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Abstract. Recently a lot of effort has been invested to analyze the Lp-error of the Euler–Maruyama scheme in the case of stochastic
differential equations (SDEs) with a drift coefficient that may have discontinuities in space. For scalar SDEs with a piecewise Lipschitz
drift coefficient and a Lipschitz diffusion coefficient that is non-zero at the discontinuity points of the drift coefficient so far only an
Lp-error rate of at least 1/(2p) – has been proven. In the present paper we show that under the latter conditions on the coefficients of
the SDE the Euler–Maruyama scheme in fact achieves an Lp-error rate of at least 1/2 for all p ∈ [1,∞) as in the case of SDEs with
Lipschitz coefficients. The proof of this result is based on a detailed analysis of appropriate occupation times for the Euler–Maruyama
scheme.

Résumé. De nombreux efforts ont été consacrés récemment à l’analyse de l’erreur Lp de schéma d’Euler–Maruyama pour des équa-
tions différentielles stochastiques (EDS) avec un coefficient de dérive pouvant avoir des discontinuités en espace. Jusqu’à présent, pour
des EDS scalaires avec un coefficient de dérive Lipschitz par morceaux et un coefficient de diffusion Lipschitz qui est non nul aux
points de discontinuité du coefficient de dérive, seule une borne d’erreur Lp avec un taux d’au moins 1/(2p) – a été obtenue. Dans cet
article, nous montrons que sous les hypothèses précédentes, le schéma d’Euler–Maruyama réalise un taux d’erreur Lp d’au moins 1/2
pour tout p ∈ [1,∞), comme dans le cas d’EDS avec coefficients Lipschitz. La preuve de ce résultat se fonde sur une analyse détaillée
de temps d’occupation bien choisis pour le schéma d’Euler–Maruyama.
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1. Introduction

Consider an autonomous stochastic differential equation (SDE)

dXt = μ(Xt) dt + σ(Xt ) dWt , t ∈ [0,1],
X0 = x0

(1)

with deterministic initial value x0 ∈ R, drift coefficient μ : R → R, diffusion coefficient σ : R → R and 1-dimensional
driving Brownian motion W . If (1) has a unique strong solution X then a classical numerical approach for approximating
X1 based on n observations of W is provided by the Euler–Maruyama scheme given by X̂n,0 = x0 and

X̂n,(i+1)/n = X̂n,i/n + μ(X̂n,i/n) · 1/n + σ(X̂n,i/n) · (W(i+1)/n − Wi/n)

for i ∈ {0, . . . , n − 1}.
It is well-known that if the coefficients μ and σ are Lipschitz continuous then for all p ∈ [1,∞) the Euler–Maruyama

scheme at the final time achieves an Lp-error rate of at least 1/2 in terms of the number n of observations of W , i.e. for
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all p ∈ [1,∞) there exists c ∈ (0,∞) such that for all n ∈ N,(
E
[|X1 − X̂n,1|p

])1/p ≤ c√
n
. (2)

In this article we study the Lp-error of X̂n,1 in the case when the drift coefficient μ may have finitely many dis-
continuity points. More precisely, we assume that the drift coefficient μ is piecewise Lipschitz continuous in the sense
that

(A1) there exist k ∈N0 and ξ0, . . . , ξk+1 ∈ [−∞,∞] with −∞ = ξ0 < ξ1 < · · · < ξk < ξk+1 = ∞ such that μ is Lipschitz
continuous on the interval (ξi−1, ξi) for all i ∈ {1, . . . , k + 1},

and we assume that the diffusion coefficient σ is Lipschitz continuous and non-zero at the potential discontinuity points
of μ, i.e.

(A2) σ is Lipschitz continuous on R and σ(ξi) �= 0 for all i ∈ {1, . . . , k}.
Note that under the assumptions (A1) and (A2) the equation (1) has a unique strong solution, see [14, Theorem 2.2].

Numerical approximation of SDEs with a drift coefficient that is discontinuous in space has gained a lot of interest
in recent years, see [4,5] for results on convergence in probability and almost sure convergence of the Euler–Maruyama
scheme and [3,7,14–16,23–26] for results on Lp-approximation. In particular, in [16,24–26] the Lp-error of the Euler–
Maruyama scheme has been studied for such SDEs. The most far going results in the latter four articles provide for the
one-dimensional SDE (1) under the assumptions (A1) and (A2)

(i) an L1-error rate of at least 1/2 for X̂n,1 if, additionally to (A1) and (A2), the coefficients μ and σ are bounded, μ is
integrable on R or one-sided Lipschitz continuous, and σ is bounded away from zero, see [24,25],

(ii) an L1-error rate of at least 1/2 – for X̂n,1 if, additionally to (A1) and (A2), the coefficients μ and σ are bounded and
σ is bounded away from zero, see [25],

(iii) an L2-error rate of at least 1/4 – for X̂n,1, if, additionally to (A1) and (A2), the coefficients μ and σ are bounded,
see [16].

We add that the proof techniques in [16] can readily be adapted to show that the Euler–Maruyama scheme at the final time
X̂n,1 achieves an Lp-error rate of at least 1/(2p) – for all p ∈ [1,∞) if the coefficients μ and σ are bounded and satisfy
the assumptions (A1) and (A2), see the discussion at the beginning of Section 3. Furthermore, in [23, Remark 4.2] it is
stated that the proof techniques in [16] could be modified to cover the case of unbounded coefficients μ and σ as well.

To summarize, under the assumptions (A1) and (A2) it was only known up to now that the Euler–Maruyama scheme at
the final time achieves an Lp-error rate of at least 1/(2p) – for all p ∈ [1,∞), and it was a challenging question whether
these error bounds can be improved, and if so, whether under the assumptions (A1) and (A2) the Euler–Maruyama scheme
at the final time even achieves an Lp-error rate of at least 1/2 for all p ∈ [1,∞) as it is the case for SDEs with Lipschitz
continuous coefficients, see (2).

Note that the recent literature on numerical approximation of SDEs contains a number of examples of SDEs with
coefficients that are not Lipschitz continuous and such that the Euler–Maruyama scheme at the final time does not achieve
an Lp-error rate of 1/2, see [2,6,9,11,12,22,29]. Furthermore, in [3] numerical studies are carried out for a number of
SDEs (1) with a discontinuous μ satisfying (A1) and σ = 1, and for several of these SDEs an empirical L2-error rate
significantly smaller than 1/2 is observed for the Euler–Maruyama scheme at the final time.

However, regardless of the latter negative findings it turns out that under the assumptions (A1) and (A2) the Euler–
Maruyama scheme at the final time X̂n,1 in fact satisfies (2) for all p ∈ [1,∞). This estimate is an immediate conse-
quence of our main result, Theorem 1, which states that under the assumptions (A1) and (A2) the maximum error of the
time-continuous Euler–Maruyama scheme achieves at least the rate 1/2 in the p-th mean sense, for all p ∈ [1,∞), see
Section 2. The proof of Theorem 1 is based on a detailed analysis of the expected amount of times the actual position
of the time-continuous Euler–Maruyama scheme and its position at the preceding time point on the grid are on different
sides of a discontinuity of the drift coefficient.

We add that in [14,15] a numerical method for approximating X1 is constructed that is based on a suitable transfor-
mation of the solution X of (1) and achieves an L2-error rate of at least 1/2 in terms of the number of observations of W

under the assumptions (A1) and (A2). Furthermore, in [23] an adaptive Euler–Maruyama scheme is constructed, which
achieves at the final time an L2-error rate of at least 1/2 – in terms of the average number of observations of W under the
assumptions (A1) and (A2). However, in contrast to the classical Euler–Maruyama scheme, an implementation of either
of the latter two methods requires the knowledge of the points of discontinuity of μ.

