.
Hence we have linear dynamics for Ū with bounded coefficients which yields that it is bounded independently of the
interval [t,1], giving IM

max = [0,1]. �

Lemma 7.5. Let g, μ and σ fulfill Assumption 2.1, their first and second derivatives be bounded and g′ ≥ δ > 0. Then
the weak derivative ∂x1u of the decoupling field u from the FBSDE (1.2) fulfills∥∥∥∥ 1

∂x1u

∥∥∥∥∞
≤
∥∥∥∥ 1

g′

∥∥∥∥∞
+ ‖∂x1u‖∞

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞
+ 2

ε2
‖∂x2u‖∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞

)
(7.4)

and in particular ∂x1u is bounded away from 0.

Proof. By Lemma 7.2 the decoupling field of the FBSDE (1.2) exists on the whole interval [0,1] and is twice weakly
differentiable. In particular ∂x1u is continuous (see e.g. Theorem 4.2.17 in [12]), and hence we can apply Lemma 5.1

yielding Z
(0)
r = ∂x1u(r,X

(1)
r ,X

(2)
r ,X

(3)
r ) for all r ∈ [0,1]. Also using Lemma 5.3 we know that u(1) is bounded by some

constant for every starting time t ∈ IM
max = [0,1] and every initial value x ∈R

3.
Now we set Vr := 1

∂x1u(r,X
(1)
r ,X

(2)
r ,X

(3)
r )

for all r ∈ (t0,1] where t0 := inf{t ≥ 0|∂x1u(t, x) = 0 for at least one x ∈ R
3}

with the convention that inf∅= 0. We immediately get that 1
Vr

≤ ‖∂x1u‖∞ < ∞ and the dynamics

Vs = 1

g′(X(1)
1 )

−
∫ 1

s

(
V 3

r

(
Z(1)

r

)2 − 1

Vr

μa,r − 2μr
σa,r

σr
+ 2u

(2)
r

σa,r

σr

σ 2
r

)
dr −

∫ 1

s

−Z(1)
r V 2

r dW̃r

= 1

g′(X(1)
1 )

−
∫ 1

s

1

Vr

(
(Ẑr )

2 − μa,r − 2μr
σa,r

σr
+ 2u

(2)
r

σa,r

σr

σ 2
r

)
dr −

∫ 1

s

Ẑr dW̃r ,

where u
(2)
r := ∂x2u(r,X

(1)
r ,X

(2)
r ,X

(3)
r ), Ẑr := −Z

(1)
r

V 2
r

and W̃ is defined as in the proof of Lemma 7.2.
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Using that 1
Vs

≤ ‖∂x1u‖∞ we can apply Corollary 2.2 of [18] to obtain

‖V ‖∞ ≤
∥∥∥∥ 1

g′

∥∥∥∥∞
+ ‖∂x1u‖∞

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞
+ 2

ε2
‖∂x2u‖∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞

)
< ∞

because ∂x1u and ∂x2u are bounded by Theorem 5.4. Since this bound is independent of s we also get that

∂x1u
(
s,X(1)

s ,X(2)
s ,X(3)

s

)= 1

Vs

≥ 1

‖V ‖∞
> 0

for all s where V is defined. Because, as stated above, ∂x1u is continuous, we get that t0 = 0 and that hence Equation (7.4)
holds true. �

Lemma 7.6. Let g, μ and σ fulfill Assumption 2.1 and their second derivatives be bounded. Then for the problem (7.2)
it holds for all s ∈ [0,1] almost surely that∣∣Z(1)

s

∣∣≤ ∥∥∂x1u
(1)
∥∥∞ < ∞.

Proof. Note that this proof runs on similar lines as the proof of Lemma 5.1.
Remember that Lemma 7.2 yields that for problem (7.2) there exists a unique solution on the whole interval [0,1] for

every initial condition in R
3. Observe that with Itô’s formula we get for h > 0 and s, s + h ∈ [0,1]

1

h
E
[
Y

(1)
s+h(Ws+h − Ws)|Fs

]
= 1

h
E

[∫ s+h

s

Y (1)
r dWr +

∫ s+h

s

(Wr − Ws)dY (1)
r +

∫ s+h

s

1 · Z(1)
r dr

∣∣∣Fs

]
= 1

h
E

[∫ s+h

s

Z(1)
r dr +

∫ s+h

s

Y (1)
r dWr +

∫ s+h

s

(Wr − Ws)Z
(1)
r dWr

+
∫ s+h

s

(Wr − Ws)

(
− (Z

(0)
r )2

σ 2
r

Y (1)
r

(
Y (3)

r

(
μa,r − 2μr

σa,r

σr

)
− 2Y (2)

r

σa,r

σr

))
dr

+
∫ s+h

s

(Wr − Ws)

(
−2Z

(0)
r

σ 2
r

(
Y (2)

r + Y (3)
r μr

)
Z(1)

r

)
dr

∣∣∣Fs

]
→ Z(1)

s a.s. as h → 0.

