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Abstract. In this paper, we consider a parametric density contamination model. We work with a sample of i.i.d. data with a common
density, f � = (1 − λ�)φ + λ�φ(· − μ�), where the shape φ is assumed to be known. We establish the optimal rates of convergence for
the estimation of the mixture parameters (λ�,μ�) ∈ (0,1) ×Rd . In particular, we prove that the classical parametric rate 1/

√
n cannot

be reached when at least one of these parameters is allowed to tend to 0 with n.

Résumé. Dans cet article, nous étudions un modèle de contamination paramétrique. Nous considérons un échantillon i.i.d de densité
f � = (1 − λ�)φ + λ�φ(· − μ�), où la fonction φ est supposée connue. Nous établissons des vitesses de convergence optimales pour
l’estimation des paramètres de mélange (λ�,μ�) ∈ (0,1)×Rd . En particulier, nous prouvons que la vitesse paramétrique usuelle 1/

√
n

ne peut pas être atteinte quand au moins un de ces paramètres est amené à tendre vers 0 avec n.
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1. Introduction

Because of their wide range of flexibility, finite mixtures are a popular tool to model the unknown distribution of heteroge-
neous data. They are found in several domains and have been at the core of several mathematical investigations. For a com-
plete introduction to mixtures, we refer the reader to [25] and [11]. In most cases of interest, a sample Sn := (X1, . . . ,Xn)

of i.i.d. data is at our disposal, and each entry admits the probability density f � w.r.t. the Lebesgue measure. For a finite
mixture model, the density f � is assumed to have the following shape:

f � =
K∑

k=1

λkφk. (1.1)

With such a representation, the population of interest can in some sense be decomposed into K different groups where
each group k has a proportion λk and is distributed according to the density φk . For practical purposes, parametric models
are often considered. In such cases, the densities φk are assumed to be known, at least up to some finite parameters, and
the parameter estimation problem is often addressed using an EM-type algorithm [10]. In contrast, with the impressive
range of applications based on mixtures, theoretical issues related to mixture models are somewhat poorly understood.

Among the available theoretical results for mixtures, some of them are particularly linked to the density estimation
problem. The works [13,14] and [20] develop a nonparametric Bayesian point of view, while exploiting both the approx-
imation capacity of mixtures and their metric entropy size, first with Gaussian distributions and later with exponential
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power distributions. A Gaussian mixture estimator based on a non asymptotic penalized likelihood criterion is proposed
in [23] and the adaptive properties of this estimator are investigated in [24].

In the mixture models, the focus on the parameters themselves has received less theoretical attention because of their
great mathematical difficulty despite their natural interest. It is indeed highly informative to obtain the estimation of the
mixing distribution, and many applied works use this estimation for descriptive statistics. Among them, the unsupervised
clustering with Bayesian interpretation is certainly one of the most widely used applications of mixtures (see, e.g., [25]).
Given a dictionary of densities, [5] propose an estimation procedure based on the minimization of an L2 empirical
criterion with a sparsity constraint, providing an estimation of the parameters of interest when the location parameters μ�

k

(here φk = φ(· − μ�
k)) are not too close to each other. [9] studied the estimation of the mixing distribution under a strong

identifiability condition. As observed in the recent works of [17,26] and [15], the optimal rate depends on the knowledge
of the number of components. [16] show that the parameter estimation rates are slower for some weakly identifiable
mixtures. Other extensions are available in [17]. Identifiability (and estimation) issues are discussed in [19] under the
assumption that the φk can be written as φk = φ(· − μk) for some sequence (μk)k=1..K and a symmetric probability
density φ.

Finally, the EM algorithm (see, e.g., [10]) is a popular alternative for the analysis of the latent structures involved in the
mixture models, but the analysis of the convergence rate of the final estimator is somewhat intricate. A first positive result
about the convergence of this method is given in [29] when the density is unimodal and certain smoothness conditions
hold. However, when multimodality occurs, the behavior of the EM method remains mysterious and is suspected to fall
into local traps of the log-likelihood. Some recent advances in the analysis of this famous method were brought by [2],
where a general result is given for a convergence of the sample-based EM towards the population one, up to initialization,
Lipschitz and concavity conditions.

In this paper, we focus on the multivariate parameter estimation problem when the density of interest is a two-
component contamination mixture:

f � = (1 − λ�
)
φ + λ�φ

(· − μ�
)
,

where the density φ is known and the parameters (λ�,μ�) ∈ (0,1) × Rd are to be estimated. This model is a particular
case of the Huber contamination model ([18]).

The estimation of the couple (λ�,μ�) has already been considered in the literature. In [4], a slightly different model
is considered where f � = (1 − λ�)φ(· − μ�

1) + λ�φ(· − μ�
2) and φ is assumed to be symmetric and unknown. Using a

recurrence procedure based on an inversion formula, they propose an estimator for θ� = (λ�,μ�
1,μ

�
2) and the function φ.

In particular, the parameter λ� is estimated at the ‘classical’ parametric rate 1/
√

n, while the rate n−1/4 is obtained for
location parameters (μ�

1,μ
�
2). A similar problem is addressed in [6] where the rate 1/

√
n is reached for the estimation

of the whole parameter θ�. The estimation procedure is based on a computation of an empirical Fourier transform. More
recently, [27] considered the situation where the distribution of one of the component of the mixture is known. In such
a case, they provide an estimator of both the mixing parameter and of the distribution of the second component. In the
setting considered here (i.e., when f � is a two-component contamination mixture), [8] proposes an iterative procedure
based on the empirical distribution function. In the so-called sparse setting where1 λ� � 1/

√
n and μ� ∼√2r log(n) for

some r ∈ (0,1) as n → +∞, the authors derive rates of convergence for the estimation of λ�. In particular, they prove
that the classical parametric rate cannot be attained in such a setting.

In all the aforementioned contributions except [8], it is implicitly assumed that both location and proportion parameters
are fixed with respect to n. The main aim of this paper is to fill this gap. We propose a procedure inspired by [5] and derive
an estimator (λ̂n, μ̂n) for the couple (λ�,μ�). This estimator is based on the minimization of an L2 contrast instead of a
usual maximum likelihood estimator of mixture parameters computed with an EM-type algorithm. Then, given a bound
M s.t. maxj=1...d |μ�

j | ≤ M and under mild assumptions on the shape φ, we prove that:

sup
(λ�,μ�)∈(0,1)×[−M,M]d

Eλ�,μ�

[(
λ�
)2∥∥μ�

∥∥2∥∥μ̂n − μ�
∥∥2]� log2 n

n
, (1.2)

and

sup
(λ�,μ�)∈(0,1)×[−M,M]d

λ�‖μ�‖2�n−1/2

Eλ�,μ�

[∥∥μ�
∥∥4(

λ̂n − λ�
)2]� log2 n

n
. (1.3)

1All the notation used in this paper are made precise at the end of this section.
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These results are completed by the corresponding lower bounds that ensure the optimality of (1.2) and (1.3), up to
logarithmic factors. In particular, we can immediately observe that the parametric rate of 1/

√
n is attained when λ� and

μ� are fixed, but is deteriorated as soon as these parameters are allowed to tend to 0 with n.
Finally, we also obtain an interesting link between the L2 loss and the Wasserstein loss in our contamination mixture

model:

‖fλ,μ − fλ′,μ′ ‖2 ≥ cφW 2
2 (Gλ,μ,Gλ′,μ′), (1.4)

where the Wasserstein (Lp)-transportation distances between two probability measures m1 and m2 on � are defined by

Wp(m1,m2) :=
[

inf
π∈�(m1,m2)

∫
dp(x, y) dπ(x, y)

] 1
p

, (1.5)

�(m1,m2) being the set of probability measures on � × � such that their marginals are m1 and m2; and Gλ,μ =
(1 − λ)δ0 + λδμ is the mixing distribution associated to the density fλ,μ, where δθ is the Dirac peak at θ . This makes
even more explicit the hardness of recovering the unknown parameters of the contamination mixture model.

The paper is organized as follows. First, a preliminary oracle inequality for L2 density estimation is established in
Section 2. On the basis of this result, some rates of convergence for the estimation of (λ�,μ�) are deduced (see Section 3.2)
under some assumptions on φ presented in Section 3.1. Some lower bounds are provided in Section 4, first in a strong
contamination model (‖μ�‖ > m with m independent of n; see Section 4.1); and second, in a weak contamination model
(‖μ‖ can tend to 0 when n → +∞; see Section 4.2). The main part of the paper ends with a discussion in Section 5 that
reveals several insights between Wasserstein distances among mixing distributions and distances between the probability
distributions. A few simulations are presented in Section 6. Proofs of the upper bounds (resp. lower bounds) are given
in Section 7 (resp. Appendix B) while Section 8 provides the proof of the link between some Wasserstein transportation
cost among mixing distributions and the L2 loss. Technical results are presented in Appendix A.

Notation. Above and below, we use in this paper some specific notation. For any real sequences (un)n∈N and (vn)n∈N,
un � vn means that un/vn → 0 as n → +∞. Similarly, un ∼ vn (resp. un � vn and un � vn) means that there exists
a, b ∈ R+ such that avn ≤ un ≤ bvn (resp. un ≤ bvn and avn ≤ un) for any n ∈ N. For any x ∈ Rd , ‖x‖ will denote
the classical euclidian norm (namely ‖x‖2 =∑d

j=1 x2
j ) while ‖f ‖2 will denote the L2 norm of any f ∈ L2(Rd) asso-

ciated to the corresponding scalar product 〈·, ·〉. Finally, Pθ will alternatively (the meaning will be clear following the
context) correspond to the measure of a single observation Xi or of the whole sample (X1, . . . ,Xn) associated to any
mixture parameter θ = (λ,μ). The associated expectation will be alternatively denoted by Eθ , Eλ,μ or E, according to
the context.

2. A preliminary result on L2 density estimation

2.1. Statistical setting and identifiability

We recall that we have at our disposal an i.i.d. sample of size n denoted Sn := (X1, . . . ,Xn), where the distribution
of each Xi is associated with a two-component contamination mixture model. More precisely, we assume that each Xi

admits an unknown density f � with respect to the Lebesgue measure on Rd , which is given by:

f � = (1 − λ�
)
φ + λ�φ

(· − μ�
)
. (2.1)

In the following text, θ� = (λ�,μ�) ∈ (0,1) ×Rd refers to the parameters of the two-component contamination mixture
model. We assume that the density φ is a known function and that a real contamination of this baseline density φ occurs
(λ� > 0). Finally, we assume that the unknown contamination shift μ� belongs to a bounded interval [−M,M]d where
M > 0 is known.

Here and below, for any θ = (λ,μ) ∈ (0,1) ×Rd , we write:

fθ = fλ,μ = (1 − λ)φ + λφμ,

where φμ is defined according to the standard notation in location models:

∀μ ∈ Rd φμ : x �−→ φ(x − μ).

In particular, as a slight abuse of notation, we write f � = fθ� = fλ�,μ� and (when the meaning is clear following the
context) f̂ = f

θ̂
= f

λ̂,μ̂
for any estimator θ̂ of θ�.



1394 S. Gadat et al.

We aim to recover the unknown parameter θ� from the sample Sn. This might be possible according to the next
identifiability result, whose proof is given in Appendix A.

Proposition 2.1. Any two-component contamination mixture model is identifiable: fθ1 = fθ2 if and only if θ1 = θ2.