In this paper we furthermore consider the piecewise linear interpolation Xn = (Xn,t )t∈[0,1] of the Euler–Maruyama
scheme (X̂n,i/n)i=0,...,n and we study the performance of Xn globally on [0,1]. Using Theorem 1 we show that if the
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assumptions (A1) and (A2) are satisfied then for all p ∈ [1,∞) and all q ∈ [1,∞] there exists c ∈ (0,∞) such that for all
n ∈N,

(
E
[‖X − Xn‖p

q

])1/p ≤
{

c/
√

n, if q < ∞,

c
√

ln(n + 1)/
√

n, if q = ∞,
(3)

where ‖ · ‖q denotes the Lq -norm on the space of real-valued, continuous functions on [0,1], see Theorem 2.
Our results provide upper error bounds for the Euler–Maruyama scheme at the final time X̂n,1 and the piecewise

linear interpolation Xn of the Euler–Maruyama scheme in terms of the number n of observations of the driving Brownian
motion W that are used. It is natural to ask whether these bounds are asymptotically sharp or whether there exist alternative
algorithms based on n observations of W that achieve under the assumptions (A1) and (A2) better rates of convergence
in terms of the number n. For the error criteria considered in (3) the answer to this question is already known. The
corresponding error rates can not be improved in general, see [8,10,21] for the case q ∈ [1,∞) and [8,19] for the case
q = ∞. For the Lp-approximation of X1 the question is open up to now. For this problem it is so far only known that
under the assumptions (A1) and (A2) it is impossible to obtain an Lp-error rate better than 1 in general, see [8,20].
Whether or not there exists an algorithm that approximates X1 under the assumptions (A1) and (A2) with an Lp-error
rate better than 1/2 in terms of the number of observations of W remains a challenging question.

In the present paper we have only studied scalar SDEs while the results in [15,16,23,24] also cover the case of multidi-
mensional SDEs. We believe however that our proof techniques can be extended to obtain for all p ∈ [1,∞) an Lp-error
rate of at least 1/2 for the Euler–Maruyama scheme at the final time in a suitable multidimensional setting as well. This
will be the subject of future work.

We briefly describe the content of the paper. Our error estimates, Theorem 1 and Theorem 2, are stated in Section 2.
Section 3 contains proofs of these results and a discussion on the relation of our analysis and the analysis of the Euler–
Maruyama scheme carried out in [16].

2. Error estimates for the Euler–Maruyama scheme

Let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,1], let W : [0,1]×� → R be an (Ft )t∈[0,1]-Brownian
motion on (�,F,P), let x0 ∈ R and let μ,σ : R→R be functions that satisfy the following two conditions.

(A1) There exist k ∈ N0 and ξ0, . . . , ξk+1 ∈ [−∞,∞] with −∞ = ξ0 < ξ1 < · · · < ξk < ξk+1 = ∞ such that μ is Lips-
chitz continuous on the interval (ξi−1, ξi) for all i ∈ {1, . . . , k + 1},

(A2) σ is Lipschitz continuous on R and σ(ξi) �= 0 for all i ∈ {1, . . . , k}.
We consider the SDE

dXt = μ(Xt) dt + σ(Xt ) dWt , t ∈ [0,1],
X0 = x0,

(4)

which has a unique strong solution, see [14, Theorem 2.2].

Remark 1. Note that if in (A2) the assumption σ(ξi) �= 0 for all i ∈ {1, . . . , k} is violated then the existence of a strong
solution of (4) can not be guaranteed anymore, see [17, Example 4.2].

For n ∈ N let X̂n = (X̂n,t )t∈[0,1] denote the time-continuous Euler–Maruyama scheme with step-size 1/n associated
to the SDE (4), i.e. X̂n is recursively given by X̂n,0 = x0 and

X̂n,t = X̂n,i/n + μ(X̂n,i/n) · (t − i/n) + σ(X̂n,i/n) · (Wt − Wi/n)

for t ∈ (i/n, (i + 1)/n] and i ∈ {0, . . . , n − 1}. We have the following error estimates for X̂n.

Theorem 1. Let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all n ∈N,(
E
[‖X − X̂n‖p∞

])1/p ≤ c√
n
. (5)
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Next, we study the performance of the piecewise linear interpolation Xn = (Xn,t )t∈[0,1] of the time-discrete Euler–
Maruyama scheme (X̂n,i/n)i=0,...,n, i.e.

Xn,t = (n · t − i) · X̂n,(i+1)/n + (i + 1 − n · t) · X̂n,i/n

for t ∈ [i/n, (i + 1)/n] and i ∈ {0, . . . , n − 1}. We have the following error estimates for Xn.

Theorem 2. Let p ∈ [1,∞) and q ∈ [1,∞]. Then there exists c ∈ (0,∞) such that for all n ∈ N,

(
E
[‖X − Xn‖p

q

])1/p ≤
{

c/
√

n, if q < ∞,

c
√

ln(n + 1)/
√

n, if q = ∞.
(6)

3. Proofs

Throughout this section we put

tn = 	n · t
/n

for every n ∈N and every t ∈ [0,1].
We briefly describe the structure of the proof of our main result, Theorem 1, and the relation of our analysis and the

analysis of the Euler–Maruyama scheme carried out in [16]. Let p ∈ [1,∞). In [16] a bijection G : R→ R is constructed
such that G−1 is Lipschitz continuous and the stochastic process Z = G ◦ X is the unique strong solution of an SDE with
Lipschitz continuous coefficients. It then follows by standard error estimates for the Euler–Maruyama scheme that there
exist c1, c2 ∈ (0,∞) such that for all n ∈N,(

E
[‖X − X̂n‖∞‖p

])1/p ≤ c1 · (E[‖Z − G ◦ X̂n‖p∞
])1/p

≤ c2/
√

n + c1 · (E[‖Ẑn − G ◦ X̂n‖p∞
])1/p

, (7)

where Ẑn is the time-continous Euler–Maruyama scheme with step-size 1/n associated to the SDE for the stochastic
process Z. Using further regularity properties of the function G it is shown in [16] that there exists c ∈ (0,∞) such that
for all n ∈ N,

(
E
[‖Ẑn − G ◦ X̂n‖p∞

])1/p ≤ c/
√

n + c ·
(
E

[∣∣∣∣∫ 1

0
1B(X̂n,t , X̂n,tn

) dt

∣∣∣∣p])1/p

, (8)

where

B =
(

k+1⋃
i=1

(ξi−1, ξi)
2

)c

is the set of pairs (x, y) in R
2, which do not allow for a joint Lipschitz estimate of |μ(x) − μ(y)| if μ has at least one

discontinuity. Finally, using a large deviation argument it is shown in [16] that for every arbitrary small δ ∈ (0,1) there
exists c ∈ (0,∞) such that for all n ∈ N,(

E

[∣∣∣∣∫ 1

0
1B(X̂n,t , X̂n,tn

) dt

∣∣∣∣p])1/p

≤ c · n−(1−δ)/(2p). (9)

Combining (7) to (9) yields the rate of convergence 1/(2p) – for the p-th root of the p-th mean of the maximum error of
the time-continuous Euler–Maruyama scheme.

