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Abstract. We consider the standard model of i.i.d. first passage percolation on Z
d given a distribution G on [0,+∞] (including

+∞). We suppose that G({0}) > 1 − pc(d), i.e., the edges of positive passage time are in the subcritical regime of percolation on
Z

d . We consider a cylinder of basis an hyperrectangle of dimension d − 1 whose sides have length n and of height h(n) with h(n)

negligible compared to n (i.e., h(n)/n → 0 when n goes to infinity). We study the maximal flow from the top to the bottom of this
cylinder. We already know that the maximal flow renormalized by nd−1 converges towards the flow constant which is null in the case
G({0}) > 1 − pc(d). The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut the top from
the bottom of the cylinder. If we denote by ψn the minimal cardinality of such a set of edges, we prove here that ψn/nd−1 converges
almost surely towards a constant.

Résumé. Considérons le modèle de percolation de premier passage i.i.d. dans Zd associé à la distribution G sur [0,+∞] (en incluant
+∞). Supposons que G({0}) > 1 − pc(d), i.e., les arêtes ayant un temps de passage strictement positif sont dans un régime sous-
critique de percolation dans Zd . Considérons un cylindre ayant pour base un hyperrectangle de dimension d − 1 de côté de longueur
n et de hauteur h(n) avec h(n) négligeable devant n (i.e., h(n)/n → 0 quand n tend vers l’infini). Nous nous intéressons à la quantité
maximale de flux pouvant circuler de haut en bas dans le cylindre. Le flux maximal renormalisé par nd−1 converge vers la constante
de flux qui est nulle dans le cas où G({0}) > 1 − pc(d). L’étude du flux maximal est équivalente à l’étude des ensembles d’arêtes de
capacité minimale séparant le haut du bas du cylindre. Notons ψn le cardinal minimal de tels ensembles d’arêtes, nous prouvons ici
que ψn/nd−1 converge presque sûrement vers une constante.
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1. Introduction

The model of first passage percolation was first introduced by Hammersley and Welsh [12] in 1965 as a model for the
spread of a fluid in a porous medium. In this model, mathematicians studied intensively geodesics, i.e., fastest paths
between two points in the grid. The study of maximal flows in first passage percolation started later in 1984 in dimension
2 with an article of Grimmett and Kesten [11]. In 1987, Kesten studied maximal flows in dimension 3 in [14]. The study
of maximal flows is associated with the study of random cutsets that can be seen as (d − 1)-dimensional surfaces. Their
study presents more technical difficulties than the study of geodesics. Thus, the interpretation of first passage percolation
in term of maximal flows has been less studied.

Let us consider a large box in Zd , to each edge we assign a random i.i.d. capacity with distribution G. We interpret
this capacity as a rate of flow, i.e., it corresponds to the maximal amount of water that can cross the edge per second.
Next, we consider two opposite sides of the box that we call top and bottom. We are interested in the maximal flow that
can cross the box from its top to its bottom per second. A first issue is to understand if the maximal flow in the box
properly renormalized converges when the size of the box grows to infinity. This question was addressed in [14,16] and
[21] where one can find laws of large numbers and large deviation estimates for this maximal flow when the dimensions
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of the box grow to infinity under some moments assumptions on the capacities. The maximal flow properly renormalized
converges towards the so-called flow constant. In [17], Rossignol and Théret proved the same results without any moment
assumption on G, they even allow the capacities to take infinite value as long as G({+∞}) < pc(d) where pc(d) denotes
the critical parameter of i.i.d. bond percolation on Z

d . We can interpret infinite capacities as a defect of the medium,
i.e., there are some edges where the capacities are of bigger order. Moreover, the two authors have shown that the flow
constant is continuous with regard to the distribution of the capacities.

The flow constant is associated with the study of surfaces with minimal capacity. These surfaces must disconnect the
top from the bottom of the box in a sense we will precise later. We want to know if the minimal size of these surfaces of
minimal capacity grows at the same order as the size of the bottom of the box. When G({0}) < 1 − pc(d), Zhang proved
in [21], under an exponential moment condition, that there exists a constant such that the probability that all the surfaces
of minimal capacity are bigger than this constant times the size of the bottom of the cylinder, decays exponentially fast
when the size of the box grows to infinity. The main result of this paper is that under the assumption G({0}) > 1 − pc(d),
the minimal size of a surface of minimal capacity divided by the size of the bottom of the cylinder converges towards a
constant when the size of the box grows to infinity.

The rest of the paper is organized as follows. In Section 2, we give all the necessary definitions and background, we
state our main theorem and give the main ideas of the proof. In Section 3, we define an alternative flow which is more
adapted for using subadditive arguments. The proof is made of three steps that correspond to Sections 4, 5 and 6.

2. Definition, background and main results

2.1. Definition of maximal flows and minimal cutsets

We keep many notations used in [17]. We consider the graph (Zd,Ed) where Ed is the set of edges that link all the nearest
neighbors for the Euclidean norm in Z

d . We consider a distribution G on [0,+∞]. To each edge e in E
d we assign a

random variable tG(e) with distribution G. The variable tG(e) is called the capacity (or the passage time) of e. The family
(tG(e))e∈Ed is independent.

Let � = (V�,E�) be a finite subgraph of (Zd ,Ed). We can see � as a piece of rock through which water can flow.
Let G1 and G2 be two disjoint subsets of V� representing respectively the sources through which the water can enter and
the sinks through which the water can exit.

Let the function
−→
f : Ed → R

d be a possible stream inside � between G1 and G2. For all e ∈ E
d , ‖−→f (e)‖2 represents

the amount of water that flows through e per second and
−→
f (e)/‖−→f (e)‖2 represents the direction in which the water flows

through e. If we write e = 〈x, y〉 where x, y are neighbors in the graph (Zd ,Ed), then the unit vector
−→
f (e)/‖−→f (e)‖2 is

either the vector −→
xy or −→

yx. We say that our stream
−→
f inside � from G1 to G2 is G-admissible if and only if it satisfies

the following constraints.

• The node law: for every vertex x in V� \ (G1 ∪G2), we have∑
y∈Zd :e=〈x,y〉∈E�

∥∥−→f (e)
∥∥

2(1 −→
f (e)

‖−→f (e)‖2
=−→

xy
− 1 −→

f (e)

‖−→f (e)‖2
=−→

yx
) = 0,

i.e., there is no loss of fluid inside �.
• The capacity constraint: for every edge e in E�, we have

0 ≤ ∥∥−→f (e)
∥∥

2 ≤ tG(e),

i.e., the amount of water that flows through e per second is limited by its capacity tG(e).

Note that as the capacities are random, the set of G-admissible streams inside � between G1 and G2 is also random.
For each G-admissible stream

−→
f , we define its flow by

flow(
−→
f ) =

∑
x∈G1

∑
y∈Zd :e=〈x,y〉∈E�

∥∥−→f (e)
∥∥

2(1 −→
f (e)

‖−→f (e)‖2
=−→

xy
− 1 −→

f (e)

‖−→f (e)‖2
=−→

yx
).

This corresponds to the amount of water that enters in � through G1 per second. By the node law, as there is no loss of
fluid, flow(

−→
f ) is also equal to the amount of water that escapes from � through G2 per second:

flow(
−→
f ) =

∑
x∈G2

∑
y∈Zd :e=〈x,y〉∈E�

∥∥−→f (e)
∥∥

2(1 −→
f (e)

‖−→f (e)‖2
=−→

yx
− 1 −→

f (e)

‖−→f (e)‖2
=−→

xy
).
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The maximal flow from G1 to G2 in � for the capacities (tG(e))e∈Ed , denoted by φG(G1 →G2 in �), is the supremum
of the flows of all admissible streams through �:

φG(G1 → G2 in �) = sup

{
flow(

−→
f ) :

−→
f is a G-admissible stream inside

� between G1 and G2

}
.

Dealing with admissible streams is not so easy, but hopefully we can use an alternative definition of maximal flow
which is more convenient. Let E ⊂ E� be a set of edges. We say that E cuts G1 from G2 in � (or is a cutset, for short)
if there is no path from G1 to G2 in (V�,E� \ E). More precisely, let γ be a path from G1 to G2 in �, we can write
γ as a finite sequence (v0, e1, v1, . . . , en, vn) of vertices (vi)i=0,...,n ∈ V n+1

� and edges (ei)i=1,...,n ∈ En
� where v0 ∈ G1,

vn ∈ G2 and for any 1 ≤ i ≤ n, ei = 〈vi−1, vi〉 ∈ E�. Then, E cuts G1 from G2 in � if for any path γ from G1 to G2 in
�, we have γ ∩ E �=∅. Note that γ can be seen as a set of edges or a set of vertices and we define |γ | = n. We associate
with any set of edges E its capacity TG(E) defined by

TG(E) =
∑
e∈E

tG(e).

The max-flow min-cut theorem, see [1], a result of graph theory, states that

φG(G1 → G2 in �) = min
{
TG(E) : E cuts G1 from G2 in �

}
.

The idea behind this theorem is quite intuitive. When we consider a maximal flow through �, some of the edges are
jammed. We say that e is jammed if the amount of water that flows through e is equal to the capacity tG(e). These
jammed edges form a cutset, otherwise we would be able to find a path γ from G1 to G2 of non-jammed edges, and we
could increase the amount of water that flows through γ which contradicts the fact that the flow is maximal. Thus, the
flow is always smaller than the capacity of any cutset. It can be proved that the maximal flow is equal to the minimal
capacity of a cutset.

