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Abstract. A Poisson outdegree-one graph is an oriented graph based on a Poisson point process such that each vertex has only one
outgoing edge. The paper focuses on the absence of percolation for such graphs. Our main result is based on two assumptions. The
Shield assumption ensures that the graph is locally determined with possible random horizons. The Loop assumption ensures that any
forward branch of the graph merges on a loop provided that the Poisson point process is augmented with a finite collection of well-
chosen points. Several models satisfy these general assumptions and inherit in consequence the absence of percolation. In particular,
we solve in Theorem 3.1 a conjecture by Daley et al. on the absence of percolation for the line-segment model (Conjecture 7.1 of
(Probab. Math. Statist. 36 (2016) 221–246), discussed in (Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 127–145) as well). In this
planar model, a segment is growing from any point of the Poisson process and stops its growth whenever it hits another segment. The
random directions are picked independently and uniformly on the unit sphere. Another model of geometric navigation is presented and
also fulfills the Shield and Loop assumptions.

Résumé. Nous considérons des graphes orientés dont l’ensemble des sommets est donné par un processus ponctuel de Poisson et tels
que chaque sommet admette une et une seule arête sortante. Le résultat principal de ce papier est l’absence de percolation pour de tels
graphes satisfaisant deux hypothèses. L’hypothèse Shield stipule que l’état du graphe localement ne dépend que de son voisinage, tandis
que l’hypothèse Loop prétend que toute branche orientée du graphe échoue sur un cycle dès qu’un ensemble (fini) de sommets bien
choisis est ajouté au processus de Poisson. Plusieurs modèles intéressants satisfont ces deux hypothèses générales et, par conséquent,
ne percolent pas. Nous résolvons ainsi dans Theorem 3.1 une conjecture de Daley et al. sur l’absence de percolation pour le “line-
segment model” (Conjecture 7.1 de (Probab. Math. Statist. 36 (2016) 221–246), également discutée dans (Ann. Inst. Henri Poincaré
Probab. Stat. 52 (2016) 127–145)). Dans ce modèle bidimensionnel, un segment pousse depuis chaque point du processus de Poisson
jusqu’à ce qu’il heurte un autre segment, stoppant ainsi sa croissance. Les directions dans lesquelles poussent les segments sont choisies
uniformément sur la sphère et indépendamment les unes des autres. Enfin, un autre modèle dit de navigation est présenté et satisfait
aussi les hypothèses Shield et Loop.
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1. Introduction

Consider the classical nearest neighbour graph based on a planar homogeneous Poisson point process in which each point
is simply connected to its nearest neighbour. The absence of percolation for this model is due to the fact that almost
surely a homogeneous Poisson point process contains no descending chain. By a descending chain, we mean an infinite
sequence x1, x2, . . . of points of the process for which |xi−1 − xi | ≥ |xi − xi+1| for all i ≥ 2. Daley and Last have shown
in [5] that the absence of percolation for the lilypond model can also be obtained as a consequence of the descending
chain argument. In this model a ball is growing with unit rate from any Poisson point and stops its growth when it hits
another ball. Note that the finite cluster property for this model has first been proved in [6].

When the growing balls are replaced with growing segments the issue is much more complicated. The two-sided
line-segment model is defined via a marked homogeneous Poisson point process X in R

2 × [0;1] where the marks are
independent and uniformly distributed on [0;1]. At time 0, for any (ξ, u) ∈ X a line-segment centred at ξ starts to grow
at unit rate in the direction πu. A one-sided version also exists in which a one-sided segment grows from ξ with direction
2πu. In both models, each line-segment ceases to grow when one of its ends hits another segment. The descending chain
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Fig. 1. In the left part of the picture, we have drawn the geometric graph defined by a finite configuration. Two connected components are obtained. In
the right part, we only add one marked point to the configuration. The two initial connected components are modified. Precisely, any point in the initial
configuration has a new cluster.

Fig. 2. Here is a picture of the cluster of a given vertex x. The gray vertices belong to the Forward set of x whereas the white ones are in its Backward
set.

argument does not work in this setting. Indeed, when a line-segment hits another one, there is no reason that the hit
segment is smaller than the hitting one. Nevertheless the absence of percolation for the two-sided model was conjectured
by Daley et al. (Conjecture 7.1 of [4]) and was proved for the one-sided model in a weaker form (only the four directions
North, East, South and West are allowed) by Hirsch [7]. Although both references [4,7] are rather recent it seems that the
natural question of percolation for these line-segments models was known since a while in the probabilistic community.
Like any good conjecture, the percolation question for these line-segments models is easy understanding but reveals
technical hurdles. On the one hand, any local modification of the marked point process may have huge aftereffects on the
final realization of line-segments: see Figure 1. On the other hand, the sequence of successively hit line-segments presents
no Markovian property or renewal structure.

In this paper, we prove the finite cluster property for the one-sided line-segment model as a consequence of a general
result (Theorem 3.1, our main result) dealing with outdegree-one graphs. The finite cluster property of the two-sided
line segment model can also be obtained following the strategy we have used, the two-sided version does not contain
specificities which annihilate the proof.

It is easy (and natural) to interpret the geometric graphs mentioned above as (Poisson) outdegree-one graphs. For the
stopped germ-grain models (as lilypond and line-segment models), an oriented edge from x to y is declared when the
grain from x hits the grain from y. For this reason our main result (Theorem 3.1), presented in the general setting of
Poisson outdegree-one graph, covers naturally the geometrical setting. Since the graph is oriented, we can define the
Forward and Backward sets of any given vertex x: see Figure 2 for an illustration and Section 2.2 for a precise definition.
Then, the cluster containing x merely is the union of these both sets.

Thanks to the outdegree-one structure, a forward branch is finite if and only if it contains a loop. By a loop, we mean an
finite sequence x1, x2, . . . , xn of different vertices for which xi is connected to xi+1 for 1 ≤ i ≤ n− 1 and xn is connected
to x1. In Figure 2, the Forward set of x contains a loop of size 4. A general argument for stationary outdegree-one
graphs, called mass transport principle, ensures that the absence of forward percolation implies the absence of backward
percolation. Henceforth, the aim of our work is to provide general assumptions ensuring that any forward branch of
Poisson outdegree-one graphs merges on a loop. This conjecture is supported by the following heuristic (to which our
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proof strategy does not correspond): there are many loops everywhere in the plane and it is too difficult for an infinite
forward branch to avoid all of them.

In [7], Hirsch proposes such assumptions in the setting of geometrical graphs. In particular, the author proved a weaker
version of the conjecture by Daley et al. for the one-sided line-segment model in which directions are piked uniformly
among North, East, South and West. Hirsch’s proof consists in stating that any infinite forward branch has to cross a
infinite number of “controlled regions” in which it can merge on a loop with positive probability and independently of
what precedes. To carry out this strategy, Hirsch requires technical assumptions (Section 3 of [7]) which actually are
difficult to check even for the one-sided line-segment model with only four directions. When all directions are allowed,
the verification seems likely impossible as says the author himself.

Our proof (of Theorem 3.1) differs from the Hirsch’s one and deeply exploits the outdegree-one structure of our
models. It is based on the following general statement for Poisson outdegree-one graphs which can be roughly interpreted
as a counterpart of the mass transport principle: if there exists, with positive probability, an infinite forward branch then the
expectation of the size of a typical backward branch is infinite. Our main contribution is to provide minimal assumptions
guaranteeing that such expectation is finite, and then ensuring the absence of percolation for a large class of models,
containing at least the original line-segment model. As far as we know, this strategy has never been investigated before
for proving the absence of percolation in any continuous or discrete models.

Let us describe briefly both assumptions of our main theorem. The first one, called the Loop assumption and denoted
by (LA), assumes that any forward branch merges to a loop if the process is augmented with a finite collection of well-
chosen points (without reducing the size of the backward). Roughly speaking, this assumption assures that a loop is
possible along a forward branch provided that some points are added. The extra condition on the size of the backward is
directly related to the method we use. This condition seems a bit artificial and could be probably relaxed in the future.
However we note that it is relatively easy to check in all models we met. The second one, called the Shield assumption
and denoted by (SA), is directly inspired from the ones by Hirsch. More or less, it assumes that with high probability, the
graph contains no edge crossing large boxes.

Moreover, the conclusion of Theorem 3.1, i.e. the absence of percolation, does not hold if only one hypothesis among
(LA) and (SA) is satisfied. Whereas the Loop assumption appears as an essential property to prevent percolation, it is not
clear whether the Shield assumption is really needed. We construct an outdegree-one graph which satisfies only the Loop
assumption and percolates.

As mentioned before our main application is the absence of percolation for the line-segment model introduced by Daley
et al. We investigate also another model which is inspired by the geometrical navigation defined in [2]. See Theorem 3.2.

The paper is organized as follows. In Section 2, we provide a precise description of Poisson outdegree-one models and
give examples. In Section 3, we formulate our two assumptions and the main result (Theorem 3.1) ensuring the absence of
percolation. Section 4 is devoted to its proof and finally, in Section 5, we check that both models introduced in Section 2
satisfy the assumptions of Theorem 3.1.

2. General model and examples

2.1. Notations

All the models of this paper take place in the Euclidean space R
d . The configuration space C on R

d with marks in [0;1]
is defined by

C = {
ϕ ⊂R

d × [0;1];N�(ϕ) < ∞, for any bounded � ⊂R
d
}

where N�(ϕ) = #(ϕ ∩ (� × [0;1])) denotes the number of marked points of ϕ whose first ordinate lies in �. Any other
choice of compact set for the marks could be considered with slight modifications in the following. Let us denote by
ϕgerms the projection of any given configuration ϕ ∈ C onto R

d : ϕgerms = {ξ ; (ξ, ·) ∈ ϕ}. For a given subset � of Rd , and
ϕ ∈ C , ϕ� denotes the set of points of ϕ included in � × [0;1]: ϕ� = {(ξ, u) ∈ ϕ; ξ ∈ �}.

