
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2020, Vol. 56, No. 2, 1321–1335
https://doi.org/10.1214/19-AIHP1003
© Association des Publications de l’Institut Henri Poincaré, 2020

Interacting self-avoiding polygons

Volker Betz, Helge Schäfer and Lorenzo Taggi

FB Mathematik, TU Darmstadt, Darmstadt, Germany. E-mail: betz@mathematik.tu-darmstadt.de; url:
http://www.mathematik.tu-darmstadt.de/~betz/; E-mail: hschaefer@mathematik.tu-darmstadt.de; url:

https://www.mathematik.tu-darmstadt.de/fb/personal/details/helge_schaefer.de.jsp; E-mail: taggi@mathematik.tu-darmstadt.de; url:
https://sites.google.com/site/lorenzotaggiswebpage2

Received 15 October 2018; revised 18 March 2019; accepted 7 May 2019

Abstract. We consider a system of self-avoiding polygons interacting through a potential that penalizes or rewards the number of
mutual touchings and we provide an exact computation of the critical curve separating a regime of long polygons from a regime of
localized polygons. Moreover, we prove the existence of a sub-region of the phase diagram where the self-avoiding polygons are space
filling and we provide a non-trivial characterization of the regime where the polygon length admits uniformly bounded exponential
moments.

Résumé. Dans cet article, nous considérons un système de polygones auto-évitants interagissant au moyen d’un potentiel qui pénalise
ou récompense le nombre de points de contacts. Nous calculons la forme exacte de la courbe critique séparant un régime de polygones
longs d’un régime de polygones localisés. En outre, nous prouvons l’existence d’un sous-domaine du diagramme de phase dans lequel
les polygones remplissent l’espace dans un sens faible et donnons une caractérisation non-triviale du sous-régime où les longueurs des
polygones ont des moments exponentiels bornés.
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1. Introduction

Let �L be graph corresponding to a torus with vertex set [−L/2,L/2)d ∩Z
d , for d ≥ 2, and whose edges connect nearest

neighbour vertices. The edges are directed and any two neighbour vertices are connected by two parallel edges having
opposite orientation. A (directed) self-avoiding polygon in �L is a connected, directed subgraph of �L, where each vertex
has one ingoing and one outgoing edge. This paper considers a system of random interacting self-avoiding polygons
(ISAP). This system can be seen as a model for a random polymer in a random environment which is constituted of an
ensemble of other polymers. Polymers in random media have been investigated in various settings (see [4, Chapter 12] for
a review) and are of great physical interest. Moveover, ISAP interpolates between two paradigmatic statistical mechanics
models which behave qualitatively similar in more than three dimensions, but which have been conjectured to belong
to different universality classes, allowing thus to compare them. The first of these models is the single self-avoiding
polygon and was introduced as a simple model for a polymer, see [9] for an overview. The second model, random
lattice permutations [1], can be viewed as a toy model for Bose-Einstein condensation [6,8]. The presence of hard-core
interaction makes random lattice permutations a very difficult model to treat mathematically. Contrary to random lattice
permutations, ISAP does not present such a rigidity and it is thus better suitable for rigorous mathematical investigation.

2. The model of interacting self-avoiding polygons

2.1. Definitions and results

Let SAPx,n denote the set of self-avoiding polygons in �L covering n vertices and containing the vertex x ∈ �L. Note
that SAPx,n = ∅ if n is odd and SAPx,2 contains 2d polygons. Let ζ denote the empty polygon, which has no vertices,
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and define SAPx,0 := {ζ }. For any x ∈ �L, we define SAPx = ⋃
n≥0 SAPx,n. For γ ∈ SAPx , we write ‖γ ‖ for the number

of edges in γ .
An important classical fact about self-avoiding polygons is the existence of the (dimension-dependent) connective

constant: if SAP(n) denotes the set of all self-avoiding polygons on Z
d covering n vertices and containing the origin,

μ = lim
n→∞

(∣∣SAP(n)
∣∣)1/n (2.1)

exists, and indeed∣∣SAP(n)
∣∣ ≤ 2(d − 1)nμn (2.2)

for all n ∈N, see [9]. Since |SAPx,n| ≤ |SAP(n)|, the latter inequality also holds for SAPx,n.
For given �L, the probability space for the model of interacting self-avoiding polygons (ISAP) is � = ∏

x∈�L
SAPx .

For γ = (γx)x∈�L
∈ �, we define the cumulative length of γ as

C(γ ) =
∑

x∈�L

‖γx‖,

and the total overlap of γ as

I(γ ) =
∑

x∈�L

(( ∑
y∈�L

1{x ∈ γy} − 1

)
∨ 0

)
.

In words, I(γ ) counts the total value of overlaps of (non-empty) self-avoiding polygons in the system, where an overlap
at a site x has value (k − 1) ∨ 0 if k self-avoiding polygons contain x. The energy of a given γ ∈ � is defined by

HL,α,λ(γ ) := αC(γ ) + λI(γ ) +
∑

x∈�L:‖γx‖>0

log‖γx‖, (2.3)

and the probability of γ is as usual given by

PL,α,λ(γ ) = 1

Z(L,α,λ)
e−HL,α,λ(γ ).

The reason for the sum of logarithms in HL,α,λ is that this guarantees convergence of the finite volume model of ISAP to
the finite volume model of nearest neighbour spatial random permutations in the limit λ → ∞, which, as discussed in the
introduction, motivates a lot of the interest in the current model.

Our first result is an exact computation of the critical curve separating the regime where the expected polygon length
is uniformly bounded from the regime where the expected polygon length grows to infinity with L. We define

L(α,λ) := lim sup
L→∞

EL,α,λ

(‖γo‖
)
,

where o is used to denote the origin.

Theorem 2.1. Let μ denote the connective constant defined in (2.1).

(i) If α + λ > logμ, then L(α,λ) < ∞.
(ii) If α + λ < logμ, then L(α,λ) = ∞.

Our further results investigate both of the cases above a bit more. First, we show that there exists a subset of the region
where the statement (i) of Theorem 2.1 holds, such that for all (α,λ) in this subset, the quantity ‖γo‖ is exponentially
integrable. See Figure 1.