We add that in [16] it is assumed that the coefficients μ and σ are bounded and the analysis is carried out only
for p = 2. However, it is straightforward to adapt the proof technique to the case of a general p ∈ [1,∞), and in [23,
Remark 4.2] it is stated that the proof techniques in [16] could be modified to cover the case of unbounded coefficients μ

and σ as well.
Our proof of Theorem 1 follows the steps (7) and (8) but provides a much better estimate of the p-th mean occupation

time of the set B than (9), namely(
E

[∣∣∣∣∫ 1

0
1B(X̂n,t , X̂n,tn

) dt

∣∣∣∣p])1/p

≤ c/
√

n, (10)
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which jointly with (7) and (8) yields the statement of Theorem 1. The estimate (10) is, essentially, obtained by employ-
ing the Markov property of the time-continuous Euler–Maruyama scheme X̂n relative to the corresponding grid points
1/n,2/n, . . . ,1, by using appropriate estimates of the expected occupation time of a neighborhood of a non-zero ξ ∈ R

of σ by X̂n and by carrying out a detailed analysis of the probability of a sign change of X̂n,t − ξ relative to the sign of
X̂n,tn

− ξ .
We briefly describe the structure of this section. In Section 3.1 we provide Lp-estimates of the solution X and the time-

continuous Euler–Maruyama scheme X̂n. Section 3.2 provides the Markov property of X̂n and occupation time estimates
for X̂n, which finally lead to the proof of the estimate (10), see Proposition 1. Section 3.3 contains the construction of
the transformation G and provides the properties of G needed to carry out steps (7) and (8). The material presented in
Section 3.3 is known from [15]. The proof of Theorem 1 is carried out in Section 3.4. Section 3.5 contains the proof of
Theorem 2.

Throughout the following we make use of the fact that the functions μ and σ satisfy a linear growth condition, i.e.
there exists K ∈ (0,∞) such that for all x ∈ R,∣∣μ(x)

∣∣+ ∣∣σ(x)
∣∣≤ K · (1 + |x|). (11)

This property is an immediate consequence of the assumptions (A1) and (A2).

3.1. Lp-Estimates of the solution and the time-continuous Euler–Maruyama scheme

We have the following Lp-estimates for X, which follow from the linear growth property (11) of μ and σ by using
standard arguments as in [18, Section 2.4].

Lemma 1. Let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all δ ∈ [0,1] and all t ∈ [0,1 − δ],(
E

[
sup

s∈[t,t+δ]
∣∣X(s) − X(t)

∣∣p])1/p ≤ c · √δ.

In particular,

E
[‖X‖p∞

]
< ∞.

For technical reasons we have to provide Lp-estimates and some further properties of the time-continuous Euler–
Maruyama scheme for the SDE (4) dependent on the initial value x0. To be formally precise, for every x ∈ R we let Xx

denote the unique strong solution of the SDE

dXx
t = μ

(
Xx

t

)
dt + σ

(
Xx

t

)
dWt , t ∈ [0,1],

Xx
0 = x,

(12)

and for all x ∈ R and n ∈ N we use X̂x
n = (X̂x

n,t )t∈[0,1] to denote the time-continuous Euler–Maruyama scheme with
step-size 1/n associated to the SDE (12), i.e. X̂x

n,0 = x and

X̂x
n,t = X̂x

n,tn
+ μ

(
X̂x

n,tn

) · (t − tn) + σ
(
X̂x

n,tn

) · (Wt − Wtn
)

for t ∈ (i/n, (i + 1)/n] and i ∈ {0, . . . , n − 1}. In particular, X = Xx0 and X̂n = X̂
x0
n for every n ∈ N. Furthermore, the

integral representation

X̂x
n,t = x +

∫ t

0
μ
(
X̂x

n,sn

)
ds +

∫ t

0
σ
(
X̂x

n,sn

)
dWs (13)

holds for every n ∈ N and t ∈ [0,1].
We have the following uniform Lp-estimates for X̂x

n , n ∈ N, which follow from (13) and the linear growth property
(11) of μ and σ by using standard arguments.

Lemma 2. Let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all x ∈ R, all n ∈ N, all δ ∈ [0,1] and all t ∈
[0,1 − δ],(

E

[
sup

s∈[t,t+δ]
∣∣X̂x

n,s − X̂x
n,t

∣∣p])1/p ≤ c · (1 + |x|) · √δ.
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In particular,

sup
n∈N
(
E
[∥∥X̂x

n

∥∥p

∞
])1/p ≤ c · (1 + |x|).

3.2. A Markov property and occupation time estimates for the time-continuous Euler–Maruyama scheme

The following lemma provides a Markov property of the time-continuous Euler–Maruyama scheme X̂x
n relative to the

gridpoints 1/n,2/n, . . . ,1.

Lemma 3. For all x ∈ R, all n ∈ N, all j ∈ {0, . . . , n − 1} and P
X̂x

n,j/n -almost all y ∈ R we have

P
(X̂x

n,t )t∈[j/n,1]|Fj/n = P
(X̂x

n,t )t∈[j/n,1]|X̂x
n,j/n

as well as

P
(X̂x

n,t )t∈[j/n,1]|X̂x
n,j/n=y = P

(X̂
y
n,t )t∈[0,1−j/n] .

Proof. The lemma is an immediate consequence of the fact that, by definition of X̂x
n , for every � ∈ {1, . . . , n} there exists

a mapping ψ : R× C([0, �/n]) → C([0, �/n]) such that for all x ∈R and all i ∈ {0,1, . . . , n − �},(
X̂x

n,t+i/n

)
t∈[0,�/n] = ψ

(
X̂x

n,i/n, (Wt+i/n − Wi/n)t∈[0,�/n]
)
. �

Next, we provide an estimate for the expected occupation time of a neighborhood of a non-zero of σ by the time-
continuous Euler–Maruyama scheme X̂x

n .

Lemma 4. Let ξ ∈ R satisfy σ(ξ) �= 0. Then there exists c ∈ (0,∞) such that for all x ∈R, all n ∈ N and all ε ∈ (0,∞),∫ 1

0
P
({∣∣X̂x

n,t − ξ
∣∣≤ ε

})
dt ≤ c · (1 + x2) ·(ε + 1√

n

)
. (14)

Proof. Let x ∈ R and n ∈ N. By (13), (11) and Lemma 2 we see that X̂x
n is a continuous semi-martingale with quadratic

variation

〈
X̂x

n

〉
t
=
∫ t

0
σ 2(X̂x

n,sn

)
ds, t ∈ [0,1]. (15)

For a ∈R let La(X̂x
n) = (La

t (X̂
x
n))t∈[0,1] denote the local time of X̂x

n at the point a. Thus, for all a ∈R and all t ∈ [0,1],
∣∣X̂x

n,t − a
∣∣= |x − a| +

∫ t

0
sgn
(
X̂x

n,s − a
) · μ(X̂x

n,s

)
ds +

∫ t

0
sgn
(
X̂x

n,s − a
) · σ (X̂x

n,s

)
dWs + La

t

(
X̂x

n

)
,

where sgn(z) = 1(0,∞)(z) − 1(−∞,0](z) for z ∈R, see, e.g. [27, Chap. VI]. Hence, for all a ∈ R and all t ∈ [0,1],

La
t

(
X̂x

n

)≤ ∣∣X̂x
n,t − x

∣∣+ ∫ t

0

∣∣μ(X̂x
n,s

)∣∣ds +
∣∣∣∣∫ t

0
sgn
(
X̂x

n,s − a
) · σ (X̂x

n,s

)
dWs

∣∣∣∣.
Using the Hölder inequality, the Burkholder–Davis–Gundy inequality, (11) and the second estimate in Lemma 2 we

conclude that there exists c ∈ (0,∞) such that for all x ∈ R, all n ∈ N, all a ∈R and all t ∈ [0,1],
E
[
La

t

(
X̂x

n

)]≤ c · (1 + |x|). (16)

Let ε ∈ (0,∞). Using (15) and (16) we obtain by the occupation time formula that there exists c ∈ (0,∞) such that for
all x ∈R, all n ∈N and all ε ∈ (0,∞),

E

[∫ 1

0
1[ξ−ε,ξ+ε]

(
X̂x

n,t

) · σ 2(X̂x
n,tn

)
dt

]
=
∫
R

1[ξ−ε,ξ+ε](a)E
[
La

t

(
X̂x

n

)]
da ≤ c · (1 + |x|) · ε. (17)
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Using the Lipschitz continuity of σ as well as (11) and Lemma 2 we obtain that there exist c1, c2 ∈ (0,∞) such that
for all x ∈ R and all n ∈ N,

E

[∫ 1

0

∣∣σ 2(X̂x
n,t

)− σ 2(X̂x
n,tn

)∣∣dt

]
≤ c1 ·

∫ 1

0
E
[∣∣X̂x

n,t − X̂x
n,tn

∣∣ · (1 + ∥∥X̂x
n

∥∥∞
)]

dt

≤ c2 · (1 + x2) · 1√
n
. (18)

Since σ is continuous and σ(ξ) �= 0 there exist κ, ε0 ∈ (0,∞) such that

inf|z−ξ |<ε0
σ 2(z) ≥ κ.