As usual, the configuration space C is equipped with the σ -algebra

S = σ
(
P(A,n);A Borel set of Rd × [0;1] a Borel set, n ≥ 0

)
,

generated by the counting events P(A,n) = {ϕ ∈ C ;#(ϕ ∩ A) ≤ n}. Similarly, for a any subset � ⊂ R
d , we define the

σ -algebra of events in � by

S� = σ
(
P(A,n);A Borel set of � × [0;1], n ≥ 0

)
.
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Let v ∈R
d . The translation operator τv acts on R

d , Rd ×[0;1] and C as follows: for any w ∈R
d , x = (ξ, u) ∈R

d ×[0;1]
and ϕ ∈ C , we set τv(w) = v + w, τv(x) = (ξ + v,u) and τv(ϕ) = ⋃

x∈ϕ{τv(x)}. Finally, a subset C ′ ⊂ C is said

translation invariant whenever τv(C ′) ⊂ C ′, for any vector v ∈R
d .

2.2. The outdegree-one model

In our setting, an outdegree-one graph is an oriented graph whose vertex set is given by a configuration ϕ ∈ C and having
exactly one outgoing edge per vertex. Such graph can be described by a graph function which determines, for any vertex,
its outgoing neighbour. Note that the marks in [0;1] will be used as random contributions to this connection mechanism.
See examples in Section 2.4.

Definition 2.1. Let C ′ ⊂ C be a translation invariant set. A function h from C ′ × (Rd × [0;1]) to R
d × [0;1] is called a

graph function if:

(i) ∀ϕ ∈ C ′, ∀x ∈ ϕ, h(ϕ,x) ∈ ϕ\{x};
(ii) ∀v ∈ R

d , ∀ϕ ∈ C ′, ∀x ∈ ϕ, h(τv(ϕ), τv(x)) = τv(h(ϕ, x)).

The couple (C ′, h) is then called an outdegree-one model.

In the sequel, let us consider an outdegree-one model (C ′, h) and a configuration ϕ ∈ C ′. The associated graph is made
up of edges (x,h(ϕ, x)), for all x ∈ ϕ. In dimension d = 2, such graphs are not necessarily planar.

Let us describe the clusters of this graph. Let x ∈ ϕ. The Forward set For(x,ϕ) of x in ϕ is defined as the sequence of
the outgoing neighbours starting at x:

For(x,ϕ) = {
x,h(ϕ, x),h

(
ϕ,h(ϕ, x)

)
, . . .

}
.

The Forward set For(x,ϕ) is a branch of the graph, possibly infinite. The Backward set Back(x,ϕ) of x in ϕ contains all
the vertices y ∈ ϕ having x in their Forward set:

Back(x,ϕ) = {
y ∈ ϕ;x ∈ For(y,ϕ)

}
.

The Backward set Back(x,ϕ) admits a tree structure whose x is the root. The Forward and Backward sets of x may
overlap; they (at least) contain x. Their union forms the Cluster of x in ϕ:

C(x,ϕ) = For(x,ϕ) ∪ Back(x,ϕ).

The Cluster C(x,ϕ) is a subset of the connected component of x in ϕ, the absence of infinite cluster in a given outdegree-
one graph is nothing else than the absence of infinite connected component.

Our main theorem (Theorem 3.1) states that for a large class of random models, all the clusters are a.s. finite. In
particular, it is not difficult to observe that the Forward set For(x,ϕ) is finite if and only if it contains a loop, i.e. a subset
{y0, . . . , yl−1} ⊂ For(x,ϕ), with l ≥ 2, such that for any 0 ≤ i ≤ l − 1, h(ϕ,yi) = yi+1 (where the index i + 1 is taken
modulo l). In this case, the integer l is called the size of the loop. Furthermore, the outdegree-one property implies that
there is at most one loop in a cluster. Hence, a finite cluster is made up of one loop with some finite trees rooted at vertices
of the loop (see Figure 2). Obviously, this notion of loops will be central in our study.

2.3. Random outdegree-one model

Let Q be a probability measure on [0;1] such Q(θ) > 0 for any open set θ in [0;1] and let us denote by λd the Lebesgue
measure on R

d . We consider a Poisson point process (PPP) X on C with intensity λd ⊗ Q. This means that the random
variable #(X∩A) follows a Poisson distribution with parameter λd ⊗Q(A), for any bounded Borel set A ⊂R

d ×[0;1]. By
a standard change of scale, any other (stationary) intensity measure of the form zλd ⊗ Q with z > 0 could be considered.
The process X can also be interpreted as a stationary PPP on R

d with intensity one in which all the Poisson points are
independently marked with distribution Q, and such that the marks are also independent of the locations of the Poisson
points. For the two examples considered in this work (see Section 2.4), Q is the uniform distribution on [0;1]. But other
mark distributions could be foreseen: this will be discussed in Section 3.

Finally, let us denote by (
,F ,P) a probability space on which the PPP X is defined.

Definition 2.2. Let (C ′, h) be an outdegree-one model. If P(X ∈ C ′) = 1 then the triplet (C ′, h,X) is called a random
outdegree-one model.
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2.4. Two examples

Let Q be the uniform distribution on [0;1].

2.4.1. The line-segment model
Our first model is a unilateral version of the model studied in [4] (called Model 1 therein) and mentioned in Section 1. It
is also a generalization of the model studied in [7].

The line-segment model is based on a stopping germ-grain protocol defined as follows. Let us consider a marked
configuration ϕ in R

2 × [0;1]. At the same time (say t = 0), for any marked point (ξ, u) ∈ ϕ, an half line-segment starts
growing (at unit rate) from ξ according to the direction 2πu. Each line-segment ceases to grow whenever its end point
hits another line-segment. But the stopping one continues its growth.

Let us denote by C ′ the configuration space for which the above dynamic is well defined. This means that each line-
segment is eventually stopped by exactly one other line-segment. Of course, the set C ′ is translation invariant. We can
then define a graph function h encoding the line-segment model: given ϕ ∈ C ′ and x ∈ ϕ, the image h(ϕ,x) refers to the
stopping line-segment of x. This construction clearly provides an outdegree-one graph.

The authors in [4] proved that P(X ∈ C ′) = 1. Roughly speaking, they proved that for almost all configuration, the
unique stopping segment of any point can be determined by a finite algorithm. Hence they have checked the existence of
the two-sided and one-sided line segment model. Therefore, according to Definition 2.2, (C ′, h,X) is a random outdegree-
one model.

2.4.2. The navigation model
Let us define the navigation model introduced in [2]. Let ε ∈ (0;π] be an extra parameter and ϕ be a configuration
in R

2 × [0;1]. Each marked point x = (ξ, u) ∈ ϕ defines a semi-infinite cone with apex ξ , direction 2πu and opening
angle ε:

C(x) = ξ + {(
r cos(α), r sin(α)

); r > 0 and |α − 2πu| < ε
}
.

In the navigation model, each marked point x = (ξ, u) is connected to (ξ ′, ·) ∈ ϕ where ξ ′ is the closest element to ξ

living in the cone C(x), i.e. such that

∥∥ξ − ξ ′∥∥
2 = min

{∥∥ξ − ξ ′′∥∥
2; ξ ′′ ∈ C(x) ∩ ϕgerms

}
. (1)

See Figure 3. Of course this connection procedure produces an outdegree-one graph provided those closest elements exist
and are unique. Let us denote by C ′ the set of such configurations. This is a translation invariant set. In this setting,
h(ϕ,x) is defined as the unique marked point (ξ ′, ·) where ξ ′ satisfies (1).

Using standard properties of the PPP, it is easy to show that P(X ∈ C ′) = 1 and therefore (C ′, h,X) is a random
outdegree-one model.

In the case where ε = π , the marks have no longer importance and the navigation model actually coincides with the
nearest neighbour graph.

Fig. 3. Here is a scheme of the navigation model. Remark that in the navigation model, two marked points suffice to form a loop.
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3. Results

We first establish in Theorem 3.1 the absence of percolation for all random outdegree-ones (C ′, h,X) satisfying two
general assumptions, namely the Loop and Shield assumptions, which are described and commented below. Thus, Theo-
rem 3.2 asserts that the line-segment model and the navigation model verify these two assumptions and therefore do not
percolate.

Loop assumption
The Loop assumption (LA) mainly expresses the possibility for any marked point x ∈ ϕ to break its Forward set by

adding a finite sequence of marked points (x1, . . . , xk) to the current configuration ϕ.
Let ϕ ∈ C ′ and k be a positive integer. The configuration ϕ is said k-looping if for any x ∈ ϕ, there exists an open ball

Ax ⊂ (Rd × [0;1])k such that, for all (x1, . . . , xk) ∈ Ax :

(i) For(x,ϕ ∪ {x1, . . . , xk}) ⊂ {x, x1, . . . , xk},
(ii) ∀1 ≤ i ≤ k, xi belongs to the connected component of x in ϕ ∪ {x1, . . . , xk} and

For
(
xi, ϕ ∪ {x1, . . . , xk}

) ⊂ {x, x1, . . . , xk},
(iii) There exists a positive constant C1 which does not depend on x such that

#Back
(
x,ϕ ∪ {x1, . . . , xk}

) ≥ #Back(x,ϕ) − C1

(in N∪ {∞}).
Given x, the three conditions above can be interpreted as a local modification of the configuration ϕ which breaks

the Forward set of x without decreasing too much the cardinality of its Backward set. Item (i) is very natural to obtain
a finite cluster. Item (ii) – combined with (SA) – will be crucial to localize the added points xi ’s around x and then
to guarantee the construction of local events in Section 4.3. Item (iii) is more technical and will appear in the proof of
Proposition 4.4. Let us note that for the line-segment model and the navigation model, we will prove that Back(x,ϕ) is
included in Back(x,ϕ ∪ {x1, . . . , xk}) which implies (iii) with C1 = 0. Finally, the choice of the integer k will be adapted
to the random outdegree-one model (C ′, h,X).

We will say that the random outdegree-one model (C ′, h,X) satisfies (LA) if there exists a positive integer k such that

P(X is k-looping ) = 1.

Shield assumption
The Shield assumption (SA) is a kind of strong stabilizing property for the random outdegree-one (C ′, h,X) and has

been first introduced in a slightly different way in [7].
We will say that the random outdegree-one (C ′, h,X) satisfies (SA) if there exist a positive integer α and a sequence

of events (Em)m≥1 such that:

(i) ∀m ≥ 1, Em ∈ S[−αm;αm]d ;
(ii) P(Em) −→

m→∞ 1;

(iii) Consider the lattice Z
d with edges given by {{z, z′}, |z − z′|∞ = 1} and any three disjoint subsets A1, A2, V of Zd

such that ∀i = 1,2, the boundary ∂Ai = {z ∈ Z
d\Ai,∃z′ ∈ Ai, |z − z′|∞ = 1} is included in V . Let us set

Ai =
(

Ai ⊕
[
−1

2
; 1

2

]d)
\ (

V ⊕ [−α;α]d)
.