On the other hand we get by using the decoupling condition that

Y
(1)
s+h(Ws+h − Ws)

= u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)
(Ws+h − Ws)

= u(1)
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)

+ (u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

)− u(1)
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

))
(Ws+h − Ws)

+ (u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

))
(Ws+h − Ws). (7.5)

At first let us take a look at the third summand at the right hand side of (7.5). Since u(1) is Lipschitz continuous in its
fourth argument with some constant Lt

u(1),x3
and since furthermore

X
(3)
s+h = X(3)

s +
∫ s+h

s

μr

(Z
(0)
r )2

σ 2
r

dr
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we can estimate

1

h

∣∣E[(u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s+h

)− u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

))
(Ws+h − Ws)|Fs

]∣∣
≤ 1

h
E

[
Lt

u(1),x3

∣∣∣∣∫ s+h

s

μr

(Z
(0)
r )2

σ 2
r

dr

∣∣∣∣|Ws+h − Ws |
∣∣∣Fs

]
≤ 1

h
Lt

u(1),x3
h

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥Z(0)
∥∥2

∞E
[|Ws+h − Ws ||Fs

]
,

which clearly goes to 0 as h → 0 because μ

σ 2 and Z(0) are bounded by Theorem 5.4. Analogously we get, with Lt
u(1),x2

being the Lipschitz constant of u(1) in the third argument, that

1

h

∣∣E[(u(1)
(
s + h,X

(1)
s+h,X

(2)
s+h,X

(3)
s

)− u(1)
(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

))
(Ws+h − Ws)|Fs

]∣∣
≤ 1

h
Lt

u(1),x2
h
∥∥Z(0)

∥∥2
∞ε−2

E
[|Ws+h − Ws ||Fs

]
→ 0 a.s. for h → 0.

Now consider the remaining first term on the right hand side of Equation (7.5). Using integration by parts we obtain

E
[
u(1)

(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]
=
∫
R

u(1)
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

)
z
√

h
1√
2π

e− 1
2 z2

dz

=
∫
R

∂x1u
(1)
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

)
h

1√
2π

e− 1
2 z2

dz.

Since ∂x1u
(1) is bounded as proved in Lemma 7.2 we have∣∣∣∣1hE[u(1)

(
s + h,X

(1)
s+h,X

(2)
s ,X(3)

s

)
(Ws+h − Ws)|Fs

]∣∣∣∣
=
∣∣∣∣∫

R

∂x1u
(1)
(
s + h,X(1)

s + z
√

h,X(2)
s ,X(3)

s

) 1√
2π

e− 1
2 z2

dz

∣∣∣∣
≤ ∥∥∂x1u

(1)
∥∥∞.

Putting the derived estimates together we get

∣∣Z(1)
s

∣∣= ∣∣∣∣ lim
h↘0

1

h
E
[
Y

(1)
s+h(Ws+h − Ws)|Fs

]∣∣∣∣≤ ∥∥∂x1u
(1)
∥∥∞.

By Lemma 7.2, ‖∂x1u
(1)‖∞ < ∞, which further implies the result. �

Proposition 7.7. Let g, μ and σ fulfill Assumption 2.1, let their first, second and third derivatives as well as σ and 1
g′ be

bounded. Then the requirements of Theorem 7.1 are fulfilled.

Proof. Remember that the derivative ∂x1u of the decoupling field of FBSDE (1.2) equals u(1) of the decoupling field
of FBSDE (7.2) by Lemma 7.2 and which, by Lemma 7.5, is bounded from below by a δ > 0. Hence, it only remains
to show that ∂x1u which equals u(1) is Lipschitz continuous. Since we already know that the derivatives w.r.t. the space
variables are bounded (by Lemma 7.2) we only need to prove that u(1) is Lipschitz continuous in the time variable.