Observing (17) and (18) we conclude that there exists c ∈ (0,∞) such that for all x ∈R, all n ∈ N and all ε ∈ (0, ε0],∫ 1

0
P
({∣∣X̂x

n,t − ξ
∣∣≤ ε

})
dt = 1

κ
·E
[∫ 1

0
κ · 1[ξ−ε,ξ+ε]

(
X̂x

n,t

)
dt

]
≤ 1

κ
·E
[∫ 1

0
1[ξ−ε,ξ+ε]

(
X̂x

n,t

) · σ 2(X̂x
n,t

)
dt

]
≤ 1

κ
·E
[∫ 1

0

(
1[ξ−ε,ξ+ε]

(
X̂x

n,t

) · σ 2(X̂x
n,tn

)+ ∣∣σ 2(X̂x
n,t

)− σ 2(X̂x
n,tn

)∣∣)dt

]
≤ c

κ
· (1 + |x| + x2) ·(ε + 1√

n

)
,

which completes the proof of the lemma. �

The following result shows how to transfer the condition of a sign change of X̂n − ξ at time t relative to its sign at the
grid point tn to a condition on the distance of X̂n and ξ at the time tn − (t − tn). The underlying idea is as follows: on the
set {(X̂n,tn

− ξ) · (X̂n,t − ξ) ≤ 0} one has

|X̂n,tn−(t−tn) − ξ | ≤ |X̂n,tn−(t−tn) − X̂n,tn
| + |X̂n,tn

− ξ |
≤ |X̂n,tn−(t−tn) − X̂n,tn

| + |X̂n,tn
− X̂n,t |.

We can thus transform the condition of a sign change of the stochastic process X̂n − ξ at time t relative to its sign at tn
into a condition on the sizes of the random variables |X̂n,tn−(t−tn) − ξ |, |X̂n,tn−(t−tn) − X̂n,tn

| and |X̂n,tn
− X̂n,t |, which

essentially behave like the independent random variables |X̂n,tn−(t−tn) − ξ |, |Wtn−(t−tn) − Wtn
| and |Wtn

− Wt |.

Lemma 5. Let ξ ∈ R. Then there exists c ∈ (0,∞) such that for all n ∈ N, all 0 ≤ s ≤ t ≤ 1 with tn − s ≥ 1/n and all
A ∈ Fs ,

P
(
A ∩ {(X̂n,t − ξ) · (X̂n,tn

− ξ) ≤ 0
})

≤ c

n
· P(A) + c ·

∫
R

P

(
A ∩

{
|X̂n,tn−(t−tn) − ξ | ≤ c√

n

(
1 + |z|)}) · e− z2

2 dz. (19)

Proof. Choose K ∈ (0,∞) according to (11) and choose n0 ∈N \ {1} such that for all n ≥ n0,

12K · (1 + |ξ |) · 1 + √
2 ln(n)√
n

≤ 1

2
.

Without loss of generality we may assume that n ≥ n0. Let 0 ≤ s ≤ t ≤ 1 with tn − s ≥ 1/n and let A ∈Fs . If t = tn then
for all c ∈ (0,∞) and all z ∈ R we have{

(X̂n,t − ξ) · (X̂n,tn
− ξ) ≤ 0

}= {X̂n,tn
− ξ = 0} ⊂

{
|X̂n,tn−(t−tn) − ξ | ≤ c√

n

(
1 + |z|)},

which implies that in this case (19) holds for all c ≥ 1/
√

2π .
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Now assume that t > tn and put

Z1 = Wt − Wtn√
t − tn

, Z2 = Wtn
− Wtn−(t−tn)√

t − tn
, Z3 = Wtn−(t−tn) − Wtn−1/n√

1/n − (t − tn)
.

Below we show that{
(X̂n,t − ξ) · (X̂n,tn

− ξ) ≤ 0
}∩

{
max

i∈{1,2,3}
|Zi | ≤

√
2 ln(n)

}
⊂ {|X̂n,tn−(t−tn) − ξ | ≤ 12K · (1 + |ξ |) · (1 + |Z1| + |Z2|

)
/
√

n
}
. (20)

Note that Z1, Z2, Z3 are independent and identically distributed standard normal random variables. Moreover,
(Z1,Z2,Z3) is independent of Fs since s ≤ tn−1/n, (Z1,Z2) is independent of Ftn−(t−tn) and X̂n,tn−(t−tn) is Ftn−(t−tn)-
measurable. Using the latter facts jointly with (20) and a standard estimate of standard normal tail probabilities we obtain
that

P
(
A ∩ {(X̂n,t − ξ) · (X̂n,tn

− ξ) ≤ 0
})

≤ P
(
A ∩ {|X̂n,tn−(t−tn) − ξ | ≤ 12K · (1 + |ξ |) · (1 + |Z1| + |Z2|

)
/
√

n
})

+ P

(
A ∩

{
max

i∈{1,2,3}
|Zi | >

√
2 ln(n)

})
≤ 2

π

∫
[0,∞)2

P

(
A ∩

{
|X̂n,tn−(t−tn) − ξ | ≤ 12K · (1 + |ξ |) · 1 + z1 + z2√

n

})
· e− z2

1+z2
2

2 d(z1, z2)

+ 6P(A) · P({Z1 >
√

2 ln(n)
})

≤ 2

π

∫
R2

P

(
A ∩

{
|X̂n,tn−(t−tn) − ξ | ≤ 12

√
2K · (1 + |ξ |) · 1 + | z1+z2√

2
|

√
n

})
· e− z2

1+z2
2

2 d(z1, z2)

+ 6P(A)√
2π · 2 ln(n) · n

= 4√
2π

∫
R

P

(
A ∩

{
|X̂n,tn−(t−tn) − ξ | ≤ 12

√
2K · (1 + |ξ |) · 1 + |z|√

n

})
· e− z2

2 dz + 3P(A)√
π ln(n) · n,

which yields (19).
It remains to prove the inclusion (20). To this end let ω ∈ � and assume that(

X̂n,t (ω) − ξ
) · (X̂n,tn

(ω) − ξ
)≤ 0 and max

i∈{1,2,3}
∣∣Zi(ω)

∣∣≤√2 ln(n). (21)

Using (11) and the fact that for all a, b ∈R,

1 + |a| ≤ (1 + |a − b|) · (1 + |b|), (22)

we obtain∣∣X̂n,tn
(ω) − ξ

∣∣≤ ∣∣(X̂n,tn
(ω) − ξ

)− (X̂n,t (ω) − ξ
)∣∣

= ∣∣μ(X̂n,tn
(ω)
) · (t − tn) + σ

(
X̂n,tn

(ω)
) ·√t − tn · Z1(ω)

∣∣
≤ K · (1 + ∣∣X̂n,tn

(ω)
∣∣) ·(1

n
+ 1√

n
· ∣∣Z1(ω)

