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Abstract. We study the structure of infinite geodesics in the Planar Stochastic Hyperbolic Triangulations Tλ introduced in (Probab.
Theory Related Fields 165 (2016) 509–540). We prove that these geodesics form a supercritical Galton–Watson tree with geometric
offspring distribution. The tree of infinite geodesics in Tλ provides a new notion of boundary, which is a realization of the Poisson
boundary. By scaling limit arguments, we also obtain a description of the tree of infinite geodesics in the hyperbolic Brownian plane.
Finally, by combining our main result with a forthcoming paper (Budzinski (2018)), we obtain new hyperbolicity properties of Tλ:
they satisfy a weaker form of Gromov-hyperbolicity and admit bi-infinite geodesics.

Résumé. Nous étudions la structure des géodésiques infinies dans les Triangulations Planaires Stochastiques Hyperboliques (PSHT)
Tλ introduites dans (Probab. Theory Related Fields 165 (2016) 509–540). Nous montrons que ces géodésiques forment un arbre de
Galton–Watson surcritique de loi de reproduction géométrique. L’arbre des géodésiques infinies de Tλ fournit une nouvelle notion de
bord, qui est une réalisation de la frontière de Poisson. Par des arguments de limites d’échelle, on en déduit une description de l’arbre
des géodésiques infinies du plan brownien hyperbolique. Enfin, en combinant notre résultat principal avec ceux de (Budzinski (2018)),
nous obtenons de nouvelles propriétés d’hyperbolicité de Tλ : ces triangulations vérifient une forme faible d’hyperbolicité à la Gromov,
et admettent des géodésiques bi-infinies.
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Introduction

The construction and study of random infinite triangulations has been a very active field of reasearch in recent years. The
first such triangulation that was built is the UIPT [3,9]. A key feature in the study of this object is its spatial Markov
property, which motivated the introduction of a one-parameter family (Tλ)0<λ≤λc of type-I triangulations1 with λc =

1
12

√
3

, satisfying a similar property [14,16] (see also [7] for similar constructions in the halfplanar case). The case λ = λc

corresponds to the UIPT, whereas for λ < λc the triangulation Tλ has hyperbolic behaviour. For example, it was proved
that Tλ has a.s. exponential volume growth and that the simple random walk on it has positive speed [16]. The goal of
this work is to establish hyperbolicity properties of these maps related to their geodesics.

Leftmost geodesic rays. Our first goal in this work is to describe precisely the structure of infinite geodesics in the
triangulations Tλ. More precisely, all the triangulations considered here are rooted, that is, equipped with a distinguished
oriented edge called the root edge. The root vertex, that we write ρ, is the starting point of the root edge. For any two
vertices x and y in Tλ, we call a geodesic γ from x to y leftmost if for any geodesic γ ′ from x to y, the union of γ and γ ′
cuts Tλ in two parts, and the part on the left of γ is infinite. It is easy to see that for any vertices x and y there is a unique
leftmost geodesic from x to y. A leftmost geodesic ray is a sequence of vertices (γ (n))n≥0 such that γ (0) = ρ and for any
n ≥ 0, the path (γ (i))0≤i≤n is a leftmost geodesic from ρ to γ (n). We denote by Tg

λ the union of all the leftmost geodesic

1To be exact, type-II triangulations (i.e. with no loops) were considered in [16], while the type-I triangulations (with loops) were built in [14]. In this
work, unless specified otherwise, we only consider type-I triangulations.
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Fig. 1. The strip decomposition of Tλ. On the left, the tree Tg
λ is in red. On the right Sλ = S[ρ] is colored in yellow. The part S[x] of Sλ that is shaded

in green has the same distribution as Sλ.

rays of Tλ. We can see this set of vertices as a graph by relating two vertices if they are consecutive on the same geodesic
ray. By uniqueness of the leftmost geodesic between two points, the graph Tg

λ is an infinite tree with no leaf. Moreover,
the tree Tg

λ divides Tλ into infinite maps with geodesic boundaries, that we call strips (see the left part of Figure 1). Our
first main result describes the distribution of Tg

λ and of these strips. Let 0 < λ ≤ λc. Let h ∈ (0, 1
4 ] be such that

λ = h

(1 + 8h)3/2
, (1)

and let

mλ = 1 − 2h − √
1 − 4h

2h
≤ 1. (2)

Theorem 1.

• The tree Tg
λ is a Galton–Watson tree with offspring distribution μλ, where μλ(0) = 0 and μλ(k) = mλ(1 − mλ)

k−1 for
k ≥ 1.