Consider FBSDE (7.2) for a starting time t ∈ [0,1) on the interval [t,1] with initial condition (X
(1)
t ,X

(2)
t ,X

(3)
t ) =

(x(1), x(2), x(3)) = x ∈R
3. Let s ∈ (t,1]. Using the triangle inequality several times gives∣∣u(1)(s, x) − u(1)(t, x)
∣∣≤ ∣∣u(1)(s, x) −E

[
u(1)

(
s,X(1)

s , x(2), x(3)
)]∣∣

+ ∣∣E[u(1)
(
s,X(1)

s , x(2), x(3)
)]−E

[
u(1)

(
s,X(1)

s ,X(2)
s , x(3)

)]∣∣
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+ ∣∣E[u(1)
(
s,X(1)

s ,X(2)
s , x(3)

)]−E
[
u(1)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)]∣∣
+ ∣∣E[u(1)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)− u(1)
(
t,X

(1)
t ,X

(2)
t ,X

(3)
t

)]∣∣.
We take a closer look at every summand on the right hand side starting with the first one. By defining

ϕ(z) := u(1)
(
s, x(1), x(2), x(3)

)− u(1)
(
s, x(1) + z, x(2), x(3)

)
we see that the first summand equals |E[ϕ(Ws − Wt)]|. Furthermore, ϕ(0) = 0 and by Lemma 7.4, ϕ is two times weakly

differentiable with derivatives bounded by some constant L∂xu(1) < ∞. Hence, the inequality | ∫
R

ϕ(a · z) 1√
2π

e− 1
2 z2

dz| ≤
1
2a2‖ϕ′′‖∞ holds true (see e.g. Lemma 4.3.11 in [12]). Therefore,

∣∣u(1)(s, x) −E
[
u(1)

(
s,X(1)

s , x(2), x(3)
)]∣∣= ∣∣E[ϕ(Ws − Wt)

]∣∣≤ (s − t)

2
· L∂xu(1) .

For the second summand we use the Lipschitz constant of u(1) denoted by Lu(1) to get∣∣E[u(1)
(
s,X(1)

s , x(2), x(3)
)− u(1)

(
s,X(1)

s ,X(2)
s , x(3)

)]∣∣≤ Lu(1)E
∣∣X(2)

s − x(2)
∣∣

= Lu(1)E

∣∣∣∣∫ s

t

(Z
(0)
r )2

σ 2
r

dr

∣∣∣∣
≤ Lu(1)

∥∥u(1)
∥∥2

∞ε−2(s − t)

since |Z(0)| ≤ ‖u(1)‖∞ < ∞ by Theorem 5.4.
The third summand can be estimated similarly by∣∣E[u(1)

(
s,X(1)

s ,X(2)
s , x(3)

)− u(1)
(
s,X(1)

s ,X(2)
s ,X(3)

s

)]∣∣
≤ Lu(1)E

∣∣∣∣∫ s

t

μr

(Z
(0)
r )2

σ 2
r

dr

∣∣∣∣
≤ Lu(1)

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥u(1)
∥∥2

∞(s − t).

For the last summand we use the decoupling condition and Y
(3)· = −1 to obtain∣∣E[u(1)

(
s,X(1)

s ,X(2)
s ,X(3)

s

)− u(1)
(
t,X

(1)
t ,X

(2)
t ,X

(3)
t

)]∣∣
≤ ∣∣E[Y (1)

s − Y
(1)
t

]∣∣
=
∣∣∣∣E[∫ s

t

Y (1)
r

(Z
(0)
r )2

σ 2
r

(
μa,r − 2μr

σa,r

σr

+ 2Y (2)
r

σa,r

σr

)
− 2Z

(0)
r

σ 2
r

(
Y (2)

r − μr

)
Z(1)

r dr

]∣∣∣∣
≤
[∥∥u(1)

∥∥3
∞

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞
+ 2

ε2

∥∥u(2)
∥∥∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞

)
+ 2
∥∥u(1)

∥∥∞

(
ε−2

∥∥u(2)
∥∥∞ +

∥∥∥∥ μ

σ 2

∥∥∥∥∞

)∥∥∂x1u
(1)
∥∥∞

]
(s − t)

where we applied Theorem 5.4 and Lemma 7.6. Thus, the last summand is Lipschitz continuous by Theorem 5.4 and
Lemma 7.2, too.