Such an identifiability result is well known in some more general cases up to additional assumptions on the baseline
density φ (see, e.g., [19] or Theorem 2.1 of [4] where the symmetry of φ is added to ensure the identifiability of the
general mixture model without contamination). Here, the fact that one of the components of the mixture is constrained to
be centered makes it possible to get rid of any additional assumption on φ. In particular, Proposition 2.1 holds as soon as
φ is non-negative with

∫
Rd φ = 1.

2.2. Estimation strategy and oracle inequality on the L2 norms

Our estimator will be built according to an optimal L2 density estimation constrained to the contamination models. For
this purpose, we first define a grid over the possible values of λ and μ through:

M
,M := {(λ,μ) : λ ∈ 
 = {λ1, . . . , λp} and μ ∈ M = {μ1, . . . ,μq}},
where 
, M will depend on n to obtain good properties both from the statistical and approximation point of view. To
obtain a good estimation of f � and θ�, we adopt a SURE approach (see, e.g., [28]) and choose an estimator that minimizes
‖f � − fλ,μ‖2

2 over the grid M
,M. Observing that:

∥∥f � − fλ,μ

∥∥2
2 − ∥∥f �

∥∥2
2 = −2

〈
f �, fλ,μ

〉+ ‖fλ,μ‖2
2,

and since ‖f �‖2
2 does not depend on (λ,μ), it is natural to introduce the following contrast function:

∀(λ,μ) ∈ M
,M γn(λ,μ) := −2

n

n∑
i=1

fλ,μ(Xi) + ‖fλ,μ‖2
2,

leading to the estimator:

(λ̂n, μ̂n) = arg min
(λ,μ)∈M
,M

γn(λ,μ). (2.2)

Our first main result, stated below, quantifies the performances of f̂n := f
λ̂n,μ̂n

.

Theorem 2.1. Let (λ�,μ�) ∈ (0,1) × Rd . Let (λ̂n, μ̂n) be the estimator defined in (2.2). Then, a positive constant C
exists such that for all 0 < α < 1:

E
[∥∥f̂n − f �

∥∥2
2

]≤ (1 + α

1 − α

)
inf

(λ,μ)∈M
,M

∥∥fλ,μ − f �
∥∥2

2 + C
2α

log2(|M
,M|)
n

, (2.3)

where |M
,M| corresponds to the cardinality of the grid M
,M.

It is worth mentioning that the result above is almost assumption-free on the two-component contamination mixture
model. Nevertheless, this result implicitly requires that the approximation term inf(λ,μ)∈M
,M

‖fλ,μ − f �‖2
2 is compara-

ble to the residual. In practice, this cannot be achieved unless we have an upper bound on the range for possible values of
μ at our disposal. The proof of Theorem 2.1 is given in Section 7.1.

We stress that Theorem 2.1 is not the main interest of our work. It is a minimal requirement to further extend our
analysis on the parameter estimation of the mixture models themselves. In particular, the following question now arises:
does the fact that f̂n is a “good” L2 estimator of f � imply that the corresponding θ̂n provides a satisfying estimator of
θ�? The positive answer to this question is the main contribution of our work and is described in the next section. In order
to establish this result, some mild restrictions on the class of possible densities φ are required.
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3. Estimation of the parameter θ�

3.1. Baseline assumptions

We now introduce mild and sufficient assumptions for an optimal recovery of θ� from the oracle inequality (2.3) (in terms
of convergence rates). In the following, we denote by Ck(Rd) the set of continuous functions that admits k continuous
derivatives.

Assumption (HS). The density φ belongs to C3(Rd) ∩L2(Rd).

The set of admissible densities considered in Assumption (HS) is very large, and contains many possible distributions
(Gaussian, Cauchy, Gamma to name a few). Note that it is also possible to relax the smoothness assumption and handle
piecewise differentiable densities with an additional symmetry assumption (see Appendix A). Note that since the density
φ is continuous and in L2(Rd), this density is necessarily bounded on Rd .

Our second important assumption is concerned with a tight link that may exist between φ −φμ and μ itself. It requires
a type of Lipschitz upper bound in the translation model.

Assumption (HLip). The density φ satisfies:

∃g ∈ L2(Rd
) ∀x ∈ Rd ∀μ ∈ [−M,M]d ∣∣φ(x) − φμ(x)

∣∣≤ ‖μ‖g(x), (3.1)

and g satisfies the integrability condition:

J :=
∫
Rd

g2(x)φ−1(x) dx < +∞.

This assumption will be of primary importance to obtain estimation results on the parameters of the mixture them-
selves. In particular, it will make it possible to derive a relationship between the L2 norm of φ − φμ and the size of
‖μ‖. Hence, under Assumption (HLip), a good estimation of the density f � for the L2 norm is assumed to yield a good
estimation of the mixture parameters.

Remark 3.1. Instead of listing all the possible densities that both meet Assumptions (HS), (HLip) (and later (HD)

introduced in Section 4.2 for our lower bound results), we will show that any log-concave distribution φ written as:

φ(·) = e−u(·) with u convex such that ‖∇u‖ + ∥∥D2u
∥∥= o∞(u),

satisfies these three conditions.2 The relationships between (HS), (HLip), (HD) and the log-concave distributions are
given in Appendix A.3.

Remark 3.2. An easy consequence of Remark 3.1 (see also Proposition A.2) is that the log-concave Gaussian distri-
butions satisfy assumptions (HS) and (HLip) so that all the results displayed below apply to these situations. It may be
shown as well that our results apply for the Laplace distribution since the smoothness assumption (HS) may be replaced
by a symmetry property (see Appendix A).

In the 1-dimensional Cauchy distribution case, we can compute φ − φμ:

∣∣φ(x) − φμ(x)
∣∣= |μ| |2x − μ|

π[1 + (x − μ)2][1 + x2] ≤ Cφ(x)|μ|,

for a large enough constant C. Hence, the assumptions (HS) and (HLip) are satisfied with g = Cφ for the Cauchy
distribution.

The skew Gaussian density3 φ satisfies:∣∣φ(x) − φμ(x)
∣∣≤ 2ψ(x)

∣∣�(αx) − �
(
α(x − μ)

)∣∣+ 2�
(
α(x − μ)

)∣∣ψ(x) − ψ(x − μ)
∣∣.

2Hereafter o∞(u) denotes a quantity negligible compared to u(x) as ‖x‖ → +∞
3It is defined as φ(·) = 2ψ(·)�(α·) where ψ and � denote respectively the density and cumulative function of a standard Gaussian distribution, and α

an asymmetry parameter.
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If we define g as g(x) := 4 sup[x−M;x+M] ψ(t) × sup[x−M;x+M] �(αt), we can check that (HS) and (HLip) are satisfied.
In particular, the integrability condition (HLip) is satisfied for large x because �(αx) −→ 1 when x −→ +∞. Conversely,
if x −→ −∞, we have:

g2(x)φ−1(x) �
[
ψ−1(x)�−1(αx)

]
sup

[x−M;x+M]
ψ2(t) × sup

[x−M;x+M]
�2(αt)

�
[
αxex2/2eα2x2/2]e−(x−M)2 × e−α2(x−M)2[

α(x − M)
]−2

� e−(x−2M)2/4e−α2(x−2M)2/4,

which leads to the integrability condition around −∞.

In the following text, we maintain a formalism that uses the two assumptions of Section 3.1 for the sake of generality.

3.2. Consistency rates on the parameters (λ�,μ�)

We now use our assumptions on φ to deduce some rates of convergence for the estimation of the couple (λ�,μ�) from
the oracle inequality of Theorem 2.1. According to the assumption μ� ∈ [−M,M]d for some given M > 0, we define the
grid Mn =M
,M as:

Mn = {(λ,μ) : λ = i√
n
,μ = (μ(1), . . . ,μ(d)

)
with μ(j) = ± kj√

n

where i ∈ {1, . . . ,
√

n}, j ∈ {1, . . . , d}, kj ∈ {1, . . . ,M
√

n}}, (3.2)

so that the approximation term inf(λ,μ)∈Mn
‖fλ,μ −f �‖2

2 in Equation (2.3) can be made lower than n−1, while keeping the
size of log(|Mn|) reasonable and of order d log(n). The next result, whose proof is given in Section 7.2, explicitly gives
a non-asymptotic consistency rate of the estimation of μ� in terms of the sample size n, of the amount of contamination
μ�, and of the probability λ� of this contamination itself.

Theorem 3.1. Let (λ̂n, μ̂n) be the estimator defined in (2.2) with Mn given in (3.2). If φ satisfies Assumptions (HS) and
(HLip), a positive constant C1 exists such that:

∀n ∈N sup
(λ�,μ�)∈(0,1)×[−M,M]d

Eλ�,μ�

[(
λ�
∥∥μ�

∥∥)2∥∥μ̂n − μ�
∥∥2]≤ C1 log2 n

n
.

In the 1-dimensional case (d = 1), an immediate consequence of Theorem 3.1 is that for a fixed couple (λ�,μ�) ∈
]0,1[ ×R \ {0}:

Eλ�,μ�

[(
μ̂n

μ�
− 1

)2]
≤ C1 log2 n

n{λ�}2{μ�}4
.

In particular, since μ� is allowed to tend to 0 with n, the estimator μ̂n will be consistent as soon as
√

nλ�{μ�}2 → +∞
as n → +∞. In a detection context, a two-component mixture distribution can be distinguished from that of a single
component as soon as

√
nλ�|μ�| > C for some positive constant C (see, e.g., [7] or [21]). Naturally, detection is “easier”

than estimation in the sense that the first task requires weaker conditions on the parameters of interest than the second.
Since the contamination level μ� is assumed to be upper bounded, it is worth observing that we implicitly require that
λ� � 1/

√
n as n → +∞.

Before checking the optimality of this result (see Section 4), we investigate the estimation of the contamination propor-
tion λ�. According to the previous discussion, we will assume that λ�‖μ�‖2 is significantly larger than n−1/2 log2 n. This
ensures that the contamination level μ� is consistently estimated. For this purpose, we introduce the set �n(M, (�n)n, λ)

indexed by a sequence (�n)n:

�n

(
M,(�n)n, λ

) := {θ = (λ,μ) : �n

‖μ‖2
√

n
≤ λ ≤ λ,‖μ‖∞ ≤ M

}
,

for some λ̄ ∈ (0,1).
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Theorem 3.2. If φ satisfies Assumptions (HS) and (HLip) and the sequence (�n)n is such that limn→+∞ �n

logn
= +∞,

then a positive constant C2 exists such that:

sup
(λ�,μ�)∈�n(M,(�n)n,λ)

Eλ�,μ�

[∥∥μ�
∥∥4(

λ̂n − λ�
)2]≤ C2 log2 n

n
.

The proof is given in Section 7.3. Once again, we can immediately deduce from this bound that:

Eλ�,μ�

[(
λ̂n

λ�
− 1

)2]
≤ C2 log2 n

n{λ�}2‖μ�‖4
,

which only makes sense when
√

nλ�‖μ�‖2 → +∞ as n → +∞. We stress that in the particular case of fixed λ� and μ�

(w.r.t. n), these quantities can be estimated at the classical parametric rate of 1/
√

n (up to a logarithmic term).