∣∣)
≤ (1 + ∣∣X̂n,tn

(ω) − ξ
∣∣) · K · (1 + |ξ |) · 1√

n
· (1 + ∣∣Z1(ω)

∣∣). (23)

Since n ≥ n0 we have

K · (1 + |ξ |) · 1√
n

· (1 + ∣∣Z1(ω)
∣∣)≤ K · (1 + |ξ |) · 1 + √

2 ln(n)√
n

≤ 1

2
,
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and therefore,

∣∣X̂n,tn
(ω) − ξ

∣∣≤ K · (1 + |ξ |) · 1√
n

· (1 + |Z1(ω)|)
1 − K · (1 + |ξ |) · 1√

n
· (1 + |Z1(ω)|) ≤ 2K · (1 + |ξ |) · 1√

n
· (1 + ∣∣Z1(ω)

∣∣). (24)

Similarly to (23), we obtain by (11) and (22) that

∣∣X̂n,tn
(ω) − X̂n,tn−(t−tn)(ω)

∣∣≤ (1 + ∣∣X̂n,tn−1/n(ω) − ξ
∣∣) · K · (1 + |ξ |) · 1√

n
· (1 + ∣∣Z2(ω)

∣∣) (25)

and ∣∣X̂n,tn−(t−tn)(ω) − X̂n,tn−1/n(ω)
∣∣≤ (1 + ∣∣X̂n,tn−1/n(ω) − ξ

∣∣) · K · (1 + |ξ |) · 1√
n

· (1 + ∣∣Z3(ω)
∣∣). (26)

Since n ≥ n0 we have K · (1 + |ξ |) · 1√
n

· (1 + |Z3(ω)|) ≤ 1/2, and therefore we conclude from (26) that

1 + ∣∣X̂n,tn−(t−tn)(ω) − ξ
∣∣≥ 1 + ∣∣X̂n,tn−1/n(ω) − ξ

∣∣− ∣∣X̂n,tn−(t−tn)(ω) − X̂n,tn−1/n(ω)
∣∣

≥ (1 + ∣∣X̂n,tn−1/n(ω) − ξ
∣∣)/2. (27)

Using (24), (25) and (27) we obtain∣∣X̂n,tn−(t−tn)(ω) − ξ
∣∣

≤ ∣∣X̂n,tn
(ω) − X̂n,tn−(t−tn)(ω)

∣∣+ ∣∣X̂n,tn
(ω) − ξ

∣∣
≤ (1 + ∣∣X̂n,tn−1/n(ω) − ξ

∣∣) · 3K · (1 + |ξ |) · 1√
n

· (1 + ∣∣Z1(ω)
∣∣+ ∣∣Z2(ω)

∣∣)
≤ (1 + ∣∣X̂n,tn−(t−tn)(ω) − ξ

∣∣) · 6K · (1 + |ξ |) · 1√
n

· (1 + ∣∣Z1(ω)
∣∣+ ∣∣Z2(ω)

∣∣). (28)

Since n ≥ n0 we have 6K · (1 + |ξ |) · 1√
n

· (1 + |Z1(ω)| + |Z2(ω)|) ≤ 1/2, which jointly with (28) yields

∣∣X̂n,tn−(t−tn)(ω) − ξ
∣∣≤ 12K · (1 + |ξ |) · 1√

n
· (1 + ∣∣Z1(ω)

∣∣+ ∣∣Z2(ω)
∣∣).

This finishes the proof of (20). �

Using Lemmas 3, 4 and 5 we can now establish the following two estimates on the probability of sign changes of
X̂n − ξ relative to its sign at the gridpoints 0,1/n, . . . ,1.

Lemma 6. Let ξ ∈ R satisfy σ(ξ) �= 0 and let

An,t = {(X̂n,t − ξ) · (X̂n,tn
− ξ) ≤ 0

}
for all n ∈N and t ∈ [0,1]. Then the following two statements hold.

(i) There exists c ∈ (0,∞) such that for all n ∈N, all s ∈ [0,1) and all A ∈Fs ,∫ 1

s

P(A ∩ An,t ) dt ≤ c√
n

· (P(A) +E
[
1A · (X̂n,sn+1/n − ξ)2]).

(ii) There exists c ∈ (0,∞) such that for all n ∈N, all s ∈ [0,1) and all A ∈Fs ,∫ 1

s

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt ≤ c

n
· (P(A) +E

[
1A · (X̂n,sn+1/n − ξ)2]).
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Proof. Let n ∈ N, s ∈ [0,1) and A ∈ Fs . In the following we use c1, c2, · · · ∈ (0,∞) to denote unspecified positive
constants, which neither depend on n nor on s nor on A.

We first prove part (i) of the lemma. Clearly we may assume that s < 1 − 1/n. Then sn ≤ 1 − 2/n and we have∫ 1

s

P(A ∩ An,t ) dt ≤ 2

n
· P(A) +

∫ 1

sn+2/n

P(A ∩ An,t ) dt. (29)

If t ∈ [sn +2/n,1] then tn ≥ sn +2/n, which implies tn −1/n ≥ sn +1/n ≥ s. We may thus apply Lemma 5 to conclude
that there exists c1 ∈ (0,∞) such that∫ 1

s

P(A ∩ An,t ) dt ≤ c1

n
· P(A) + c1 ·

∫
R

∫ 1

sn+2/n

P

(
A ∩

{
|X̂n,tn−(t−tn) − ξ | ≤ c1√

n

(
1 + |z|)}) · e− z2

2 dt dz.

By the change-of-variable formula we have for all i ∈ {1, . . . , n − 1} and all κ ∈ R,∫ (i+1)/n

i/n

P
(
A ∩ {|X̂n,tn−(t−tn) − ξ | ≤ κ

})
dt =

∫ i/n

(i−1)/n

P
(
A ∩ {|X̂n,t − ξ | ≤ κ

})
dt.

Thus, ∫ 1

s

P(A ∩ An,t ) dt ≤ c1

n
· P(A) + c1 ·

∫
R

∫ 1−1/n

sn+1/n

P

(
A ∩

{
|X̂n,t − ξ | ≤ c1√

n

(
1 + |z|)}) · e− z2

2 dt dz. (30)

By the fact that A ∈ Fsn+1/n and by Lemma 3 we obtain that for all z ∈ R,

∫ 1−1/n

sn+1/n

P

(
A ∩

{
|X̂n,t − ξ | ≤ c1√

n

(
1 + |z|)})dt

= E

[
1A ·E

[∫ 1−1/n

sn+1/n

1{|X̂n,t−ξ |≤ c1√
n
(1+|z|)} dt

∣∣∣X̂n,sn+1/n

]]
. (31)

Moreover, by Lemmas 3 and 4 we obtain that there exists c2 ∈ (0,∞) such that for all z ∈ R and P
X̂n,sn+1/n -almost all

x ∈ R,

E

[∫ 1−1/n

sn+1/n

1{|X̂n,t−ξ |≤ c1√
n
(1+|z|)} dt

∣∣∣X̂n,sn+1/n = x

]

= E

[∫ 1−2/n−sn

0
1{|X̂x

n,t−ξ |≤ c1√
n
(1+|z|)} dt

]
≤ c2 · (1 + x2) ·( c1√

n
· (1 + |z|)+ 1√

n

)
. (32)

Combining (31) and (32) and using the fact that for all a, b ∈ R,

1 + a2 ≤ 1 + 2(a − b)2 + 2b2 ≤ 2
(
1 + (a − b)2) · (1 + b2),

we conclude that for all z ∈ R,∫ 1−1/n

sn+1/n

P

(
A ∩

{
|X̂n,t − ξ | ≤ c1√

n

(
1 + |z|)})dt

≤ c2(c1 + 1)√
n

· (1 + |z|) ·E[1A · (1 + X̂2
n,sn+1/n

)]
≤ 2c2(c1 + 1)√

n
· (1 + ξ2) · (1 + |z|) · (P(A) +E

[
1A · (X̂n,sn+1/n − ξ)2]). (33)

Inserting (33) into (30) and observing that
∫
R
(1 + |z|) · e−z2/2 dz < ∞ completes the proof of part (i) of the lemma.
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We next prove part (ii). Clearly,∫ 1

s

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt

=
∫ sn+1/n

s

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt +

∫ 1

sn+1/n

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt.