• There are two random infinite strips S0
λ and S1

λ such that the following holds. Conditionally on Tg
λ:

1. the strips delimited by Tg
λ are independent,

2. the strip containing the face lying on the right of the root edge has the same distribution as S1
λ ,

3. all the other strips have the same distribution as S0
λ .

Note that for λ = λc, we have h = 1
4 so mλc = 1 and μλc(1) = 1, so the tree Tg

λc
consists of a single ray. This is

reminiscent of the geodesics confluence properties already observed in [21] for the UIPQ (the natural analog of Tλc for
quadrangulations): there are infinitely many points that lie on every geodesic ray. See also [20] for similar results in the
UIPT. However, the results of [21] are about all the geodesic rays whereas we only study the leftmost ones, so our result
for λ = λc does not obviously imply those of [21]. On the other hand, for λ < λc, we have mλ < 1, so the offspring
distribution μλ is supercritical and there are infinitely many leftmost geodesic rays. Moreover, the rate of exponential
growth μλ of Tg

λ is the same as the rate of exponential volume growth of Tλ.
We will also describe the distributions of S0

λ and S1
λ explicitly in terms of reverse Galton–Watson trees. For λ < λc ,

these strips should be thought of as “thin”, in the sense that their width is of constant order as the distance from the root
goes to +∞.

We also state right now a consequence of Theorem 1 that will be useful later. Let γ� (resp. γr ) be the path in Tg
λ that

bounds S1
λ on its right (resp. on its left). Then γ� (resp. γr ) can be thought of as the leftmost (resp. rightmost) path in Tg

λ,
seen from the root (see Figure 1). We write Sλ for the part of Tλ lying between γ� and γr , including the initial segment
that γ� and γr have in common (cf. Figure 1). Then Sλ can be seen as a gluing of infinitely many independent copies of
S0

λ along Tg
λ. This implies that Sλ has an interesting self-similarity property. Indeed, let r > 0. We condition on Br(T

g
λ),

the finite subtree of Tg
λ formed by those vertices lying at distance at most r from ρ. Let x be a vertex of Tg

λ such that
d(ρ, x) = r . Let γ x

� (resp. γ x
r ) be the leftmost (resp. rightmost) infinite path in Tg

λ started from ρ and passing through x.
Then the part of Tλ lying between γ x

� and γ x
r above x has the same distribution as Sλ (see the right part of Figure 1).

Indeed, this part consists of a gluing of i.i.d. copies of S0
λ in the faces of the tree of descendants of x in Tg

λ, which has
the same distribution (conditionally on Br(T

g
λ)) as Tg

λ. We will denote this part of Tλ by S[x]. In all the rest of this work,
“thin” maps such as S0

λ and S1
λ will be refered to as strips, and “thick” maps like Sλ as slices.
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Hyperbolicity properties related to geodesics. By Theorem 1, for λ < λc, the map Tλ contains a supercritical Galton–
Watson tree. By combining this with the results of our forthcoming paper [15], we obtain that Tλ satisfies two metric
hyperbolicity properties: a weak form of Gromov-hyperbolicity, and the existence of bi-infinite geodesics.

More precisely, we recall that a graph G is hyperbolic in the sense of Gromov if there is a constant k ≥ 0 such that all
the triangles are k-thin in the following sense. Let x, y and z be vertices of G and γxy , γyz, γzx be geodesics from x to
y, from y to z and from z to x. Then for any vertex v on γxy , the graph distance between v and γyz ∪ γzx is at most k.
As usual, such a strong, uniform statement cannot hold for Tλ since any finite triangulation appears somewhere in Tλ.
Therefore, we need to study an “anchored” version.

Definition 0.1. Let M be a planar map. We say that M is weakly anchored hyperbolic if there is k ≥ 0 such that the
following holds. Let x, y and z be three vertices of M , and let γxy (resp. γyz, γzx ) be a geodesic from x to y (resp. y to
z, z to x). Assume the triangle formed by γxy , γyz and γzx surrounds the root vertex ρ. Then

d(ρ, γxy ∪ γyz ∪ γzx) ≤ k.

Another property studied in [15] is the existence of bi-infinite geodesics, i.e. paths (γ (i))i∈Z such that for any i and
j , the graph distance between γ (i) and γ (j) is exactly |i − j |. This is not strictly speaking a hyperbolicity property,
since such geodesics exist e.g. in Z

2. However, they are expected to disappear after perturbations of the metric like first-
passage percolation (see for example [25]). On the other hand, bi-infinite geodesics are much more stable in hyperbolic
graphs [12]. In [15], we prove that any random planar map containing a supercritical Galton–Watson tree with no leaf
is a.s. weakly anchored hyperbolic, and contains bi-infinite geodesics. In particular, the following result follows from
Theorem 1.