Remark 3.3. The upper bounds displayed in Theorems 3.1 and 3.2 both involve a (log(n))2 term. This logarithmic
term comes from the oracle inequality in Theorem 2.1 and is related to the complexity of the set, namely M
,M, over
which our contrast is minimized. As we will see in the next section, such a term is missing from our lower bound. Up
to our knowledge, a logarithmic gap between lower and upper bounds is a classical outcome when dealing with contrast
minimization estimators.

4. Lower bounds

We now derive some lower bounds on the estimation of λ� and μ� and show that our previous results are minimax optimal
with respect to the values of n, λ� and μ� up to some log2 n terms.

4.1. Strong contamination model

For this purpose, we split our study into two cases and first consider the “standard” situation of a strong contamination,
meaning that ‖μ�‖ is bounded from below by a constant independent on n: it translates the fact that the contamination is
not negligible when n −→ +∞. Let m and c be two positive constants, and:

�n(m,c) :=
{
θ = (λ,μ) : c

‖μ‖2
√

n
≤ λ,m ≤ ‖μ‖

}
.

Note that this still allows a weak effect of contamination since λ� can be on the order of n−1/2. In this case, we obtain
the lower bounds that matches (up to a log term) the upper bounds obtained in Theorems 3.1 and 3.2.

Theorem 4.1. Consider two positive constants m and c such that 0 < c

m2√n
< 1 so that �n(m,c) is non empty. A density

φ that satisfies (HS) and (HLip) exists such that:

(i) a positive constant C1 exists such that:

inf
(λ̂,μ̂)

sup
(λ,μ)∈�n(m,c)

E
[
λ2‖μ̂ − μ‖2]≥ C1

n
, (4.1)

(ii) a positive constant C2 exists such that:

inf
(λ̂,μ̂)

sup
(λ,μ)∈�n(m,c)

E
[
(λ̂ − λ)2]≥ C2

n
, (4.2)

where the infimum is taken over all estimators θ̂ = (λ̂, μ̂) in (4.1) and (4.2). The constants C1 and C2 depend on c, m and
J (defined in (HLip)).

Even though the proof relies on a Le Cam argument and leads to a n−1 rate, it clearly deserves a careful study for at
least two reasons: the loss is asymmetric in (λ,μ) in i) and the balance between λ, μ and n is unclear. We give the proof
of this result in Appendix B.2.



1398 S. Gadat et al.

4.2. Weak contamination model

We now study the situation when the contamination ‖μ‖ is not yet bounded from below and can therefore tend to 0 as
n −→ +∞. Let c > 0, and:

�n(c) :=
{
θ = (λ,μ) : c

‖μ‖2
√

n
≤ λ

}
.

We introduce a sub-class of densities φ that satisfy the following assumption:

Assumption (HD). The density φ satisfies:

Iφ := sup
1≤j≤d

∫ {
dj,jφ(x)

}2
φ−1(x) dx < +∞, (4.3)

where dj,j refers to the second derivative of φ with respect to the variable j . Note that Assumption (HD) is needed for our
lower bound results but is not necessary to obtain good estimation properties. However, this assumption is very mild and
is again satisfied for many probability distributions as pointed out in Remark 3.1. Moreover, from the minimax paradigm,
it is enough to obtain our lower bound results with a restricted subset of densities φ.

Theorem 4.2. An integer N > 0 and a function φ that satisfies (HS) and (HD) exists such that, for all n > N :

(i) a positive constant C1 exists such that:

inf
(λ̂,μ̂)

sup
(λ,μ)∈�n(c)

E
[‖μ‖4(λ − λ̂)2]≥ C1

n
, (4.4)

(ii) a positive constant C2 exists such that:

inf
(λ̂,μ̂)

sup
(λ,μ)∈�n(c)

E
[
λ2‖μ‖2‖μ − μ̂‖2]≥ C2

n
, (4.5)

where the infimum is taken over all estimators θ̂ = (λ̂, μ̂) in (4.4) and (4.5). The constant C1 and C2 depend on c and Iφ

(defined in (HD)).

Finally, we should also remark that estimating μ when λ becomes negligible comparing to n−1/2 appears to be impos-
sible as pointed out in (ii) of Theorem 4.2.

5. Discussion

5.1. Related works on distances inequalities and mixture models

In this paragraph, we provide some additional remarks on the links between several metrics used to describe mixture
models in the particular situation of our two-component contamination model. As pointed out in [17] and [15], relat-
ing distances between probability distributions on the observations, and Wasserstein distances (defined in (1.5)) on the
space of mixture measures is a popular subject of investigation. Of course, it makes sense when we handle some strong-
identifiable models as remarked in the cited previous works. We will rely the rates for estimating contamination mixtures
to rates for general mixtures. The latter are usually stated in terms of transportation distance between the mixing distribu-
tions G. For a contamination mixture, it reads:

Gλ,μ = (1 − λ)δ0 + λδμ, (5.1)

where δθ is the Dirac peak at θ .
In [17], it is shown that the Total Variation distance denoted V (fλ,μ, fλ�,μ�) between the probability distributions

dominates the Wasserstein distance W1(Gλ,μ,Gλ�,μ�) when the number of components is known. When it is unknown,
but we are only interested in the distance of the estimator to the true distribution, the rate deteriorates to V (fλ,μ, fλ�,μ�)�
W 2

2 (Gλ,μ,Gλ�,μ�), under appropriate identifiability conditions.
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When we are interested in local minimax rates of convergences, the situation worsens, as proved in [15]. It is shown
that the supremum norm between the probability distributions ‖ · ‖∞ dominates the Wasserstein distance W 2m−1

2m−1 where
essentially 2m − 1 is the number of unknown positions to be estimated in the mixture model (the m possible locations
and the m − 1 dimensional weights distribution):

‖fλ,μ − fλ�,μ�‖∞ � W 2m−1
2m−1 (Gλ,μ,Gλ�,μ�).

The Dvoretzky–Kiefer–Wolfowitz inequality then allows [15] to deduce a n−1/(4m−2) rate of convergence on the param-
eters.

Notice that for two components, the above speed is in n−1/6, whereas our speeds here are in n−1/4. This is because the
bound by [15] is for generic mixture models, while in this work, we deal with a specific two-component contaminated
model. Specifically, in typical cases, the minimax speed for estimating the parameters of mixture models is n−1/2d where
d is the number of parameters. The generic two-component model has three parameters, whereas our contamination
model has only two.

5.2. Comparing W2 and ‖ · ‖2 in a two-component contamination model

In this work, we have chosen to handle the L2 distance on probability distributions, instead of V or ‖ · ‖∞, nevertheless a
relationship between ‖ · ‖2 and Wp should exist. The next result essentially states this dependency.

Theorem 5.1. For any density φ that satisfies (HS) and (HLip), a constant cφ > 0 exists such that:

∀(λ,λ′) ∈ (0,1)2 ∀(μ,μ′) ∈ [−M,M]d ‖fλ,μ − fλ′,μ′ ‖2 ≥ cφW 2
2 (Gλ,μ,Gλ′,μ′).

Hence, f̂n := f
λ̂n,μ̂n

defined by (2.2) satisfies

Eλ�,μ�

[
W 4

2 (G
λ̂n,μ̂n

,Gλ�,μ�)
]
� E

[‖f̂n − fλ�,μ�‖2
2

]
� (logn)2

n
.

In other words, the L2 strategy investigated in this paper allows in fact to control the Wasserstein distance between the
estimated mixture distribution G

λ̂n,μ̂n
and the target Gλ�,μ� . On the other hand, a lower bound on the minimax rate of

convergence in term of the Wasserstein distance may not be directly deduced from our results displayed in Theorems 4.1
or 4.2 because of the lack of symmetry in (λ,μ) with respect to (λ̂, μ̂).

6. Simulation study

Distributions

In this section, we assess the performance of the L2-estimator given in (2.2) on four particular cases (d = 1) of baseline
density φ. We study the following features:

• Standard Gaussian case with φ(x) = 1√
2π

e− 1
2 x2

.

• Non-smooth distribution with the Laplace density φ(x) = 1
2e−|x|.

• Heavy tailed distribution with the Cauchy density: φ(x) = 1
π(1+x2)

.
• Asymmetry with the skew Gaussian density: φ(x) = 2ψ(x)�(αx), where ψ and � , respectively, denote the density

and the cumulative function of the standard Gaussian distribution and where α is the asymmetry parameter different
from 0 (in the simulations, we fix α = 10). This example of asymmetric distributions has been introduced by [1].

Our estimator requires the calculation of the contrast γn and, in particular, the value of the L2 norm:

‖fλ,μ‖2
2 = [λ2 + (1 − λ)2]‖φ‖2

2 + 2λ(1 − λ)〈φ,φμ〉,
that involves the value of inner product 〈φ,φμ〉 for any value of the location parameter μ ∈ [−M,M]. In the first three
examples of distributions, a closed formula exists:

• Gaussian density: 〈φ,φμ〉 = (4π)− 1
2 exp[− 1

4μ2]
• Laplace density: 〈φ,φμ〉 = 1

4e−|μ|(1 + |μ|)
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• Cauchy density: 〈φ,φμ〉 = 2
π(4+μ2)

Unfortunately, such a formula is not available (to our knowledge) for the skew Gaussian density: there is no analytical
expression of 〈φ,φμ〉. Instead, we used a Monte-Carlo procedure to evaluate this quantity for each value of μ in our
grid Mn given in (3.2). To obtain a sufficient approximation of these inner products, we used a number of Monte-Carlo
iterations TMC each time of the order TMC ∝ n2 (where n will be the sample size used for our estimation problem).

Statistical setting

We have worked in 1-D with a fixed value of λ� = 1
4 while μ� is allowed to vary with n. Below, we used the following

relationship between μ� and n:

μ� =
√

1

λ�nν
with ν = α

24
, α ∈ {1, . . . ,24}.

For each value of the parameter μ�, we used 103 Monte-Carlo simulations to obtain reliable results, while the grid size
is determined by fixing the maximal value of the unknown |μ�| as M = 10. Finally, we sampled a set of n = 5000
observations each time.

In Figure 1, for each case of the mixture model, we represent the evolution of the mean square error for the estimation
of λ� and of μ� when ν varies between 1/24 and 1:

ν �−→ MSE(λ) = 1

103

103∑
j=1

(
λ̂j − λ�

)2 and ν �−→ MSE(μ) = 1

103

103∑
j=1

(
μ̂j − μ�

)2
.

As pointed out in Figure 1, the estimation of λ� and μ� performs quite well as soon as ν is lower than 1/2 but becomes
completely inconsistent when ν > 1/2, even if we use a sample size of 5000 observations.

We also represent the violin plot of these estimations indicating the same behavior in each particular case (Gaussian
and Laplace in Figure 2; Cauchy and skew Gaussian in Figure 3).

Again, a similar conclusion holds: the estimators derived from (2.2) exhibit a low bias and variance when ν is chosen
small enough (lower than 1/2, which corresponds to values greater than 12 in the horizontal axes of Figures 2–3). In
contrast, the estimation is seriously damaged for values of ν greater than 1/2 (which corresponds to values lower than 11
in the horizontal axes of Figures 2–3). Finally, it should be noted that the shape of the density φ does not seem to have
a big influence on the estimation ability, even though the Cauchy distribution settings may be seen as the most difficult
problem (as represented by the green MSE in Figure 1).