Then, for all m and for any configurations ϕ,ϕ′ ∈ C ′ such that τ−mz(ϕ) ∈ Em for all z ∈ V , the following holds:

∀x ∈ ϕmA1, h(ϕ, x) = h
(
ϕmAc

2
∪ ϕ′

mA2
, x

)
. (2)

In Condition (iii), the set mV acts as an uncrossable obstacle, i.e. a shield, between sets mA1 and mA2. See Figure 4.
Equation (2) says that the outgoing neighbour of any x ∈ ϕmA1 does not depend on the configuration on mA2. In partic-
ular, h(ϕ,x) ∈ ϕmAc

2
.

Here is our main result.

Theorem 3.1. Any random outdegree-one (C ′, h,X) satisfying (LA) and (SA) does not percolate with probability 1:

P
(∀x ∈X,#C(x,X) < ∞) = 1.
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Fig. 4. The white points are the elements of mV while the black ones are those of mA1 (inside mV ) and mA2 (outside mV ). Red squares are
points of ϕ. If τ−mz(ϕ) ∈ Em for all z ∈ V , then it is impossible for a (red) segment [ξ ; ξ ′], where x = (ξ, ·) and h(ϕ,x) = (ξ ′, ·), to cross the set
m(V ⊕ [−α;α]d ) from mA1 to mA2– or from mA2 to mA1 by symmetry of Equation (2) w.r.t. indexes 1 and 2.

Theorem 3.1 is proved in Section 4 and a sketch is given in Section 4.1.
Checking that both models of Section 2.4 satisfy (LA) and (SA) (this is done in Section 5), we get:

Theorem 3.2. The line-segment model and the navigation model do not percolate with probability 1.

The choice of a suitable integer k such that the random outdegree-one (C ′, h,X) satisfies (LA) actually depends on
the model. For example, 3 marked points suffice to make a loop for the line-segment model and only 1 for the navigation
model: see respectively Propositions 5.1 and 5.5.

Any variant of the line-segment model or the navigation model in which the uniform distribution Q is replaced with a
probability measure Q′ defined by

Q′(A) =
∫

A

f (x)Q(dx),

where f is a positive function on [0;1], has to satisfy (LA) and (SA).
Furthermore, the law of the size of a typical cluster for a given model satisfying both assumptions (LA) and (SA)

would be an interesting further result. It is also possible to investigate asymptotics of the number of different clusters on
expanding windows. In the case of the lilypond model some results of this kind have been established in [9].

Let us end this section with discussing the need for assumptions (LA) and (SA) in Theorem 3.1. To do it, let us consider
the Directed Spanning Forest (DSF) in R

2 with direction (1,0) in which each Poisson point x in X is connected to its
nearest Poisson point h(X, x) having a larger abscissa, i.e.

h(X, x) := argmin
{‖x − y‖2 : y ∈X and

〈
y − x, (1,0)

〉 ≥ 0
}
,

where 〈·, ·〉 denotes the inner product. See [3] for the study of infinite branches of the DSF.
It is not difficult to check that the DSF is a random outdegree-one model– whithout marks –satisfying (SA) but not

(LA), and percolating since by construction a semi-infinite branch starts at each vertex.
Now, we are going to modify the DSF into a new random outdegree-one model, say DSF∗ corresponding to a graph

function h∗, satisfying this time (LA) but not (SA), and still percolating. Let w :N → (0,+∞) be a decreasing function.
For any couple of vertices (x,h(X, x)) such that

(a) x and h(X, x) are mutually (Euclidean) nearest neighbours;
(b) {y ∈X : h(X, y) = h(X, x)} = {x};
(c) ‖x − h(X, x)‖2 ≤ w(#Back(x,X));

then h∗(X, x) = h(X, x) and h∗(X, h(X, x)) = x (Recall that in the DSF the Backward set Back(x,X) of any vertex x

is a.s. finite: [3], Theorem 8). Otherwise, outgoing edges remain unchanged. In other words, the only change between
the DSF and DSF∗ consists in the possibility to create a loop of size 2 with the mutual nearest neighbours x and h(X, x)

satisfying Items (b) and (c). First remark that the resulting graph DSF∗ satisfies (LA) with k = 1. Indeed, it is always
possible to add a point x1 as close as we want to x such that:
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1. 〈x1 − x, (1,0)〉 ≥ 0.
2. x and x1 are mutually nearest neighbours in X∪ {x1}.
3. ‖x − x1‖2 ≤ w(#Back(x,X)).
4. The add of x1 does not reduce the Backward set of x: #Back∗(x,X) ≤ #Back∗(x,X∪ {x1}).
Items 1 and 2 ensure that h(X∪ {x1}, x) = x1. Combined with Item 3, we get that (x, x1) forms a loop in DSF∗. So Items
(i) and (ii) of (LA) are clearly true. In the case where x and h∗(X, x) form a loop in DSF∗, the add of x1 makes h∗(X, x)

(and only it by Item (c)) come out of the Backward set of x. But this output is offset by the input of x1, which leads to
Item 4 and then to Item (iii) of (LA). Note also that (SA) does not hold for the DSF∗ since we possibly need to explore all
the set Back(x,X) to determine if x and h(X, x) form a loop in DSF∗. It then remains to show that DSF∗ admits infinite
paths. Let (xn)n≥0 be the forward path (in the DSF) starting at a given vertex x = x0 ∈ X, with h(X, xn) = xn+1 for any
n. Let us choose the decreasing function w such that, for any n, P(‖xn − xn+1‖2 ≤ w(n)) < 2−(n+1). Then, with positive
probability, x admits also an infinite forward path for DSF∗. Indeed,

P
(
#For∗(x,X) < ∞) ≤ P

(∃n ≥ 0,‖xn − xn+1‖2 ≤ w
(
#Back(xn,X)

))
≤

∑
n≥0

P
(‖xn − xn+1‖2 ≤ w(n)

)
< 1.

Hence, among all the (necessarily infinite) forward branches of the DSF, some of them remain unchanged (and then
infinite too) when passing from DSF to DSF∗.

4. Proof of Theorem 3.1

4.1. Sketch of the proof

We have to prove that any random outdegree-one model satisfying (LA) and (SA) does not contain any infinite cluster
with probability 1, i.e.

P
(∀x ∈X,#For(x,X) < ∞ and #Back(x,X) < ∞) = 1. (3)

First, thanks to a standard mass transport argument (Proposition 4.1 of Section 4.2), we can reduce the proof of the
absence of percolation to the absence of forward percolation:

P
(∀x ∈X,#For(x,X) < ∞) = 1 =⇒ P

(∀x ∈X,#Back(x,X) < ∞) = 1. (4)

Then, we proceed by contradiction and assume that, with positive probability, an infinite forward branch starts at a typical
marked point �:

P
(
#For(�,X�) = ∞)

> 0, (5)

where X� denotes the configuration X∪ {�} with � = (0,U) and U is an uniform random variable in [0;1]. Two central
notions here are looping points and almost looping points. To sum up, a looping point admits a finite Forward set, i.e. a
forward branch ending with a loop. An almost looping point is set to become a looping point by adding some suitable
marked points. See respectively Definitions 4.3 and 4.1. In Section 4.3, we use intensively hypotheses (LA) and (SA) to
prove that (5) forces the infinite branch Back(�,X�) to contain an infinite number of almost looping points:

P
(
#
{
y ∈ For(�,X�);y is an almost looping point of X�

} = ∞)
> 0. (6)

This is Proposition 4.2. Heuristically, such event should not occur since it produces an infinite number of opportunities
to break the forward branch by adding points. Precisely, Proposition 4.3 allows to convert the forward result (6) to a
backward one:

E
[
#Back(�,X�)1{� is an almost looping point of X�}

] = ∞. (7)

Thus, by adding some suitable marked points, (7) implies that the mean size of the Backward set of a typical looping
point is infinite (Proposition 4.4):

E
[
#Back(�,X�)1{� is a looping point of X�}

] = ∞. (8)

This actually is the only place where the condition (iii) of (LA) is used. Finally, another use of the mass transport principle
(Proposition 4.5) makes statement (8) impossible. This contradiction achieves the proof of Theorem 3.1.
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4.2. Absence of backward percolation

Using the mass transport principle (Lemma 4.1), we show that the backward percolation is impossible whenever the
forward percolation does not occur. This standard argument is formulated in [1] and used p.18 of [8] and p.4 of [7].

Proposition 4.1. The following implication holds:

P
[∀x ∈X,#For(x,X) < ∞] = 1 =⇒ P

[∀x ∈ X,#Back(x,X) < ∞] = 1.

Let us consider a configuration ϕ ∈ C ′ and a bounded subset � of Rd . A marked point x ∈ ϕ is said looping inside �

(for ϕ) if its Forward set Back(x,ϕ) contains a loop {y1, . . . , yl}, and the center of mass of the set {y1, . . . , yl} belongs to
� (we will also say that the entire forward set is looping inside �). Thus, for any z ∈ Z

d , let us define the following set:

Qz(ϕ) =
{
x ∈ ϕ;x is looping inside z ⊕

[
−1

2
; 1

2

]d}
.

Lemma 4.1. Let z ∈ Z
d . Then, E[#Qz(X)] < ∞.

The proof of Lemma 4.1 is based on the mass transport principle.

Proof of Lemma 4.1. By stationarity, it is enough to prove that E[#Q0(X)] is finite. For y, z ∈ Z
d , we denote by Q

y
z (X)

the elements x ∈ Qz(X) whose first ordinate is in y ⊕ [− 1
2 ; 1

2 ]d . Then,

E
[
#Q0(X)

] =
∑
y∈Zd

E
[
#Q

y

0(X)
]

=
∑
y∈Zd

E
[
#Q0−y(X)

]

where the latter equality is due to the stationarity of the PPP X and the graph function h. Now, each cluster in X a.s.
contains at most one loop. This means that

a.s.
∑
y∈Zd

#Q0−y(X) ≤ N[− 1
2 , 1

2 ]d (X).