Theorem 2.2. There exists a decreasing function λ 
→ αc(λ) such that for all λ ∈ R and all α > αc(λ), there exists δ > 0
such that

lim sup
L→∞

EL,α,λ

(
eδ‖γo‖) < ∞. (2.4)

The function αc is such that αc(λ) = logμ − λ when λ ≤ 0 and αc(λ) = (logμ − c1λ) ∨ c2 when λ > 0, where the
constants c1 ∈ (0,∞) and c2 ∈ (−∞, logμ) are given in (3.11).
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Fig. 1. The continuous line represents the critical curve α = logμ − λ. The first (resp. second) statement in Theorem 2.1 holds in the whole region on
the right (resp. left) of the critical curve, Theorem 2.2 (resp. Theorem 2.3) holds in the darker region on the right (resp. left) of the critical curve.

For λ > 0 and α ≥ logμ, (2.4) follows quite directly from the trivial upper bound, PL,α,λ(‖γo‖ > k) ≤ e−αk , and from
(2.1). Intuitively, this entails that the mutual repulsion on polygons that is implemented through λ > 0 does not make
the polygons much more likely to be long. Theorem 2.2 goes beyond this and states that any positive repulsion λ > 0
leads to exponential integrability of ‖γo‖ for values of α where without repulsion (i.e. for λ = 0) the cycles would be
long. Comparison with numerical results about spatial random permutations (cf. Section 2.2) below suggests that there
is a nonempty region of the parameter space so that Theorem 2.1(i) holds but exponential integrability of ‖γo‖ fails;
Theorem 2.2 just gives an upper bound on how large such a region could be – to prove (or disprove) the existence of such
a region is a major open problem in the model.

Turning to the region of phase space where Theorem 2.1(ii) holds, we show in Theorem 2.3 below that there exists
a subset of this region where γo is weakly space filling; see Figure 1. Again, a natural question is whether Theorem 2.3
actually holds for the full half space where Theorem 2.1(ii) is valid. We do not have a clear conjecture about whether or
not this should be case.

In order to state our result precisely, let 	
ξ
L(γo) be the set of vertices in �L which have distance at least ξ from γo and

let A
ξ
L(γo) be the largest connected component of 	

ξ
L(γo).

Theorem 2.3. For any α ∈ R, there exists λsf = λsf (α) such that if λ < λsf , then the polygons are weakly space filling,
i.e. there exist two constants c, ξ ∈ (0,∞) such that,

lim
L→∞PL,α,λ

(∣∣Aξ
L(γo)

∣∣ > c logL
) = 0. (2.5)

Moreover, if α < logμ, we can choose λsf (α) = logμ − α > 0.

A corresponding result has been obtained in [5] for a single self-avoiding polygon, and indeed our proof heavily uses
their methods and results.

2.2. Discussion of the model

The main motivation of the model is its relation to a variant of the model of spatial random permutations (SRP). The latter
is defined on the set S(�L) of permutations of �L, and the probability of a permutation σ ∈ S(�L) is given by

PL,α

({σ }) =
{

0 if |σ(x) − x| > 1 for some x,
1

Z(L,α)
e−α

∑
x∈�L

|σ(x)−x| otherwise.

Here, the distance function respects the periodic boundary conditions. The most important question in the model of SRP
is about the existence of long cycles: if Cx(σ ) denotes the cycle of σ containing a point x, and |Cx | its length, then the aim
is to prove that there exists some α ∈ R such that limL→∞ EL,α(|Cx |) = ∞. This seems to be a rather difficult problem
and has deep connections to the theory of quantum spin systems – see [2,3,6] for details.

S(�L), the support of the measure of spatial random permutations, can be viewed as the set of (typically non-
connected) directed subgraphs of �L, where all vertices have degree 2. On the other hand, each ISAP γ with I(γ ) = 0
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can be mapped to such a subgraph, by ‘forgetting’ to which point x each self-avoiding polygon belongs. This also means
that for given γ , there are

∏
x∈�L,‖γx‖>0 ‖γx‖ different ISAPs that lead to the same spatial random permutation as γ .

Thus thanks to the sum of logarithms in (2.3), we can relate ISAP to SRP in the limit of large λ; for example, for any
x ∈ �L and any k > 1,

lim
λ→∞PL,α,λ

(
max

z∈�:x∈γz

‖γz‖ = k
)

= lim
λ→∞PL,α,λ

(
min

z∈�:x∈γz

‖γz‖ = k
)

= PL,α

(|Cx | = k
)
.

By defining a suitable projection from ISAP to multigraphs for finite λ, we could make this connection much stronger,
but this is not of interest here. Nevertheless, already the given example shows that understanding ISAP for large (fixed)
λ in the limit L → ∞ may be of interest for the study of SRP; on the other hand, of course the problem of interchanging
the limits of λ → ∞ and L → ∞ is a serious one and would need to be addressed as well.

We have chosen the representation (2.3) for its obvious relations to SRP, but there is another set of parameters that
reveals additional information about the model. The key observation is that on vertices that are not empty, the overlap
is precisely one unit lower than the number of polygons that visit that vertex. Thus writing Ox(γ ) for the occupation
number of (i.e. number of polygons visiting) a vertex x, we find that

I(γ ) = C(γ ) −
∑

x∈�L

1
{
Ox(γ ) ≥ 1

} = C(γ ) − |�L| +N (γ ),

with

N (γ ) =
∑

x∈�L

1
{
Ox(γ ) = 0

}

being the number of empty vertices. Thus if we define

H̃L,ρ,ν(γ ) = ρC(γ ) + νN (γ ) +
∑

x∈�L,‖γx‖>0

log‖γx‖

and

P̃L,ρ,ν(γ ) = 1

Z̃L,ρ,ν

e−H̃L,ρ,ν (γ ), (2.6)

then

PL,α,λ(γ ) = P̃L,α+λ,λ(γ )

for all L, α, λ, γ . Note that our new set of parameters makes the relation to another important model of interacting shapes
apparent, namely the double dimer model [7]: indeed, in the limit ν → ∞, the finite volume model converges to the
double dimer model thanks to the sum of logarithms in the Hamiltonian. Again, the question of interchange of the limits
in L and ν in highly non-trivial.