Fig. 1. Mean square error of estimating λ� (left) and μ� (right) for the 24 values of ν in descending order.
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Fig. 2. Evaluation of λ� (on the left) and μ� (on the right) for our estimators when Gaussian mixtures (top) and Laplace mixtures (bottom) are
considered, for the 24 values of ν in descending order.

7. Proofs of the upper bounds

7.1. Preliminary oracle inequality

We first establish a technical proposition that will be used to derive the proof of Theorem 2.1. For a given grid M
,M,
we first introduce the theoretical minimizer of the L2-norm on this grid:

(λ0,μ0) = arg min
(λ,μ)∈M
,M

∥∥fλ,μ − f �
∥∥2

2. (7.1)

We then define En(λ,μ) the empirical process indexed by (λ,μ) ∈M
,M as:

En(λ,μ) = 2

n

n∑
i=1

{
fλ,μ(Xi) − fλ0,μ0(Xi) − [〈fλ,μ − fλ0,μ0, f

�
〉]}

.

For all (λ,μ) ∈M
,M, the term En(λ,μ) can be rewritten as:

En(λ,μ) = 1

n

n∑
i=1

(
Yi −E[Yi]

)
where Yi := 2

[
fλ,μ(Xi) − fλ0,μ0(Xi)

]
. (7.2)
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Fig. 3. Evaluation of λ� (on the left) and μ� (on the right) for our estimators when Cauchy mixtures (top) and skew Gaussian mixtures (bottom) are
considered, for the 24 values of ν in descending order.

In particular, E[En(λ,μ)] = 0 and:

Var(Yi) ≤ E
[
Y 2

i

]= 4E
[(

fλ,μ(Xi) − fλ0,μ0(Xi)
)2]

= 4
∫
R

[
fλ,μ(x) − fλ0,μ0(x)

]2
f �(x) dx

≤ 4‖φ‖∞‖fλ,μ − fλ0,μ0‖2
2,

since ‖f �‖∞ ≤ ‖φ‖∞. We will use a normalized version of this process below, which naturally leads to the introduction
of Gn(λ,μ):

∀(λ,μ) ∈ M
,M \ {(λ0,μ0)
}

Gn(λ,μ) = En(λ,μ)

‖fλ,μ − fλ0,μ0‖2
.

Our estimator (λ̂n, μ̂n) defined in (2.2) satisfies the following useful property.

Lemma 7.1.

(i) For any (λ,μ) such that ‖fλ,μ − fλ0,μ0‖2 ≥ n−1/2:

∀s > 0 P
(∣∣Gn(λ,μ)

∣∣> s
)≤ exp

(
− ns2

8‖φ‖∞[1 + s
√

n
3 ]

)
. (7.3)



Another L2 look at two-component contamination mixture 1403

(ii) We can find C > 0 such that:

E
[
G2

n(λ̂n, μ̂n)1Bc

]≤ C log2(|M
,M|)
n

, (7.4)

where B is the event defined as B = {‖f̂n − fλ0,μ0‖2 ≤ 1√
n
}.

Proof. In this proof, C refers to a constant that is independent of n, whose value may change from line to line.
Proof of (i): thanks to the Bennett inequality, we obtain for all s > 0:

P
(∣∣Gn(λ,μ)

∣∣> s
)

≤ exp

(
− n2s2‖fλ,μ − fλ0,μ0‖2

2

8n‖φ‖∞‖fλ,μ − fλ0,μ0‖2
2 + 8n‖φ‖∞s‖fλ,μ − fλ0,μ0‖2/3

)
,

= exp

(
− ns2

8‖φ‖∞[1 + s‖fλ,μ − fλ0,μ0‖−1
2 /3]

)
.

Using the fact that ‖fλ,μ − fλ0,μ0‖2 ≥ n−1/2, we obtain:

P
(∣∣Gn(λ,μ)

∣∣> s
)≤ exp

(
− ns2

8‖φ‖∞[1 + s
√

n
3 ]

)
,

which is the desired Inequality (7.3).
Proof of (ii): observe that for all t > 0,

E
[
G2

n(λ̂n, μ̂n)1Bc

] ≤ t2 +E
[
G2

n(λ̂n, μ̂n)1{|Gn(λ̂n,μ̂n)|>t}1Bc

]
,

≤ t2 +E

[
sup

(λ,μ):‖fλ,μ−fλ0,μ0‖≥n−1/2

{
G2

n(λ,μ)1{|Gn(λ,μ)|>t}
}]

,

≤ t2 +
∑

(λ,μ):‖fλ,μ−fλ0,μ0‖≥n−1/2

E
[
G2

n(λ,μ)1{|Gn(λ,μ)|>t}
]
. (7.5)

Integrating by parts, we can remark that:

E
[
G2

n(λ,μ)1{|Gn(λ,μ)|>t}
]= t2P

(∣∣Gn(λ,μ)
∣∣> t

)+ ∫ +∞

t2
P
(∣∣Gn(λ,μ)

∣∣> √
x
)
dx.

Thus, if we choose t = (
16‖φ‖∞ log(|M
,M|)

3 ∨ 3)n−1/2, then t
√

n/3 ≥ 1, so that for any s ≥ t and for a fixed (λ,μ), (7.3)
yields:

E
[
G2

n(λ,μ)1{|Gn(λ,μ)|>t}
]≤ t2 exp

(− log
(|M
,M|))+ ∫ +∞

t2
exp

(
− 3

√
nx

16‖φ‖∞

)
dx

≤ C
log2(|M
,M|)

n
× 1

|M
,M| + 2
∫ +∞

t

u exp

(
− 3

√
nu

16‖φ‖∞

)
du,

for large enough C, where the last line comes from the size of t for the left-hand side, and from the change of variable
u = √

x in the integral. The remaining integral may be integrated by parts, which in turn leads to:

E
[
G2

n(λ,μ)1{|Gn(λ,μ)|>t}
]≤ C

log2(|M
,M|)
n

× 1

|M
,M| .

If we plug the above upper bound into (7.5), we then obtain that a sufficiently large constant C exists such that:

E
[
G2

n(λ̂n, μ̂n)1Bc

]≤ C
log2(|M
,M|)

n
× |M
,M|

|M
,M| | = C
log2(|M
,M|)

n
. �
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We are now interested in the proof of the oracle inequality.

Proof of Theorem 2.1. The best approximation term (λ0,μ0) over the grid M
,M is defined in (7.1) and the event

B = {‖f̂n − fλ0,μ0‖2 ≤
√

1
n
} is introduced in Proposition 7.1. On the event B, the situation is easy using the Young

inequality 2ab ≤ αa2 + α−1b2 so that for all α > 0,

E
[∥∥f̂n − f �

∥∥2
21B

] ≤ (1 + α)
∥∥fλ0,μ0 − f �

∥∥2
2 + (1 + α−1)E[‖f̂n − fλ0,μ0‖2

21B
]
,

≤ (1 + α)
∥∥fλ0,μ0 − f �

∥∥2
2 + 1 + α−1

n
. (7.6)

We provide below a similar control on the event Bc. First, observe that according to the definition of (λ̂n, μ̂n), for all
(λ,μ) ∈ M
,M, we have:

γn(λ̂n, μ̂n) + ∥∥f �
∥∥2

2 ≤ γn(λ,μ) + ∥∥f �
∥∥2

2,

⇔ ∥∥f̂n − f �
∥∥2

2 ≤ ∥∥fλ,μ − f �
∥∥2

2 + 2

[
1

n

n∑
i=1

f̂n(Xi) − 〈f̂n, f
�
〉]− 2

[
1

n

n∑
i=1

fλ,μ(Xi) − 〈fλ,μ, f �
〉]

.

This inequality being true for (λ,μ) = (λ0,μ0), we obtain:

∥∥f̂n − f �
∥∥2

21Bc ≤ ∥∥fλ0,μ0 − f �
∥∥2

2 + En(λ̂n, μ̂n)1Bc .

This implies that for all 0 < α < 1:

∥∥f̂n − f �
∥∥2

21Bc ≤ ∥∥fλ0,μ0 − f �
∥∥2

2 + ‖f̂n − fλ0,μ0‖2
En(λ̂n, μ̂n)

‖f̂n − fλ0,μ0‖2
1Bc ,

⇒ ∥∥f̂n − f �
∥∥2

21Bc ≤ ∥∥fλ0,μ0 − f �
∥∥2

2 + α

2
‖f̂n − fλ0,μ0‖2

21Bc + 1

2α
G2

n(λ̂n, μ̂n)1Bc .

Using ‖u + v‖2 ≤ 2‖u‖2 + 2‖v‖2, we then deduce that:

∥∥f̂n − f �
∥∥2

21Bc ≤ (1 + α)

(1 − α)

∥∥fλ0,μ0 − f �
∥∥2

2 + 1

2α
G2

n(λ̂n, μ̂n)1Bc . (7.7)

We can conclude the proof taking (7.4) in (7.7), and (7.6) together. �

7.2. Proof of Theorem 3.1

We aim to apply the oracle inequality established in Theorem 2.1. First, we need an upper bound on the approximation
term given by ‖fλ0,μ0 − f �‖2

2 when (λ0,μ0) belongs to our grid Mn. We can observe that for all (λ,μ) ∈ (0,1) ×Rd ,

∥∥fλ,μ − f �
∥∥2

2 = ∥∥(1 − λ)φ + λφμ − (1 − λ�
)
φ − λ�φμ�

∥∥2
2

= ∥∥(λ� − λ
){φ − φμ} + λ�{φμ − φμ�}∥∥2

2

≤ 2
(
λ� − λ

)2‖φ − φμ‖2
2 + 2

{
λ�
}2‖φμ − φμ�‖2

2. (7.8)

Using Proposition A.1, we can find two positive constants κ and κ such that:

∀(μ, μ̃) ∈Rd ×Rd κ‖μ − μ̃‖2 ≤ ‖φμ − φμ̃‖2
2 ≤ κ‖μ − μ̃‖2, (7.9)

which in turn implies that:

∥∥fλ,μ − f �
∥∥2

2 ≤ 8‖φ‖2
2

(
λ� − λ

)2 + 2κ
{
λ�
}2∥∥μ − μ�

∥∥2
.
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In particular, the definition of Mn given in (3.2) makes it possible to find a constant C > 0 such that:

∥∥fλ0,μ0 − f �
∥∥2

2 = inf
(λ,μ)∈Mn

∥∥fλ,μ − f �
∥∥2

2 ≤ C

n
. (7.10)

At the same time, observe that (7.8) leads to:∥∥f̂n − f �
∥∥2

2 = (λ� − λ̂n

)2‖φ − φμ̂n
‖2

2 + {λ�
}2‖φμ̂n

− φμ�‖2
2 + 2

(
λ� − λ̂n

)
λ�〈φ − φμ̂n

,φμ̂n
− φμ�〉.

Then the following lemma (proved in [12]), which can be viewed as a refinement of the Cauchy–Schwarz inequality, is
required.