If t ∈ [s, sn + 1/n) then tn = sn and therefore∫ sn+1/n

s

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt =

∫ sn+1/n

s

E
[
1A∩An,t · (X̂n,sn+1/n − ξ)2]dt

≤
∫ sn+1/n

s

E
[
1A · (X̂n,sn+1/n − ξ)2]dt

≤ 1

n
·E[1A · (X̂n,sn+1/n − ξ)2]. (34)

Next, let t ∈ [sn + 1/n,1]. Clearly, we have on An,t ,

|X̂n,tn+1/n − ξ | ≤ |X̂n,tn+1/n − X̂n,t | + |X̂n,t − ξ | ≤ |X̂n,tn+1/n − X̂n,t | + |X̂n,t − X̂n,tn
|.

Hence, by Lemma 3,

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]≤ E

[
1A · (|X̂n,tn+1/n − X̂n,t | + |X̂n,t − X̂n,tn

|)2]
= E

[
1A ·E[(|X̂n,tn+1/n − X̂n,t | + |X̂n,t − X̂n,tn

|)2|X̂n,sn+1/n

]]
. (35)

If t ≥ sn + 1/n then tn ≥ sn + 1/n. Hence, by Lemma 3 and Lemma 2 we obtain that there exist c1, c2 ∈ (0,∞) such

that for all t ∈ [sn + 1/n,1] and P
X̂n,sn+1/n -almost all x ∈ R,

E
[(|X̂n,tn+1/n − X̂n,t | + |X̂n,t − X̂n,tn

|)2|X̂n,sn+1/n = x
]

= E
[(∣∣X̂x

n,tn−sn
− X̂x

n,t−sn−1/n

∣∣+ ∣∣X̂x
n,t−sn−1/n − X̂x

tn−sn−1/n

∣∣)2]
≤ c1 · (1 + x2) · 1/n ≤ c2 · (1 + (x − ξ)2) · 1/n. (36)

It follows from (35) and (36) that∫ 1

sn+1/n

E
[
1A∩An,t · (X̂n,tn+1/n − ξ)2]dt ≤ c2

n
·
∫ 1

sn+1/n

E
[
1A · (1 + (X̂n,sn+1/n − ξ)2)]dt

≤ c2

n
· (P(A) +E

[
1A · (X̂n,sn+1/n − ξ)2]). (37)

Combining (34) with (37) completes the proof of part (ii) of the lemma. �

We are ready to establish the main result in this section, which provides a p-th mean estimate of the Lebesgue measure
of the set of times t of a sign change of X̂n,t − ξ relative to the sign of X̂n,tn

− ξ .

Proposition 1. Let ξ ∈ R satisfy σ(ξ) �= 0 and let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all n ∈N,

E

[∣∣∣∣∫ 1

0
1{(X̂n,t−ξ)·(X̂n,tn

−ξ)≤0} dt

∣∣∣∣p]1/p

≤ c√
n
. (38)

Proof. Clearly, it suffices to consider only the case p ∈ N. For n ∈N and t ∈ [0,1] put An,t = {(X̂n,t −ξ) ·(X̂n,tn
−ξ) ≤ 0}

as in Lemma 6, and for n,p ∈N let

an,p = E

[(∫ 1

0
1An,t dt

)p]
.
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We prove by induction on p that for every p ∈N there exists c ∈ (0,∞) such that for all n ∈N,

an,p ≤ c · n−p/2. (39)

First assume that p = 1. Using Lemma 6(i) with s = 0 and A = � we obtain that there exists c ∈ (0,∞) such that for
all n ∈N,

an,1 =
∫ 1

0
P(An,t ) dt ≤ c√

n
· (1 +E

[
(X̂n,1/n − ξ)2])≤ c√

n
·
(

1 + 2ξ2 + 2 sup
j∈N

E
[‖X̂j‖2∞

])
.

Observing Lemma 2 we thus see that (39) holds for p = 1.
Next, let q ∈N and assume that (39) holds for all p ∈ {1, . . . , q}. Clearly, for all n ∈ N,

an,q+1 = (q + 1)! ·
∫ 1

0

∫ 1

t1

. . .

∫ 1

tq

P(An,t1 ∩ An,t2 ∩ · · · ∩ An,tq+1) dtq+1 . . . dt2 dt1.

First applying Lemma 6(i) with A = An,t1 ∩ · · · ∩ An,tq and s = tq , then applying (q − 1)-times Lemma 6(ii) with
A = An,t1 ∩ · · · ∩ An,tj and s = tj for j = q − 1, . . . ,1, and finally applying Lemma 6(ii) with A = � and s = 0 we
conclude that there exist constants c1, c2, c3 ∈ (0,∞) such that for all n ∈N,

an,q+1 ≤ c1√
n

·
(

an,q +
∫ 1

0
. . .

∫ 1

tq−1

E
[
1An,t1 ∩···∩An,tq

· (X̂n,tq
n
+1/n − ξ)2]dtq . . . dt1

)

≤ c2 ·
(

an,q√
n

+ an,q−1

n3/2
+ · · · + an,1

nq−1/2
+ 1

nq−1/2
·
∫ 1

0
E
[
1An,t1

· (X̂n,t1n
+1/n − ξ)2]dt1

)
≤ c2 ·

(
an,q√

n
+ an,q−1

n3/2
+ · · · + an,1

nq−1/2
+ c3

nq+1/2
·
(

1 + 2ξ2 + 2 sup
j∈N

E
[‖X̂j‖2∞

]))
.

Employing Lemma 2 and the induction hypothesis yields the validity of (39) for p = q + 1, which finishes the proof of
the proposition. �

3.3. The transformed equation

We turn to the construction and the properties of the mapping G : R → R that is used to switch from the SDE (4) to an
SDE with Lipschitz continuous coefficients. The material presented in this subsection is known from [15].

Lemma 7. There exists a function G : R→ R with the following properties.

(i) G is differentiable with

0 < inf
x∈RG′(x) ≤ sup

x∈R
G′(x) < ∞.

In particular, G is Lipschitz continuous and has an inverse G−1 : R→ R that is Lipschitz continuous as well.
(ii) The derivative G′ of G is Lipschitz continuous hence absolutely continuous. Moreover, G′ has a bounded Lebesgue-

density G′′ : R → R that is Lipschitz continuous on each of the intervals (ξ0, ξ1), . . . , (ξk, ξk+1) and such that the
functions

μ̃ =
(

G′ · μ + 1

2
G′′ · σ 2

)
◦ G−1 and σ̃ = (G′ · σ ) ◦ G−1

are Lipschitz continuous.

Proof. We only provide a sketch of the proof. If k = 0 then μ and σ are Lipschitz continuous and we can take G(x) = x

for all x ∈R.
Now, assume that k ∈ N. Since μ is Lipschitz continuous on each of the intervals (ξ0, ξ1), . . ., (ξk, ξk+1) it is easy to

see that the one-sided limits μ(ξi−) and μ(ξi+) exist for all i ∈ {1, . . . , k}. For i ∈ {1, . . . , k} put

αi = μ(ξi−) − μ(ξi+)

2σ 2(ξi)
,
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let ρ ∈ (0,∞] be given by

ρ =
{

1
6|α1| , if k = 1,

min({ 1
6|αi | : i ∈ {1, . . . , k}} ∪ { ξi−ξi−1

2 : i ∈ {2, . . . , k}}), if k ≥ 2,

where we use the convention 1/0 = ∞, let ν ∈ (0, ρ), let φ : R→R be given by

φ(x) = (1 − x2)3 · 1[−1,1](x),

and define G : R →R by

G(x) = x +
k∑

i=1

αi · (x − ξi) · |x − ξi | · φ
(

x − ξi

ν

)
.