Model (2.6) will be used to prove Theorem 2.1. We note already here an interesting aspect about that theorem which
becomes apparent from (2.6): since we trivially have N (γ ) ≤ |�L|, in case (ii) of Theorem 2.1 we find that∣∣∣∣ 1

|�L| ẼL,ρ,ν(H̃L,ρ,ν)

∣∣∣∣ ≥ |ρ|
|�L| ẼL,ρ,ν(C) − |ν| = |ρ|ẼL,ρ,ν

(‖γo‖
) − |ν| → ∞

as L → ∞ if ρ �= 0 (the last equality holds due translation invariance). In other words, the mean energy per unit volume
diverges in the case α +λ < logμ, which from the point of view of statistical mechanics makes the model highly singular
in that regime. Note, however, that the cases of interest for the connection to SRP are those of large λ and for fixed α;
those are always covered by case (i) of Theorem 2.1.

3. Proofs of the theorems

3.1. Proof of Theorem 2.1

We will work with the model (2.6). The statement of Theorem 2.1 then is that

lim sup
L→∞

ẼL,ρ,ν

(
C/|�L|)

{
< ∞ if ρ > logμ

= ∞ if ρ < logμ.



Interacting self-avoiding polygons 1325

We begin with the second case. We first consider the case ν = 0. Then, the model is non-interacting, and ẼL,ρ,0(‖γo‖) =
EL,ρ(‖γ ‖), where the latter expectation is for the single self-avoiding polygon model with probability measure

PL,ρ(γ ) = 1

ZL,ρ

e−ρ‖γ ‖ 1

‖γ ‖ ∨ 1
.

For this measure without the factor of 1
‖γ ‖∨1 it has been shown in [5] that γ is almost surely weakly space filling, and

a fortiori we have lim supL→∞ ẼL,ρ,0(‖γo‖) = ∞. Inspection of the proofs in [5] shows that the factor 1
‖γ ‖∨1 does not

change this.
In order to treat ν �= 0, we define the finite volume pressure as

�L(ρ, ν) = 1

|�L| log Z̃L,ρ,ν .

The usual argument involving Hölder’s inequality (which we sketch in the appendix for the reader’s convenience) shows
that �L is a convex function. Direct calculation shows that

ẼL,ρ,ν

(‖γo‖
) = 1

|�L| ẼL,ρ,ν(C) = −∂ρ�L(ρ, ν),

and

1

|�L| ẼL,ρ,ν(N ) = −∂ν�L(ρ, ν).

The latter quantity is strictly between 0 and 1. Using this observation and the fundamental theorem of calculus, we find
that for each ν ∈ R

∣∣�L(ρ, ν) − �L(ρ,0)
∣∣ =

∣∣∣∣
∫ ν

0
∂s�L(ρ, s)ds

∣∣∣∣ ≤ |ν|.

The triangle inequality then yields∣∣�L(ρ, ν) − �L(ρ + h, ν)
∣∣ ≥ ∣∣�L(ρ,0) − �L(ρ + h,0)

∣∣ − 2ν. (3.1)

By the convexity of �L, the nonnegative function ρ 
→ −∂ρ�L(ρ, ν) = ẼL,ρ,ν(‖γo‖) is monotone decreasing for each
ν. Thus the inequality (3.1) implies

�L(ρ,0) − �L(ρ + h,0) ≤ −
∫ h

0
∂r�L(ρ + r, ν)dr + 2ν.

In particular, if ρ < logμ and 0 < h < logμ − ρ, then both sides of the above inequality diverge to +∞ as L → ∞. So,
again using monotonicity, we get

∞ = − lim
L→∞

∫ h

0
∂r�L(ρ + r, ν)dr ≤ −h lim

L→∞ ∂ρ�L(ρ) = h lim
L→∞ ẼL,ρ,ν

(‖γo‖
)
.

This shows claim (ii) of Theorem 2.1.
Let us now treat case (i). We write |�L| = N for brevity, and observe that for all k ∈ N,

P̃L,ρ,ν(C = k) ≤ e|ν|N
P̃L,ρ,0(C = k) = e|ν|N ∑

n1,...,nN :∑i ni=k/2

P̃L,ρ,0
(∀i : ‖γxi

‖ = 2ni

)
.

The latter probability factorizes, and for each i, we have

P̃L,ρ,0
(‖γxi

‖ = 2ni

) ≤ |SAP2ni
|e−2ρni /(2ni).

By (2.2), |SAPn| ≤ 2(d − 1)nμn for all n. The exponentials then combine to a global factor of e−(ρ−logμ)k , and the
number of ways of partitioning the integers 1 to k/2 into N possibly empty subsets is given by (k + 1)N−1/(N − 1)!. In
conclusion, we obtain

P̃L,ρ,ν(C = k) ≤ eN(|ν|+log(d−1))e−k(ρ−logμ) (k + 1)N−1

(N − 1)! . (3.2)
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Let us abbreviate ε := ρ − logμ and q = |ν| + log(d − 1). Estimate (3.2) is actually quite poor when k is of the order
of N/ε; in that case a calculation involving Stirlings formula shows that the right hand side grows like 1

2πN
eN(q+2)ε−N

which, at least for small ε, is much large than 1 for large N . We should therefore use (3.2) only for even larger k. Observe
that for each l,m ∈ N, we have

ẼL,ρ,ν

(
C/|�L|) = 1

N

∞∑
k=0

P̃L,ρ,ν(C > k) ≤
∞∑
l=0

P̃L,ρ,ν(C > lN) ≤ m +
∞∑

l=m

P̃L,ρ,ν(C > lN) (3.3)

For j ≥ 0, estimate (3.2) gives

P̃L,ρ,ν

(
jN < C ≤ (j + 1)N

) ≤ eqN

(j+1)N∑
k=jN+1

(k + 1)N−1

(N − 1)! e−εk

≤ eqN ((j + 1)N + 1)N−1

(N − 1)! e−εjN
∞∑

k=1

e−εk

≤ eN(q−εj)(j + 2)N−1 NN−1

√
2π(N − 1)N−1/2e−N

1

1 − e−ε

≤ eN(q−εj+log(j+2)+1) 1√
2Nπ(1 − e−ε)

(
1 + 1

N − 1

)N−1

The product of the latter two factors above is ≤ 1 for large N . So by choosing m so large that

εj − log(j + 2) − q − 1 > εj/2

for all j ≥ m, we find that for all large enough L and l ≥ m,

P̃L,ρ,ν(C > lN) ≤
∞∑
j=l

e−εj/2 = e−εl/2

1 − e−ε/2
.

So, (3.3) is summable and the proof is finished.