Lemma 7.2. If φ satisfies (HS) and (HLip), then a constant c > 0 exists such that ∀(a, b) ∈Rd ×Rd :∣∣〈φ − φa,φa+b − φa〉
∣∣≤ ‖φ − φa‖2‖φa+b − φa‖2

(
1 − c‖φ − φa+b‖2

2

)
. (7.11)

Using Lemma 7.2 with a = μ̂n and b = μ� − μ̂n and (7.9), a positive constant c exists such that:∥∥f̂n − f �
∥∥2

2

≥ (λ� − λ̂n

)2‖φ − φμ̂n
‖2

2 + {λ�
}2‖φμ̂n

− φμ�‖2
2

− 2
∣∣λ� − λ̂n

∣∣λ�‖φ − φμ̂n
‖2‖φμ̂n

− φμ�‖2
(
1 − c‖φ − φμ�‖2

2

)
≥ (λ� − λ̂n

)2‖φ − φμ̂n
‖2

2 + {λ�
}2‖φμ̂n

− φμ�‖2
2

− [(λ� − λ̂n

)2‖φ − φμ̂n
‖2

2 + {λ�
}2‖φμ̂n

− φμ�‖2
2

](
1 − c‖φ − φμ�‖2

2

)
≥ c
(
λ� − λ̂n

)2‖φ − φμ̂n
‖2

2‖φ − φμ�‖2
2 + c

{
λ�
}2‖φμ̂n

− φμ�‖2
2‖φ − φμ�‖2

2.

We then obtained the crucial inequality:∥∥f̂n − f �
∥∥2

2 ≥ cκ2(λ� − λ̂n

)2‖μ̂n‖2
∥∥μ�

∥∥2 + cκ2{λ�
}2∥∥μ�

∥∥2∥∥μ̂n − μ�
∥∥2

. (7.12)

We see here the central role of the refinement of the Cauchy–Schwarz inequality to obtain a tractable bound that
involves the parameters of the mixture themselves, from the bound on the L2-norm of f̂n − f �. We now use the oracle
inequality on ‖f̂n − f �‖2

2 to deduce that a constant C > 0 exists such that:

E
[(

λ� − λ̂n

)2‖μ̂n‖2
∥∥μ�

∥∥2 + {λ�
}2∥∥μ�

∥∥2∥∥μ̂n − μ�
∥∥2]≤ C log2 n

n
. (7.13)

In particular, we immediately deduce from (7.13) that:

E
[{

λ�
}2∥∥μ�

∥∥2∥∥μ̂n − μ�
∥∥2]≤ C log2 n

n
.

This result is uniform in (λ�,μ�), we obtain the proof of Theorem 3.1.
Unfortunately, we cannot directly use a similar approach for the estimation of λ�. Indeed, we have to first ensure that

μ̂n is close to μ� with a large enough probability.

7.3. Proof of Theorem 3.2

Let B and D be the events respectively defined as:

B =
{
‖f̂n − fλ0,μ0‖2 ≤

√
1

n

}
(7.14)

and

D =
{∣∣Gn(λ̂n, μ̂n)

∣∣≤ 16‖φ‖∞ log(n|Mn|)
3
√

n

}
. (7.15)
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Below, the control of the quadratic risk of μ̂n will be investigated according to the partition B,Bc ∩ D and
Bc ∩Dc .

Control of the risk on B: Equation (7.6) together with (7.10) indicates that:

∥∥f̂n − f �
∥∥2

21B ≤ C

n
.

Then, Equation (7.12) implies that:

∥∥μ̂n − μ�
∥∥21B ≤ C

n{λ�}2‖μ�‖2
≤ C‖μ�‖2

�2
n

. (7.16)

Control of the risk on Bc ∩D: On the set Bc ∩D, we apply Inequality (7.7), which yields:

∥∥f̂n − f �
∥∥2

21Bc∩D ≤ (1 + α)

(1 − α)

∥∥fλ0,μ0 − f �
∥∥2

2 + 1

2α

∣∣Gn(λ̂n, μ̂n)
∣∣21Bc∩D

≤ C
log2(n|Mn|)

n

for some positive constant C. Since the size of |M
n,Mn
| is a polynomial of n, we can find a constant C such that

Equation (7.12) leads to:

∥∥μ̂n − μ�
∥∥21Bc∩D ≤ C

log2 n

n{λ�}2‖μ�‖2
≤ C

log2 n

�2
n

∥∥μ�
∥∥2

. (7.17)

Since we assume that (λ�,μ�) ∈ �n(M, (�n)n, λ) with �n/ logn −→ +∞ when n −→ +∞, Equations (7.16) and (7.17)
imply that for large enough n,

∥∥μ̂n − μ�
∥∥2[1B + 1Bc∩D] ≤ ‖μ�‖2

4
.

Remark that for any x and y: ‖x − y‖ ≤ ‖y‖
2 implies that ‖y‖ ≥ 2‖y‖ − 2‖x‖ (using the triangle inequality), which in

turns yields ‖y‖ ≤ 2‖x‖. Applying this simple remark to the former inequality leads to:∥∥μ�
∥∥2[1B + 1Bc∩D] ≤ 4‖μ̂n‖2[1B + 1Bc∩D]. (7.18)

Control of the risk on Bc ∩Dc: Applying (7.3) we can check that:

P
(
Bc ∩Dc

)≤ P
(
Dc
)≤ C

n

for some positive constant C.
Synthesis: Using (7.18), a large enough N exists such that for n ≥ N :

E
[(

λ̂n − λ�
)2∥∥μ�

∥∥4] = E
[(

λ̂n − λ�
)2∥∥μ�

∥∥4
(1B + 1Bc∩D)

]+E
[(

λ̂n − λ�
)2∥∥μ�

∥∥41Bc∩Dc

]
,

≤ 4E
[(

λ̂n − λ�
)2∥∥μ�

∥∥2‖μ̂n‖2]+ d2M4P
(
Dc
)
,

≤ C log2(n)

n
,

for some constant C > 0, according to (7.13). This result being uniform in (λ�,μ�), we obtain the proof of Theorem 3.2.

8. Link between the ‖ ·‖2 norm and the Wasserstein distance(s)

Proof of Theorem 5.1. Below, we will establish that the following inequality (stated in Theorem 5.1) holds:

W 4
2 (Gλ,μ,Gλ′,μ′) � ‖fλ,μ − fλ′,μ′‖2

2. (8.1)
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Expression of W2: Since the role played by (λ,μ) and (λ′,μ′) is symmetric, in the following, we assume without loss of
generality that λ ≤ λ′. After some calculations (see [12] for more details), it yields

W 2
2 (Gλ,μ,Gλ′,μ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ′ − λ)‖μ′‖2 + λ‖μ − μ′‖2 if ‖μ‖2 + ‖μ′‖2 ≥ ‖μ − μ′‖2,

λ‖μ‖2 + λ′‖μ′‖2 if ‖μ‖2 + ‖μ′‖2 < ‖μ − μ′‖2 and λ + λ′ ≤ 1,

(1 − λ′)‖μ‖2 + (1 − λ)‖μ′‖2

+ (λ + λ′ − 1)‖μ − μ′‖2 if ‖μ‖2 + ‖μ′‖2 < ‖μ − μ′‖2 and λ + λ′ > 1.

(8.2)

Upper bound on W2: The previous expression for W2(Gλ,μ,Gλ′,μ′) allows to prove that

W 2
2 (Gλ,μ,Gλ′,μ′) ≤ (λ′ − λ

)∥∥μ′∥∥2 + λ
∥∥μ − μ′∥∥2

. (8.3)

Indeed, according to (8.2), this bound turns to be an equality when ‖μ‖2 + ‖μ′‖2 ≥ ‖μ − μ′‖2. When, ‖μ‖2 + ‖μ′‖2 <

‖μ − μ′‖2 and λ + λ′ ≤ 1, we have

W 2
2 (Gλ,μ,Gλ′,μ′) = (λ′ − λ

)∥∥μ′∥∥2 + λ
∥∥μ − μ′∥∥2 + λ

(∥∥μ′∥∥2 + ‖μ‖2 − ∥∥μ − μ′∥∥2)
≤ (λ′ − λ

)∥∥μ′∥∥2 + λ
∥∥μ − μ′∥∥2

.

In the last case displayed in (8.2), namely when ‖μ‖2 + ‖μ′‖2 < ‖μ − μ′‖2 and λ + λ′ > 1, we obtain

W 2
2 (Gλ,μ,Gλ′,μ′) = (1 − λ′)‖μ‖2 + (1 − λ)

∥∥μ′∥∥2 + (λ + λ′ − 1
)∥∥μ − μ′∥∥2

= (λ′ − λ
)∥∥μ′∥∥2 + λ

∥∥μ − μ′∥∥2 + (1 − λ′)[∥∥μ′∥∥2 + ‖μ‖2 − ∥∥μ − μ′∥∥2]
.

≤ (λ′ − λ
)∥∥μ′∥∥2 + λ

∥∥μ − μ′∥∥2
.

This entails (8.3). We get from this inequality, still assuming λ ≤ λ′

W 2
2 (Gλ,μ,Gλ′,μ′) ≤ (λ′ − λ

)∥∥μ′∥∥2 + λ
∥∥μ − μ′∥∥2

≤ (λ′ − λ
)∥∥μ′∥∥2 + λ

(‖μ‖ + ∥∥μ′∥∥)∥∥μ − μ′∥∥,
≤ (λ′ − λ

)∥∥μ′∥∥2 + (λ‖μ‖ + λ′∥∥μ′∥∥)∥∥μ − μ′∥∥,
≤ (λ′ − λ

)∥∥μ′∥∥‖μ‖ + (λ′ − λ
)∥∥μ′∥∥∥∥μ − μ′∥∥+ (λ‖μ‖ + λ′∥∥μ′∥∥)∥∥μ − μ′∥∥,

≤ (λ′ − λ
)∥∥μ′∥∥‖μ‖ + 2

(
λ‖μ‖ + λ′∥∥μ′∥∥)∥∥μ − μ′∥∥.

From this latter inequality, we obtain

W 4
2 (Gλ,μ,Gλ′,μ′) ≤ 8

[(
λ′ − λ

)2∥∥μ′∥∥2‖μ‖2 + (λ‖μ‖ + λ′∥∥μ′∥∥)2∥∥μ − μ′∥∥2]
. (8.4)

In the other hand, Inequality (7.12) indicates that

‖fλ,μ − fλ′,μ′ ‖2
2 ≥ cκ2(λ′ − λ

)2‖μ‖2
∥∥μ′∥∥2 + cκ2{λ′}2∥∥μ′∥∥2∥∥μ − μ′∥∥2

.

Since the role played by (λ,μ) and (λ′,μ′) is symmetric, we obtain in fact

‖fλ,μ − fλ′,μ′ ‖2
2 ≥ cκ2(λ′ − λ

)2‖μ‖2
∥∥μ′∥∥2 + cκ2

2

({
λ′}2∥∥μ′∥∥2 + {λ}2‖μ‖2)∥∥μ − μ′∥∥2

,

which together with (8.4) implies (8.1). Using this inequality with f
λ̂n,μ̂n

and fλ�,μ� , and according to Theorem 2.1, we
conclude the proof of Theorem 5.1. �
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Appendix A: Technical results

A.1. Identifiability result

Proof of Proposition 2.1. We assume that two parameters θ1 = (λ1,μ1) and θ2 = (λ2,μ2) exist such that fθ1 = fθ2 . In
that case, consider the Fourier transform of X whose density is fθ1 . This Fourier transform is given by

ϕX(ξ) = E
[
eiξ•X]= [(1 − λ1) + λ1e

iξ•μ1
]
φ̂(ξ),

where φ̂ is the Fourier transform of φ and i is the complex number such that i2 = −1. Since fθ1 = fθ2 , we then deduce
that:

∀ξ ∈ Rd
[
(1 − λ1) + λ1e

iξ•μ1
]
φ̂(ξ) = [(1 − λ2) + λ2e

iξ•μ2
]
φ̂(ξ).