Since the PPP X has intensity 1, it follows E[#Q0(X)] ≤ 1. �

The proof of Proposition 4.1 is an immediate consequence of Lemma 4.1.

Proof of Proposition 4.1. Let us assume that with positive probability there exists x ∈ X whose Backward set is infinite.
By hypothesis, its Forward set a.s. contains a loop. So, we can find a deterministic z ∈ Z

2 such that

P

[
∃x ∈X;#Back(x,X) = ∞ and x is looping inside z ⊕

[
−1

2
; 1

2

]d]
> 0.

However, on the above event, the random set Qz(X) is infinite which leads to a contradiction with Lemma 4.1. �

4.3. An infinite branch of almost looping points

Let us introduce the notion of almost looping points. The integer k below is given by (LA).

Definition 4.1. Let us consider real numbers 0 < r < R, a positive integer K , an open ball A ⊂ (B(0, r) × [0;1])k and a
configuration ϕ ∈ C ′. A marked point x ∈ ϕ is said a (r,R,K,A)-almost looping point of ϕ if:

(i) NB(x,R)(ϕ) ≤ K ;
(ii) ∀(x1, . . . , xk) ∈ Ax , we have:

(ii-a) For(x,ϕ ∪ {x1, . . . , xk}) ⊂ {x, x1, . . . , xk};



1188 D. Coupier, D. Dereudre and S. Le Stum

(ii-b) There exists a positive constants C1 which does not depend on x such that #Back(x,ϕ ∪ {x1, . . . , xk}) ≥
#Back(x,ϕ) − C1 (in N∪ {∞}).

where Ax = τξ (A) with x = (ξ, ·).

For a (r,R,K,A)-almost looping point, the set A can be interpreted as a suitable region to break the Forward set of x

without reducing its Backward set.
The goal of this section is to show Proposition 4.2. Its proof, given in Section 4.3.1 below, uses intensively (LA) and

(SA).

Proposition 4.2. If P(#For(�,X�) = ∞) > 0 then, there exists a deterministic quadruplet (r,R,K,A) such that:

P
(
#
{
y ∈ For(�,X�);y is a (r,R,K,A)-almost looping point of X�

} = ∞)
> 0. (9)

4.3.1. Construction of shields
Let us first enrich the sequence of events (Em)m≥1 given by (SA) into a new sequence (E ′

m)m≥1. To do it, we need to
introduce some definitions.

Definition 4.2. Let ϕ ∈ C ′ and m ≥ 1.

1. A vertex z ∈ Z
d is said m-shield for ϕ if τ−mz(ϕ) ∈ Em.

2. A vertex z ∈ Z
d is said m-protecting for ϕ if for all y ∈ Z

d such that ‖y − z‖∞ ∈ {0,2α,4α, . . . ,2kα,2(k + 1)α,2(k +
2)α} (where α is given by (SA)) then y is m-shield for ϕ.

3. A marked point x ∈ ϕ is said m-protected in ϕ if there exists a m-protecting vertex z ∈ Z
d for ϕ such that x belongs

to (mz ⊕ [−αm;αm]d) × [0;1].

Roughly speaking, a m-protecting vertex z is surrounded by k + 2 circles (w.r.t. the ‖ · ‖∞-norm) made up of m-shield
vertices. Therefore this is also true for a m-protected marked point x. Thanks to (SA), each of these circles constitutes an
uncrossable obstacle for a single edge (x,h(ϕ, x)): see Figure 4.

Given a vertex z ∈ Z
d and two positive integers m, l ∈ N

∗, let us set

Sm(z, l) := (
mz ⊕ [−(2l + 1)αm; (2l + 1)αm

]d) × [0;1].
Now, we can define for any integer m ≥ 1 the event E ′

m as the conjunction of the following statements:

• 0 is m-protecting for X;
• #(X∩ Sm(0, k + 2)) ≤ Km;
• ∀x ∈ X[−αm;αm]d , rad(Ax) > δm;

where Km, δm are positive real numbers, and rad(Ax) denotes the radius of the open ball Ax defined in (LA).
The use of (SA) allows to assert that the open ball Ax , for any m-protecting point x ∈ ϕ, can be localized from the

configuration ϕ only observed through a deterministic and bounded region around x. This is the meaning of the next
lemma which will be proved in Section 4.3.2.

Lemma 4.2. For any m ≥ 1, the event E ′
m is S[−α′m;α′m]d -measurable where α′ := α(2k + 5).

Given a configuration ϕ ∈ C ′ and x ∈ ϕ, we say that x is m-good for ϕ if there exists a vertex z ∈ Z
d such that

τ−mz(ϕ) ∈ E ′
m and x ∈ ϕmz⊕[−αm;αm]d . Then, for m large enough, the number of m-good marked points in a infinite

typical forward branch is infinite with positive probability:

Lemma 4.3. Assume that P(#For(�,X�) = ∞) > 0. Then there exists an integer m0 such that, for all m ≥ m0,

P
(
#
{
x ∈ For(�,X�);x is m-good for X�

} = ∞)
> 0.

Proof. Let us first prove that the random field

�m := (1{τ−mz(X)/∈E ′
m})z∈Zd

does not percolate in Z
d , with probability 1 and for m large enough. On the one hand, the probability that 0 is m-

protecting for X tends to 1 as m → ∞ thanks to (SA). So, one can find a sequence of integers (Km)m≥1 tending to infinity
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and a sequence of positive real numbers (δm)m≥1 tending to zero such that the event E ′
m also has a probability tending

to 1 as m → ∞. Hence, the probability that τ−mz(X) ∈ E ′
m goes to 1 as well. On the other hand, by Lemma 4.2, E ′

m is
S[−α′m;α′m]d -measurable, where α′ = α(2k + 5). This implies that the event {τ−mz(X) ∈ E ′

m} only depends on the states
of vertices y ∈ Z

d such that d(y, z) ≤ 2(2k + 5)α. We can then apply a classic stochastic domination result due to Liggett
et al [11]: the random field �m is dominated by an independent Bernoulli field with parameter p(m) tending to 0 as
m tends to infinity. This Bernoulli site percolation, on the lattice Z

d with the ‖ · ‖∞ graph structure, does not percolate
provided p(m) is sufficiently close to 0. As a consequence, there exists m0 such that for all m ≥ m0,

P
({

z ∈ Z
d; τ−mz(X) /∈ E ′

m

}
does not percolate in Z

d
) = 1. (10)

Combining (10) with the fact that, thanks to (SA), it is forbidden to go from one “bad” connected component to another
one via a single edge, we conclude that the infinite set Back(�,X�) a.s. goes through an infinite number of m-protecting
vertices z such that τ−mz(X�) ∈ E ′

m. �

This section ends with the proof of Proposition 4.2.

Proof of Proposition 4.2. Assume that P(#For(�,X�) = ∞) > 0 and let us choose m ≥ m0 where the integer m0 is
given by Lemma 4.3. Hence, the set of marked points x ∈ For(�,X�) which are m-goods for X� is infinite with positive
probability. We have to state that an infinite number of them are (r,R,K,A)-almost looping points of X� for some
deterministic quadruplet (r,R,K,A).

Let x ∈ For(�,X�) be such m-good marked point for X�. It is in particular m-protected in X� by some z ∈ Z
d .

Lemma 4.4 proved in Section 4.3.2 says that the corresponding set Ax– given by (LA) –is included in the marked
hypercube Sm(z, k)k . So,

τ−ξ (Ax) ⊂ Sm(0, k + 1)k

where x = (ξ, ·).
Now, let us consider a finite covering of the compact set Sm(0, k + 1)k by open euclidean balls {Kj ,1 ≤ j ≤ j (m)}

of radii δm

2 . Since the open ball τ−ξ (Ax) is of radius larger than δm, it necessarily contains one of the Kj ’s. We can
now conclude by the pigeonhole principle. There exists a deterministic index 1 ≤ j0 ≤ j (m) such that, with positive
probability, an infinite number of m-good marked points x ∈ For(�,X�) satisfy τξ (Kj0) ⊂ Ax where x = (ξ, ·). Hence,
by (LA), the deterministic set Kj0 satisfies Item (ii) of Definition 4.1 for all these m-good marked points which actually
are (r,R,K,A)-almost looping points of X� with A = Kj0 , K = Km and any couple (r,R) such that

Kj0 ⊂ (
B(0, r) × [0;1])k ⊂ (

B(0,R) × [0;1])k ⊂ Sm(0, k + 2)k. �

4.3.2. Proof of Lemma 4.2
Since Em is S[−αm;αm]d -measurable by (SA), the event {0 is m-protecting for X} is clearly S[−α′m;α′m]d -measurable with
α′ := α(2k + 5). In order to prove that the same holds for E ′

m, we need to localize the set Ax , given by (LA), for any
x ∈ X[−αm;αm]d .

Lemma 4.4. Let ϕ ∈ C ′ and m ≥ 1. Let us consider a marked point x ∈ ϕ which is m-protected in ϕ by 0. Then, the set
Ax is included in the marked hypercube

Ax ⊂ Sm(0, k)k.

Proof. Let us consider a k-tuple (x1, . . . , xk) in Ax and assume that one of these vertices does not belong to Sm(0, k).
So, one of the k circles of m-shield vertices (for ϕ) included in Sm(0, k) contains no xi ’s: there exists j ∈ {1, . . . , k} such
that

∀i ∈ {1, . . . , k}, xi /∈
⋃
z′∈V

(
mz′ ⊕ [−αm;αm]d) × [0;1], (11)

where V := {z′ ∈ Z
d ; ‖z′‖∞ = 2αj}. Thus, let us apply the third item of (SA) to the set V and the configuration φ :=

ϕ ∪{x1, . . . , xk}. We can do it since by hypothesis φ and ϕ are equal on mV ⊕[−αm;αm]d which means that the vertices
of V are still m-shield for φ. So, set

⋃
z′∈V mz′ ⊕ [−αm;αm]d cannot be crossed by an edge of the graph built on φ.