3.2. Proof of Theorem 2.2

When λ ≤ 0 and α + λ > logμ, (2.4) follows from PL,α,λ(γo = γ̃ ) ≤ e−(α+λ)‖γ̃ ‖ and (2.1). By Theorem 2.1, we then
have αc(λ) = logμ − λ. The proof that when λ > 0, αc(λ) can be chosen being strictly less than the trivial bound logμ

and that it is decreasing with respect to λ in [0,∞) requires some work. We will first state and prove an auxiliary lemma
and, after that, we will present the proof.

For any A ⊆ �L, define �A as the set of configurations γ ∈ � such that γx ∩ (�L \ A) = ∅ for all x ∈ �L. In other
words, all self-avoiding polygons γx such that x /∈ A are empty and all self-avoiding polygons γx such that x ∈ A are
either empty or contained in A. Define also,

Z(A) :=
∑

γ∈�A

e−HL,α,λ(γ ),

where the dependence of the previous quantity on L, α and λ is implicit.

Lemma 3.1. Let A ⊂ B ⊆ �L be sets such that A contains at least h distinct pairs of adjacent sites. In other words A

contains at least h pairs of sites, {x1, y1}, . . ., {xh, yh}, such that xi and yi are nearest neighbours for each i ∈ {1, . . . h}
and {xi, yi} ∩ {xj , yj } =∅ if i �= j . Then,

Z(B \ A)

Z(B)
≤

(
1

1 + e−2α

)h

.
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Proof. We use a simple multi-valued map principle, which consists of filling an empty region of space with polygons
consisting in just two edges. To begin, note that

Z(B) ≥
∑

γ∈�B :
γx∩A=∅ if x∈B\A
γx∩B\A=∅ if x∈A

e−HL,α,λ(γ ) = Z(B \ A)Z(A),

where the inequality holds since the sum is over configurations γ in a subset of �B and the identity holds since the
previous sum can be factorised into the product of two independent sums which can be identified with Z(B \ A) and
Z(A). From this we deduce that,

Z(B \ A)

Z(B)
≤ Z(B \ A)

Z(B \ A)Z(A)
≤ 1

Z(A)
. (3.4)

The proof now consists in providing a lower bound to Z(A). For this, we will sum over configurations in a subset of �A

for which we will compute the weight explicitly. To define this set, recall that A contains h disjoint pairs of adjacent sites,
{x1, y1}, . . . , {xh, yh}. Given two sets of integers C,D ⊂ {1, . . . , h} such that C ∩ D = ∅, we let γ C,D = (γ C,D

x )x∈�L
∈

�A be the configuration which is defined as follows. Namely, for each i ∈ C, γ
C,D
xi

is the polygon consisting in one
edge directed from xi to yi and one edge directed from yi to xi , and γ

C,D
yi

:= ζ . For each i ∈ D, γ
C,D
xi

:= ζ and γ
C,D
yi

is the polygon consisting in one edge directed from yi to xi and one edge directed from xi to yi . For each x ∈ A \⋃
i∈C∪D({xi, yi}), we set γ

C,D
x := ζ . This concludes the definition of γ C,D . By definition of energy, (2.3), we have that

for each C,D ⊂ {1, . . . , h} (possibly empty sets) such that C ∩ D =∅,

e−HL,α,λ(γ C,D) = 1

2|C|+|D| e
−2α(|C|+|D|).

Using the fact that the number of pairs of sets C,D ⊂ {1, . . . , h} such that C ∩ D = ∅ and |C| + |D| = n ∈ {0, . . . , h} is
2n

(
h
n

)
(there are

(
h
n

)
ways to choose h out of n pairs and 2n ways to choose which vertex of the pair generates a polygon),

we obtain that,

Z(A) ≥
∑

C,D⊂{1,...,h}:
C∩D=∅

e−HL,α,λ(γ C,D)

=
∑

C,D⊂{1,...,h}:
C∩D=∅

1

2|C|+|D| e
−2α(|C|+|D|)

=
∑

n∈{0,...,h}

∑
C,D⊂{1,...,h}:

C∩D=∅

|C|+|D|=n

1

2n
e−2αn

=
∑

n∈{0,...,h}
2n

(
h

n

)
1

2n
e−2αn

= (
1 + 2−2α

)h
.

Replacing the previous bound in (3.4) the proof of the lemma is concluded. �

Let H(γ ) = {x ∈ �L : ∀y ∈ �L \ {o}, x /∈ γy} be the set of sites which are not visited by any polygon starting from
�L \ {o}. For any q ∈ (0,1), we have that

PL,α,λ(γo = γ̃ ) = PL,α,λ

(
γo = γ̃ , |H ∩ γ̃ | < q‖γ̃ ‖) + PL,α,λ

(
γo = γ̃ , |H ∩ γ̃ | ≥ q‖γ̃ ‖).

We will bound both terms on the right-hand side of the previous expression from above separately. For the first term we
have that,

PL,α,λ

(
γo = γ̃ , |H ∩ γ̃ | < q‖γ̃ ‖) ≤ e−(α+(1−q)λ)‖γ̃ ‖. (3.5)
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This follows from the definition of PL,α,λ. We now bound the second term from above. For this, we will choose q close
to one. Recall that ζ denotes the empty polygon. We find

PL,α,λ

(
γo = γ̃ , |H ∩ γ̃ | ≥ q‖γ̃ ‖)

≤ e−α‖γ̃ ‖
PL,α,λ

(
γo = ζ, |H ∩ γ̃ | ≥ q‖γ̃ ‖)

= e−α‖γ̃ ‖ ∑
A⊂γ̃ ,|A|≥q‖γ̃ ‖

PL,α,λ(γo = ζ,H ∩ γ̃ = A). (3.6)

Now observe that, for A ⊂ γ̃ ,

PL,α,λ(γo = ζ,H ∩ γ̃ = A)

≤ PL,α,λ

({∀x ∈ �L \ A,γx ∩ A =∅} ∩ {∀x ∈ A,γx = ζ })
= Z(�L \ A)

Z(�L)
. (3.7)

If at least q‖γ̃ ‖ vertices of γ̃ are not visited by any polygon, then the worst-case bound leads to the conclusion that we can
find at least 3q−2