Putting all estimates together we arrive at |u(1)(s, x) − u(1)(r, x)| ≤ L(s − t) for some finite constant L which is
independent of s and t . Hence u(1) is Lipschitz continuous in the time variable. �

Observe that Proposition 7.7 and Theorem 7.1 imply Theorem 2.4.
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8. Numerics

We now illustrate numerically an example of an embedding using the methodology developed. This is done by numerically
approximating the solution of the FBSDE

Ws =
∫ s

0

σ(X
(2)
r , Yr + X

(3)
r )

Zr

dB
X

(2)
r

X(2)
s =

∫ s

0

Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

X(3)
s =

∫ s

0
μ
(
X(2)

r , Yr + X(3)
r

) Z2
r

σ 2(X
(2)
r , Yr + X

(3)
r )

dr

Ys = g(W1) − X
(3)
1 −

∫ 1

s

Zr dWr.

(8.1)

To the best of our knowledge no literature exists able to deal directly with approximations of (8.1) and hence, inspired by
known literature, we propose a numerical scheme whose rigorous study is left for future research. FBSDE (8.1) is a fully
coupled quadratic growth FBSDE which we deal with as follows: from [16] we inject the theoretical a priori hard bounds
in the coefficients, reducing FBSDE (8.1) to a uniformly Lipschitz fully-coupled one, then apply a decoupling technique
based on Picard iterations [6] to reduce the problem to the iterative simulation of uniformly Lipschitz fully-decoupled
FBSDE. The final approximation step is carried out using a classic explicit Euler scheme discretization [6] while the
approximation of the conditional expectations is done via projection over basis functions [15]. The final outcome is
the approximation of the embedding stopping time and the verification that the stopped process does embed the target
distribution.

From a mathematical point of view, the only step of the described numerical approximation that cannot be fully justified
is the convergence of the Picard iteration step. The results of [6] do not apply if the diffusion coefficient σ depends on
Z. We stress, however, that for some special cases the algorithm outlined below can be shown to converge, e.g. in the
homogeneous case (see Remark 8.5 below).

8.1. The problem, its conditions and the hard bounds

At first we show that FBSDE (8.1) has a unique solution from which we can construct a strong solution of the SEP.

Proposition 8.1. Let the assumptions of Theorem 7.1 or Proposition 7.7 be satisfied. Denote by u the decoupling field of
FBSDE (1.2). Let B be an arbitrary Brownian motion and denote by (FB) = (FB

s )s∈[0,∞) the augmented filtration gen-
erated by B . Then there exist unique square-integrable processes (W,X(2),X(3), Y ) solving the FBSDE (8.1). Moreover,
τ := X

(2)
1 is an (FB

t )-stopping time bounded as in (2.2), W is a Brownian motion on [0,1] and the pair (τ, Y0) is a strong
solution of the SEP.

Proof. Remember that by Theorem 7.1 the SDE (7.1) has a unique solution (γ,�,�,�). We introduce the time change
γ −1(t) = inf{r ≥ 0 : γ (r) ≥ t} for t ∈ [0,1]. Observe that γ −1 has the dynamics

γ −1(t) =
∫ t

0

(∂x1u(s,�γ −1(s), γ
−1(s),�γ −1(s)))

2

σ 2(γ −1(s),�γ −1(s) + �γ −1(s))
ds.

By setting Zs := ∂x1u(s,�γ −1(s), γ
−1(s),�γ −1(s)) for s ∈ [0,1], replacing the dynamics of γ by the dynamics of γ −1

and applying the time change γ −1 to all other processes, we can rewrite the system (7.1) as

γ −1(t) =
∫ t

0

(Zs)
2

σ 2(γ −1(s),�γ −1(s) + �γ −1(s))
ds

�γ −1(t) =
∫ t

0

σ(γ −1(s),�γ −1(s) + �γ −1(s))

Zs

dBγ −1(s)

�γ −1(t) =
∫ t

0
μ
(
γ −1(s),�γ −1(s) + �γ −1(s)

) (Zs)
2

σ 2(γ −1(s),�γ −1(s) + �γ −1(s))
ds
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�γ −1(t) = Y0 +
∫ t

0
Zs d�γ −1(s)

for all t ∈ [0,1]. Here it is straightforward to see that with γ −1(t) = X
(2)
t , �γ −1(t) = Wt , �γ −1(t) = X

(3)
t and �γ −1(t) = Yt

we exactly have the system (8.1). Thus the system (8.1) has a solution (W,X(2),X(3), Y,Z) which fulfills that τ :=
X