Since φ ∈ L1(Rd), φ̂ is continuous and cannot be zero everywhere. Thus, we can find an open set I ⊂ Rd such that
φ̂(ξ) �= 0 in I and the Lebesgue measure of I is strictly positive. Hence,

∀ξ ∈ I (1 − λ1) + λ1e
iξ•μ1 = (1 − λ2) + λ2e

iξ•μ2 ,

and from the analytical property of the exponential map, we deduce that:

∀ξ ∈ I (1 − λ1) + λ1
[
cos(ξ • μ1) + i sin(ξ • μ1)

]= (1 − λ2) + λ2
[
cos(ξ • μ2) + i sin(ξ • μ2)

]
Identifying now the imaginary parts yields:

∀ξ ∈ I λ1 sin(ξ • μ1) = λ2 sin(ξ • μ2).

If we write μ1 = (μ
(1)
1 , . . . ,μ

(d)
1 ) and μ2 = (μ

(1)
2 , . . . ,μ

(d)
2 ), we deduce that

∀ξ = (ξ1, . . . , ξd) : λ1

[
sin
(
ξ1μ

(1)
1

)
cos

(
d∑

j=2

ξjμ
(j)

1

)
+ cos

(
ξ1μ

(1)
1

)
sin

(
d∑

j=2

ξjμ
(j)

1

)]

= λ2

[
sin
(
ξ1μ

(1)
2

)
cos

(
d∑

j=2

ξjμ
(j)

2

)
+ cos

(
ξ1μ

(1)
2

)
sin

(
d∑

j=2

ξjμ
(j)

2

)]
.

Considering now the function of the variable ξ1, it is classical that the family of functions (ξ1 �→ sin(α1ξ1), ξ1 �→
sin(α2ξ1)) is linearly independent if and only if |α1| �= |α2|. We can deduce that, necessarily, μ

(1)
1 = ±μ

(1)
2 and therefore

cos(ξ1μ
(1)
1 ) = cos(ξ1μ

(1)
2 ), which shows that λ1 sin(

∑d
j=2 ξjμ

(j)

1 ) = λ2 sin(
∑d

j=2 ξjμ
(j)

2 ) for all ξ ∈ I . We then end the

argument with an easy recursion: we obtain that λ1 sin(ξdμ
(d)
1 ) = λ2 sin(ξdμ

(d)
2 ) so that μ

(d)
1 = ±μ

(d)
2 . Since λ1 and λ2

are positive, then μ
(d)
1 = μ

(d)
2 , which in turn implies that μ

(j)

1 = μ
(j)

2 for all the coordinates j ∈ {1, . . . , d}. �

A.2. Connection between ‖φ − φμ‖2 and |μ|
Proposition A.1. Let any M > 0 be given and assume that φ satisfies (HS) and (HLip), then two constants 0 < κ < κ <

+∞ exist such that:

∀(μ, μ̃) ∈ [−M,M]d × [−M,M]d κ‖μ − μ̃‖2 ≤ ‖φμ − φμ̃‖2
2 ≤ κ‖μ − μ̃‖2. (A.1)

Proof. We prove the upper and lower bounds separately. According to the shift invariance of the L2 norm, we only
establish these inequalities when μ̃ = 0. Using (HLip), the upper bound simply derives from:

‖φ − φμ‖2
2 =

∫
Rd

[
φ(x) − φ(x − μ)

]2
dx ≤

∫
Rd

‖μ‖2g2(x) dx = ‖μ‖2‖g‖2
2,

which is the desired inequality if we choose κ = ‖g‖2. Concerning the lower bound, we have:

‖φ(·) − φ(· − μ)‖2
2

‖μ‖2
=
∫
Rd

[
φ(x) − φ(x − μ)

‖μ‖
]2

dx.
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We write μ = ‖μ‖e where e is a unit vector of the sphere. Inequality (3.1) brought by Assumption (HLip) makes it
possible to apply the Lebesgue convergence theorem, which implies:

lim‖μ‖−→0

‖φ(·) − φ(· − μ)‖2

‖μ‖2
=
∫
Rd

lim‖μ‖→0

[
φ(x) − φ(x − μ)

‖μ‖
]2

dx,

= ‖∇φ • e‖2 = ∥∥de[φ]∥∥2
> 0.

Indeed, φ being differentiable (φ ∈ C1(Rd)), φ(x)−φ(x−μ)
‖μ‖ −→ de[φ](x) almost surely when ‖μ‖ −→ 0. Now, φ is con-

tinuous and ψ : μ −→ ‖φ−φμ‖2
2

‖μ‖2 ∈ C0([−M,M]d ,R) from the Lebesgue convergence theorem. This continuous map ψ

attains its lower bound on [−M,M]d and the identifiability result of Proposition 2.1 implies that this lower bound is
positive. This leads to the existence of κ > 0 such that:

‖φ − φμ‖2
2 ≥ κ‖μ‖2. �

A.3. Log-concave distributions

In this section, we establish that most of the log-concave real distributions satisfy the assumptions (HS), (HLip) and
(HD). For this purpose, we introduce the associated class of probability measures:

LC := {φ(·) = e−u(·) : u is convex, u ∈ C2(Rd
)

and ‖∇u‖ + ∥∥D2u
∥∥= o∞(u)

}
.

The set of possible densities is rich and contains Gaussian or Gamma distributions. However, the set LC does not capture
the situation where u(x) = e|x| or u(x) = ex2

since u exhibits variations that are too great for large values of x.

Proposition A.2. Assume that μ varies in [−M,M]d and that φ ∈ LC. Let ε ∈ (0,M). If we set:

g(x) := g1(x) ∨ g2(x) ∨ g3(x)

with

g1(x) :=
√

supe∈S1

∫
[x−Me,x]〈∇φ(t), e〉2 dt

ε
, g2(x) :=

√
supe∈S1

∫
[x,x+Me]〈∇φ(t), e〉2 dt

ε
,

and

g3(x) := sup
t∈B(x,ε)

∥∥∇φ(t)
∥∥.

Then, (HLip) and (HD) hold:

(i) ∀μ ∈ [−M,M]d ∀x ∈ Rd |φ(x) − φμ(x)| ≤ ‖μ‖g(x)

(ii) gφ−1/2 ∈ L2(Rd)

(iii) D2φφ−1/2 ∈ L2(Rd)

Proof. We provide a proof in the case when φ ∈ C2. This proof can be extended when φ ∈ C2
p according to some small

modifications that are left to the reader, it then makes possible to extend our results to the Laplace distributions for
example.

Proof of (i): Remark first that ∀μ ∈ [−M,M]d , a unit vector e ∈ S1 exists such that μ = ‖μ‖e and in that case

∀x ∈Rd
∣∣φ(x) − φμ(x)

∣∣= ∣∣∣∣
∫

[x−μ,x]
〈∇φ(t), e

〉
dt

∣∣∣∣≤√‖μ‖
√∫

[x−μ,x]
〈∇φ, e〉2,

where [x − μ,x] refers to the segment that joins x − μ to x in Rd and the last upper bound comes from the Cauchy–
Schwarz inequality. Let ε ∈ (0,M). If ‖μ‖ ∈ [ε,M], we obtain that:∣∣φ(x) − φμ(x)

∣∣≤ ‖μ‖(g1(x) ∨ g2(x)
)
,
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where g1 and g2 are defined in the statement of the Proposition. Finally, we should remark that if ‖μ‖ ∈ [0, ε), then∣∣φ(x) − φμ(x)
∣∣≤ ‖μ‖ sup

t∈B(x,ε)

∥∥∇φ(t)
∥∥ := ‖μ‖g3(x).

It proves that g = g1 ∨ g2 ∨ g3 satisfies the desired inequality.
Proof of (ii): In order to prove that gφ−1/2 ∈ L2(Rd), we separately prove that g2

1φ−1, g2
2φ−1 and g2

3φ−1 belong to
L1(Rd). We should remark that since g1, g2 and g3 are continuous functions, then we only have to check the integrability
when ‖x‖ −→ +∞. g1 and g2 are rather similar and we only handle the integrability of g2

1φ−1.
We write

g2
1(x)φ−1(x) = ε−1eu(x) sup

e∈S1

∫
[x−Me,x]

〈∇φ(t), e
〉2

dt

= ε−1 sup
e∈S1

eu(x)

∫
[x−Me,x]

〈∇φ(t), e
〉2

dt

= ε−1 sup
e∈S1

eu(x)

∫
[x−Me,x]

〈∇u(t), e
〉2

e−2u(t) dt︸ ︷︷ ︸
:=Ge(x)

.

At this stage, we are driven to consider the 1-dimensional fonction ue(t) = u(x + (t − M)e), which is a convex function.
We then have

Ge(x) = eue(M)

∫ M

0
u′

e(s)
2e−2ue(s) ds.

We shall now produce a 1-dimension argument with the convex function ue . We assume that ue(M) ≥ ue(0), and know
that u′

e is an increasing map and positive:

Ge(x) ≤ u′
e(M)eue(M)

∫ M

0
u′

e(s)e
−2ue(s) ds

≤ 〈∇u(x), e
〉
eu(x) e

−2u(x−Me) − e−2u(x)

2

≤ 〈∇u(x), e〉
2

e−2u(x−Me)+u(x).

The mean value theorem leads to:

∃ξ ∈ [x − Me,x] u(x − Me) = u(x) − M
〈∇u(ξ), e

〉≥ u(x) − M
〈∇u(x), e

〉
.

Consequently, we obtain:

Ge(x) ≤ 〈u(x), e〉
2

e−u(x)+2M‖∇u(x)‖.

The density φ ∈ LC and we can find K large enough such that:

∀‖x‖ ≥ K ∀e ∈ S1 − u(x) + 2M
∥∥∇u(x)

∥∥≤ −(1 − η)u(x)

For such an x, we have Ge(x) ≤ 〈∇u(x),e〉
2 e−(1−η)u(x) ∈ L1(Rd).

Concerning g2(x)φ(x)−1, we can produce an almost identical argument left to the reader. We now consider g2
3,εφ

−1:

g2
3,ε(x)φ−1(x) = sup

t∈B(x,ε)

∥∥∇u(t)
∥∥2

e−2u(t)+u(x).

If t ∈ [x − ε, x], the mean value theorem leads to:

u(t) = u(x) − 〈(x − t),∇u(ξ)
〉

with ξ ∈ ]t, x[
≥ u(x) − ε sup

B(x,ε)

‖∇u‖.
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Using the fact that ‖D2u‖ + ‖∇u‖ = o∞(u), we can find a positive constant C > 0, a parameter η ∈ (0,1) and for K

large enough such that ∀‖x‖ ≥ K :

‖u‖(t)2e−2u(t)+u(x) ≤ C
∥∥u(x)

∥∥e−(1−η)u(x). (A.2)

Thus, (A.2) imply that g2
3,εφ

−1 ∈ L1(Rd). As a maximum of three functions in L1(Rd), we deduce that g2φ−1 ∈ L1(Rd).
Proof of (iii): A direct computation shows that, almost surely:

{djjφ}2φ−1 = [djju − {dju}2]2e−u ≤ 2{djju}2e−u + 2{dju}4e−u.