In [14], Kesten interpreted the study of maximal flow as a higher dimensional version of the classical problem of first
passage percolation which is the study of geodesics. A geodesic may be considered as an object of dimension 1, it is
a path with minimal passage time. On the contrary, the maximal flow is associated (via the max-flow min-cut theorem)
with cutsets of minimal capacity: those cutsets are objects of dimension d − 1, that can be seen as surfaces. To better
understand the interpretation in term of surfaces, we can associate with each edge e a small plaquette e∗. The plaquette
e∗ is an hypersquare of dimension d − 1 whose sides have length one and are parallel to the edges of the graphs, such that
e∗ is normal to e and cuts it in its middle. We associate with the plaquette e∗ the same capacity tG(e) as with the edge e.
We also define the dual of a set of edge E by E∗ = {e∗, e ∈ E}. Roughly speaking, if the set of edges E cuts G1 from G2
in �, the surface of plaquettes E∗ disconnects G1 from G2 in �. Although this interpretation in terms of surfaces seems
more intuitive than cutsets, it is really technical to handle, and we will never use it and not even try to give a rigorous
definition of a surface of plaquettes. Note that, in dimension 2, a surface of plaquettes is very similar to a path in the dual
graph of Z2 and thus the study of minimal cutsets is very similar to the study of geodesics.

We consider now two specific maximal flows through a cylinder for first passage percolation on Z
d where the law

of capacities is given by a distribution G such as G([−∞,0)) = 0 and G({0}) > 1 − pc(d), i.e., the edges of positive
capacity are in the sub-critical regime of percolation on Z

d . We are interested in the study of cutsets in a cylinder. Among
all the minimal cutsets, we are interested with the ones with minimal size. Let us first define the maximal flow from the
top to the bottom of a cylinder. Let A be a non-degenerate hyperrectangle, i.e., a rectangle of dimension d − 1 in R

d .
We denote by Hd−1 the Hausdorff measure in dimension d − 1: for A =∏d−1

i=1 [ki, li] × {c} with ki < li , c ∈ R we have
Hd−1(A) =∏d−1

i=1 (li − ki). Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote by cyl(A,h) the
cylinder of basis A and height h defined by

cyl(A,h) = {
x + t−→v : x ∈ A, t ∈ [0, h]}.

We denote by ∂A the relative boundary of A. We define cyl(∂A,h) as

cyl(∂A,h) = {
x + t−→v : x ∈ ∂A, t ∈ [0, h]}.

The dependence on −→v is implicit in the notation cyl(A,h) and cyl(∂A,h). We have to define discretized versions of the
bottom B(A,h) and the top T (A,h) of the cylinder cyl(A,h). We define them by

B(A,h) :=
{
x ∈ Z

d ∩ cyl(A,h) : ∃y /∈ cyl(A,h), 〈x, y〉 ∈ E
d

and 〈x, y〉 intersects A

}
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and

T (A,h) :=
{
x ∈ Z

d ∩ cyl(A,h) : ∃y /∈ cyl(A,h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A + h−→v
}

.

We denote by �G(A,h) the maximal flow from the top to the bottom of the cylinder cyl(A,h) in the direction −→v ,
defined by

�G(A,h) = φG

(
T (A,h) → B(A,h) in cyl(A,h)

)
.

This definition of the flow is not well suited to use ergodic subadditive theorems, because we cannot glue two cutsets
from the top to the bottom of two adjacent cylinders together to build a cutset from the top to the bottom of the union of
these two cylinders. Indeed, the intersection of these two cutsets with the adjacent face will very likely not coincide. We
can fix this issue by introducing another flow through the cylinder for which the subadditivity would be recover. To define
this flow, we will first define another version of the cylinder which is more convenient. We define the cylinder cyl′(A,h)

by

cyl′(A,h) = {
x + t−→v : x ∈ A, t ∈ [−h,h]}.

The set cyl′(A,h) \A has two connected components denoted by C1(A,h) and C2(A,h). We have to define a discretized
version of the boundaries of these two sets. For i = 1,2, we denote by C′

i (A,h) the discrete boundary of Ci(A,h) defined
by

C′
i (A,h) = {

x ∈ Z
d ∩ Ci(A,h) : ∃y /∈ cyl′(A,h), 〈x, y〉 ∈ E

d
}
.

We call informally C′
i (A,h), i = 1,2, the upper and lower half part of the boundary of cyl′(A,h). We denote by τG(A,h)

the maximal flow from the upper half part to the lower half part of the boundary of the cylinder, i.e.,

τG(A,h) = φG

(
C′

1(A,h) → C′
2(A,h) in cyl′(A,h)

)
.

By the max-flow min-cut theorem, the flow τG(A,h) is equal to the minimal capacity of a set of edges E that cuts
C′

1(A,h) from C′
2(A,h) inside the cylinder cyl′(A,h). If we consider the dual set E∗ of E, the intersection of E∗ with

the boundary of the cylinder has to be close to the relative boundary ∂A of the hyperrectangle A.

Remark 1. Note that here we will work only with the cylinder cyl(A,h) whereas the authors of [17] work mainly with
the cylinder cyl′(A,h).

2.2. Background on maximal flows

The simplest case to study maximal flows is for a straight cylinder, i.e., when −→v = −→v0 := (0,0, . . . ,1) and A =
A(

−→
k ,

−→
l ) = ∏d−1

i=1 [ki, li] × {0} with ki ≤ 0 < li ∈ Z. In this case, the family of variables (τG(A(
−→
k ,

−→
l ), h))−→

k ,
−→
l

is
subadditive since minimal cutsets in adjacent cylinders can be glued together along the common side of these cylinders.
By applying ergodic subadditive theorems in the multi-parameter case (see Krengel and Pyke [15] and Smythe [18]), we
obtain the following result.

Proposition 2. Let G be an integrable probability measure on [0,+∞[, i.e.,
∫ +∞

0 x dG(x) < ∞. Let A =∏d−1
i=1 [ki, li]×

{0} with ki ≤ 0 < li ∈ Z. Let h : N → R
+ such that limn→∞ h(n) = +∞. Then there exists a constant νG(−→v0 ), that does

not depend on A and h but depends on G and d , such that

lim
n→∞

τG(nA,h(n))

Hd−1(nA)
= νG(−→v0 ) a.s. and in L1.

The constant νG(−→v0 ) is called the flow constant. Next, a natural question to ask is whether we can define a flow constant
for any direction. When we consider tilted cylinders, we cannot recover perfect subadditivity because of the discretization
of the boundary. Moreover, the use of ergodic subadditive theorems is not possible when the direction −→v we consider is
not rational, i.e., when there does not exist an integer M such that M−→v has integer coordinates. Indeed, in that case there
exists no vector −→

u normal to −→v such that the model is invariant under the translation of vector −→
u . These issues were

overcome by Rossignol and Théret in [16] where they proved the following law of large numbers.
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Theorem 3. Let G be an integrable probability measure on [0,+∞[, i.e.,
∫ +∞

0 x dG(x) < ∞. For any −→v ∈ S
d−1, there

exists a constant νG(−→v ) ∈ [0,+∞[ such that for any non-degenerate hyperrectangle A normal to −→v , for any function
h :N→ R

+ such that limn→∞ h(n) = +∞, we have

lim
n→∞

τG(nA,h(n))

Hd−1(nA)
= νG(−→v ) in L1.

If moreover the origin of the graph belongs to A, or if
∫ +∞

0 x1+1/(d−1) dG(x) < ∞, then

lim
n→∞

τG(nA,h(n))

Hd−1(nA)
= νG(−→v ) a.s.

If the cylinder is flat, i.e., if limn→∞ h(n)/n = 0, then the same convergence also holds for �G(nA,h(n)).
Moreover, either νG(−→v ) is null for all −→v ∈ S

d−1 or νG(−→v ) > 0 for all −→v ∈ S
d−1.

In [20], Zhang found a necessary and sufficient condition on G under which νG(−→v ) is positive. He proved the follow-
ing result.

Theorem 4. Let G be an integrable probability measure on [0,+∞[. Then, νG(−→v ) > 0 if and only if G({0}) < 1−pc(d).

Let us give an intuition of this result. If τG(nA,h(n)) > 0, then there exists a path in cyl′(nA,h(n)) from the upper
to the lower half part of its boundary such that all its edges have positive capacity. Indeed, if there does not exist such a
path, there exists a cutset of null capacity and it contradicts τG(nA,h(n)) > 0. Thus, the fact that νG(−→v ) > 0 is linked
with the fact that the edges of positive capacity percolate, i.e., G({0}) < 1 − pc(d). The main difficult part of this result
is to study the critical case, i.e., G({0}) = 1 − pc(d).

In [17], Rossignol and Théret extended the previous results without any moment condition on G, they even allow G

to have an atom in +∞ as long as G({+∞}) < pc(d). They proved the following law of large numbers for the maximal
flow from the top to the bottom of flat cylinders.

Theorem 5. For any probability measure G on [0,+∞] such that G({+∞}) < pc(d), for any −→v ∈ S
d−1, there exists

a constant νG(−→v ) ∈ [0,+∞[ such that for any non-degenerate hyperrectangle A normal to −→v , for any function h such
that h(n)/ logn → ∞ and h(n)/n → 0 when n goes to infinity, we have

lim
n→∞

�G(nA,h(n))

Hd−1(nA)
= νG(−→v ) a.s.