(2)
1 = γ −1(1) = inf{r ≥ 0|γ (r) = 1} is a stopping time with regard to (FB

t ) bounded as in (2.2) and that Aτ ∼ ν.
It remains to show the uniqueness of this solution. Now take an arbitrary square integrable solution (W,X(2),X(3),

Y,Z) of (8.1). Define the time change

γ̄ (t) :=
{

inf{s ≥ 0 : X(2)
s ≥ t}, t ≤ X

(2)
1

1, t > X
(2)
1

and observe that by

〈W,W 〉t =
∫ X

(2)
t

0

σ 2(r, Yγ̄ (r) + X
(3)
γ̄ (r))

Z2
γ̄ (r)

dr =
∫ t

0

σ 2(X
(2)
r , Yr + X

(3)
r )

Z2
r

dX(2)
r =

∫ t

0
1 dr = t

W is a Brownian motion on [0,1]. Thus, the processes (W,X(2),X(3), Y,Z) solve FBSDE (1.2) for the initial value 0.
Due to Theorem 3.6 and Lemma 3.7 this solution of FBSDE (1.2) is unique. �

Remark 8.2. If one is only interested in a weak solution, then only FBSDE (1.2) needs to be solved, where W is given,
and the Brownian motion B can be calculated afterwards, as described in Theorem 6.1. Aside from simplifying the system
that needs to be simulated, this also has the advantage of being valid for more general coefficients μ and σ (compare the
assumptions of Theorem 2.2 and Theorem 2.4).

By the combination of Lemma 7.5, Lemma 5.1 and Theorem 5.4 we have for Z the λ × P a.s. bounds 0 < qZ ≤ Z ≤
Ẑ < ∞, which are

Ẑ =
(

1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})− 1
2

and

qZ =
(∥∥∥∥ 1

g′

∥∥∥∥∞
+ qZ

(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

∥∥∥∥ μ

σ 2

∥∥∥∥∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞
+ 2

ε2
‖∂x2u‖∞

∥∥∥∥∂aσ

σ

∥∥∥∥∞

))−1

with

‖∂x2u‖∞ ≤ exp

[
Ẑ2
(∥∥∥∥∂aμ

σ 2

∥∥∥∥∞
+ 2

(∥∥∥∥∂aσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+ 1

ε2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

))]
· Ẑ2

(
2

∥∥∥∥∂tσ

σ

∥∥∥∥∞

∥∥∥∥ μ

σ 2

∥∥∥∥∞
+
∥∥∥∥∂tμ

σ 2

∥∥∥∥∞

)
.

Therefore, we have that

qZ2

‖σ‖2∞
≤ Z2

s

σ 2(X
(2)
s , Ys + X

(3)
s )

≤ Ẑ2

ε2
, λ × P a.s.

and in particular

qZ2

‖σ‖2∞
≤ τ = X

(2)
1 ≤ Ẑ2

ε2
a.s. (8.2)

Example 8.3 (Embedding a Normal distribution into a Brownian motion with drift). For μ ≡ m ∈ R, σ ≡ 1 and
ν =N (0, α2) for α > 0 we know that τ = α2 and A0 = −m · α2 solves the SEP. In this case we have that g(x) = αx and
the above bounds for Z become the explicit values α ≤ Z ≤ α and the system (8.1) simplifies to

Ws =
∫ s

0

1

α
dB

X
(2)
r

, X(2)
s =

∫ s

0
α2 dr, X(3)

s =
∫ s

0
m · α2 dr,
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Ys = αW1 − X
(3)
1 − (B

X
(2)
1

− B
X

(2)
s

)

giving that τ = X
(2)
1 = α2 a.s. which equals the above mentioned stopping time. We immediately find the correct value

for A0 since

A0 = Y0 = E[Y1|F0] = E

[
αW1 −

∫ 1

0
mα2 dr − B

X
(2)
1

+ B
X

(2)
0

∣∣∣F0

]
= −mα2.

Example 8.4. Again let ν =N (0, α2) for α > 0. Furthermore, set

σ(t, a) = pσ
1 + pσ

2

1 + e−t
+ pσ

3

1 + e−a
and μ(t, a) = p

μ
1 + p

μ
2

1 + e−t
+ p

μ
3

1 + e−a

for the vectors pσ ,pμ ∈ R
3 containing parameters such that

ε := pσ
1 + min

(
0,pσ

2

)+ min
(
0,pσ

3

)
> 0,

2pσ
2 pσ

3 p
μ
1 − pσ

1 p
μ
2 + min

(
0,pσ

2 pσ
3 p

μ
2

)+ min
(
0,2pσ

2 pσ
3 p

μ
3 − (pσ

3

)2
p

μ
2

)
> 0

and

1

α2
+ pσ

1 p
μ
3 − 2pσ

3 p
μ
1 + min(0,pσ

2 p
μ
3 − 2pσ

3 p
μ
2 ) − max(0,pσ

3 p
μ
3 )

2ε3
> 0.