Again, using the fact that ‖D2u‖ + ‖∇u‖ = o∞(u), we can find a positive constant C > 0, a parameter η ∈ (0,1) and a
large enough K such that ∀‖x‖ ≥ K :

{djju}2(x)e−u(x) ≤ Cdjju(x)e−(1−η)u(x)

≤ Cdj

(
dju(x)e−(1−η)u(x)

)+ C(1 − η)
{
dju(x)

}2
e−(1−η)u(x)

≤ Cdj

(
dju(x)e−(1−η)u(x)

)+ C2(1 − η)dju(x)e−(1−η)2u(x),

which is integrable when ‖x‖ −→ +∞. A similar argument leads to dju
4e−u ≤ Cdjue−(1−η)u. We can repeat the same

argument when ‖x‖ −→ −∞ with an adaptation of the sign of dju(x). We can conclude that {djjφ}2φ−1 ∈ L1(Rd). �

Appendix B: Proofs of the lower bounds

B.1. Asymmetric risk

We begin by a useful lemma, which is a generalization of the Le Cam method for proving lower bounds if the loss involved
in the statistical model is not symmetric, meaning that ρ(θ1, θ2) is generally not equal to ρ(θ2, θ1), but still satisfies a
weak triangle inequality. Hence, the Le Cam Lemma requires a small modification in the spirit of the remark of [30]
(Example 2, Section 3).

In the sequel, dTV(P,Q) and KL(P,Q) denote the total variation distance and the Kullback–Leibler divergence be-
tween two measures, P and Q, respectively.

Lemma B.1. Let (Pθ )θ∈� be a family of measures indexed by � and assume that ρ : (θ1, θ2) ∈ �2 �→ ρ(θ1, θ2) ∈ R+
satisfies the weak triangle inequality:

∀(θ1, θ2, θ3) ∈ �3, ρ(θ1, θ3) + ρ(θ2, θ3) ≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1). (B.1)

Let � : R+ →R+ be a non-decreasing function. Let δ > 0 and (θ1, θ2) ∈ �2 such that ρ(θ1, θ2) ∧ ρ(θ2, θ1) ≥ 2δ. Then,

inf
θ̂

sup
θ∈�

E
[
�
(
ρ(θ, θ̂)

)] ≥ �(δ)

2

{
1 − dTV

(
P⊗n

θ1
,P⊗n

θ2

)}

≥ �(δ)

2

{
1 −

√
n

2
KL(Pθ1 ,Pθ2)

}
,

where the infimum is taken over all estimators θ̂ .

Proof. First, we observe that:

E
[
�
(
ρ(θ, θ̂)

)]≥ �(δ)P
(
ρ(θ, θ̂) ≥ δ

)
,

since � is a non-decreasing function. Let V = {1,2} and �(θ̂) = argminv∈V ρ(θv, θ̂).
We can show that ρ(θv, θ̂) < δ implies that �(θ̂) = v. According to Condition (B.1), we have:

ρ(θv, θ̂) ≥ ρ(θv, θv′) ∧ ρ(θv′, θv) − ρ(θv′ , θ̂ ) > 2δ − ρ(θv′, θ̂ ).
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Now, if ρ(θv, θ̂) < δ, then δ > 2δ − ρ(θv′, θ̂ ), so that ρ(θv′, θ̂ ) > δ, which is necessarily larger than ρ(θv, θ̂). Hence, we
obtain �(θ̂) = v.

Equivalently, for v ∈ {1,2}, we have �(θ̂) �= v =⇒ ρ(θv, θ̂) > ρ(θv′, θ̂ ) since:

2δ ≤ ρ(θv, θv′) ∧ ρ(θv′ , θv) ≤ ρ(θv, θ̂) + ρ(θv′, θ̂ ) ≤ 2ρ(θv, θ̂).

The rest of the proof proceeds from the standard Le Cam argument: � is non decreasing so that:

sup
θ∈�

E
[
�
(
ρ(θ, θ̂)

)] ≥ �(δ) sup
θ∈�

P
(
ρ(θ, θ̂) ≥ δ

)
≥ �(δ)

2

{
P
(
ρ(θ1, θ̂ ) ≥ δ

)+ P
(
ρ(θ2, θ̂ ) ≥ δ

)}
≥ �(δ)

2

{
P⊗n

θ1

(
�(θ̂) �= 1

)+ P⊗n

θ2

(
�(θ̂) �= 2

)}
.

Taking an infimum over all tests � (see, e.g., [22]) we obtain:

inf
θ̂

sup
θ∈�

E
[
�
(
ρ(θ, θ̂)

)] ≥ �(δ)

2
inf
�

{
P⊗n

θ1
(� �= 1) + P⊗n

θ2
(� �= 2)

}
≥ �(δ)

2

{
1 − dTV

(
P⊗n

θ1
,P⊗n

θ2

)}
.

Pinsker’s inequality:

dTV
(
P⊗n

θ1
,P⊗n

θ2

)≤√1

2
KL
(
P⊗n

θ1
,P⊗n

θ2

)=√n

2
KL(Pθ1 ,Pθ2)

ends the proof. �

B.2. Lower bound for the strong contamination model

We now study the lower bounds in the first regime, namely when ‖μ‖ is lower bounded by a constant m that is independent
of n.

Proof of Theorem 4.1.
Item (i): We apply Lemma B.1 with �(t) = t2 and the loss function ρ defined as:

∀(θ1, θ2) ∈ �n(m,c)2 ρ(θ1, θ2) = λ1‖μ1 − μ2‖.
Remark that ρ satisfies the weak triangle inequality (B.1). Indeed, for all (θ1, θ2, θ3) ∈ �n(m,c)3, we have:

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1‖μ1 − μ3‖ + λ2‖μ2 − μ3‖
≥ min(λ1, λ2)‖μ1 − μ2‖
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

We introduce the subset

�n(m,M,c,λ) :=
{
θ = (λ,μ) : c

‖μ‖2
√

n
≤ λ ≤ λ̄,m ≤ ‖μ‖ ≤ M

}

where 0 < m < M and 0 < c

m2√n
< λ̄ < 1. Then, �n(m,M,c,λ) ⊂ �n(m,c). We consider θ1 = (λ,μ1) and θ2 = (λ,μ2);

their values will be chosen later to ensure that (θ1, θ2) ∈ �n(m,M,c,λ)2. According to Lemma B.1 applied with δ =
λ‖μ1−μ2‖

2 , we can write:

inf
θ̂

sup
θ∈�n(m,c)

E
[
λ2‖μ̂ − μ‖2] ≥ inf

θ̂

sup
θ∈�n(m,M,c,λ)

E
[
λ2‖μ̂ − μ‖2]

≥ δ2

2

{
1 −

√
n

2
KL(Pθ1 ,Pθ2)

}
. (B.2)
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We can compute the Kullback–Leibler divergence between the two mixtures Pθ1 and Pθ2 : if f1 = (1 − λ)φ + λφμ1

(resp. f2 = (1 − λ)φ + λφμ2 ) is the density of Pθ1 (resp. Pθ2 ) w.r.t. the Lebesgue measure, we have:

KL(Pθ1 ,Pθ2) =
∫

log

[
1 + f1(x) − f2(x)

f2(x)

]
f1(x) dx

≤
∫

f1(x) − f2(x)

f2(x)
f1(x) dx,

where we used the inequality log(1 + t) ≤ t . If we once again write f1 = f2 + f1 − f2, we obtain:

KL(Pθ1 ,Pθ2) ≤
∫

f1(x) − f2(x)

f2(x)

[
f2(x) + f1(x) − f2(x)

]
dx

≤
∫ [f1(x) − f2(x)]2

f2(x)
dx

≤ λ2
∫ [φμ1(x) − φμ2(x)]2

(1 − λ)φ(x) + λφμ2(x)
dx

since f2(x) ≥ (1 − λ)φ(x) and f1(x) − f2(x) = λ[φμ1(x) − φμ2(x)]. On the basis of Assumption (HLip), we know that
|φμ1 − φμ2 | ≤ ‖μ1 − μ2‖g and we obtain:

KL(Pθ1 ,Pθ2) ≤ λ2‖μ1 − μ2‖2J
1 − λ̄

, (B.3)

where J := ‖gφ−1/2‖2
2 is the constant involved in (HLip).

We now choose λ, μ1 and μ2 so that we obtain the largest possible value in (B.2), while satisfying the constraints
given in �n(m,M,c,λ). Without loss of generality, we set μ

(1)
1 < μ

(1)
2 and we need to find a choice of these parameters

such that m ≤ μ
(1)
1 < μ

(1)
2 ≤ M and c

(μ
(1)
1 )2√n

≤ λ ≤ λ̄. We set μ1 = (μ
(1)
1 ,0, . . . ,0) and μ2 = (μ

(1)
2 ,0, . . . ,0) so that

μ
(1)
1 = m and λ = c

m2
√

n
< λ̄.

For a given ε > 0, we choose μ
(1)
2 such that n

2 KL(Pθ1 ,Pθ2) ≤ 1 − ε. Using (B.3), we arrive at the calibration:

μ
(1)
2 − μ

(1)
1 =

√
2(1 − λ̄)(1 − ε)

λ2J n
.

It remains to check that μ
(1)
2 ≤ M . From our choice of λ and μ

(1)
1 , we see that:

μ
(1)
2 = m

[
1 +

√
2(1 − λ̄)m2

c2J (1 − ε)

]
≤ m

[
1 +

√
2m2(1 − ε)

c2J

]
,

which can be made smaller than M if 1 − ε ≤ c2J (M−m)2

2m4 . If we plug these choices of λ, μ1 and μ2 into (B.2), we obtain:

inf
θ̂

sup
θ∈�n(m,M,c,λ)

E
[
λ2‖μ̂ − μ‖2]≥ (1 − λ̄)(1 − ε)ε

8J n
,

which is the desired lower bound of the minimax risk (4.1).
Item (ii): We keep the same � and define ρ(θ1, θ2) = |λ1 −λ2| = ρ(θ2, θ1). We consider θ1 = (λ1,μ) and θ2 = (λ2,μ)

such that |λ1 − λ2| = ε√
n

and

c

m2
√

n
= λ1 < λ2 ≤ λ̄,
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μ and ε have to be chosen hereafter. Since λ2 = λ1 + ε√
n

≤ λ̄, we must choose ε such that:

ε ≤ λ̄
√

n − c

m2
, (B.4)

which is possible since we assumed that c

m2√n
< λ̄. From Lemma B.1,

inf
θ̂

sup
θ∈�n(m,c)

E
[
(λ − λ̂)2] ≥ inf

θ̂

sup
θ∈�n(m,M,c,λ)

E
[
(λ − λ̂)2]

≥ ε2

2n

{
1 −

√
n

2
KL(Pθ1 ,Pθ2)

}
.

We can upper bound the Kullback–Leibler divergence as:

KL(Pθ1 ,Pθ2) ≤
∫ [

f1(x) − f2(x)
]2

f2(x)−1 dx

≤ (λ1 − λ2)
2
∫ [

φμ(x) − φ(x)
]2

f2(x)−1 dx

≤ (λ1 − λ2)
2‖μ‖2

1 − λ̄

∫
g(x)2φ(x)−1 dx

≤ ‖μ‖2ε2J
(1 − λ̄)n

.