Moreover, for every −→v ∈ S
d−1,

νG(−→v ) > 0 ⇐⇒ G
({0})< 1 − pc(d).

Remark 6. Note that if G({0}) > 1 − pc(d), then G({+∞}) < pc(d) and the flow constant is well defined according to
Theorem 5.

In [14], Kesten proved a result similar to Proposition 2 for the rescaled maximal flow in a straight cylinder
�G(nA,h(n))/Hd−1(nA). He worked in dimension 3 and considered the more general case where the lengths of the
sides of the cylinder go to infinity but at different speeds in every direction, under the technical assumption that G({0})
is smaller than some small constant. He worked with dual sets, and he had to define properly the notion of surface. He
had to deal with the fact that the flow �G is not subadditive. His work was very technical and cannot be easily adapted to
tilted cylinders because the arguments crucially depend on some symmetries of the model for straight cylinders. Zhang
extended Kesten’s result in higher dimensions and without any hypothesis on G({0}) in [21]. The asymptotic behavior
of maximal flows �G(nA,h(n)) through tilted and non-flat cylinders was studied by Cerf and Théret in [4–7]. In those
papers, they even considered maximal flow through more general domains than cylinders.

The results we have gathered here concerning maximal flows are the analogues of known results for the time constant
in the study of geodesics in first passage percolation (see for instance Kesten’s lecture note [13]). We summarize here a
few of them. In this paragraph, we interpret the random variable tG(e) as the time needed to cross the edge e. The passage
time TG(γ ) of a path γ corresponds to the time needed to cross all its edges, i.e., TG(γ ) =∑

e∈γ tG(e), and a geodesic

between two points x and y of Zd is a path that achieves the following infimum:

TG(x, y) = inf
{
TG(γ ) : γ is a path from x to y

}
.
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As the time needed to cross the edges are random, a geodesic is a random path. Under some moment conditions, for all
x ∈ Z

d , TG(0, nx)/n converges a.s. to a time constant μG(x). The time constant μG is either identically null or can be
extended by homogeneity and continuity into a norm on Rd . Kesten investigated the positivity of μG and obtained that
μG > 0 if and only if G({0}) < pc(d), see Theorem 1.15 in [13]. Intuitively if the edges of null passage time percolate,
there exists an infinite cluster C made of edges of null passage time. A geodesic from 0 to nx tries to reach the infinite
cluster C as fast as possible, then travels in the cluster C at infinite speed and exits the cluster at the last moment to go to
nx. Under some good moment assumptions, the time needed to go from 0 to C and from C to nx is negligible compared
to n. We can show in this case that μG(x) = 0.

2.3. Background on the minimal length of a geodesic and the minimal size of a minimal cutset

Let us first present the background on the minimal length of a geodesic. We denote by NG(x, y) the minimal length of a
geodesic between x and y:

NG(x, y) = inf
{|γ | : γ is a geodesic between x and y

}
.

One can ask how does NG(0, nx) grow when n goes to infinity. If G({0}) > pc(d), it is expected to grow at speed n. This
result was first proved by Zhang and Zhang in dimension 2 in [22].

Theorem 7. Let d = 2 and let G be a distribution on [0,+∞[ such that G({0}) > 1/2. We have

lim
n→∞

NG((0,0), (0, n))

n
= λG({0}) a.s. and in L1

where λG({0}) depends only on G({0}).
Zhang later extended this result to all dimensions under the condition that G({0}) > pc(d) in [19].

Remark 8. These works can be extended to all directions. To extend it to rational directions we can use a subaddi-
tive ergodic theorem and instead of considering the points 0 and nx, it is more convenient to consider their regular-
ized version 0̃ and ñx, i.e., their projection on the infinite cluster of null passage time (see [8]). We can show that
limn→∞ NG(0, nx)/n = limn→∞ NG(̃0, ñx)/n. By continuity, we can also extend it to irrational directions.

When G({0}) < pc(d), the question of the convergence of NG(0, nx)/n is still open. However, we know that with
high probability NG(0, nx) is of order n. This result is due to Kesten. As a corollary of Proposition (5.8) in [13], we have

Theorem 9. Let G be a distribution on [0,+∞[ such that G({0}) < pc(d). There exist positive constants C1, C2 and λ

depending on G such that for all n ≥ 0,

P

(
There exists a path r starting from 0

such that |r| ≥ n and TG(r) < λn

)
≤ C1 exp(C2n).

If G admits an exponential moment, we can get an exponential control on the probability

P
(
TG(0, nx) > Cn

)
for a large enough C depending on G and so we obtain that there exist positive real numbers A and B such that for every
x ∈ Z

d ,

P

(
NG(0, nx) ≥ C

λ
n‖x‖

)
≤ A exp

(−Bn‖x‖).
When G({0} = pc(d), NG(0, nx) is expected to grow super linearly in n. However, this critical case is much more

difficult to study, and results have been obtained only for d = 2 (see for instance Damron and Tang’s paper [9]).
We now come back to the study of minimal cutsets. By the max-flow min-cut theorem, we know that �G(A,h) is

equal to the minimal capacity of cutsets that cut the top from the bottom of cyl(A,h). Among all the cutsets of minimal
capacity we are interested in the ones with the minimal cardinality:

ψG(A,h,−→v ) := inf

{
carde(E) : E cuts the top from the bottom of

cyl(A,h) and E has capacity �G(A,h)

}
where carde(E) denotes the number of edges in the edge set E. The quantity ψG is the analog of NG in this context.
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The study of the quantity ψG(A,h,−→v ) was initiated by Kesten in [14] in dimension 3 for straight boxes and
distributions G such that G({0}) < p0 where p0 is a small constant. Let k, l,m ∈ N, we define the straight box
B(k, l,m) = [0, k] × [0, l] × [0, k].

Theorem 10. Let k, l,m ∈ N. There exists a p0 > 1/27 such that for all distributions G on [0,+∞[ such that G({0}) <

p0, there exist constants θ , C1 and C2 depending on G such that for all n ≥ 0,

P

⎛⎝ there exists a dual set E∗ of at least n plaquettes that cuts
the top from the bottom of the box B(k, l,m), which

contains the point (− 1
2 ,− 1

2 , 1
2 ) and such that TG(E∗) ≤ θn

⎞⎠≤ C1e
−C2n.

Zhang in [21] extended this result in all dimensions and for distributions G such that G({0}) < 1 − pc(d) and with an
exponential moment. He obtained the following result.

Theorem 11. Let G be a distribution on [0,+∞[ such that for some η > 0,
∫ +∞

0 exp(ηx)dG(x) < ∞ and G({0}) <

1 − pc(d). Let k1, . . . , kd−1 ∈ N and h with logh ≤ k1 · · ·kd−1. Let A =∏d−1
i=1 [0, ki] × {0}. There exist constants β ≥ 1

depending on G and d , C1 and C2 depending on G, d and β such that for all λ > βHd−1(A),

P
(
ψG(A,h,−→v ) > λ

)≤ C1 exp(−C2λ).

Roughly speaking, his proof strategy is the following. If ψG(A,h−→v ) is large, he can slightly modify the configuration
to create blocking surfaces, i.e., large surfaces of edges of null capacities. This is very unlikely when G({0}) < 1 − pc(d)

as edges of positive capacities percolate: it is indeed unlikely to obtain two adjacent big clusters of edges of positive
capacity that are not connected because of this blocking surface. This proof relies crucially on the hypothesis G({0}) <

1−pc(d) and cannot be adapted to the case G({0}) > 1−pc(d). Moreover, this proof does not able to prove the existence
of the limit of ψG properly renormalized when the dimension of the cylinder goes to infinity.

The aim of this article is to understand the behavior of ψG(A,h,−→v ) in the supercritical case, that is G({0}) > 1−pc(d)

(the critical case G({0}) = 1 − pc(d) is expected to be much more delicate to study as it is for NG).

2.4. Main result and idea of the proof

In what follows, if a function h : N → R+ satisfies h(n)/ logn → ∞ and h(n)/n → 0 when n goes to infinity, we say
that h satisfies condition (�). The main result of this paper is the following.

Theorem 12. Let d ≥ 2. Let G be a probability measure on [0,+∞] such that G({0}) > 1 − pc(d). Let −→v ∈ S
d−1.

There exists a finite constant ζG({0})(−→v ) such that for all function h satisfying condition (�), for all non-degenerate
hyperrectangle A normal to −→v ,

lim
n→∞

ψG(nA,h(n),−→v )

Hd−1(nA)
= ζG({0})(−→v ) a.s.

The constant ζG({0})(−→v ) depends only the direction −→v , G({0}) and d and not on A itself nor h.

To prove Theorem 12, we need to introduce an alternative flow in Section 3 that is inspired from [17]. There are two
issues: we need to study cutsets that may be merged together into a cutset and that have null capacity. Although the
cutsets corresponding to the flow τ in adjacent cylinders may be glued together easily, these cutsets do not have null
capacity in general: the union of two cutsets of minimal capacity is a cutset but does not have minimal capacity. The flow
τ is subadditive but not the minimal cardinality of the minimal corresponding cutsets. The alternative flow we build in
Section 3 is such that the maximal flow is always null and if we merge two adjacent cutsets for this flow it is still a cutset.
The aim is to work only with cutsets of null capacity so when we merge two cutsets together the union has null capacity
and is therefore of minimal capacity.