2 ‖γ̃ ‖ non-overlapping pairs of sites {xi, yi} ⊂ γ̃ , i ∈ [1,
3q−2

2 ‖γ̃ ‖], which are not visited by any polygon.
Thus, by using (3.7) in (3.6) and applying Lemma 3.1, we obtain that,

PL,α,λ

(
γo = γ̃ , |H ∩ γ̃ | ≥ q‖γ̃ ‖) ≤ e−α‖γ̃ ‖

(
1

1 + e−2α

) 3q−2
2 ‖γ̃ ‖ ‖γ̃ ‖∑

n=�q‖γ̃ ‖�

(‖γ̃ ‖
n

)
(3.8)

≤ ‖γ̃ ‖e−α‖γ̃ ‖
(

1

1 + e−2α

) 3q−2
2 ‖γ̃ ‖

e(1−q)[1−log(1−q)]‖γ̃ ‖, (3.9)

where we used
( ‖γ̃ ‖

�q‖γ̃ ‖�
) = ( ‖γ̃ ‖

‖γ̃ ‖−�q‖γ̃ ‖�
) ≤ (e/(1 − q))(1−q)‖γ̃ ‖. Putting together the previous bounds, we obtain that, for

any q ∈ (0,1), for any γ̃ ∈ SAPo,

PL,α,λ(γo = γ̃ ) ≤ e−(α+(1−q)λ)‖γ̃ ‖ + ‖γ̃ ‖e−α‖γ̃ ‖− 3q−2
2 g‖γ̃ ‖e(1−q)[1−log(1−q)]‖γ̃ ‖

≤ e−b1‖γ̃ ‖ + ‖γ̃ ‖e−b2‖γ̃ ‖,

where we defined,

g = g(α) := log
(
1 + e−2α

)
,

b1 = b1(α,λ, q) := α + (1 − q)λ

b2 = b2(α, q) := α + 3q − 2

2
g − (1 − q)

[
1 − log(1 − q)

]
.

Our goal now is to prove that b1 and b2 are strictly larger than logμ for an appropriate choice of q , λ and α < logμ.
Since the number of polygons of length k grows like ∼ elogμk , this will give exponential decay of the polygon length.
First,

let α∗ be the solution of α + g(α)/5 = logμ,

and note that α∗ < logμ depends only on d . Now we will choose q close enough to one so that b2 > logμ for any α > α∗.
At the same time we need a small q since this makes b1 large. More precisely, we set the value of q as follows,

q = min
{
q ′ ∈ [0,1] : 3q ′/2 − 1 ≥ 1/4 and

(
1 − q ′)(1 − log

(
1 − q ′)) ≤ g

(
α∗)/30

}
(3.10)

and we note that such a q depends only on d and that q ∈ (0,1). Since the function α + g(α)/4 is non-decreasing in α,
for any α > α∗, we find

b2(α, q) ≥ α + 1

4
g(α) − 1

30
g
(
α∗) ≥ α∗ + 1

4
g
(
α∗) − 1

30
g
(
α∗)
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≥ α∗ + 1

5
g
(
α∗) + 1

20
g
(
α∗) − 1

30
g
(
α∗) ≥ logμ + 1

60
g
(
α∗),

Then, for any k ∈ N,

PL,α,λ

(‖γo‖ > k
) ≤

∞∑
m=k+1

PL,α,λ

(‖γo‖ = m
)

≤
∞∑

m=k+1

(|SAPo,m|e−b1m + |SAPo,m|me−b2m
)

≤ 2(d − 1)

∞∑
m=k+1

me(−b1+logμ)m + 2(d − 1)

∞∑
m=k+1

m2e(−b2+logμ)m

≤ 2(d − 1)

∞∑
m=k+1

me(−α−(1−q)λ+logμ)m + 2(d − 1)

∞∑
m=k+1

m2e− g(α∗)
60 m.

Now set

αc(λ) := (
logμ − (1 − q)λ ∨ α∗), (3.11)

From the previous bound we obtain that for any λ ≥ 0 and α > αc(λ) there exist two constants δ,C ∈ (0,∞) such that,
for any k ∈N,

PL,α,λ

(‖γo‖ > k
) ≤ Ce−δk.

Since αc(λ) < logμ for any λ ∈ (0,∞), this concludes the proof.

3.3. Proof of Theorem 2.3

In this section, we show that there is a regime in which a self-avoiding polygon is infinite in the infinite-volume limit and
space-filling in a quantifiable sense. We will adopt the strategy developed in [5], which consists of showing that, under
appropriate assumptions, it is much more likely that a self-avoiding polygon enters a certain large area than that it gets
only close to it without entering it. The way to get there is to consider, for any self-avoiding polygon γo getting close to
the area F without entering it (see also Figure 2), the cumulative weight of certain extensions γ̃ entering the area. One
needs to show that the “typical” weight of such extensions is not less than e−c‖γ̃ ‖ for some c < logμ. Since the number
of the extensions of length n grows like ∼ μn, this guarantees that the entropy beats the energy cost for constructing
such extensions. This strategy is implemented in the proof of Proposition 3.4, which uses a multi-valued map principle.
We will start by giving an outline of the approach developed in [5] and state Proposition 3.4, from which we deduce the
theorem. Then we will prove that the assumptions of Proposition 3.4 hold in the relevant cases.

Fig. 2. The dotted path represents a self-avoiding polygon γF touching all midpoints of the boundary sides of the boxes, F is the collection of boxes in
the figure. The self-avoiding polygon γo does not enter F , but it reaches a neighbouring box of F .
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As in [5], our presentation of the method will be restricted to the 2-dimensional case. Generalizations to higher di-
mensions are possible along the lines of [5, Remark 8]. We now start to introduce the key concepts from [5]. To facilitate
calculations, we introduce the notion of boxes and require that relevant extensions respect their structure, which allows
us to apply Proposition 3.2 and Lemma 3.3 below.

Definition 1. Let Pm be the set of self-avoiding polygons in the square box [0,2m + 1]2 ⊂ �L that touch the middle
of every face of the square, i.e., they contain the edges ((m,0), (m + 1,0)), ((2m + 1,m), (2m + 1,m + 1)), ((m,2m +
1), (m + 1,2m + 1)), and ((0,m), (0,m + 1)). Let further Zm(x) = ∑

γ∈Pm

x‖γ ‖
‖γ ‖∨1 for any x > 0.