Then observe that all conditions of Proposition 7.7 and therefore also of Proposition 8.1 are fulfilled,

Ẑ ≤
(

1

α2
+ pσ

1 p
μ
3 − 2pσ

3 p
μ
1 + min(0,pσ

2 p
μ
3 − 2pσ

3 p
μ
2 ) − max(0,pσ

3 p
μ
3 )

2ε3

)− 1
2

< ∞

and also qZ can be directly obtained since

‖σ‖∞ = pσ
1 + max

(
0,pσ

2

)+ max
(
0,pσ

3

)
,

‖μ‖∞ = max
(
p

μ
1 + max

(
0,p

μ
2

)+ max
(
0,p

μ
3

)
,−p

μ
1 − min

(
0,p

μ
2

)− min
(
0,p

μ
3

))
,

‖∂aσ‖∞ = ∣∣pσ
3

∣∣, ‖∂tσ‖∞ = ∣∣pσ
2

∣∣, ‖∂aμ‖∞ = ∣∣pμ
3

∣∣, ‖∂tμ‖∞ = ∣∣pμ
2

∣∣.
8.2. Iterative procedure

To numerically approximate (8.1) we first embed the hard bounds for Z, as found above, in the system, then create a
Picard-type approximative sequence converging to (8.1) and numerically approximate the terms of said sequence. Since
we have a coupled system of FBSDEs with a truncated quadratic growth component, we combine [16] and [6].

Since X(2) is increasing and

X
(2)
1 ≤ ε−2

(
1

‖g′‖2∞
+ 2 min

{
0, inf

(θ,x)∈R+×R

(
σ · ∂aμ − 2∂aσ · μ

σ 3

)
(θ, x)

})−1

a.s. as stated in Equation (8.2), we only need a trajectory of B untill this point.
Furthermore, choose any starting value for Z between the lower and upper bounds qZ, Ẑ respectively. Here we set the

starting value Z(0) = ‖g′‖∞ since qZ ≤ ‖ 1
g′ ‖−1∞ ≤ ‖g′‖∞ ≤ Ẑ. Moreover, we define a truncation operator to incorporate

the hard bounds for Z, namely, let T :R→ R such that given qZ, Ẑ, we define T (z) := min(max(z, qZ), Ẑ). The map T is
uniformly Lipschitz.

For the other starting conditions we choose Y (0) = X(2),(0) = X(3),(0) = 0. Then we do the following iterations for
k ∈ N0:

X(2),(k+1)
s =

∫ s

0

(T (Z
(k)
r ))2

σ 2(X
(2),(k+1)
r , Y

(k)
r + X

(3),(k+1)
r )

dr
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X(3),(k+1)
s =

∫ s

0
μ
(
X(2),(k+1)

r , Y (k)
r + X(3),(k+1)

r

) (T (Z
(k)
r ))2

σ 2(X
(2),(k+1)
r , Y

(k)
r + X

(3),(k+1)
r )

dr

W(k+1)
s =

∫ s

0

σ(X
(2),(k+1)
r , Y

(k)
r + X

(3),(k+1)
r )

T (Z
(k)
r )

dB
X

(2),(k+1)
r

Y (k+1)
s = g

(
W

(k+1)
1

)− X
(3),(k+1)
1 −

∫ 1

s

σ
(
X(2),(k+1)

r , Y (k)
r + X(3),(k+1)

r

)
dB

X
(2),(k+1)
r

.

Under the conditions imposed on μ, σ (Lipschitz and bounded) and T , all the coefficient maps of the truncated FBSDE
system are Lipschitz continuous. It is currently not clear how to show that the iterative system converges to the solution
of (8.1) where one could possibly use a result similar to [6, Theorem 2.1]; this difficulty stems from the fact that the [6]
methodology does not allow for either random drift or diffusion coefficients or σ depending on Z. Note that in the limit
(k → ∞) the truncation does not affect the system as qZ ≤ Z ≤ Ẑ.