Let χG be the minimal cardinality of a minimal cutset for the alternative flow we will define in Section 3. First, we
show the convergence for the expected value of χG, properly renormalized, by using subadditive arguments in Section 4.
The proof enables us to say that the limit does not depend on h nor on A. Next, we prove that the alternative flow we have
defined is actually very similar to the flow through the cylinder. We prove in Section 5 that the limit obtained in Section 4
is equal to the limit of the renormalized expected value of ψG. In Section 6, we use a concentration inequality on ψG to
show that this random variable is close to its expectation and thus we prove Theorem 12.
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2.5. More notations and useful results

For z = (z1, . . . , zd) ∈ R
d , we define the Euclidian distance ‖z‖2 of z by

‖z‖2 =
√√√√ d∑

i=1

z2
i .

For r > 0, we define the r-neighborhood V(H, r) of a subset H of Rd by

V(H, r) = {
x ∈ R

d, d(x,H) < r
}

where

d(x,H) = inf
{‖x − y‖2, y ∈ H

}
.

For any vertex set C ⊂ Z
d , we define its diameter Diam(C) by

Diam(C) = sup
{‖x − y‖2 : x, y ∈ C

}
,

its cardinality cardv(C) by the number of vertices in C, and its exterior edge boundary ∂eC by

∂eC = {〈x, y〉 ∈ E
d : x ∈ C, y /∈ C and there exists a path from y to infinity in Z

d \ C}.
The notation 〈x, y〉 corresponds to the edge of endpoints x and y. We recall that for any edge set E ⊂ Ed , carde(E) denotes
the number of edges in E. There exits a constant cd such that for any finite connected set C of vertices, carde(∂eC) ≤
cd cardv(C). Note that when there is no ambiguity we will denote by |E| the cardinality of the set E. We define the exterior
ext(E) of a set of edges E:

ext(E) = {
x ∈ Z

d : there exists a path from x to infinity in E
d \ E

}
.

Let x ∈ Z
d , we denote by CG,0(x) the connected component of x in the percolation (1tG(e)>0)e∈Ed , which can be seen

as an edge set and as a vertex set. The following theorem is a classical result on percolation that enables us to control the
probability that an open cluster CG,0(x) is big in the subcritical regime, i.e., when P(tG(e) > 0) < pc(d) (see for instance
Theorem (6.1) and (6.75) in [10]).

Theorem 13. Let us assume G({0}) > 1 − pc(d). There exist two positive constants κ1 and κ2 depending only on G({0})
such that for all x ∈ Z

d , n ∈N,

P
(
cardv

(
CG,0(x)

)
> n

)≤ κ1 exp(−κ2n). (1)

2.6. Concentration inequality

We introduce here notations and a concentration result that will be useful in Section 6. The following concentration
result is a generalization of Efron–Stein inequality for higher moments. Let X = (X1, . . . ,Xn) be a vector of independent
random variables taking values in a set X and f : X n → R be a measurable function. Let Z = f (X). Let X′

1, . . . ,X
′
n be

independent copies of X1, . . . ,Xn. We introduce the random variable V − as

V − =
n∑

i=1

E
[(

Z − Z′
i

)2
−|X]

where Z′
i = f (X1, . . . ,X

′
i , . . . ,Xn) and for any real number t , t+ = max(0, t) and t− = max(0,−t). We have the fol-

lowing result by taking q = 4 in Theorem 15.5 and Theorem 15.7 (and also by replacing Z by −Z in Theorem 15.7) in
[2].

Theorem 14. There exists a positive constant C such that

E
[
(Z −EZ)4−

]≤ CE
[(

V −)2].
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Moreover, suppose that for every i ∈ {1, . . . , n}, (Z − Z′
i )− ≤ M for a random variable M . Then, we have

E
[
(Z −EZ)4+

]≤ C max
(
E
[(

V −)2],E[M4]).
3. Definition of an alternative flow

Instead of directly considering a smallest minimal cutset for the cylinder, we are going to study a different object which
is more convenient for our purpose.

Let −→v ∈ S
d−1, and let A be any non-degenerate hyperrectangle normal to −→v . We denote by hyp(A) the hyperplane

spanned by A defined by

hyp(A) = {x + −→w : x ∈ A,−→w · −→v = 0}
where · denotes the usual scalar product on R

d . For any h > 0, we denote by slab(A,h,−→v ) (resp. slab(A,∞,−→v )) the
slab of basis the hyperplane spanned by A and of height h (resp. of infinite height), i.e., the subset of Rd defined by

slab(A,h,−→v ) = {
x + r−→v : x ∈ hyp(A), r ∈ [0, h]}

(resp. slab(A,∞,−→v ) = {x + r−→v : x ∈ hyp(A), r ≥ 0}). We are going to consider a thicker version of A, namely
cyl(A,d), that we will denote by Ā for short. Let W(A,h,−→v ) be the following set of vertices in Z

d , which is a dis-
cretized version of hyp(A + h−→v ):

W(A,h,−→v ) :=
{

x ∈ Z
d ∩ slab(A,h,−→v ) :

∃y ∈ Z
d ∩ (slab(A,∞,−→v ) \ slab(A,h,−→v )), 〈x, y〉 ∈ E

d

}
.

We say that a path γ = (x0, e1, x1, . . . , en, xn) goes from Ā to hyp(A + h−→v ) in slab(A,h,−→v ) if:

• ∀i ∈ {0, . . . , n}, xi ∈ slab(A,h,−→v )

• x0 ∈ Ā

• xn ∈ W(A,h,−→v ).

We say that a set of edges E cuts Ā from hyp(A + h−→v ) in slab(A,h,−→v ) if E contains at least one edge of any path
γ that goes from Ā to hyp(A + h−→v ) in slab(A,h,−→v ), see Figure 1.

If all the clusters CG,0(x) for x ∈ Ā have a diameter less than h/2, then there exists a set of edges that cuts Ā from
hyp(A + h−→v ) in slab(A,h,−→v ) of null capacity (take for instance the intersection of the set

⋃
x∈Ā∩Zd ∂eCG,0(x) with

slab(A,h,−→v )). Working with cutsets of null capacity is interesting because the union of two cutsets of null capacity is
of null capacity and therefore achieves the minimal capacity among all cutsets. This is not the case if one of them has
positive capacity. Thus instead of considering a deterministic h, we are going to consider a random height HG,h(A) as

HG,h(A) = inf

{
t ≥ h :

( ⋃
x∈cyl(A,h/2)∩Zd

CG,0(x)

)
∩ W(A, t,−→v ) =∅

}
.

The definition of HG,h(A) ensures the existence of a null cutset between Ā and hyp(A + HG,h(A)−→v ) for h ≥ 2d .

Fig. 1. Dual of a set of edges that cuts A from hyp(A + h−→v ) in slab(A,h,−→v ).
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Lemma 15. Let G be a distribution on [0,+∞] such that G({0}) > 1−pc(d). Let −→v ∈ S
d−1. Let A be a non-degenerate

hyperrectangle normal to −→v and h > 2d a positive real number. The set

E =
⋃

x∈Ā∩Zd

∂eCG,0(x)

cuts Ā from hyp(A + HG,h(A)−→v ) in slab(A,HG,h(A),−→v ) and has null capacity.

Proof. Let −→v ∈ S
d−1, let A be a non-degenerate hyperrectangle and h > 2d . Let γ be a path from x ∈ Ā

to y ∈ W(A,HG,h(A),−→v ) in slab(A,HG,h(A),−→v ). By definition of HG,h(A), we have W(A,HG,h(A),−→v ) ∩
(
⋃

z∈Ā CG,0(z)) = ∅, thus y ∈ ext(∂eCG,0(x)) and γ must contain an edge in ∂eCG,0(x). We conclude that E is in-
deed a cutset between Ā and hyp(A + HG,h(A)−→v ) in slab(A,HG,h(A),−→v ). As all edges in the exterior edge boundary
of a CG,0(x) have null capacity, the set E is a cutset of null capacity. �

Remark 16. This definition of HG,h(A) may seem complicated, but the idea behind is simple. The aim was initially to
build a random height HG,h(A) in such a way the minimal cutset between A and hyp(A + HG,h(A)−→v ) has null capacity.
This idea finds its inspiration from the construction of the subadditive object in Section 4 in [17]. However, because of
technical issues that appear in the Section 4, we could not choose HG,h(A) as the smallest height such that there exists
a cutset of null capacity between A and hyp(A + HG,h(A)−→v ). The definition of HG,h(A) needs to also depend on the
finite clusters CG,0(z) of z ∈ cyl(A,h/2).

For the rest of this section, we will work with cutsets of null capacity and we do not need to check if cutsets have
minimal capacity. Among all the cutsets that achieve the minimal capacity, we are interested in the ones with the smallest
size. We denote by χG(A,h,−→v ) the following quantity:

χG(A,h,−→v ) = inf

{
carde(E) : E cuts Ā from hyp(A + HG,h(A)−→v )

in slab(A,HG,h(A),−→v ) and TG(E) = 0

}
. (2)

Remark 17. Because of another technical difficulty that appears in Section 4 we choose to make appear Ā instead of A

in the definition of χG(A,h,−→v ). We need the cutset not to be to close from A in the proof of Proposition 18, taking Ā

instead of A prevents this situation from happening.