Note that our definition deviates from the one given in [5] by introducing the denominator ‖γ ‖ ∨ 1, which does not
fundamentally change the behaviour of Zm(x), however. We therefore arrive at

Proposition 3.2 ([5, Proposition 3]). Let x > 1/μ. Then lim supm→∞ Zm(x) = ∞.

Definition 2. Let m > 0. The cardinal edges of a square box B ⊂ �L with side length 2m+ 1 are the edges in the middle
of every face (cf. Definition 1). Two such boxes B and B ′ are called adjacent if they are disjoint and if there are cardinal
edges (x, y) of B and (w, z) of B ′ such that x ∼ w and y ∼ z. A family F of such boxes is connected if every two
boxes in F can be connected by a path of adjacent boxes in F (see [5, Figure 5]). Let F(�L,m) be the set of connected
families of boxes of side length 2m + 1 included in �L. For F ∈ F(�L,m), let VF be the set of vertices of boxes in F

and EF be the set of edges with both end-points in VF . Let ECF the set of external cardinal edges of F and SF the set of

self-avoiding polygons in EF that visit all edges in ECF . Let further ZF (x) = ∑
γ∈SF

x‖γ ‖
‖γ ‖∨1 . For the sake of simplicity,

we fix coordinates {0,1,2, . . . ,L − 1}2 for �L and only consider boxes with their lower left corner in (2m + 2)Z2 with
respect to these coordinates. For two subsets A,B ⊂ �L, we then define the box distance (denoted by boxdist) between
them as the size of the smallest set of connected boxes containing one vertex in A and one in B minus 1.

Lemma 3.3 (Claim in the proof of [5, Proposition 7]). Let F ∈ F(�L,m) and m ≥ 2. Then ZF (x) ≥ Zm(x)|F |, where
|F | denotes the cardinality of F .

Proof. Taking note of 1
m1+m2

≥ 1
m1m2

for m1, m2 ≥ 2, one sees that the proof in [5] still works. �

Definition 3. Let γ̃1 and γ̃2 be self-avoiding polygons such that either V(γ̃1) ∩ V(γ̃2) = {v1, v2} and E(γ̃1) ∩ E(γ̃2) =
{(v1, v2)} or V(γ̃1) ∩ V(γ̃2) = {v1, v2, v3} and E(γ̃1) ∩ E(γ̃2) = {(v1, v2), (v2, v3)} with distinct vertices v1, v2, v3 hold.
We then define γ̃1 � γ̃2 via its edges E(γ̃1 � γ̃2) := E(γ̃1)�E(γ̃2), where � denotes the symmetric difference.

Note that γ̃1 � γ̃2 is again a self-avoiding polygon with either ‖γ̃1 � γ̃2‖ = ‖γ̃1‖ + ‖γ̃2‖ − 2 or ‖γ̃1 � γ̃2‖ = ‖γ̃1‖ +
‖γ̃2‖ − 4.

Let further �F be the set of self-avoiding polygons containing the origin which do not intersect F , but reach a neigh-
bouring box. For γ̃o ∈ �F , let e be an external cardinal edge of F in box distance 1 from γ̃o and let l(γ̃o) be a self-avoiding
polygon such that

• EF ∩ E(l(γ̃o)) = {e},
• l(γ̃o) intersects γ̃o either at exactly one edge or at exactly two adjacent edges, and
• l(γ̃o) has length smaller than 100m.

It can be checked that such a polygon always exists (cf. [5, p. 10]). Now define f : �F × SF −→ SAPo by

f (γ̃o, γ̃F ) = γ̃o � (
γ̃F � l(γ̃o)

)
.

It can be shown (see [5]) that f is at most 100m2 to 1. See also Figure 2 for a depiction of typical examples of γ̃o and γ̃F .
We start by identifying an inequality that is sufficient for proving our result. We will then show the validity of that

inequality in the different regimes by different methods.

Proposition 3.4. Let α,λ ∈R. Assume that we can find x > 1/μ and C > 0 such that

PL,α,λ

[
γo = f (γ̃o, γ̃F )

] ≥ CPL,α,λ[γo = γ̃o]x
‖γ̃F ‖

‖γ̃F ‖ (3.12)
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holds for all L > 0, and for all F ∈ F(�L,m), γ̃o ∈ �F and γ̃F ∈ SF with large enough m. Then equation (2.5) holds
for this pair (α,λ).

Proof. Since f is at most 100m2 to 1, we have

1 ≥ PL,α,λ

[
γo ∈ f (�F × SF )

] ≥ 1

100m2

∑
γ̃o∈�F ,γ̃F ∈SF

PL,α,λ

[
γo = f (γ̃o, γ̃F )

]
. (3.13)

Using assumption (3.12) and summing up yields

∑
γ̃o∈�F ,γ̃F ∈SF

PL,α,λ

[
γo = f (γ̃o, γ̃F )

] ≥ C
∑

γ̃o∈�F

PL,α,λ[γo = γ̃o]
∑

γ̃F ∈SF

x‖γ̃F ‖

‖γ̃F ‖

≥ CPL,α,λ

[
boxdist(γo,VF ) = 1

]
ZF (x).

Equation (3.13) and Lemma 3.3 then lead to

PL,α,λ

[
boxdist(γo,VF ) = 1

] ≤ C̃Zm(x)−|F |

for each F ∈ F(�L,m), with C̃ only depending on C and m.
Recall that 	

ξ
L(γo) denotes the set of vertices which have distance at least ξ from γo. Following the proof of [5,

Theorem 6] in applying Proposition 3.2, we obtain that there is m ∈ N, c̃ > 0 as well as C = C(x,m) > 0 such that for
every N > 0,

PL,α,λ

[
there is a component of �L \ 	6m

L (γo) of size > N
] ≤ CL2e−c̃N .

If we now choose ξ := 6m and suitable c > 0, then (2.5) is proved. �

For the proof of inequality (3.12) we need to distinguish between two cases: The situation is easier if we assume
that α < logμ. Then we only have to ascertain that the interaction between polygons does not fundamentally change the
picture as self-avoiding polygons with weights e−α are space-filling in this case (see [5, Theorem 1]). On the other hand,
if α ≥ logμ, we will have to show that there is sufficient attractive interaction with polygons at sites x �= o to compensate
for the high value of α.

The case α < logμ of Theorem 2.3 is proved by the following Lemma:

Lemma 3.5. Let α < logμ and λ < logμ − α. Then there exist x > 1/μ and C > 0 so that (3.12) holds.