It is straightforward to check that G is differentiable with supx∈R G′(x) < ∞. For the proof of infx∈R G′(x) > 0 see
Lemma 2.2 in [15].

Put � = {ξ1, . . . , ξk}. It is straightforward to check that G′ is Lipschitz continuous and continuously differentiable on
R\�, (G|R\�)′′ is bounded, Lipschitz continuous on each of the intervals (ξ0, ξ1), . . ., (ξk, ξk+1) and has one-sided limits
(G|R\�)′′(ξi−) and (G|R\�)′′(ξi+) for all i ∈ {1, . . . , k}. Moreover, one can show that for all i ∈ {1, . . . , k},(

G′ · μ + 1

2
G′′ · σ 2

)
(ξi+) =

(
G′ · μ + 1

2
G′′ · σ 2

)
(ξi−). (40)

By a slight abuse of notation we define an extension G′′ : R→R by taking

G′′(ξi) = (G|R\�)′′(ξi+) + 2G′(ξi) · (μ(ξi+) − μ(ξi))

σ 2(ξi)
(41)

for i ∈ {1, . . . , k}. Clearly, G′′ is then a bounded Lebesgue-density of G′. Furthermore, it is straightforward to check that
μ̃ and σ̃ are Lipschitz continuous, which completes the proof of the lemma. �

Next, choose G according to Lemma 7 and define a stochastic process Z : [0,1] × � → R by

Zt = G(Xt), t ∈ [0,1]. (42)

Lemma 8. The process Z is the unique strong solution of the SDE

dZt = μ̃(Zt ) dt + σ̃ (Zt ) dWt , t ∈ [0,1],
Z0 = G(x0)

(43)

with μ̃ and σ̃ according to Lemma 7(ii).

Proof. According to Lemma 7(ii), G′ is absolutely continuous. We may therefore apply Itô’s formula, see e.g. [13,
Problem 3.7.3], to conclude that for every t ∈ [0,1] we have P-a.s.,

G(Xt) = G(x0) +
∫ t

0

(
G′(Xs) · μ(Xs) + 1

2
G′′(Xs) · σ 2(Xs)

)
ds +

∫ t

0
G′(Xs) · σ(Xs) dWs,

which implies that Z is a strong solution of the SDE (43). Due to the Lipschitz continuity of μ̃ and σ̃ , see Lemma 7(ii),
the strong solution of (43) is unique. �

For every n ∈N we use Ẑn = (Ẑn,t )t∈[0,1] to denote the time-continuous Euler–Maruyama scheme with step-size 1/n

associated to the SDE (43), i.e. Ẑn,0 = G(x0) and

Ẑn,t = Ẑn,i/n + μ̃(Ẑn,i/n) · (t − i/n) + σ̃ (Ẑn,i/n) · (Wt − Wi/n)

for t ∈ (i/n, (i + 1)/n] and i ∈ {0, . . . , n− 1}. The following estimates are standard error bounds for the time-continuous
Euler–Maruyama scheme associated to an SDE with Lipschitz continuous coefficients.
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Lemma 9. Let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all n ∈ N,

(i) E[‖Ẑn‖p∞] ≤ c,
(ii) (E[‖Z − Ẑn‖p∞])1/p ≤ c/

√
n.

Finally, we provide an estimate for the transformed time-continuous Euler–Maruyama scheme G ◦ X̂n =
(G(X̂n,t ))t∈[0,1].

Lemma 10. Let p ∈ [1,∞). Then there exists c ∈ (0,∞) such that for all n ∈N,

E
[‖G ◦ X̂n‖p∞

]≤ c.

Proof. According to Lemma 7(i), G is Lipschitz continous and hence satisfies a linear growth condition, i.e. there exists
c ∈ (0,∞) such that |G(x)| ≤ c · (1 + |x|) for all x ∈ R. Hence

‖G ◦ X̂n‖∞ ≤ c · (1 + ‖X̂n‖∞
)
,

which jointly with Lemma 2 implies the statement of the lemma. �

3.4. Proof of Theorem 1

We choose G and a Lebesgue density G′′ of G according to Lemma 7, define Z by (42), and for every n ∈N we define a
function un : [0,1] → [0,∞) by

un(t) = E

[
sup

s∈[0,t]
∣∣G(X̂n,s) − Ẑn,s

∣∣p].
Note that the functions un, n ∈N, are well-defined and bounded due to Lemma 9(i) and Lemma 10.

Below we show that there exists c ∈ (0,∞) such that for all n ∈ N and all t ∈ [0,1],

un(t) ≤ c ·
(

1

np/2
+

k∑
i=1

E

[∣∣∣∣∫ 1

0
1{(X̂n,s−ξi )·(X̂n,sn

−ξi )≤0} ds

∣∣∣∣p]+
∫ t

0
un(s) ds

)
. (44)

Using Proposition 1 we conclude from (44) that there exists c ∈ (0,∞) such that for all n ∈ N and all t ∈ [0,1],

un(t) ≤ c ·
(

1

np/2
+
∫ t

0
un(s) ds

)
.

By Gronwall’s inequality it then follows that there exists c ∈ (0,∞) such that for all n ∈ N,

un(1) ≤ c

np/2
. (45)

Using the fact that G−1 is Lipschitz continuous, see Lemma 7(i), as well as Lemma 9(ii) and (45) we conclude that there
exist c1, c2 ∈ (0,∞) such that for all n ∈N,

E
[‖X − X̂n‖p∞

]≤ c1 ·E[‖Z − G ◦ X̂n‖p∞
]≤ 2p · c1 · (E[‖Z − Ẑn‖p∞

]+ un(1)
)≤ c2

np/2
,

which yields the statement of Theorem 1.
It remains to prove (44). Let n ∈ N. Clearly, for every t ∈ [0,1],

Ẑn,t = G(x0) +
∫ t

0
μ̃(Ẑn,sn

) ds +
∫ t

0
σ̃ (Ẑn,sn

) dWs.

Since G′ is absolutely continuous, see Lemma 7(ii), we may apply Itô’s formula, see e.g. [13, Problem 3.7.3], to obtain
that P-a.s. for all t ∈ [0,1],

G(X̂n,t ) = G(x0) +
∫ t

0

(
G′(X̂n,s) · μ(X̂n,sn

) + 1

2
G′′(X̂n,s) · σ 2(X̂n,sn

)

)
ds

+
∫ t

0
G′(X̂n,s) · σ(X̂n,sn

) dWs
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= G(x0) +
∫ t

0
μ̃
(
G(X̂n,sn

)
)
ds +

∫ t

0

(
G′(X̂n,s) − G′(X̂n,sn

)
) · μ(X̂n,sn

) ds

+
∫ t

0
σ̃
(
G(X̂n,sn

)
)
dWs +

∫ t

0

(
G′(X̂s,n) − G′(X̂n,sn

)
) · σ(X̂n,sn

) dWs

+ 1

2
·
∫ t

0

(
G′′(X̂n,s) − G′′(X̂n,sn

)
) · σ 2(X̂n,sn

) ds.