By choosing μ = (μ(1),0, . . . ,0) with

μ(1) = m + M

2
and ε ≤

√
2(1 − λ̄)

J (m + M)2
, (B.5)

we obtain n
2 KL(Pθ1 ,Pθ2) ≤ 1

4 . Considering the minimal admissible value of ε in (B.4) and (B.5) now leads to a choice of
the parameters θ1 and θ2 such that:

inf
θ̂

sup
θ∈�n(m,c)

E
[
(λ − λ̂)2]≥ ε2

4n
.

This last inequality is the second lower bound (4.2). �

B.3. Lower bound for the weak contamination model

Proof of Theorem 4.2.
Point (i): We consider �(t) = t2 and the loss function ρ defined as:

ρ(θ1, θ2) = ‖μ1‖2|λ1 − λ2|.
Note that ρ satisfies (B.1) since ∀(θ1, θ2, θ3) ∈ �n(c)

3,

ρ(θ1, θ3) + ρ(θ2, θ3) = ‖μ1‖2|λ1 − λ3| + ‖μ2‖2|λ2 − λ3|
≥ min

(‖μ1‖2,‖μ2‖2)|λ1 − λ2|
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

To obtain a convenient lower bound, we need to use Lemma B.1 and find a couple of parameters (θ1, θ2) that belongs
to the admissible set and such that KL(Pθ1 ,Pθ2) is small enough. In particular, the proximity between Pθ1 and Pθ2 will
be obtained by a careful matching of the first moments of the two distributions, which is a good method for obtaining
efficient lower bounds in mixture models (see, e.g., [3] or [15]). We give an example of this method below. First, remark
that:

KL(Pθ1 ,Pθ2) =
∫

log

[
f1(x)

f2(x)

]
f1(x) dx.
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Since φ satisfies (HS), then φ is a C3 function on Rd , considering a shift μ = (μ(1),0, . . . ,0) = o(1), we can write a
third order Taylor expansion:

∀x ∈Rd φμ(x) = φ(x) − μ(1)d1φ(x) + {μ(1)}2d11φ(x)

2
− {μ(1)}3

6
d111φ(ξx,μ),

where ξx,μ belongs to the interval defined by x and x − μ and d1φ (resp. d11φ and d111φ) denotes the first (resp. second
and third) partial derivative of φ w.r.t. the first coordinate of x. In particular, assuming that d111φ is bounded on Rd leads
to:

∀x ∈Rd φμ(x) = φ(x) − μ(1)d1φ(x) + {μ(1)}2

2
d11φ(x) + o

(‖μ‖2).
This Taylor expansion permits us to write, for small values of μ

(1)
1 :

log
[
f1(x)

] = log
[
(1 − λ1)φ(x) + λ1φμ1(x)

]
= log

[
(1 − λ1)φ(x) + λ1φ(x) − λ1μ

(1)
1 d1φ(x) + 1

2
λ1
{
μ

(1)
1

}2
d11φ(x) + o

(‖μ1‖2)]

= log
[
φ(x)

]+ log

[
1 − λ1μ

(1)
1

d1φ(x)

φ(x)
+ 1

2
λ1
{
μ

(1)
1

}2 d11φ(x)

φ(x)
+ o
(‖μ1‖2)]

= log
[
φ(x)

]− λ1μ
(1)
1

d1φ(x)

φ(x)
+ 1

2
λ1
{
μ

(1)
1

}2 d11φ(x)

φ(x)

− 1

2
λ2

1

{
μ

(1)
1

}2
(

d1φ(x)

φ(x)

)2

+ o
(‖μ1‖2).

In the same way, for small values of μ2:

log
[
f2(x)

] = log
[
(1 − λ2)φ(x) + λ2φμ2(x)

]
= log

[
φ(x)

]− λ2μ
(1)
2

d1φ(x)

φ(x)
+ 1

2
λ2
{
μ

(1)
2

}2 d11φ(x)

φ(x)

− 1

2
λ2

2

{
μ

(1)
2

}2
(

d1φ(x)

φ(x)

)2

+ o
(‖μ2‖2).

We thus obtain:

log
[
f1(x)

]− log
[
f2(x)

] = (λ2μ
(1)
2 − λ1μ

(1)
1

)d1φ(x)

φ(x)
+ 1

2

(
λ1
{
μ

(1)
1

}2 − λ2
{
μ

(1)
2

}2)d11φ(x)

φ(x)

+ 1

2

(
λ2

2

{
μ

(1)
2

}2 − λ2
1

{
μ

(1)
1

}2)(d1φ(x)

φ(x)

)2

+ o
(‖μ1‖2)+ o

(‖μ2‖2).
In particular, we observe that the term above can be considered as a “second order term” if θ1 and θ2 are chosen such that
λ1μ

(1)
1 = λ2μ

(1)
2 , which corresponds to the first moment of Pθ1 and Pθ2 . If λ1μ

(1)
1 = λ2μ

(1)
2 , we obtain:

log
[
f1(x)

]− log
[
f2(x)

]= 1

2

(
λ1
{
μ

(1)
1

}2 − λ2
{
μ

(1)
2

}2)d11φ(x)

φ(x)
+ o
(‖μ1‖2)+ o

(‖μ2‖2).
We deduce that:

KL(Pθ1 ,Pθ2) =
∫ [

1

2

(
λ1
{
μ

(1)
1

}2 − λ2
{
μ

(1)
2

}2)d11φ(x)

φ(x)
+ o
(‖μ1‖2)+ o

(‖μ2‖2)]f1(x) dx

= 1

2

(
λ1
{
μ

(1)
1

}2 − λ2
{
μ

(1)
2

}2)[
(1 − λ1)

∫
d11φ(x)dx + λ1

∫
d11φ(x)φ(x − μ1)

φ(x)
dx

]
+ o
(‖μ1‖2)+ o

(‖μ2‖2).
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The smoothness of φ leads to
∫

d11φ(x)dx = 0. We deduce that:

∫
d11φ(x)φ(x − μ1)

φ(x)
dx =

∫
d11φ(x)

φ(x)

[
φ(x) − μ

(1)
1 d1φ(x) + {μ(1)

1 }2

2
d11φ(x) + o

(‖μ1‖2)]dx

=
∫

d11φ(x)dx − μ
(1)
1

∫
d11φ(x)d1φ(x)

φ(x)
dx

+ 1

2

{
μ

(1)
1

}2
∫ {d11φ(x)}2

φ(x)
dx + o

(
μ2

1

)
dx.

Now, we choose for the density φ an even function (φ(x) = φ(−x) for all x ∈Rd ) and we obtain that

KL(Pθ1 ,Pθ2) = 1

2

{
μ

(1)
1

}2Iφ + o
n→+∞

(‖μ1‖2),
where the last line comes from the fact that x �→ d11φ(x)d1φ(x)/φ(x) is an odd function and the definition of Iφ (see

(4.3)). Finally, since λ1μ
(1)
1 = λ2μ

(1)
2 , we deduce that:

KL(Pθ1 ,Pθ2) = 1

4

(
λ1
{
μ

(1)
1

}2 − λ2
{
μ

(1)
2

}2)
λ1‖μ1‖2Iφ + o

(‖μ1‖4)
= 1

4

(
1 − λ1

λ2

)
λ2

1‖μ1‖4Iφ + o
(‖μ1‖4). (B.6)

Next, let λ̄ ∈ (0,1). Choosing λ2 = λ̄
2 < λ̄ and λ1 = 1

α
λ2 with α = 1+√

5
2 , we have:

(
1 − λ1

λ2

)
λ2

1 = (λ1 − λ2)
2.

Thus,

KL(Pθ1 ,Pθ2) = 1

4
(λ2 − λ1)

2‖μ1‖4Iφ + o
(‖μ1‖4).

In order to apply Lemma B.1, let δ > 0 such that 2δ = ρ(θ1, θ2) ∧ ρ(θ2, θ1). According to our constraint λ1μ
(1)
1 =

λ2μ
(1)
2 and λ2 = αλ1 > λ1, we observe that μ

(1)
2 < μ

(1)
1 so that:

2δ = ‖μ2‖2|λ1 − λ2|.

We deduce that:

|λ1 − λ2|‖μ1‖2 = |λ1 − λ2|
(

λ2

λ1

)2

‖μ2‖2 = 2δα2

and

‖μ1‖2 =
(

λ2

λ1

)2

‖μ2‖2 = α2 4α

(α − 1)λ̄
δ.

Thus,

KL(Pθ1 ,Pθ2) = δ2α4Iφ + o
(
δ2),

and according to Lemma B.1, we obtain:

inf
θ̂

sup
θ∈�n(c)

E
[‖μ‖4(λ − λ̂)2]≥ δ2

2

{
1 −

√
n

2
δ2
[
α4Iφ + o(1)

]}
.
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The choice of δ is determined by the right brackets that should be non-negative. We can choose:

δ = [2nα4Iφ

]− 1
2 ,

so that n
2 δ2[α4Iφ + o(1)] = 1

4 (1 + o(1)). Thus, an integer N exists such that:

∀n ≥ N inf
θ̂

sup
θ∈�n(c)

E
[‖μ‖4(λ − λ̂)2]≥ δ2

6
= 1

12α4Iφn
.

This ends the proof of the first point.
Point (ii): We define the loss function ρ(θ1, θ2) = λ1‖μ1‖‖μ1 −μ2‖ and �(t) = t2. The function ρ satisfies the weak

triangle inequality (B.1):

∀(θ1, θ2, θ3) ∈ �n(c)
3 :

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1‖μ1‖‖μ1 − μ3‖ + λ2‖μ2‖‖μ2 − μ3‖
≥ min

(
λ1‖μ1‖, λ2‖μ2‖

)‖μ1 − μ2‖
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

The proof follows the same lines as the ones of (i) and our starting point is once again the Kullback–Leibler diver-
gence asymptotics given in Equation (B.6). Our baseline relationship λ1μ1 = λ2μ2 is still necessary and we obtain while
choosing μ1 = (μ

(1)
1 ,0, . . . ,0) and μ2 = (μ

(1)
2 ,0, . . . ,0):

KL(Pθ1 ,Pθ2) = Iφ

4

(
1 − λ2

λ1

)
λ2

1μ
4
1 + o

(‖μ1‖4).
We choose μ1 = 2μ2 so that λ2 = 2λ1 and:

ρ(θ1, θ2) ∧ ρ(θ2, θ1) = λ1‖μ1‖‖μ1 − μ2‖ = 1

2
λ1‖μ1‖2 := 2δ.

The coefficients λ1 and λ2 can be made explicit, e.g., λ1 = λ̄/2 and λ2 = λ̄. This choice implies that μ
(1)
1 = 2

√
2δ/λ̄.

These settings can be used in the result of Lemma B.1 and we obtain:

inf
θ̂

sup
θ∈�n(c)

E
[
λ2μ2(μ − μ̂)2]≥ δ2

2

{
1 −

√
nδ2

2

[
2Iφ + o(1)

]}
.

We can obtain an efficient lower bound by choosing:

δn := 1

2
√

nIφ

,

which implies, of course, that μ1 = o(1) and μ2 = o(1). According to this choice, an integer N exists such that ∀n ≥ N :

inf
θ̂

sup
θ∈�n(c)

E
[
λ2‖μ‖2‖μ − μ̂‖2]≥ 1

8nIφ

×
(

1 − 1

2

)
/2 = 1

32nIφ

.

This ends the proof of the second point. �
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