But Item (ii) of (LA) guarantees that x and the xi ’s are in the same connected component in φ and their Forward sets are
included in {x, x1, . . . , xk}. This is possible only if an edge crosses the

⋃
z′∈V mz′ ⊕ [−αm;αm]d . We just have seen that

such situation was forbidden. �
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Fig. 5. On this picture, k = 3 marked points, denoted by x1, x2 and x3, are added to the configuration ϕ in which x is m-protected by 0. Remark that
the three items of (LA) are satisfied with the new configuration φ := ϕ ∪ {x1, . . . , xk}. The Forward sets of x and the xi ’s are included in {x, x1, x2, x3}.
Moreover, the add of the xi ’s destroys some edges started from marked points of ϕ and also creates new ones. This second phenomenon explains that
the Backward set of x increases here– which is allowed by the third item of (LA).

Lemma 4.5. Let ϕ ∈ C ′ such that the vertex 0 is m-protecting. Let x ∈ ϕ[−αm;αm]d . Then, for any k-tuple (x1, . . . , xk) ∈
Sm(0, k)k , the control of the three items of (LA) only depends on φ ∩ Sm(0, k + 2) where φ := ϕ ∪ {x1, . . . , xk}.

Combining the two previous lemmas, we deduce Lemma 4.2. This section ends with the proof of Lemma 4.5.

Proof. Lemma 4.4 ensures that the set Ax is included in the marked hypercube Sm(0, k)k . This implies the following
important fact. The vertices of V := {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 1)} which were m-shield for ϕ (since 0 is m-protecting
for ϕ) are still m-shield for φ. Indeed, the configurations ϕ and φ coincide on the set mV ⊕ [−αm;αm]d and Em is
S[−αm;αm]d -measurable.

Let us pick (x1, . . . , xk) ∈ Sm(0, k)k . Look at Figure 5 for an example. Let us first check that For(x,φ) ⊂
{x, x1, . . . , xk}. It is sufficient to determine the oriented edges starting from the points x, x1, . . . , xk in the graph built
on φ. By the previous remark, we can use the third item of (SA) w.r.t. the set V : the set mV ⊕ [−αm;αm]d splits
the space into two disjoint connected components where the bounded one is Sm(0, k). The oriented edges starting from
φ ∩ Sm(0, k) do not depend on φ ∩ Sm(0, k + 1)c. Hence, we can determine the outgoing edges of x, x1, . . . , xk without
consider φ outside Sm(0, k +1). So, the control of Item (i) of (LA) only depends on φ ∩Sm(0, k +1). The same argument
works as well for Item (ii) of (LA) and leads to the same conclusion.

It then remains to prove that the verification of Item (iii) of (LA) only depends on φ ∩ Sm(0, k + 2). To do it, we have
to prove that the outgoing vertex h(φ,y), for any vertex y such that h(φ,y) �= h(ϕ,y) i.e. for any y whose outgoing edge
is altered when adding x1, . . . , xk , can be identified thanks to φ ∩ Sm(0, k + 2). Let us pick such a vertex y. The previous
argument involving vertices of the set V = {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 1)} (combined with (SA)) forces y to belong to
Sm(0, k + 1). Thus, the same argument used this time with the set V ′ := {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 2)} (this is the reason
why we need k + 2 circles of m-shield vertices in the Definition 4.2) implies that the outgoing vertex h(φ,y) does not
depend on what happens outside Sm(0, k + 2). �

4.4. From forward set to backward set

In this section, it is stated that the mean size of the Backward set of a typical almost looping point is infinite whenever
the Forward set of a typical marked point contains an infinite number of almost looping points with positive probability.
Above all, this result allows to convert a forward result to a backward one.
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Proposition 4.3. If there exist a quadruplet (r,R,K,A) such that

P
(
#
{
y ∈ For(�,X�);y is a (r,R,K,A)-almost looping point of X�

} = ∞)
> 0, (12)

then

E
[
#Back(�,X�)1{� is a (r,R,K,A)-almost looping point of X�}

] = ∞. (13)

Proof. Let us fix parameters r , R, K , A such that (12) holds. Let us denote by For∗(�,X�) the subset of For(�,X�)

made up of (r,R,K,A)-almost looping points:

For∗(�,X�) = {
y ∈ Back(�,X�);y is a (r,R,K,A)-almost looping point of X�

}
.

We need to bound from below the density of For∗(�,X�). The next result will be proved at the end of the section.

Lemma 4.6. There exists a function g : N→N such that limn→∞ g(n) = ∞ and

P
(∀n ≥ 1,#

(
For∗(�,X�) ∩ ([−n;n]d × [0;1])) ≥ g(n)

)
> 0.

We will say that a marked point x is dense for X if for any n ≥ 1,

#
(
For∗(x,X) ∩ ([−n;n]d × [0;1])) ≥ g(n).

Lemma 4.6 asserts that, with positive probability, � is dense in X�.
Let �n = [−n;n]d × [0;1] for n ≥ 1. The Campbell Mecke Formula (see for example [10]) allows to write:

E
[
#Back(�,X�)1{� is a (r,R,K,A)-almost looping point of X�}

]

= 1

(4n)d
E

[ ∑
x∈X∩�2n

#Back(x,X)1{x is a (r,R,K,A)-almost looping point of X}
]
.

If the marked point x ∈ �n is dense for X then there exist at least g(n) marked points in �2n ∩ X having x in their
Backward sets. This is here that the passage from the Forward set to the Backward set happens. Henceforth,

E
[
#Back(�,X�)1{� is a (r,R,K,A)-almost looping point of X�}

] ≥ g(n)

(4n)d
E

[ ∑
x∈�n∩X

1{x is dense for X}
]

= 1

2d
g(n)P(� is dense in X�).

Let us tend n to infinity. By Lemma 4.6, (13) follows. �

Proof of Lemma 4.6. Let (an)n≥1 be a sequence of positive real numbers whose sum
∑

n an equals α/2 where
α = P(#For∗(�,X�) = ∞) > 0 by hypothesis. Thus, we define a (nondecreasing) sequence of integers (nk)k≥1 and
a sequence of events (Bk)k≥0 as follows. At first, let us define B0 as the event {#Back∗(�,X�) = ∞} and n1 as the first
integer n such that

P
(
B0 ∩ {

#
(
For∗(�,X�) ∩ ([−n;n]d × [0;1])) ≥ 1

}) ≥ α − a1.

Since the above probability tends to α as n tends to infinity, n1 is well defined. We also denote by B1 the following event:

B1 = B0 ∩ {
#
(
For∗(�,X�) ∩ ([−n1;n1]d × [0;1])) ≥ 1

}
.

Thus, for any k ≥ 2, we define by induction the integer nk as the first integer n such that

P
(
Bk−1 ∩ {

#
(
For∗(�,X�) ∩ ([−n;n]d × [0;1])) ≥ k

}) ≥ α −
∑

1≤i≤k−1

ai .

We also set

Bk = Bk−1 ∩ {
#
(
For∗(�,X�) ∩ ([−nk;nk]d × [0;1])) ≥ k

}
.
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Finally, let us define a function g by g(n) = ∑
k 1[nk,nk+1[(n). The value g(n) gives the number of nk’s smaller than n.

The function g has been built so as to satisfy

P

(⋂
k≥1

Bk

)
≤ P

(∀n ≥ 1,#For∗(�,X�) ∩ ([−n;n]d × [0;1]) ≥ g(n)
)
.

Finally, to conclude, it suffices to remark that
⋂

k≥1 Bk occurs with probability larger than α − ∑
k≥1 ak which is equal

to α
2 . �

4.5. From almost looping points to looping points

A looping point is a marked point whose Forward set admits a localized loop– actually, only its center of mass is localized.

Definition 4.3. Let r < R be some positive real numbers and K be a positive integer. Let ϕ ∈ C ′. A marked point x ∈ ϕ

is a (r,R,K)-looping point of ϕ if

(i) NB(x,R)(ϕ) ≤ K ;
(ii) x is looping inside the ball B(x, r) for ϕ (definition given in Section 4.2).

So, a (r,R,K,A)-almost looping point x of ϕ becomes a (r,R,K + k)-looping point of ϕ ∪ {x1, . . . , xk} when the k

marked points x1, . . . , xk are added in Ax . Proposition 4.4 establishes a link between almost looping points and looping
points.

Proposition 4.4. If there exist a quadruplet (r,R,K,A) such that

E
[
#Back(�,X�)1{� is a (r,R,K,A)-almost looping point for X�}

] = ∞ (14)

then

E
[
#Back(�,X�)1{� is a (r,R,K+k)-looping point for X�}

] = ∞. (15)

The rest of this section is devoted to the proof of Proposition 4.4. Let us first state without proof a technical lemma
(Exercise 4.10 of [10]).

Lemma 4.7. Let � be a bounded Borelian of Rd with positive Lebesgue measure. Let us denote by U the uniform
distribution on �. Let us consider (Xi)1≤i≤k i.i.d. random vectors on � × [0;1] with distribution U ⊗ Q which are also
independent with X. Let us set X′ = X ∪ {X1, . . . ,Xk} the extended point process. Then the law �′ of X′ is absolutely
continuous with respect to the law � of X (i.e. the Poisson Point distribution) with density

�′(dϕ)

�(dϕ)
= 1

λd(�)k
N�(ϕ)

(
N�(ϕ) − 1

)
. . .

(
N�(ϕ) − k + 1

)
. (16)

Proof of Proposition 4.4. Let a quadruplet (r,R,K,A) such that (14) occurs. Our goal is to prove that the expectation
in (15), denoted by I , is infinite. Lemma 4.7 applied to the set � = B(0,R) allows to write:

I ≥ E
[
#Back(�,X�)1{� is looping inside B(0, r) for X�}1{k≤NB(0,R)(X)≤K+k−1}

]

=
∫
C ′

#Back(�,ϕ�)1{� is looping inside B(0, r) for ϕ�}1{k≤NB(0,R)(ϕ)≤K+k−1}�(dϕ)

=
∫
C ′

#Back(�,ϕ�)1{� is looping inside B(0, r) for ϕ�}1{k≤NB(0,R)(ϕ)≤K+k−1}
�′(dϕ)

f (ϕ)
,

where f (ϕ) is the density given in (16). Provided k ≤ NB(0,R)(X) ≤ K + k − 1, the ratio 1/f (ϕ) is larger than some
constant C > 0. It follows:

I ≥ C

∫
C ′

#Back(�,ϕ�)1{� is looping inside B(0, r) for ϕ�}1{k≤NB(0,R)(ϕ)≤K+k−1}�′(dϕ)
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≥ C

∫
A

E
[
#Back

(
�,X� ∪ {x1, . . . , xk}

)

×1{� is looping inside B(0, r) for X� ∪ {x1, . . . , xk}}1{NB(0,R)(X)≤K−1}
]
(U ⊗ Q)k[dx1 . . . dxk]

≥ C(U ⊗ Q)k(A)
(
E

[
#Back(�,X�)1{� is a (r,R,K,A)-almost looping point of X�}

] − C1
)

which is infinite by hypothesis (we have (U ⊗ Q)k(A) > 0). This concludes the proof. It is worth pointing out here that
the condition (ii-b) is used to obtain the latter inequality. �

4.6. Proof of Theorem 3.1: Conclusion

Another use of the mass transport principle, especially Lemma 4.1, leads to the next result: the Backward set of a typical
looping point has a finite mean size.