It follows that P-a.s. for all t ∈ [0,1],

G(X̂n,t ) − Ẑn,t =
3∑

i=1

Vn,i,t ,

where

Vn,1,t =
∫ t

0

(
μ̃
(
G(X̂n,sn

)
)− μ̃(Ẑn,sn

)
)
ds +

∫ t

0

(
σ̃
(
G(X̂n,sn

)
)− σ̃ (Ẑn,sn

)
)
dWs,

Vn,2,t =
∫ t

0

(
G′(X̂n,s) − G′(X̂n,sn

)
) · μ(X̂n,sn

) ds +
∫ t

0

(
G′(X̂n,s) − G′(X̂n,sn

)
) · σ(X̂n,sn

) dWs,

Vn,3,t = 1

2
·
∫ t

0

(
G′′(X̂n,s) − G′′(X̂n,sn

)
) · σ 2(X̂n,sn

) ds.

Hence, for all t ∈ [0,1],

un(t) ≤ 3p ·
3∑

i=1

E

[
sup

s∈[0,t]
|Vn,i,s |p

]
. (46)

We next estimate the single summands on the right hand side of (46). Using the Hölder inequality, the Burkholder–
Davis–Gundy inequality and the Lipschitz continuity of μ̃ and σ̃ , see Lemma 7(ii), we obtain that there exists c ∈ (0,∞)

such that for all n ∈N and all t ∈ [0,1],

E

[
sup

s∈[0,t]
|Vn,1,s |p

]
≤ c ·

∫ t

0
E
[∣∣G(X̂n,sn

) − Ẑn,sn

∣∣p]ds ≤ c ·
∫ t

0
un(s) ds. (47)

Furthermore, using the Hölder inequality, the Burkholder–Davis–Gundy inequality as well as the Lipschitz continuity of
G′, see Lemma 7(ii), and employing (11) as well as Lemma 2 we conclude that there exist c1, c2, c3 ∈ (0,∞) such that
for all n ∈N and all t ∈ [0,1],

E

[
sup

s∈[0,t]
|Vn,2,s |p

]
≤ c1 ·

∫ t

0
E
[∣∣G′(X̂n,s) − G′(X̂n,sn

)
∣∣p · (∣∣μ(X̂n,sn

)
∣∣p + ∣∣σ(X̂n,sn

)
∣∣p)]ds

≤ c2 ·
∫ t

0

(
E
[|X̂n,s − X̂n,sn

|2p
])1/2 · (1 +E

[|X̂n,sn
|2p
])1/2

ds ≤ c3

np/2
. (48)

For estimating E[sups∈[0,t] |Vn,3,s |p] we put

B =
(

k+1⋃
i=1

(ξi−1, ξi)
2

)c

and we note that B =⋃k
i=1{(x, y) ∈R

2 : (x − ξi) · (y − ξi) ≤ 0}. Using Lemma 7(ii) and (11) we obtain that there exists
c ∈ (0,∞) such that for all x, y ∈ R,

∣∣G′′(x) · σ 2(y) − G′′(x) · σ 2(y)
∣∣≤ {c · (1 + y2) · |x − y|, (x, y) ∈ Bc,

c · (1 + y2), (x, y) ∈ B.
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Hence there exists c ∈ (0,∞) such that for all t ∈ [0,1],

sup
s∈[0,t]

|Vn,3,s |p ≤ c ·
(∣∣∣∣∫ t

0

(
1 + X̂2

n,sn

) · |X̂n,s − X̂n,sn
|ds

∣∣∣∣p +
∣∣∣∣∫ t

0

(
1 + X̂2

n,sn

) · 1{(X̂n,s ,X̂n,sn
)∈B} ds

∣∣∣∣p). (49)

Using Lemma 2 we obtain as in (48) that there exists c ∈ (0,∞) such that for all t ∈ [0,1],

E

[∣∣∣∣∫ t

0

(
1 + X̂2

n,sn

) · |X̂n,s − X̂n,sn
|ds

∣∣∣∣p]≤ c

np/2
. (50)

Furthermore, for all i ∈ {1, . . . , k} and all s ∈ [0,1],
|X̂n,sn

| · 1{(X̂n,s−ξi )·(X̂n,sn
−ξi )≤0} ≤ (|ξi | + |X̂n,sn

− ξi |
) · 1{(X̂n,s−ξi )·(X̂n,sn

−ξi )≤0}

≤ (|ξi | + |X̂n,sn
− X̂n,s |

) · 1{(X̂n,s−ξi )·(X̂n,sn
−ξi )≤0},

which yields that for all s ∈ [0,1],

(
1 + X̂2

n,sn

) · 1{(X̂n,s ,X̂n,sn
)∈B} ≤

(
1 + 2 max

i=1,...,k
ξ2
i

)
·

k∑
i=1

1{(X̂n,s−ξi )·(X̂n,sn
−ξi )≤0} + 2(X̂n,sn

− X̂n,s)
2.

By the latter inequality and Lemma 2 we conclude that there exists c ∈ (0,∞) such that for all t ∈ [0,1],

E

[∣∣∣∣∫ t

0

(
1 + X̂2

n,sn

) · 1{(X̂n,s ,X̂n,sn
)∈B} ds

∣∣∣∣p]≤ c ·
k∑

i=1

E

[∣∣∣∣∫ t

0
1{(X̂n,s−ξi )·(X̂n,sn

−ξi )≤0} ds

∣∣∣∣p]+ c

np
. (51)

Combining (49), (50) and (51) we see that there exists c ∈ (0,∞) such that for all t ∈ [0,1],

E

[
sup

s∈[0,t]
|Vn,3,s |p

]
≤ c

np/2
+ c ·

k∑
i=1

E

[∣∣∣∣∫ t

0
1{(X̂n,s−ξi )·(X̂n,sn

−ξi )≤0} ds

∣∣∣∣p],
which jointly with (46), (47) and (48) yields the estimate (44) and hereby completes the proof of Theorem 1.

3.5. Proof of Theorem 2

Clearly, for all n ∈ N,(
E
[‖X − Xn‖p

q

])1/p ≤ (E[‖X − X̂n‖p
q

])1/p + (E[‖X̂n − Xn‖p
q

])1/p
. (52)

Moreover, by Theorem 1 there exists c ∈ (0,∞) such that for all n ∈N,(
E
[‖X − X̂n‖p

q

])1/p ≤ (E[‖X − X̂n‖p∞
])1/p ≤ c/

√
n. (53)

For n ∈N define a stochastic process Wn = (Wn,t )t∈[0,1] by

Wn,t = (n · t − i) · Wn,(i+1)/n + (i + 1 − n · t) · Wn,i/n

for t ∈ [i/n, (i + 1)/n] and i ∈ {0, . . . , n − 1}. Then for every r ∈ [1,∞) there exists c ∈ (0,∞) such that for all n ∈ N,

(
E
[‖W − Wn‖r

q

])1/r ≤
{

c/
√

n, if q < ∞,

c
√

ln(n + 1)/
√

n, if q = ∞,
(54)

see, e.g. [28] for the case q ∈ [1,∞) and [1] for the case q = ∞.
Note that for all n ∈ N and all t ∈ [0,1],

|X̂n,t − Xn,t | =
∣∣∣∣∣
n−1∑
i=0

σ(X̂n,i/n) · 1[i/n,(i+1)/n](t) · (Wt − Wn,t )

∣∣∣∣∣≤ sup
s∈[0,1]

∣∣σ(X̂n,s)
∣∣ · |Wt − Wn,t |.
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Hence, by (11) and Lemma 2 there exist c1, c2 ∈ (0,∞) such that for all n ∈N,(
E
[‖X̂n − Xn‖p

q

])1/p ≤ c1 · (1 + (E[‖X̂n‖2p∞
])1/(2p)) · (E[‖W − Wn‖2p

q

])1/(2p)

≤ c2 · (E[‖W − Wn‖2p
q

])1/(2p)
,

which jointly with (54), (53) and (52) completes the proof of the theorem.
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