As a corollary of Lemma 15, we know that χG(A,h,−→v ) is finite. Let E =⋃
x∈Ā∩Zd ∂eCG,0(x). We have the following

control

χG(A,h,−→v ) ≤ carde(E) ≤
∑

x∈Ā∩Zd

carde

(
∂eCG,0(x)

)≤
∑

x∈Ā∩Zd

cd cardv

(
CG,0(x)

)
. (3)

Thanks to Theorem 13, as G({0}) > 1 − pc(d), almost surely for all x ∈ Z
d , the cluster CG,0(x) is finite thus

χG(A,h,−→v ) ≤∑
x∈Ā∩Zd cd cardv(CG,0(x)) < +∞ a.s.

We expect χG(A,h,−→v ) to grow at order Hd−1(A) when the side lengths of A go to infinity. We aim first to prove that
limn→∞ E(χG(nA,h(n),−→v ))/Hd−1(nA) exists, is finite and does not depend on A nor on h but only on −→v and G({0}).

4. Subadditive argument

In this section, we prove the convergence of E(χG(nA,h(n),−→v ))/Hd−1(nA), see Proposition 18 below. This proof relies
on subadditive arguments. However, we do not use a subadditive ergodic theorem for two reasons: we want to study this
convergence for all directions (included irrational ones) and all hyperrectangles, and we aim to show that the limit does
not depend on the hyperrectangle A nor on the height function h.

Proposition 18. Let G be a distribution on [0,+∞] such that G({0}) > 1 − pc(d). For every function h satisfying
condition (�), for every −→v ∈ S

d−1, for every non-degenerate hyperrectangle A normal to −→v , the limit

ζG({0})(−→v ) := lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)

exists and is finite. It depends only the direction −→v , on G({0}) and on d but not on A itself nor h.
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Fig. 2. Decomposition of NA in translates of nA′ .

The proof of this proposition is inspired by the proof of Proposition 3.5. in [16]. This idea was already present in [3].
In fact we mimic the beginning (i.e., the easy part) of the proof of the subadditive ergodic theorem.

Proof. Let −→v ∈ S
d−1. Let us consider two non-degenerate hyperrectangles A and A′ which are both orthogonal to the unit

vector −→v , and two height functions h,h′ : N → R
+ that respect condition (�). As limn→∞ h(n) = limn→∞ h′(n) = ∞,

if we take n ∈ N, there exists an N0(n) such that for all N ≥ N0(n), we have h(N) ≥ h′(n) + 2d + 1 and N Diam(A) >

nDiam(A′). Our goal is to cover the biggest hyperrectangle NA by translates of nA′. We do not want to cover the whole
hyperrectangle NA but at least the following subset of NA:

D(n,N) := {
x ∈ NA|d(x, ∂(NA)

)
> 2nDiamA′},

where ∂(NA) denotes the relative boundary of NA.
There exists a finite collection of hyperrectangles (T (i))i∈I such that T (i) is a translate of nA′, each T (i) intersects

D(n,N), the collection (T (i))i∈I have pairwise disjoint interiors, and their union
⋃

i∈I T (i) contains the set D(n,N)

(see Figure 2). By definition of D(n,N), we also have that the union
⋃

i∈I T (i) is contained in NA.
The quantities E(χG(T (i), h′(n),−→v )) and E(χG(nA′, h′(n),−→v )) are not necessarily equal. Indeed, T (i) is the trans-

late of nA′ by a non-integer vector in general. Thus, instead of considering T (i), let us consider T ′(i) which is the image
of nA′ by an integer translation, and T ′(i) is the translated of T (i) by a small vector. We want to choose T ′(i) such that
T ′(i) ⊂ slab(NA,h,−→v ). More precisely, for all i ∈ I , there exist two vectors −→

ti ∈ R
d and −→

ti
′ ∈ Z

d such that

‖−→ti ‖∞ < 1,
−→
ti · −→v ≥ 0, T ′(i) = T (i) + −→

ti and T ′(i) = nA′ + −→
ti

′.

As for all i ∈ I , −→
ti · −→v <

√
d , the union

⋃
i∈I T ′(i) is contained in slab(NA,d,−→v ) (see Figure 3). Since for all i ∈ I ,

T ′(i) ∈ slab(NA,d,−→v ) and h′(n) + 2d < h(N), then we have

cyl
(
T ′(i), h′(n)/2

)⊂ cyl
(
NA,h(N)/2

)
,

and by definition of the random height

slab
(
T ′(i),HG,h′(n)

(
T ′(i)

)
,−→v )⊂ slab

(
NA,HG,h(N)(NA),−→v ).

The family (χG(T ′(i), h′(n),−→v ))i∈I is identically distributed but not independent. For all i ∈ I , let Ei be a set that
satisfies the infimum in the definition of χG(T ′(i), h′(n),−→v ). We want to build from the family (Ei)i∈I a set of null
capacity that cuts NA from hyp(NA + HG,h(N)(NA)) in slab(NA,HG,h(N)(NA),−→v ) on the event

Fn,N =
⋂

x∈cyl(NA,h(n)/2+d)

{
cardv

(
CG,0(x)

)
<

h(N)

4

}
. (4)
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Fig. 3. Representation of the T ′(i) for i ∈ I .

We fix r = 4d . Let V 1
0 (respectively V 2

0 , V 3
0 , V0) be the set of vertices included in E1

0 (resp. E2
0 , E3

0 , E0), where we
define

E1
0 =

⋃
i∈I

V
(
∂T ′(i), r

)
, E2

0 = V
(
NA \ D(n,N), r

)
,

E3
0 = V

(
cyl
(
∂(NA),h(N)/2

)
, r
)

and E0 = E1
0 ∪ E2

0 ∪ E3
0 .

The set

E =
⋃
i∈I

Ei ∪
⋃
x∈V0

∂eCG,0(x)

is a cutset of null capacity that cuts NA from hyp(NA + HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) on the event
Fn,N . We postpone the proof of this result until the end of the proof of Proposition 18, see Lemma 19. Thus, we can
upperbound the quantity χG(NA,h(N),−→v ) by the size of E on the event Fn,N and by the size of

⋃
x∈NA∩Zd ∂eCG,0(x)

on the event Fc
n,N (by Lemma 15):

χG

(
NA,h(N),−→v )≤ χG

(
NA,h(N),−→v )1Fn,N

+ χG

(
NA,h(N),−→v )1F c

n,N

≤
∑
i∈I

|Ei | +
∑
x∈V0

∣∣∂eCG,0(x)
∣∣+( ∑

x∈NA∩Zd

∣∣∂eCG,0(x)
∣∣)1F c

n,N

≤
∑
i∈I

χG

(
T ′(i), h′(n),−→v )+

∑
x∈V0

∣∣∂eCG,0(x)
∣∣+( ∑

x∈NA∩Zd

∣∣∂eCG,0(x)
∣∣)1F c

n,N
.

Taking the expectation we get

E(χG(NA,h(N),−→v ))

Hd−1(NA)

≤
∑
i∈I

E(χG(T ′(i), h′(n),−→v ))

Hd−1(NA)
+
∑
x∈V0

E(|∂eCG,0(x)|)
Hd−1(NA)

+
∑

x∈NA∩Zd

E(|∂eCG,0(x)|1F c
n,N

)

Hd−1(NA)

≤ |I |E(χG(nA′, h′(n),−→v ))

Hd−1(NA)
+ cardv(V0)

Hd−1(NA)
E
(∣∣∂eCG,0(0)

∣∣)+
∑

x∈NA∩Zd

√
E(|∂eCG,0(x)|2)P(Fc

n,N )

Hd−1(NA)

≤ E(χG(nA′, h′(n),−→v ))

Hd−1(nA′)
+ cardv(V0)

Hd−1(NA)
E
(∣∣∂eCG,0(0)

∣∣)+ card
(
NA ∩Z

d
)√E(|∂eCG,0(0)|2)P(Fc

n,N )

Hd−1(NA)
(5)
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where we use in the second inequality Cauchy–Schwartz’ inequality. By definition of Fn,N (see (4)) and using Theo-
rem 13, we obtain the following upperbound:

P
(
Fc

n,N

)≤
∑

x∈cyl(NA,h(n)/2+d)∩Zd

P
(
cardv

(
CG,0(x)

)≥ h(N)/4
)

≤ cardv

(
cyl
(
NA,h(n)/2 + d

)∩Z
d
)
P
(
cardv

(
CG,0(0)

)≥ h(N)/4
)

≤ c′
dHd−1(NA)h(n)κ1 exp

(−κ2h(N)/4
)

where c′
d is a constant depending only on the dimension d . We recall that as G({0}) > 1 − pc(d), by Theorem 13, we

have E(|∂eCG,0(0)|) < ∞ and E(|∂eCG,0(0)|2) < ∞. Moreover, as h(N)/ log(N) goes to infinity when N goes to infinity,
the third term in the right hand side of (5) goes to 0 when N goes to infinity. We now want to control the size of V0. There
exists a constant cd depending only on the dimension d such that:

cardv

(
V 1

0

)≤ cd

Hd−1(NA)

Hd−1(nA′)
Hd−2(∂(nA′)),

cardv

(
V 2

0

)≤ cdHd−2(∂(NA)
)

Diam
(
nA′)

and

cardv

(
V 3

0

)≤ cdHd−2(∂(NA)
)
h(N).