Proof. Let α < logμ and 0 < λ < logμ − α, and assume that the self-avoiding polygons γ̃o, γ̃v satisfy the assumptions
of Definition 3. Then, by supposing interaction at maximally many sites, we obtain the bound

PL,α,λ[γo = γ̃o � γ̃v] ≥ (
e2α ∧ e3α

)
PL,α,λ[γo = γ̃o] ‖γ̃o‖

‖γ̃o‖ + ‖γ̃v‖ − 2
e−(α+λ)‖γ̃v‖

≥ (
e2α ∧ e3α

)
PL,α,λ[γo = γ̃o]e

−(α+λ)‖γ̃v‖

‖γ̃v‖ .

If λ ≤ 0, we obtain in a similar way that

PL,α,λ[γo = γ̃o � γ̃v] ≥ (
e2α ∧ e3α

)
eλ
PL,α,λ[γo = γ̃o]e

−α‖γ̃v‖

‖γ̃v‖ .

The additional factor of eλ takes into account the second case in Definition 3 in which the vertex v2 does not belong to
γ̃o � γ̃v , but to γ̃o. Thus with

x = exp
(−α − (λ ∨ 0)

)
,
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we find that for all α ∈ R, all λ < logμ − α, all F ∈ F(�L,m) with sufficiently large m, all γ̃o ∈ �F and all γ̃F ∈ SF ,
we can define γ̃v = γ̃F � l(γ̃o) and compute

PL,α,λ

[
γo = f (γ̃o, γ̃F )

] ≥ C′
PL,α,λ[γo = γ̃o]x‖γ̃v‖−‖γ̃F ‖ x‖γ̃F ‖

‖γ̃v‖

= C′
PL,α,λ[γo = γ̃o]x‖l(γ̃o)‖−2 x‖γ̃F ‖

‖l(γ̃o)‖ + ‖γ̃F ‖ − 2

≥ CPL,α,λ[γo = γ̃o]x
‖γ̃F ‖

‖γ̃F ‖ ,

where C′ = (e2α ∧ e3α)(eλ ∧ 1). In the last line applies the properties of l(γ̃o) and C therefore only depends on α, λ,
and m. �

Remark. If we consider P̃L,ρ,ν instead of PL,α,λ, the case given by ρ < logμ and ν ≥ 0 (which is included in Lemma 3.5)
could also have been proved in the following way: For ν = 0 the polygons are independent and [5] yields that they are
weakly space filling. One further easily shows limL→∞ P̃L,ρ,0[N = 0] = 1, which also holds for ν > 0 due to monotonic-
ity of ẼL,ρ,ν[N ]. Hence, γo behaves asymptotically as in the case of independence.

In order to treat the case α ≥ logμ, we have to work somewhat harder. The general strategy of the proof is the same as
before. For any finite set A ⊂ �L \ {o} and γ̃o ∈ SAPo, let �A

o,γ̃o
⊂ ∏

x∈�L
SAPx be the set of configurations with γx = ζ

for all x ∈ A and γo = γ̃o. Moreover, write P
γ̃o

L,α,λ[·] := PL,α,λ[· |γo = γ̃o ].

Lemma 3.6. Let α ∈ R and 0 < q < 1. Then there is λ0 ≤ 0 such that for all λ < λ0 and for any finite set A ⊂ �L \ {o},
L ∈ N and γ̃o ∈ SAPo, we have

P
γ̃o

L,α,λ[γx = ζ for all x ∈ A] ≤ q |A|.

More specifically, λ0 = log(q/2) − 2α.

Proof. The proof proceeds via induction on the cardinality of A. The main idea is to construct an injective map gA :
�A

o,γ̃o
→ �

∅

o,γ̃o
such that e−H(γ ) ≤ q |A|e−H(gA(γ )) for all γ ∈ �A

o,γ̃o
because then

P
γ̃o

L,α,λ[γx = ζ for all x ∈ A]

=
∑

γ∈�A
o,γ̃o

e−H(γ )

∑
γ∈�

∅

o,γ̃o

e−H(γ )
≤

∑
γ∈�A

o,γ̃o

e−H(γ )

∑
γ∈�A

o,γ̃o

e−H(gA(γ ))
≤

∑
γ∈�A

o,γ̃o

e−H(γ )

∑
γ∈�A

o,γ̃o

q−|A|e−H(γ )
= q |A|

follows. Let λ < log(q/2) − 2α. Let first A = {x1}. We distinguish two cases: Either x1 has a neighbour y1 �= o with
γy1 �= ζ or all of its neighbours y �= o satisfy γy = ζ . In the first case, let gA(γ ) be obtained from γ by substituting
{x1, y1} for γx1 = ζ , i.e.

(
gA(γ )

)
z
=

{
γz if z �= x1,

{x1, y1} if z = x1.

Then, by the definition of H and λ < 0, we have e−H(gA(γ )) ≥ e−2α−λ

2 e−H(γ ) ≥ 1
q
e−H(γ ). If, on the other hand, γy = ζ

for all o �= y ∼ x1, pick one such neighbour y1 of x1 and fix a cycle γ x1,y1 of length 4 visiting both x1 and y1. Let gA(γ )

be obtained from γ by substituting γ x1,y1 for both γx1 and γy1 (only varying the starting point). Then, e−H(gA(γ )) ≥
e−8α−4λ

16 e−H(γ ) ≥ 1
q
e−H(γ ), and the first step is proved.

Let now |A| > 1 and consider γ ∈ �A
o,γ̃o

. Choose xA ∈ A such that it has a neighbour which does not lie in A ∪ {o}.
If one such neighbour yA of xA satisfies γyA

�= ζ , define hA(γ ) by substituting {xA,yA} for γxA
as in the previous case

(pick one of them arbitrarily if there are several ones). If γy = ζ for all neighbours y /∈ A ∪ {o} of xA, denote one of them
by yA and fix again a cycle γ xA,yA of length 4 visiting both xA and yA. Let hA(γ ) be obtained by substituting γ xA,yA
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for both γxA
and γyA

. Note that hA : �A
o,γ̃o

→ �
A\{xA}
o,γ̃o

is injective and satisfies e−H(hA(γ )) ≥ 1
q
e−H(γ ). The claim now

follows from gA := gA\{xA} ◦ hA. �

For any set A ⊂ �L, let NA(γ ) := ∑
x∈�L

1{γx = ζ } be the number of sites of A which generate a polygon of length
zero. We have that

Lemma 3.7. Let c ∈ (0,1) and α ∈ R be arbitrary. Then, if λ is small enough, there exists a constant K0 > 0 such that
for any L ∈N, A ⊂ �L \ {o} and γ̃o ∈ SAPo,

P
γ̃o

L,α,λ

[
NA ≥ c|A|] ≤ K0(1 − c)|A|.