Proposition 4.5. Any triplet (r,R,K) satisfies

E
[
#Back(�,X�)1{� is a (r,R,K)-looping point of X�}

]
< ∞. (17)

Proof. Let r < R be some positive real numbers and K be a positive integer. Let us pick ε > 0 small enough so that
D1 ⊂ D2 where

D1 =
⋃

η∈[− ε
2 ; ε

2 ]d
B(η, r) and D2 =

⋂
η∈[− ε

2 ; ε
2 ]d

B(η,R).

Let I be the expectation in (17). Using the Campbell Mecke Formula on the set M = [− ε
2 ; ε

2 ]d × [0;1], we can write:

I = 1

εd
E

[ ∑
x∈X∩M

#Back(x,X)1{Back(x,X) is looping inside B(x,r)}1{NB(x,R)(X)≤K}
]

≤ 1

εd
E

[ ∑
x∈X∩M

#Back(x,X)1{For(x,X) is looping inside D1}1{ND2 (X)≤K}
]

≤ K

εd
E

[
#
{
y ∈ X;For(y,X) is looping inside D1

}]
, (18)

since each marked point y whose Forward set is looping inside D1 is counting at most K times in the sum of (18). Thus,
Lemma 4.1 allows to conclude. �

It only remains to combine the different pieces of the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 4.1, it is enough to show that a.s. the Forward set For(x,X) of any x ∈ X is finite.
The Campbell Mecke Formula gives:

E

[∑
x∈X

1{#For(x,X)=∞}
]

=
∫

P
(
#For

(
x,X∪ {x}) = ∞)

λd ⊗ Q(dx).

By stationarity, we have to prove that P(#For(�,X�) = ∞) = 0 where � = (0,U) and U is a uniform r.v. in [0;1], and
X� =X∪ {�}.

If the probability P(#For(�,X�) = ∞) was positive then, by Propositions 4.2, 4.3 and 4.4, there would exist a triplet
(r,R,K) such that

E
[
#Back(�,X�)1{� is a (r,R,K+k)-looping point for X�}

] = ∞
which is in contradiction with Proposition 4.5. �

5. Proof of Theorem 3.2

This section is devoted to the verifications of (LA) and (SA) for the Line-segment model and the Navigation model.
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Fig. 6. On this picture, the set Back−1(ϕ, x) = {y ∈ ϕ,h(ϕ, y) = x} is made up of the marked points z1 and z2. The blue circle delimits the ball
B(w, r ′). It is worth pointing out here that B(w, r ′) has to avoid any growing segment y ∈ X, and not only y ∈ Back−1(ϕ, x), so that the added marked
points (in red) may stop the growing segment x without decreasing its Backward set.

5.1. Line-segment model

Let us introduce some notations decribing the geometry of this model. Given a marked point x = (ξ, u) ∈ R
2 × [0;1], we

denote by l(x) = {ξ + t
−→
u , t ∈ R+} the (semi-infinite) ray starting from ξ in the direction −→

u = (cos(2πu), sin(2πu)).
Thus, let us set

l(X) =
⋃
x∈X

l(x).

For ϕ ∈ C ′ and x = (ξ, u) ∈ ϕ, we denote by hg(ϕ, x) ∈ R
2 the intersection point between l(x) and l(h(ϕ, x)). Roughly

speaking, hg(ϕ, x) represents the impact point of the stopped segment starting from ξ on the stopping segment starting
from ξ ′, where (ξ ′, ·) = h(ϕ,x).

5.1.1. Loop assumption
Let us prove that the Line-segment model satisfies (LA) with k = 3.

Proposition 5.1. With probability 1, X is a 3-looping configuration.

Consider a configuration ϕ ∈ C ′ and an element x = (ξ, u) ∈ ϕ. The first step consists in stating that only a finite
number of growing segments are stopped by [ξ ;hg(x,ϕ)]. See Lemma 5.1 below. This will allow us to exhibit a small
region close to the impact point hg(ϕ, x) where we could easily add a loop made up of 3 segments, that the growing
segment x will hit. See Figure 6.

Let us denote by B the set of open discs in R
2, and by C ′′ the following measurable set:

C ′′ = {
ϕ ∈ C ′; ∀B ∈ B,#

{
x = (ξ, u) ∈ ϕ : [ξ ;hg(ϕ, x)

] ∩ B �=∅
}

< +∞}
.

Remark that the measurability of C ′′ is based on the one of hg : (ϕ, x) ∈ C ′ ×R
2 → hg(ϕ, x) ∈R

2. For this, we refer the
reader to Section 4 of [4].

Lemma 5.1. With probability 1, X belongs to C ′′.

We are now able to prove Proposition 5.1.

Proof. Let us first introduce the set of marked points of a configuration ϕ which are stopped by x:

Back−1(ϕ, x) = {
y ∈ ϕ,h(ϕ, y) = x

}
.

Let ϕ ∈ C ′′ and x = (ξ, u) ∈ ϕ. Recall that the impact point hg(ϕ, y) of a marked point y ∈ Back−1(ϕ, x) belongs to
[ξ ;hg(ϕ, x)]. Since Back−1(ϕ, x) is finite, we can exhibit a positive real number r such that

[
hg(ϕ, x) − r

−→
u ;hg(ϕ, x)

] ∩ {
hg(ϕ, y), y ∈ Back−1(ϕ, x)

} =∅. (19)
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Let us set w = hg(ϕ, x) − r
2
−→
u . Statement (19) ensures the existence of a positive radius r ′ such that

( ⋃
y=(η,v)∈ϕ

[
η;hg(ϕ, y)

]) ∩ B
(
w, r ′) = [

ξ ;hg(ϕ, x)
] ∩ B

(
w, r ′) (20)

on the one hand, and

2r ′ ≤ ‖ξ − w‖2 − r ′ (21)

on the other hand. The obtained ball B(w, r ′) is actually a suitable region in which we could create an obstacle for the
growing segment x without altering any other growing segment. Besides, condition (21) ensures that any marked point
added in B(w, r ′) could not be stopped by the growing segment x.

Let us consider the set Ax of triplets (x0, x1, x2) ∈ (B(w, r ′) × [0;1])3 such that:

(i) h(xi, ϕ ∪ {x0, x1, x2}) = xi+1 for i = 0,1,2 (where the index i + 1 is taken modulo 3);
(ii) The triangle defined by the vertices hg(xi, ϕ ∪ {x0, x1, x2}), i = 0,1,2, is included in B(w, r ′) and contains the

center w.

It is not difficult too see that Ax contains a non-empty open set Ax ⊂ (B(w, r ′)×[0;1])3. When a triplet (x0, x1, x2) ∈
Ax is added to ϕ, then by (21), (i) and (ii), the growing segment x hits the loop produced by x0, x1, x2:

For
(
x,ϕ ∪ {x0, x1, x2}

) = {x, x0, x1, x2},
∀0 ≤ i ≤ 2, For

(
xi, ϕ ∪ {x0, x1, x2}

) = {x0, x1, x2}.
Then the first two items of (LA) are checked. Morever, condition (20) in conjunction with (i) and (ii) imply that no

growing segment except x is changing by the adding marked points {x0, x1, x2}, the third item of (LA) is also checked
and:

Back
(
x,ϕ ∪ {x0, x1, x2}

) = Back(x,ϕ).

This achieves the proof of Proposition 5.1. �

Proof of Lemma 5.1. Using classical arguments, it is sufficient to prove that:

P
(
#
{
x = (ξ,�) ∈X; [ξ ;hg(X, x)

] ∩ B(0,1) �=∅
}

< +∞) = 1.

We will show that:

E = E
(
#
{
x = (ξ, u) ∈ X; [ξ ;hg(X, x)

] ∩ B(0,1) �=∅
})

< +∞.

Let us apply the Campbell–Mecke formula:

E = zπ + z

∫
(B(0,1)×[0;1])c

E(1{[x;,hg(X∪{x},x)]∩B(0,1)�=∅})λ2(dξ)Q(du),

≤ zπ + 2πz

∫ 1

0

(∫ +∞

1
P
(∥∥ξ − hg

(
X∪ {x}, x)∥∥ ≥ r − 1

)
rdr

)
Q(du),

≤ zπ + 2πz

∫ 1

0

(∫ +∞

1
P
(∥∥hg

(
X∪ {

(0, u)
}
, (0, u)

)∥∥ ≥ r − 1
)
rdr

)
Q(du).

By isotropy, for all u ∈ [0,1] and for all r > 0,

P
(∥∥hg

(
X∪ {

(0, u)
}
, (0, u)

)∥∥ ≥ r
) = P

(∥∥hg

(
X∪ {

(0,0)
}
, (0,0)

)∥∥ ≥ r
)
,

where (0,0) denotes the marked vertex located at the origin with direction (1,0). Schreiber & Soja have proved (Theo-
rem 4 in [12]) that there exist c, c′ > 0 such that the probability P(‖hg(X ∪ {(0,0)}, (0,0))‖ ≥ r) is smaller than ce−c′r

for all r ≥ 0. This exponential decay ensures that E is finite. �
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Fig. 7. The set � is a regular hexagon. The decision set D�(x) is delimited by a red circle. It contains two marked points y1, y2 ∈ ϕ which could
stop the growing segment x before ξ + r(x,�)

−→
u . To check it, it is enough to observe the configuration ϕ inside the blue dashed circles which are

themselves included in D�(x).

5.1.2. Shield assumption
In order to prove (SA), we need to construct building blocks called shield hexagons which together will formed uncross-
able walls. To do it, let us start with introducing an hexagonal tessellation.