Thus,

cardv(V0) ≤ cd

(Hd−1(NA)

Hd−1(nA′)
Hd−2(∂(nA′))+Hd−2(∂(NA)

)(
Diam

(
nA′)+ h(N)

))
and finally since h(N)/N goes to 0 as N goes to infinity we obtain

lim
n→∞ lim

N→∞
cardv(V0)

Hd−1(NA)
= 0.

By first sending N to infinity and then n to infinity in inequality (5), we get that

lim sup
N→∞

E(χG(NA,h(N),−→v ))

Hd−1(NA)
≤ lim inf

n→∞
E(χG(nA′, h′(n),−→v ))

Hd−1(nA′)
.

By setting A = A′ and h = h′, we deduce the existence of the following limit

lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)

and the inequality

lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)
≤ lim

n→∞
E(χG(nA′, h′(n),−→v ))

Hd−1(nA′)
.

Exchanging the role of A, h and A′, h′, we conclude that the two limits are equal. Note that χG does not depend on all the
distribution G but only on G({0}). Indeed, let us couple (tG(e))e∈Ed with a family (t̂(e))e∈Ed of Bernoulli of parameter
1 − G({0}) in the following way: for an edge e ∈ E

d , t̂ (e) = 1tG(e)>0. With this coupling, the value of χG is the same for
the two families of capacities. Therefore, the limit does not depend on A nor h but only on the direction −→v , on G({0}) and
on d , we denote it by ζG({0})(−→v ). Moreover, thanks to inequality (3), we know that there exists a constant c′

d depending
only on the dimension d such that

E(χG(nA,h(n),−→v ))

Hd−1(nA)
≤ c′

dE
(
cardv

(
CG,0(0)

))
< ∞,

thus ζG({0})(−→v ) is finite. �
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To complete the proof of Proposition 18, it remains to prove that the set E is a cutset on the event Fn,N . We do not
recall the notations that were introduced in the proof of Proposition 18.

Lemma 19. The set E = (
⋃

i∈I Ei) ∪ (
⋃

x∈V0
∂eCG,0(x)) is a cutset of null capacity that cuts NA from hyp(NA +

HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) on the event Fn,N .

Proof. Let γ be a path in slab(NA,HG,h(N)(NA),−→v ) from x ∈ NA to y ∈ W(NA,HG,h(N)(NA),−→v ), we denote it by
γ = (v0, e1, v1, . . . , em, vm) where v0 = x and vm = y. Let us consider p the last moment when γ exits NA, i.e.,

p = inf
{
i ∈ {0, . . . ,m} : ∀j > i, vj /∈ NA

}
.

We distinguish several cases.
Case (i): If the edge ep+1 cuts cyl(∂(NA), d) ∪ (NA \ D(n,N) + d−→v ), then vp ∈ V 2

0 . Besides, we have vp ∈
cyl(NA,h(N)/2) and by definition of HG,h(N)(NA), the point y is not contained in CG,0(vp). Therefore, we have
γ ∩ ∂eCG,0(vp) �=∅ and so as vp ∈ V0, we get that γ ∩ E �=∅.

Case (ii): We consider now the case where the edge ep+1 cuts (D(n,N) + d−→v ) \ (
⋃

i∈I T ′(i)), we define π the
orthogonal projection on hyp(NA) and z = ep+1 ∩ hyp(NA + d−→v ). As π(z) ∈ D(n,N), there exists an i ∈ I such that
π(z) ∈ T (i), π(z) /∈ π(T ′(i)) and so π(z) ∈ T (i) \ π(T ′(i)). Moreover, as T ′(i) = T (i) + −→

ti where ‖−→ti ‖∞ < 1, we get
that π(z) ∈ V(π(∂T ′(i)), d) ∩ hyp(NA) and vp ∈ V(∂T ′(i), r) ⊂ E1

0 . Therefore, we have vp ∈ V0 and we can conclude
as in the previous case that γ ∩ E �=∅.

Case (iii): We consider the case where there exists an i ∈ I such that vp /∈ T ′(i) and the edge ep+1 cuts T ′(i) ∩
hyp(NA + d−→v ). Therefore the vertex vp is close to the boundary of T ′(i). Actually, the vertex vp is close to the lateral
boundary cyl(∂T ′(i), d) of T ′(i). Indeed, as T ′(i) ⊂ slab(NA,

√
d,−→v ), the vertex vp cannot be “under” T ′(i), i.e., in

slab(NA,
−→
ti · −→v ,−→v ). Therefore, the vertex vp belongs to V(∂T ′(i), d) ⊂ E1

0 , we conclude as in the previous cases that
γ ∩ E �=∅.

Case (iv): Finally, we consider the case where there exists an i ∈ I such that the edge ep+1 cuts T ′(i)∩hyp(NA+d−→v )

and vp ∈ T ′(i) (see Figure 4). Let us consider the first time after p when γ cuts hyp(T ′(i) + HG,h′(n)(T
′(i))−→v ) ∪

cyl(∂(NA),h(N)/2). On the event Fn,N , we have the three following events:

slab
(
T ′(i),HG,h′(n)

(
T ′(i)

)
,−→v )⊂ slab

(
NA,h(N)/2,−→v ),

vp+1 ∈ slab
(
T ′(i),HG,h′(n)

(
T ′(i)

)
,−→v )∩ cyl

(
NA,h(N)/2

)
,

y /∈ slab
(
T ′(i),HG,h′(n)

(
T ′(i)

)
,−→v )∩ cyl

(
NA,h(N)/2

)
.

Fig. 4. A path from NA to hyp(NA + HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) such that vp ∈ T ′(i) for an i ∈ I .
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Moreover, by definition of vp , the path γ cannot exit slab(T ′(i),HG,h′(n)(T
′(i)),−→v ) by hyp(T ′(i)), otherwise, γ would

come back in NA. Therefore, the index

l = inf
{
j > p : ej cuts hyp

(
T ′(i) + HG,h′(n)

(
T ′(i)

)−→v )∪ cyl
(
∂(NA),h(N)/2

)}
is well defined. If the edge el cuts cyl(∂(NA),h(N)/2), then vl−1 ∈ V 3

0 and by definition of HG,h(N)(NA), we get
y /∈ CG,0(vl−1) and it follows that

γ ∩ ∂eCG,0(vl−1) �=∅.

Otherwise, the edge el cuts hyp(T ′(i)+HG,h′(n)(T
′(i))−→v ) and vl−1 ∈ W(T ′(i),HG,h′(n)(T

′(i)),−→v ). Therefore, the por-
tion of γ from vp to vl−1 is a path from T ′(i) to hyp(T ′(i)+HG,h′(n)(T

′(i))−→v ) that stays in slab(T ′(i),HG,h′(n)(T
′(i)),−→v ) (by definition of vl−1). Thus by definition of Ei , we have γ ∩ Ei �=∅.

Therefore, we conclude that, on the event Fn,N , the set E cuts NA from hyp(NA + HG,h(N)(NA)) in slab(NA,

HG,h(N)(NA),−→v ). Since for all i ∈ I , the set Ei has null capacity and for any x ∈ Z
d , the set ∂eCG,0(x) contains only

edges with null capacity, the set E itself has null capacity. �

5. From slabs to cylinders

We recall that the quantity of interest is the flow through the cylinder, and that we have studied the flow from a thick
rectangle to an hyperplane for technical reasons. In this section we are going to show that these flows are quite similar,
more precisely we want to show the following proposition.

Proposition 20. Let G be a distribution on [0,+∞] such that G({0}) > 1 − pc(d). For any −→v ∈ S
d−1, for any non-

degenerate hyperrectangle A normal to −→v , for any height function h that satisfies condition (�),

lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)
= lim

n→∞
E(ψG(nA,h(n),−→v ))

Hd−1(nA)
= ζG({0})(−→v ).

Proof. Let A be a non-degenerate hyperrectangle and h a height function satisfying condition (�). Let −→v be one of
the two unit vectors normal to A. We prove Proposition 20 in two steps. In the first step, we obtain an upper bound for
E(χG(nA,h(n),−→v )) by building a cutset of null capacity between the top and the bottom of cyl(nA,h(n)) from a cutset
in slab(nA,h(n),−→v ) that achieves the infimum in ψG(nA,h(n),−→v ). In the second step, we obtain a lower bound for
E(χG(nA,h(n),−→v )) by doing the reverse, i.e., we build a cutset between a translate of nA and hyp(nA + h(n)−→v ), from
a cutset in cyl(nA,h(n)) that achieves the infimum in the definition of χG(nA,h(n),−→v ).

Step (i): We denote by En the following event

En =
⋂

x∈cyl(nA,h(n)/2)∩Zd

{
cardv

(
CG,0(x)

)
<

h(n)

2

}
.

On the event En, we have that HG,h(n)(nA) = h(n). By definition, we have B(nA,h(n)) ⊂ nA ∩Z
d and T (nA,h(n)) ⊂

W(nA,h(n),−→v ). On the event En, as any path from the top to the bottom of cyl(nA,h(n)) is also a path from hyp(nA +
h(n)−→v ) to nA in slab(nA,h(n),−→v ), any cutset that cuts hyp(nA + h(n)−→v ) from nA is also a cutset from the top to the
bottom in the cylinder (see Figure 5). Finally, any cutset that achieves the infimum in χG(nA,h(n),−→v ) is a cutset of null
capacity (and therefore of minimal capacity) for the flow from the top to the bottom in cylinder cyl(nA,h(n)). Thus, on
the event En,

ψG

(
nA,h(n),−→v )≤ χG

(
nA,h(n),−→v ).