More specifically, we need λ ≤ min{0, log c + log(1−c)
c

− 1 − log 2 − 2α}.

Proof. Let q = c exp(
log(1−c)

c
− 1). Then (

eq
c

)c = 1 − c and λ ≤ log(q/2) − 2α. So, by Lemma 3.6,

P
γ̃o

L,α,λ

[
NA ≥ c|A|] ≤

|A|∑
n=�c|A|�

(|A|
n

)
qn ≤

|A|∑
n=�c|A|�

(
e|A|q
c|A|

)n

≤
(

eq

c

)�c|A|� 1

1 − eq
c

≤ K0

[(
eq

c

)c]|A|
≤ K0(1 − c)|A|.

Here, the first inequality applies the union bound and the second inequality is a consequence of the general property of
the binomial coefficient that(

m

n

)
≤

(
em

n

)n

for all m ≥ n. �

Proposition 3.8. Let α ∈ R and c ∈ (0,1). Then, if

λ ≤ min

{
0, log c + log(1 − c)

c
− 1 − log 2 − 2α

}
,

there is C0 ∈ (0,1) and there exists m0 ∈ N such that for all self-avoiding polygons γ̃o, γ̃v with ‖γ̃v‖ > m0 satisfying the
assumptions of Definition 3 and for any L ∈N, we have

PL,α,λ[γo = γ̃o � γ̃v] ≥ C0PL,α,λ[γo = γ̃o]e
−(α+cλ)‖γ̃v‖

‖γ̃v‖ .

Proof. Let A = V(γ̃v) \ V(γ̃o). For any c ∈ (0,1) and λ < 0, we have that

PL,α,λ[γo = γ̃o � γ̃v] ≥ PL,α,λ

[
γo = γ̃o � γ̃v,NA < (1 − c)|A|]

≥ (
e2α ∧ e3α

)
eλ
PL,α,λ

[
γo = γ̃o,NA < (1 − c)|A|] ‖γ̃o‖

‖γ̃o‖ + ‖γ̃v‖ − 2
e−(α+cλ)‖γ̃v‖

≥ (
e2α ∧ e3α

)
eλ
PL,α,λ[γo = γ̃o]Pγ̃o

L,α,λ

[
NA < (1 − c)|A|]e−(α+cλ)‖γ̃v‖

‖γ̃v‖ .

If λ ≤ −2α + log c + log(1−c)
c

− 1 − log 2, we may apply Lemma 3.7 so that

P
γ̃o

L,α,λ

[
NA < (1 − c)|A|] = 1 − P

γ̃o

L,α,λ

[
NA ≥ (1 − c)|A|] ≥ 1 − K0c

|A|.

Now fix C0 ∈ (0,1) such that C0
(e2α∧e3α)eλ < 1 and choose m0 ∈ N such that for all |A| > m0 − 2, we have

K0c
|A| ≤ 1 − C0

(e2α ∧ e3α)eλ
.

Then the claim follows. �
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The case α ≥ logμ of Theorem 2.3 is now completed by

Lemma 3.9. Let α ≥ logμ and

λ < 0 ∧ sup
c∈(0,1)

{(
logμ − α

c

)
∧

(
−2α + log c + log(1 − c)

c
− 1 − log 2

)}
=: λsf .

Then there exists x > 1/μ and C > 0 so that (3.12) holds.

Proof. Let F ∈ F(�L,m) for sufficiently large m, γ̃o ∈ �F and γ̃F ∈ SF . Let again γ̃v be such that f (γ̃o, γ̃F ) = γ̃o � γ̃v .
Then there are c ∈ (0,1) and x > 1/μ such that exp(α + cλ) > x. Moreover, we can apply Proposition 3.8 if m is large
enough, and we obtain for some C0 > 0 that

PL,α,λ

[
γo = f (γ̃o, γ̃F )

] ≥ C0PL,α,λ[γo = γ̃o]x
‖γ̃v‖

‖γ̃v‖

≥ CPL,α,λ[γo = γ̃o]x
‖γ̃F ‖

‖γ̃F ‖ ,

where the last step applies the properties of l(γ̃o). The claim is thus proved. �

Appendix

Here we show how linearity of the energy and an application of Hölder’s inequality leads to convexity of the pressure.

Lemma A.1. For any c ∈ (0,1), ρ1, ρ2, ν1, ν2 ∈ R,

�̃L

(
cρ1 + (1 − c)ρ2, cν1 + (1 − c)ν2

) ≤ c�̃L(ρ1, ν1) + (1 − c)�̃L(ρ2, ν2).

Proof. Note first that for any γ ∈ �,

H̃L,cρ1+(1−c)ρ2,cν1+(1−c)ν2(γ ) = cH̃L,ρ1,ν1(γ ) + (1 − c)H̃L,ρ2,ν2(γ ).

Thus we obtain that,

Z̃L,cρ1+(1−c)ρ2,cν1+(1−c)ν2 =
∑
γ∈�

e−H̃L,cρ1+(1−c)ρ2,cν1+(1−c)ν2 (γ )

=
∑
γ∈�

e−cH̃L,ρ1,ν1 (γ )e−(1−c)H̃L,ρ2,ν2 (γ )

≤
( ∑

γ 1∈�

e−H̃L,ρ1,ν1 (γ 1)

)c( ∑
γ 2∈�

e−H̃L,ρ2,ν2 (γ 2)

)1−c

= (Z̃L,ρ1,ν1)
c(Z̃L,ρ2,ν2)

1−c,

where in the third step we used Hölder’s inequality with parameters p = 1
c

and q = 1
1−c

, which satisfy 1
p

+ 1
q

= 1, and
in the last step we used the definition of partition functions. Then, by applying the previous inequality to the definition of
�̃L and by using the properties of the logarithm, we conclude the proof. �
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