Let us consider the triangular lattice whose vertex set is

� = {a−→
i + b

−→
j : a, b ∈ Z},

where
−→
i = (

√
3. cos(π

6 ),
√

3. sin(π
6 )) and

−→
j = (0,

√
3). The usual graph distance on � is denoted by d�. We also

denote resp. by Bn(z) and Sn(z) the (closed) ball and sphere with center z and radius n w.r.t. d�.
For any z ∈ �, let Hex(z) be the Voronoi cell of z w.r.t. the vertex set �:

Hex(z) =
{
y ∈R

2,‖y − z‖2 ≤ inf
w∈�\{z} ‖y − w‖2

}
.

The set Hex(z) is a regular hexagon centred at z. For any integer n > 0, let us introduce the hexagonal complex of size n

centred in z as

Hexn(z) =
⋃

y∈Bn(z)

Hex(y).

Given ξ ∈R
2, we also set Hexn(ξ) = Hexn(0) + ξ . Finally, for any integer n > 0, we define the hexagonal ring Cn(ξ) by

Cn(ξ) = Hexn(ξ) \ Hexn−1(ξ) (with Hex0(·) =∅).
Let us now specify the regions on which depend the growing segments. Let x = (ξ, u) ∈ R

2 × [0;1] and r > 0. Here,
the crucial point is to remark that the indicator function

1{‖ξ−hg(X∪{x},x)‖≤r} is SB(ξ+r
−→
u ,r)-measurable. (22)

See Figure 7. Let ϕ ∈ C ′ and � be an open bounded region in R
2. For each marked point x = (ξ, u) ∈ ϕ�, we set

r(x,�) = sup
{
r ≥ 0,B(ξ + r

−→
u , r) ⊂ �

}
.

Hence, for all r ≤ r(x,�), it is possible to know when we observe the configuration ϕ only through the window � if
‖ξ − hg(ϕ, x)‖ is smaller than r or not. Henceforth, we define the decision set of the growing segment x through � as

D�(x) = B
(
ξ + r(x,�)

−→
u , r(x,�)

)
.

So, for a given marked point x = (ξ, u) ∈ ϕ�, two situations may occur. If the stopping vertex of x in ϕ belongs to
the decision set D�(x) then the whole segment [ξ,hg(ϕ, x)] is observed knowing ϕ�. In this case, we set f�(ϕ, x) =
hg(ϕ, x). Otherwise, we can only assert that the line-segment x will be longer than r(x,�). In that case, f�(ϕ, x) =
ξ + r(x,�)

−→
u . In both situations,

[
ξ ;f�(ϕ, x)

] ⊂ [
ξ ;hg(ϕ, x)

]
.

The previous considerations lead to the next result:
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Lemma 5.2. With the above notations, the random set

G�(ϕ) :=
⋃

x∈ϕ�

[
ξ ;f�(ϕ, x)

]

is S�-measurable.

Proof. Let x = (ξ, u) ∈ ϕ�. By construction, the random segment [ξ ;f�(ϕ, x)] contains all the information available on
the segment x = (ξ, u) when we only observe ϕ through the decision set D�(x) = B(ξ + r(x,�)

−→
u , r(x,�)): either it

is still alive at ξ + r(x,�)
−→
u or it has been stopped before. By definition of r(x,�), [ξ ;f�(ϕ, x)] is S�-measurable. �

We can now introduce the central notion of shield hexagons.The hexagon Hex(ξ) is ε-shield (for ϕ) whenever the set
GHex(ξ)(ϕ) produces a barrier in the strip Hex(ξ) \ (ξ + εHex(0)) disconnecting the inside part ξ + εHex(0) from the
outside part Hex(ξ)c .

Definition 5.1. Let ϕ ∈ C ′, ε ∈ (0,1) and ξ ∈R
2. The hexagon Hex(ξ) is said ε-shield for ϕ if for all a, b ∈ R

2 such that
a /∈ Hex(ξ) and b ∈ ξ + εHex(0), we have

(a;b) ∩ GHex(ξ)(ϕ) �=∅.

Moreover, for any integer n > 0 and {zi}1≤i≤n ⊂ �, the collection {Hex(zi)}1≤i≤n is said ε-shield for ϕ if for each index
i, Hex(zi) is ε-shield for ϕ.

It is not difficult to be convinced (using many small segments, all the smaller as ε → 1) that this event occurs with
positive probability:

∀ε ∈ (0;1), pε = P
[
Hex(0) is ε-shield

]
> 0. (23)

The notion of decision sets D�(·)– and also G�(·) –have been introduced to use the independence property of the
Poisson point process X. Indeed, by Lemma 5.2, for any vertices z �= z′ ∈ �, the hexagons Hex(z) and Hex(z′) are
independently ε-shield.

The next step consists in using ε-shield hexagons as building blocks to create obstacles. Precisely:

Definition 5.2. Let m ∈ N
∗ be an integer and ϕ ∈ C ′ a marked configuration. Any η ∈R

2 is said m-shielded for ϕ if:

( ) For all x = (ξ, u) ∈ ϕHex2m(η)c , [ξ ;hg(ϕ, x)] ∩ Hexm(η) =∅;

( ) For all x ∈ ϕHexm(η), hg(ϕ, x) ∈ Hex2m(η).

If η is m-shielded for ϕ then conditions ( ) and ( ) roughly asserts that it is impossible for a growing segment to
cross Hex2m(η) \ Hexm(η) respectively from the outside part Hex2m(η)c and from the inside part Hexm(η).

In the sequel, we will establish the existence of an event Em ∈ SHex2m(0) such that, on Em, 0 is a.s. m-shielded

(Proposition 5.2). Actually, it will be required to get the event Em that Hex2m(0) \ Hexm(0) contains many ε-shield
hexagons. In a second time, we will prove that the probability of Em tends to 1 as m → ∞ (Proposition 5.3).

Let us introduce some notations needed to define the event Em. Let η ∈ ∂Hexm(0) where ∂� denotes the topo-
logical boundary of � ⊂ R

2. For any v ∈ [0;1], we define the (semi-infinite) ray starting from η in the direction−→v = (cos(2πv), sin(2πv)) by l(η,−→v ) = {η + t−→v , t ≥ 0}. Thus, we denote by L m the set of rays l(η,−→v ) coming
from ∂Hexm(0) which do not overlap the topological interior of Hexm(0):

L m = {
l(η,−→v ), l(η,−→v ) ∩ Int

(
Hexm(0)

) =∅ and (η, v) ∈ ∂Hexm(0) × [0;1]}.
For each ray l ∈ L m, let us consider the set of hexagons included in Hex2m(0) \ Hexm(0) and crossed by l:

Cross(l) = {
Hex(z),m + 1 ≤ d�(0, z) ≤ 2m and l ∩ Hex(z) �=∅

}
.

This set can be partitioned into different floors Crossi (l), for m+1 ≤ i ≤ 2m, where Crossi (l) denotes the set of hexagons
of Cross(l) included in Ci(0). We can observe that, for each l ∈ L m, there exists m + 1 ≤ i(l) ≤ 2m such that for all
i(l) ≤ i ≤ 2m, Crossi (l) contains at most three hexagons.
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Fig. 8. Here is a ray l ∈ L m (in red) starting at ∂Hexm(0) and crossing two consecutive ε-shield floors, say Crossi (l) and Crossi+1(l). Each hexagon
Hex(z) belonging to these two floors has its inside part, i.e. z + εHex(0), colored in blue. As this picture suggests, when ε is close to 1, it becomes
impossible for the ray l to avoid the inside parts of hexagons of two consecutive floors.

Thus, the set Cross(l) is said ε-uncrossable for ϕ if we can find two consecutive floors Crossi (l) and Crossi+1(l), for
some index i(l) ≤ i ≤ 2m − 1, which are both ε-shield for ϕ. We can then define the event Em as:

Em(ε) =
⋂

l∈L m

{
Cross(l) is ε-uncrossable for X

}
(24)

which is SHex2m(0)-measurable by construction.

Proposition 5.2. There exists ε ∈ (0,1) (close to 1) such that, a.s. on the event Em(ε), 0 is m-shielded.

Proof. Assume that the event Em(ε) is satisfied. Then, to prove that 0 is m-shielded, i.e. to prove ( ) and ( ), it is
enough to state that any ray l ∈ L m crosses the inside part z + εHex(0) of an ε-shield hexagon Hex(z).

Let us consider a ray l ∈ L m and a vertex z ∈ B2m(0) \ Bi(l)−1(0). Let us define dz,l as follows:

dz,l = sup
x∈l∩Hex(z)

d
(
x, ∂Hex(z)

)

and dz,l = 0 if l ∩ Hex(z) is empty (where the above distance d is euclidean). Thus, we set

γ = inf
l∈L m

sup
{
dz,l, z ∈ Bn(0) \ Bi(l)−1(0) and Hex(z) is ε-shield

}
.

On the event Em(ε), any ray l crosses two consecutive ε-shield floors. Hence, the hexagonal construction ensures that the
above infimum γ is positive (see Figure 8). So, ε = 1 − γ /2 is suitable. �

In the sequel, we merely write Em instead of Em(ε) where ε is given by Proposition 5.2. Its probability tends to 1
with m;

Proposition 5.3. The probability of the event Em tends to 1 as m tends to +∞.