8.3. Numerical procedure (time discretization)

We introduce the time discretization π = {0 = t0, . . . , tn = 1} for n ∈ N and define |π | := maxi=0,...,n |ti+1 − ti | as the
mesh’s modulus. The numerical approximation of the iterative system, for each k ∈ N follows [7] (or [6]). We apply an
explicit Euler type approximation to the integrals and let throughout ti ∈ π \ {t0}. At first

X
(2),(k+1)
t0

= 0, X
(3),(k+1)
t0

= 0

X
(2),(k+1)
ti+1

= X
(2),(k+1)
ti

+ (ti+1 − ti )

(
T (Z

(k)
ti

)

σ (X
(2),(k+1)
ti

, Y
(k)
ti

+ X
(3),(k+1)
ti

)

)2

X
(3),(k+1)
ti+1

= X
(3),(k+1)
ti

+ (ti+1 − ti )
μ(X

(2),(k+1)
ti

, Y
(k)
ti

+ X
(3),(k+1)
ti

)(T (Z
(k)
ti

))2

σ 2(X
(2),(k+1)
ti

, Y
(k)
ti

+ X
(3),(k+1)
ti

)
,

then

W
(k+1)
t0

= 0, W
(k+1)
ti+1

= W
(k+1)
ti

+ σ(X
(2),(k+1)
ti

, Y
(k)
ti

+ X
(3),(k+1)
ti

)

T (Z
(k)
ti

)
(B

X
(2),(k+1)
ti+1

− B
X

(2),(k+1)
ti

)

and

Y
(k+1)
tn

= g
(
W

(k+1)
1

)− X
(3),(k+1)
1

Y
(k+1)
ti−1

= E
[
Y

(k+1)
ti

|Fti−1

]
Z

(k+1)
ti−1

= 1

ti − ti−1
E
[(

Y
(k+1)
ti

−E
[
Y

(k+1)
ti

|Fti−1

])
(Wti − Wti−1)|Fti−1

]
.

The time discretization expression for Z
(k+1)
ti−1

is somewhat non-standard when compared with the [7] scheme. The inner

term with the conditional expectation of Y
(k+1)
ti

is a variance reduction trick which has been discussed in several places,
e.g. [19, Section 5.4.2]; independently, the scheme’s convergence (for fixed k as h ↘ 0) follows via [7, Theorem 3.1]
yielding a convergence rate of order h1/2 (the formulation associated to [6, Theorem 2.2] would deliver the same con-
vergence). In the calculation of Z we use that

∫ 1
s

σ (X
(2)
r , Yr + X

(3)
r )dB

X
(2)
r

= ∫ 1
s

Zr dWr for all s ∈ [0,1] and hence for
small h > 0

Zt ≈ 1

h
E

[∫ t+h

t

Zr dr

∣∣∣Ft

]
= 1

h
E

[
(Yt+h − Yt )(Wt+h − Wt) −

∫ t+h

t

(
Yr − Yt + (Wr − Wt)Zr

)
dWr

∣∣∣Ft

]
= 1

h
E
[
Yt+h(Wt+h − Wt)|Ft

]
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= 1

h
E
[(

Yt+h −E[Yt+h|Ft ]
)
(Wt+h − Wt)|Ft

]
.

For the calculation of W we implicitly assume that the value of B is known for every X
(2),(k)
ti

for all k ≥ 0 and ti ∈ π .
This problem is more involved if the trajectory of B is to be calculated at the beginning of the simulation. However, it
can be eliminated by calculating the trajectory of B just in time for the points needed by the method of Brownian bridge
and storing all thereby obtained points. It is well known that the distribution of a Brownian bridge B at time t1 under the
condition of the values of B at the times t0 < t1 and t2 > t1 is

Bt1 |Bt0 ,Bt2 ∼N
(

Bt0 · t2 − t1

t2 − t0
+ Bt2 · t1 − t0

t2 − t0
,
(t2 − t1)(t1 − t0)

t2 − t0

)
,

see e.g. [17]. Thus the simulation of B at the exact points of time is straightforward as well. Lastly, the conditional expec-
tations are computed via Least-Squares regression functions as shown in [15]; we project over 3-dimensional polynomials
up to degree 2.

After finishing the simulation of the FBSDE we can use the simulated trajectory of B to simulate our process A and
apply the stopping time τ to see if Aτ has the desired distribution.