Finally, for a constant Cd depending only on the dimension d .

E(ψG(nA,h(n),−→v ))

Hd−1(nA)
≤ E(ψG(nA,h(n),−→v )1En

)

Hd−1(nA)
+ E(ψG(nA,h(n),−→v )1Ec

n
)

Hd−1(nA)

≤ E(χG(nA,h(n),−→v ))

Hd−1(nA)
+ carde(cyl(nA,h(n)) ∩E

d) · P(Ec
n)

Hd−1(nA)

≤ E(χG(nA,h(n),−→v ))

Hd−1(nA)
+ Cdh(n)2Hd−1(nA)κ1 exp

(−κ2h(n)/2
)
,
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Fig. 5. A cutset that cuts nA from hyp(nA + h(n)−→v ) in slab(nA,h(n),−→v ) and the top from the bottom of the cylinder cyl(nA,h(n)) on the event En.

where we use in the last inequality Theorem 13. As h satisfies condition (�) the second term of the right hand side goes
to 0 when n goes to infinity and we obtain

lim sup
n→∞

E(ψG(nA,h(n),−→v ))

Hd−1(nA)
≤ lim

n→∞
E(χG(nA,h(n),−→v ))

Hd−1(nA)
= ζG({0})(−→v ). (6)

Step (ii): There exists an hyperrectangle T ′, a small vector −→
t and an integer vector −→

u such that T ′ = nA + −→
u , T ′ =

nA − d−→v + −→
t , ‖−→t ‖∞ < 1 and −→

t · −→v ≤ 0. Therefore, we have −d − √
d ≤ −→

u · −→v < −d and T ′ ⊂ slab(A,∞,−→v )c .
We now want to build a set of edges of null capacity that cuts T ′ from hyp(T ′ + HG,h(n)−−→

u ·−→v (T ′)−→v ) starting from a
cutset between the top and the bottom of the cylinder cyl(nA,h(n)). We define

E ′
n =

⋂
x∈V(cyl(nA,h(n)/2),2d)∩Zd

{
cardv

(
CG,0(x)

)
<

h(n)

2

}
.

On the event E ′
n, the minimal capacity of a cutset for the flow from the top to the bottom of the cylinder cyl(nA,h(n)) is

null (the set of null capacity
⋃

x∈nA∩Zd ∂eCG,0(x) is a cutset) and as the cylinder cyl(T ′, (h(n) − −→
u · −→v )/2) is included

in V(cyl(nA,h(n)/2),2d), we obtain HG,h(n)−−→
u ·−→v (T ′) = h(n) − −→

u · −→v so that hyp(T ′ + HG,h(n)−−→
u ·−→v (T ′)−→v ) =

hyp(nA + h(n)−→v ). We denote by E one of the sets that achieve the infimum in ψG(nA,h(n),−→v ). In order to build a
set that cuts T ′ from hyp(nA + h(n)−→v ) from E, we need to add to E edges to prevent flow from escaping through the
vertical sides of cyl(nA,h(n)). Let V be a set that contains a discretized version of the vertical sides of cyl(nA,h(n)).
More precisely, we define by V = V(cyl(∂(nA),h(n)),2d) ∩Z

d . On the event E ′
n, the following set

F = E ∪
(⋃

x∈V

∂eCG,0(x)

)

cuts T ′ from hyp(nA + h(n)−→v ) and is of null capacity (see Figure 6). We postpone the proof of this fact until the end of
the proof of Proposition 20, see Lemma 21. For a constant C′

d depending on d , we obtain

E(χG(T ′, h(n) − −→
u · −→v ,−→v ))

Hd−1(nA)
≤ E(χG(T ′, h(n) − −→

u · −→v ,−→v )1E ′
n
)

Hd−1(nA)
+ E(χG(T ′, h(n) − −→

u · −→v ,−→v )1E ′c
n
)

Hd−1(nA)

≤ E(|F |)
Hd−1(nA)

+ E(
∑

x∈T ′∩Zd |∂e(CG,0(x))|1E ′c
n
)

Hd−1(nA)

≤ E(ψG(nA,h(n),−→v )) + C′
dh(n)Hd−2(∂(nA))E(|∂e(CG,0(0))|)
Hd−1(nA)



Size of a minimal cutset in supercritical first passage percolation 1435

Fig. 6. Construction of a cutset from T ′ to hyp(nA + h(n)−→v ) from a cutset from the top to the bottom in the cylinder cyl(nA,h(n)) on the event E ′
n .

+ C′
dHd−1(T ′)

√
E(|∂e(CG,0(0))|2)Cdh(n)Hd−1(nA)κ1 exp(−κ2h(n))

Hd−1(nA)

≤ E(ψG(nA,h(n),−→v ))

Hd−1(nA)
+ C′

dh(n)Hd−2(∂(nA))E(|∂e(CG,0(0))|)
Hd−1(nA)

+ C′′
d

√
Hd−1(nA)E

(∣∣∂e

(
CG,0(0)

)∣∣2)h(n)κ1 exp
(−κ2h(n)

)
(7)

where we use in the second inequality the control of χG(T ′, h(n) − −→
u · −→v ,−→v ) obtained in Lemma 15 and Cauchy–

Schwartz’ inequality in the third inequality.
As Hd−1(nA) is of order nd−1, Hd−2(∂(nA)) is of order nd−2 and h satisfies condition (�), the second and the third

terms of the right hand side of the inequality (7) go to 0 as n goes to infinity. Moreover, thanks to Proposition 18, using
the invariance of the model by the translation by an integer vector and the fact that the limit ζG({0})(−→v ) does not depend
on the height function,

lim
n→∞

E(χG(T ′, h(n) − −→
u · −→v ,−→v ))

Hd−1(T ′)
= lim

n→∞
E(χG(nA,h(n) − −→

u · −→v ,−→v ))

Hd−1(T ′)

= lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)
= ζG({0})(−→v ).

Thus, we obtain from (7)

ζG({0})(−→v ) = lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)
≤ lim inf

n→∞
E(ψG(nA,h(n),−→v ))

Hd−1(nA)
. (8)

Combining inequalities (6) and (8), we get that

lim
n→∞

E(χG(nA,h(n),−→v ))

Hd−1(nA)
= lim

n→∞
E(ψG(nA,h(n),−→v ))

Hd−1(nA)
= ζG({0})(−→v ). �

To complete the proof of Proposition 20, it remains to prove that the set F is a cutset on the event E ′
n. We recall that

all the notations were introduced in the proof of Proposition 20.

Lemma 21. On the event E ′
n, the following set

F = E ∪
(⋃

x∈V

∂eCG,0(x)

)

cuts T ′ from hyp(nA + h(n)−→v ) and is of null capacity (see Figure 6).
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Proof. Let γ = (y = v0, e1, v1, . . . , em, vm = x) be a path from y ∈ W(nA,h(n),−→v ) to x ∈ T ′ that stays in
slab(T ′, h(n) − −→

u · −→v ,−→v ). Let us consider the first moment p when γ exits slab(nA,h(n),−→v ), i.e.,

p = inf
{
i ∈ {0, . . . ,m}, vi /∈ slab

(
nA,h(n),−→v )}.

We distinguish several cases.
• Suppose that vp−1 ∈ B(nA,h(n)) and γ ′ = (v0, e1, . . . , ep−1, vp−1), the portion of γ between v0 and vp−1, stays in

cylinder cyl(nA,h(n)). Then γ ′ is a path from the top to the bottom of cyl(nA,h(n)) that stays in cyl(nA,h(n)), thus
γ ′ ∩ E �=∅ and γ ∩ E �= ∅.

• Suppose that vp−1 ∈ B(nA,h(n)) and that γ ′ does not stay in the cylinder cyl(nA,h(n)). Thus γ ′ must intersect the
boundary of the cylinder cyl(nA,h(n)). As γ ′ stays in slab(nA,h(n),−→v ), γ ′ can only intersect the vertical sides of the
cylinder, i.e., cyl(∂(nA),h(n)), we obtain γ ′ ∩ V �= ∅. There exists z ∈ V such that γ ′ ∩ {z} �= ∅. On the event E ′

n, γ ′
cannot be included in CG,0(z). Indeed, if γ ′ ⊂ CG,0(z), then γ ′ ⊂ CG,0(x) and CG,0(x) has a diameter at least h(n), it is
impossible on the event E ′

n. Therefore we obtain γ ′ ∩ ∂eCG,0(z) �=∅ and γ ∩ F �=∅.
• Suppose now that vp−1 /∈ B(nA,h(n)), thus vp−1 /∈ cyl(nA,h(n)). If x ∈ V , we conclude as in the previous case

that on the event E ′
n, γ ∩ ∂eCG,0(x) �=∅ and γ ∩F �=∅. Otherwise, if x /∈ V , then x ∈ cyl(nA− 2d−→v ,h(n)+ 2d). Since

we have vp−1 /∈ cyl(nA − 2d−→v ,h(n) + 2d) and the path γ stays in slab(nA − 2d−→v ,h(n) + 2d,−→v ), it follows that γ

cuts cyl(∂(nA − 2d−→v ),h(n) + 2d) and γ ∩ V �=∅. We conclude as in the previous cases that γ ∩ F �=∅.
On the event E ′

n, we obtain that γ ∩ F �= ∅. Moreover, the set E has null capacity so it is also the case for the set F .
Thus, the set F cuts T ′ from hyp(nA + h(n)−→v ) and has null capacity on the event E ′

n. �

6. Concentration

We aim here to prove Theorem 12. To prove this theorem, we will need Proposition 20 and the concentration inequality
stated in Proposition 14 for ψG that is a function of the capacity of the edges inside the cylinder.