Proof. First, let us reduce the infinite intersection defining the event Em in (24) to a finite one. Let z ∈ Sm+1(0) and
z′ ∈ S2m(0). Let us consider the set Cross(z, z′) made up of hexagons Hex(z′′), z′′ ∈ �, which are crossed by a ray
l ∈ L m starting at some η ∈ ∂Hex(z) and exiting Hex2m(0) through Hex(z′). As previously, we divide the set Cross(z, z′)
into different floors Crossi (z, z

′), for m + 1 ≤ i ≤ 2m, where Crossi (z, z
′) denotes the set of hexagons of Cross(z, z′)

included in Ci(0).
There exists m + 1 ≤ i(z, z′) ≤ 2m such that for all i(z, z′) ≤ i ≤ 2m, Crossi (z, z

′) contains at most three
hexagons.Thus, Cross(z, z′) is said ε-uncrossable for X if we can find two consecutive floors Crossi (z, z

′) and
Crossi+1(z, z

′), for some index i(l) ≤ i ≤ 2m − 1, which are both ε-shield for X. Hence,

⋂
z∈Sm+1(0),z′∈S2m(0)

{
Cross

(
z, z′) is ε-uncrossable for X

} ⊂ Em. (25)
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Since Sm+1(0) × S2m(0) contains 36(m + 1)(2m) vertices, the expected result follows from the inclusion (25) and the
limit: for m sufficiently large, for all z ∈ Sm+1(0) and z′ ∈ S2m(0),

P
[
Cross

(
z, z′) is not ε-uncrossable for X

] ≤ (
1 − p6

ε

) m
10 , (26)

where pε = P[Hex(0) is ε-shield].
We obtain

{
Cross

(
z, z′) is not ε-uncrossable for X

} ⊂
2m−1⋂

k=i(z,z′)
Uk

where Uk = {Crossk(z, z
′) and Crossk+1(z, z

′) are ε-shield for X}c.
To obtain an independence property under the Poisson point process law, we need to consider disjoint subsets of

hexagons:

Tm =
� 2m−1−i(z,z′)

2 �⋂
k=0

Ui(z,z′)+2k.

The events (U2k)k are mutually independent and
{
Cross

(
z, z′) is not ε-uncrossable for X

} ⊂ Tm.

We have introduced in (23) the probability pε = P[Hex(0) is ε-shield for X]. Then, for i(z, z′) ≤ k ≤ 2m, we have
P[Uk] ≤ 1 − p6

ε . It is relatively easy to check that, for m sufficiently large, for all (z, z′) ∈ Sm+1(0) × S2m(0), we have:

� 2m−1−i(z,z′)
2 � + 1 ≥ m

10 . It implies the existence of a bound for P[Tm]:

P[Tm] ≤ (
1 − p6

ε

) m
10 .

Then,

P
[
Cross

(
z, z′) is not ε-shield for X

] ≤ (
1 − p6

ε

) m
10 . �

From now on, we claim that:

Proposition 5.4. The line-segment model satisfies (SA) for α = 32 and Em = Em ∩ E2m.

Proof. We have to check that the line-segment model satisfies the three items of (SA). By definition, the event Em =
Em ∩ E2m ∈ SHex4m(0). Item (i) follows from the fact that any η ∈ Hex4m(0) satisfies ‖η‖ ≤ 4m

√
3 + 1 ≤ 8m. Item (ii) is

given by Proposition 5.3. So, it only remains to check Item (iii).
For this purpose, let us consider three disjoint subsets V , A1, A2 of Z2 such that ∂A1 and ∂A2 are included in V . Let

also for i ∈ {1,2},

Ai =
(

Ai ⊕
[
−1

2
,

1

2

]2)
\ (

V ⊕ [−α,α]2).
Thus, let m be a positive integer and ϕ,ϕ′ ∈ C ′ such that τ−mz(ϕ) ∈ Em, for all z ∈ V . We have to check that

∀x ∈ ϕmA1, h(ϕ, x) = h(ϕ̄, x), (27)

where ϕ̄ denotes the configuration ϕmAc
2
∪ ϕ′

mA2
. The reason why (27) holds can be roughly expressed as follows. The

replacement of the configuration ϕ with ϕ̄, which actually concerns only the set mA2, may generate some modifications
in the graph on the set mAc

2 but not beyond the obstacle mV . Then, the graph on mA1 is preserved.
Let us start with splitting the set mAc

2 into three disjoint subsets: mA1, Shield := mV ⊕ Hex2m(0) and Bound :=
(mV ⊕ [−αm;αm]2) \ Shield. Since mV ⊕ Hex4m(0) is included in Bound and Em is SHex4m(0)-measurable then

∀z ∈ V, τ−mz(ϕ̄) ∈ Em. (28)
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In other words, the shield structure of vertices mz, z ∈ V , is preserved when passing from ϕ to ϕ̄. Hence, any x = (ξ, ·) ∈
ϕShield belongs to a set Hex2m(mz) where mz ∈ mV is 2m-shielded (thanks to E2m). Property ( ) of Definition 5.2 then
ensures that hg(ϕ, x) is in mz ⊕ Hex4m(0), i.e. ‖ξ − hg(ϕ, x)‖ ≤ diam Hex4m(0) ≤ 16m. To sum up, for all x ∈ ϕShield,

B
(
hg(ϕ, x),

∥∥ξ − hg(ϕ, x)
∥∥) ⊂ mV ⊕ [−32m;32m]2.

The above inclusion justifies the choice α = 32. It also ensures that the replacement of ϕ with ϕ′ outside of mV ⊕
[−32m;32m]2 does not impact the geometric edges starting from vertices of ϕShield. So,

∀x ∈ ϕShield, h(ϕ̄, x) = h(ϕ,x). (29)

It then remains to show that (27) is a consequence of (28) and (29). When passing from ϕ to ϕ̄, the line-segment of a
marked point x ∈ ϕmAc

2
can be modified in two different ways:

• Either the line-segment of x is shorter for ϕ̄ than for ϕ, i.e. x admits a new outgoing neighbor y.
• Or the line-segment of x is longer for ϕ̄ than for ϕ, i.e. its original stopping line-segment has been stopped before by

some marked point y.

In both cases, we say that the marked point y modifies x. It belongs to ϕ′
mA2

, or to ϕmAc
2

but with the condition that
h(ϕ,y) �= h(ϕ̄, y). Hence, from any x0 ∈ ϕ′

mA2
, may start a sequence of marked points (xi)0≤i≤n such that xi modifies

xi+1. Now, (28) and (29) prevents such sequence to cross the set Shield = mV ⊕ Hex2m(0). By contradiction, let us
assume that xn ∈ mA1. Since (29) prevents the xi ’s to belong to Shield, it necessarily exists an index 0 ≤ i0 < n such that
the line-segment of xi0 crosses mV ⊕ Hexm(0). But this is forbidden by (28): each mz, for z ∈ V , is m-shielded (thanks
to Em). So Property ( ) of Definition 5.2 applies. �

5.2. Navigation model

Let 0 < ε < π
2 . Given a configuration ϕ ∈ C ′, let us recall that the stopping vertex of x = (ξ, u) ∈ ϕ is the closest element

of ϕgerms ∩ C(x) to ξ , where

C(x) = {(
r cos(α), r sin(α)

); r > 0 and |α − 2πu| < ε
}
.

If (η, v) = h(ϕ,x) then the impact point of x in the Navigation model is hg(ϕ, x) = η.

5.2.1. Loop assumption
The Navigation model satisfies (LA).

Proposition 5.5. Each configuration of C ′ is 1-looping.

Proof. Let ϕ ∈ C ′ and x = (ξ, u) ∈ ϕ. Let us introduce the stopped cone starting from x:

Cstop(x) = {(
r cos(α), r sin(α)

);0 < r <
∥∥ξ − hg(ϕ, x)

∥∥ and |α − 2πu| < ε
}
.

Hence, Cstop(x) ∩ ϕgerms = ∅. Let dx > 0 small enough so that ϕB(ξ,dx) only contains the point ξ . Thus, let us consider
an open ball Ax ⊂ R

2 ×[0;1] such that any marked point y = (η, v) ∈ Ax satisfies η ∈ B(ξ, dx)∩Cstop(x) and ξ ∈ C(y).
Thenceforth, we get h(ϕ ∪ {y}, x) = y and h(ϕ ∪ {y}, y) = x (see Figure 9) which respectively imply

For
(
x,ϕ ∪ {y}) = {x, y} and Back(x,ϕ) ∪ {y} ⊂ Back

(
x,ϕ ∪ {y}).

Let us justify this latter inclusion. It is possible that η belongs to the stopped cone Cstop(z) (w.r.t. ϕ) of a given marked
point z ∈ ϕ, which forces h(ϕ ∪ {y}, z) = y. Since y belongs to Back(x,ϕ ∪ {y}), the same holds for z. If z was already
in the backward of x (for ϕ), it is still in (but for ϕ ∪ {y}). See Figure 9. �
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Fig. 9. The adding of the marked point y breaks the edges from x to h(ϕ,x), and from z to x. However, for the configuration ϕ ∪ {y}, z is still in the
backward of x.

Fig. 10. Black points are vertices mz for z ∈ V . The event Em realized on each z ⊕ [−m;m]2 provides a shield between mA1 and mA2. Indeed, the
cone Cstop(x) cannot overlap mA2 without containing a subsquare z + Qm

i
.

5.2.2. Shield assumption
Let us split the square [−m;m]2 into κ = (2�m1/2�)2 congruent subsquares Qm

1 , . . . ,Qm
κ (�·� denotes the integer part).

Each of these subsquares has an area equal to

(
2m

2�m1/2�
)2

,

i.e. of order m. Thus, we define the event Em as follows:

Em =
⋂

1≤i≤κ

{#XQm
i

≥ 1}.

Proposition 5.6. For α = 1, the Navigation model satisfies (SA) w.r.t. the family of events (Em)m≥1.

Proof. Let us first remark that the event Em is S[−m,m]2 -measurable and its probability tends to 1. So the first two items
of (SA) are satisfied with α = 1.

Let us focus on Item (iii). Hence, let us consider V,A1,A2 ⊂ Z
2 such that the topological conditions of (SA) occur.

Let us set

Ai =
(

Ai ⊕
[
−1

2
,

1

2

]2)
\ (

V ⊕ [−α,α]2)

for i ∈ {1,2}. Let ϕ ∈ C ′ satisfying ϕ − mz ∈ Em, for any vertex z ∈ V . Let x = (ξ, u) ∈ ϕ be a marked point whose first
coordinate belongs to mAi . If the cone C(x) does not overlap mAj , with j = 3− i, then the outgoing vertex h(ϕ,x) does
not depend on possible changes on ϕmAj

. From now on, let us assume that C(x) ∩ mAj is not empty (see Figure 10). It
is then sufficient to remark that for any m ≥ m0(ε), the stopped cone Cstop(x) does not overlap mAj . Otherwise, for m

large enough, it would contain at least one subsquare z+Qm
i for some z ∈ V and 1 ≤ i ≤ κ and so at least a marked point
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(since ϕ − mz ∈ Em) which is forbidden. Hence, as previously, the outgoing vertex h(ϕ,x) remains unchanged whatever
the configuration ϕ inside mAj . �
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