Remark 8.5. For time homogeneous coefficients μ and σ the FBSDE (1.2) simplifies to the decoupled FBSDE

X(2)
s =

∫ s

0

Z2
r

σ 2(Ȳr )
dr, Ȳs = g(W1) −

∫ 1

s

μ(Ȳr )
Z2

r

σ 2(Ȳr )
dr −

∫ 1

s

Zr dWr.

For this decoupled system one can use the same trick as above and inject in the BSDE the hard bounds on Z. Once
truncated and using the condition on μ, σ , the driver of the BSDE, say fR(y, z) = T 2(z)μ(y)/σ 2(y) using the notation
from before, is a standard uniformly Lipschitz driver in y, z for which it is known ([6,7,15]) that the Euler explicit scheme
converges to the true solution. For weak solutions (see Remark 8.2) of the SEP this explicit scheme is equivalent to the
scheme we propose here. Hence, we have a special case where the convergence of our scheme is known.

8.4. Numerical testing for Example 8.4

For the parameters α = 1, pσ = (2,0.5,2) and pμ = (1.5,−2.5,0.5) such that ν =N (0,1),

σ(t, a) = 2 + 0.5

1 + e−t
+ 2

1 + e−a
and μ(t, a) = 1.5 + −2.5

1 + e−t
+ 0.5

1 + e−a

we get ε = 2, ‖σ‖∞ = 4.5, Ẑ ≤
√

8
5 and qZ ≥ 0.111 giving 6 × 10−4 ≤ τ ≤ 0.4. A simulation with 105 paths, 20 time

steps and 50 iterations yielded values for τ in the interval [0.061;0.161] and the starting value Y0 = −0.042.

Fig. 1. On the left, Histogram of 105 samples of Aτ against the density of the N (0, α); on the right, the Histogram of the corresponding samples of τ

and at x = 0.0055 and x = 0.4 the a priori hard bounds for the stopping time.

We simulated Aτ with initial condition A0 = Y0 = −0.042. In Figure 1 one finds the histogram of the simulated
values of the Aτ (left) and the stopping time τ (right). The histogram of Aτ indicates that our algorithm generates the
sought normal distribution (with the appropriate characteristics). Also, D’Agostino and Pearson’s [8,9] test for normality,
applied to the simulated data Aτ , yielded a p-value of 0.37. Given such a high p-value we do not reject the hypothesis of
normality at any reasonable significance level.



SEP for inhomogeneous diffusions 1639

Appendix

Lemma A.1. For x ∈ R define g(x) := F−1
ν (�(x)) for Fν and � being the cumulative distribution functions of ν and

the standard normal distribution, and additionally define �0,σ (x) = �( x
σ
) for any σ > 0. If ‖g′‖∞ < ∞, then there exist

K > 0 and σ > 0 such that

• for all x < −K we have Fν(x) ≤ �0,σ (x) = �( x
σ
) and

• for all x > K we have Fν(x) ≥ �0,σ (x) = �( x
σ
).

If additionally there exists a constant c > 0 such that 0 < c ≤ g′ then there exist K > 0 and σ1, σ2 > 0 such that

• for all x > K we have �0,σ1(x) = �( x
σ1

) ≤ Fν(x) ≤ �0,σ2(x) = �( x
σ2

) and
• for all x < −K we have �0,σ2(x) = �( x

σ2
) ≤ Fν(x) ≤ �0,σ1(x) = �( x

σ1
).

Proof. Select K,σ, ε > 0 such that for all x > K we have g( x
σ
) ≤ x and for all x < −K we have g( x

σ
) − ε ≥ x, which is

possible since 0 ≤ g′ ≤ C < ∞. Then

for x > K : Fν(x) = Fν

(
σx

σ

)
≥ Fν

(
g

(
x

σ

))
= Fν

(
F−1

ν

(
�

(
x

σ

)))
≥ �

(
x

σ

)
= �0,σ (x),

for x < −K : Fν(x) = Fν

(
σx

σ

)
≤ Fν

(
g

(
x

σ

)
− ε

)
= Fν

(
F−1

ν

(
�

(
x

σ

))
− ε

)
≤ �

(
x

σ

)
= �0,σ (x).

If additionally 0 < c ≤ g′ then we can choose K2 > 0 and some σ2 > 0 such that for all x > K2 we have g( x
σ2

) − ε ≥ x

and for all x < −K2 we have g( x
σ2

) ≤ x. By an analogous argumentation as above we then obtain the remaining estimates.
Setting K as the maximum of K from above and K2 and furthermore σ1 := σ we have proved the statement. �
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