Remark 22. The advantage of using a concentration inequality on ψG rather than on χG is that ψG depends on the
capacity of a finite deterministic set of edges whereas χG depends on an infinite set of edges (the edges in slab(A,∞,−→v )).
Therefore ψG is more appropriate to apply this concentration inequality.

Proof of Theorem 12. Let p < pc(d). Let −→v ∈ S
d−1. Let A be a non-degenerate hyperrectangle normal to −→v and h

an height function that satisfies condition (�). We consider the cylinder cyl(nA,h(n)) and we enumerate its edges as
e1, . . . , emn . We define (tG(e1), . . . , tG(emn), t

′
G(e1), . . . , t

′
G(emn)) a family of independent random variables distributed

according to distribution G. The quantity ψG(nA,h(n),−→v ) is a random variable that depends only on the capacities of
the edges e1, . . . , emn . We define

X = (
tG(e1), . . . , tG(emn)

)
,

∀i ∈ {1, . . . ,mn} X(i) = (
tG(e1), . . . , t

′
G(ei), . . . , tG(emn)

)
and f the function defined by ψG(nA,h(n),−→v ) = f (X) = Z. We define Z′

i = f (X(i)). We denote by Fn and Gn the
following events that depend on tG(e1), . . . , tG(emn),

Fn =
{ ∑

x∈B(nA,h(n))∩Zd

cardv

(
CG,0(x)

)≤ Cnd−1
}

and

Gn =
⋂

x∈cyl(nA,h(n))∩Zd

{
cardv

(
CG,0(x)

)≤ min

(
h(n)

4
, n1/5

)}
.

Since P(cardv(CG,0(x)) > n) ≤ κ1 exp(−κ2n) (see Theorem 13), we can find C large enough such that there exist positive
constants C1 and C2 depending on A such that

P
(
Fc

n

)≤ C1 exp
(−C2n

d−1). (9)
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This fact is proven in the proof of Proposition 2.3 in [17]. Moreover, using again Theorem 13, we obtain

P
(
Gc

n

)≤ mnκ1 exp

(
−κ2 min

(
h(n)

4
, n1/5

))
. (10)

On the event Gn, the minimal capacity of a cutset from the top to the bottom of the cylinder cyl(nA,h(n)) is null. Let
i ∈ {1, . . . ,mn}, let us assume that f (X) < f (X(i)). If t ′G(ei) < tG(ei), then we have tG(ei) > 0. On the event Gn, there
exists a cutset of null capacity E (thus E does not contain ei ) that achieves the infimum in f (X). It is still a cutset of null
capacity in cyl(nA,h(n)) for the distribution X(i). Thus, we obtain the following contradiction f (X(i)) ≤ |E| = f (X),
so if f (X) < f (X(i)) then t ′G(ei) ≥ tG(ei) on the event Gn.

Let us now assume that f (X) < f (X(i)), then we have tG(ei) ≤ t ′G(ei) on the event Gn. Let us denote by Rn the
intersection of all the minimal cutsets that achieve the infimum in ψG(nA,h(n),−→v ). If ei /∈ Rn, then there exists a cutset
E that does not contain ei and that achieves the infimum in ψG(nA,h(n),−→v ), i.e., f (X) = |E|. On the event Gn, all the
cutsets that achieve the infimum in f (X) are of null capacity. Since E is a cutset of null capacity that does not contain
the edge ei , it is still a cutset of null capacity in cyl(nA,h(n)) for the capacities X(i). Thus, f (X(i)) ≤ f (X), which is a
contradiction. Thus on Gn, if f (X) < f (X(i)) then tG(ei) ≤ t ′G(ei) and ei ∈ Rn. We denote by E a cutset that achieves
the infimum in f (X). We have ei ∈ E, let us define

Ẽ = (
E ∪ ∂eCG,0

(
e+
i

)∪ ∂eCG,0
(
e−
i

)) \ {ei}

where we write ei = 〈e−
i , e+

i 〉. This set has null capacity for both distributions X and X(i). Let us prove that on the event
Gn, the set Ẽ cuts the top from the bottom of cylinder cyl(nA,h(n)).

Let γ be a path from x ∈ T (nA,h(n)) to y ∈ B(nA,h(n)). If ei /∈ γ then as E is a cutset, we have that γ ∩E \{ei} �=∅

thus γ ∩ Ẽ �= ∅. We now assume that ei ∈ γ . On the event Gn, γ cannot be included in CG,0(e
+
i ) ∪ CG,0(e

−
i ). Thus,

either x /∈ CG,0(e
+
i ) ∪ CG,0(e

−
i ) or y /∈ CG,0(e

+
i ) ∪ CG,0(e

−
i ). We study only the case y /∈ CG,0(e

+
i ) ∪ CG,0(e

−
i ), the other

case is studied similarly. We denote by g the edge γ takes to finally exit CG,0(e
+
i ) ∪ CG,0(e

−
i ), i.e., if we write γ =

(v0, e
′
1, v1, . . . , e

′
m,vm) and we denote by

p = max
{
j : vj ∈ CG,0

(
e+
i

)∪ CG,0
(
e−
i

)}
then g = e′

p+1. By definition of p, we must have g �= ei and g ∈ ∂eCG,0(e
+
i ) ∪ ∂eCG,0(e

−
i ) \ {ei}. As g ∈ Ẽ, we finally

obtain that γ ∩ Ẽ �= ∅ and that on the event Gn, Ẽ is indeed a cutset in the cylinder of null capacity for the distribution
X(i).

Thus on the event Gn and when f (X) < f (X(i)), we have f (X(i)) ≤ |Ẽ| and ei ∈ Rn so that

f
(
X(i)

)− f (X) ≤ carde

(
CG,0

(
e+
i

)∪ CG,0
(
e−
i

))
1ei∈Rn ≤ cd

[
cardv

(
CG,0

(
e+
i

))+ cardv(CG,0
(
e−
i

)]
1ei∈Rn

≤ 2cdn1/51ei∈Rn. (11)

Therefore, we have

V − =
mn∑
i=1

E
[(

f (X) − f
(
X(i)

))2
−|X]≤

(
mn∑
i=1

(
2cdn1/5)21ei∈Rn1Gn

)
+ m3

n1Gc
n

≤ (
2cdn1/5)2|Rn|1Gn

+ m3
n1Gc

n
. (12)

Notice that 1Gn
1Gc

n
= 0. On the event Fn, we have |Rn| ≤ Cnd−1 and so

E
[(

V −)2]≤ (
2cdn1/5)4

E
[|Rn|2

]+ m6
nP
(
Gc

n

)≤ (
2cdn1/5)4(C2n2(d−1) + m2

nP
(
Fc

n

))+ m6
nP
(
Gc

n

)
. (13)

Using inequality (11), we have for all i ∈ {1, . . . ,mn}(
f (X) − f

(
X(i)

))
− ≤ 2cdn1/51Gn

+ mn1Gc
n
:= M.

We have

E
[
M4]≤ (

2cdn1/5)4 + m4
nP
(
Gc

n

)
. (14)
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Using Theorem 14, we obtain

E
[
(Z −EZ)4−

]≤ CE
[(

V −)2] (15)

and

E
[
(Z −EZ)4+

]≤ C max
(
E
[(

V −)2],E[M4]). (16)

Combining inequalities (9), (10), (13), (14), (15) and (16), we obtain that

E
[
(Z −EZ)4]= O

(
n2(d−1)+4/5).

Let ε > 0. Using Markov inequality we obtain

P

(∣∣∣∣ψG(nA,h(n),−→v )

Hd−1(nA)
−E

(
ψG(nA,h(n),−→v )

Hd−1(nA)

)∣∣∣∣> ε

)
≤ E[(Z −EZ)4]

Hd−1(nA)4ε4
.

As the right hand side of the previous inequality is of order at most n−2(d−1)+4/5, we can conclude that for d ≥ 2, the sum

∞∑
n=1

P

(∣∣∣∣ψG(nA,h(n),−→v )

Hd−1(nA)
−E

(
ψG(nA,h(n),−→v )

Hd−1(nA)

)∣∣∣∣> ε

)
is finite. By Borel–Cantelli Lemma, we deduce that almost surely

lim sup
n→∞

∣∣∣∣ψG(nA,h(n),−→v )

Hd−1(nA)
−E

(
ψG(nA,h(n),−→v )

Hd−1(nA)

)∣∣∣∣≤ 0,

and finally,

lim
n→∞

ψG(nA,h(n),−→v )

Hd−1(nA)
= ζG({0})(−→v ) a.s.

This yields the result. �

Remark 23. With the standard Efron–Stein inequality, we did not manage to obtain a bound that is summable in dimen-
sion 2. That is the reason why we investigated for a higher moment (the fourth moment turned out to be enough). Note
that, an exponential type concentration inequality does not work with the bound of V − we obtained in (12) since the
probability P(Gc

n) does not counterbalance the term exp(m3
n).
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