Corollary 0.2. Let 0 < λ < λc. Almost surely, the map Tλ is weakly anchored hyperbolic and admits bi-infinite geodesics.

The existence of bi-infinite geodesics answers a question of Benjamini and Tessera [12]. Once again, there is a sharp
contrast between the hyperbolic setting and “usual” random planar maps. For example, the results of [21] imply that such
bi-infinite geodesics do not exist in the UIPQ.

Poisson boundary. Another goal of this work is to give a new description of the Poisson boundary of Tλ for 0 < λ < λc

in terms of the tree Tg
λ. Let G be an infinite, locally finite graph, and let G∪∂G be a compactification of G, i.e. a compact

metric space in which G is dense. Let also (Xn) be the simple random walk on G. We say that ∂G is a realization of the
Poisson boundary of G if the following two properties hold:

• (Xn) converges a.s. to a point X∞ ∈ ∂G,
• every bounded harmonic function h on G can be written in the form

h(x) = Ex

[
g(X∞)

]
,

where g is a bounded measurable function from ∂G to R.

A first realization of the Poisson boundary of Tλ is given by a work of Angel, Hutchcroft, Nachmias and Ray [4]: let
∂CPTλ be the boundary of the circle packing of Tλ in the unit disk. We may equip Tλ ∪ ∂CPTλ with the topology
induced by the usual topology on the unit disk. Then almost surely, ∂CPTλ is a realization of the Poisson boundary of Tλ.
Moreover, almost surely, the distribution of the limit point X∞ has full support and no atoms in ∂CPTλ.

We write ∂Tg
λ for the space of infinite rays of Tg

λ. If γ, γ ′ ∈ ∂Tg
λ, we write γ ∼ γ ′ if γ = γ ′ or if γ and γ ′ are the

left and right boundaries of the same strip. Then ∼ is a.s. an equivalence relation in which countably many equivalence
classes have cardinal 2, and all the others have cardinal 1. We write ∂̂Tg

λ = ∂Tg
λ/∼. There is a natural way to equip

Tλ ∪ ∂̂Tg
λ with a topology that makes it a compact space, see Section 3.1 for more details. Hence, Tλ ∪ ∂̂Tg

λ can be seen
as a compactification of the infinite graph Tλ. We show that ∂̂Tg

λ is also a realization of the Poisson boundary.

Theorem 2. Let 0 < λ < λc. Then almost surely:

1. the limit limXn = X∞ exists, and its distribution has full support and no atoms in ∂̂Tg
λ,

2. ∂̂Tg
λ is a realization of the Poisson boundary of Tλ.

Note that, by a result of Hutchcroft and Peres [24], the second point will follow from the first one. Note also that once
we have Theorem 2, since the exit measure on ∂̂Tg

λ is nonatomic and only countably many pairs of points of ∂Tg
λ are
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identified, we also have almost sure convergence of (Xn) to a point of ∂Tg
λ. Finally, we show in [15] that the existence of

the limit X∞ and the fact that it has full support are true in the more general setting of planar maps obtained by “filling
the faces” of a supercritical Galton–Watson tree with i.i.d. strips. However, we did not manage to prove non-atomicity
and to obtain a precise description of the Poisson boundary in this general setting. Our proof of non-atomicity here uses
an argument specific to Tλ, based on its peeling process.

Geodesic rays in the hyperbolic Brownian plane. Finally, the last goal of this work is to take the scaling limit of The-
orem 1 to obtain results about geodesics in continuum objects. Indeed, another purpose of the theory of random planar
maps is to build continuum random surfaces. The first such surface that was introduced is the Brownian map [31,35],
which is now known to be the scaling limit of a wide class of finite planar maps conditioned to be large [1,2,11,13,18,33].
A noncompact version P called the Brownian plane was introduced in [17] and is the scaling limit of the UIPQ and
also of the UIPT [14]. Finally, it was shown in [14] that the hyperbolic random triangulations have a near-critical scaling
limit called the hyperbolic Brownian plane and denoted Ph. More precisely, let (λn) be a sequence of numbers in (0, λc]
satisfying

λn = λc

(
1 − 2

3n4
+ o

(
1

n4

))
.

Then 1
n
Tλn converges for the local Gromov–Hausdorff distance to Ph. By taking the scaling limit of Theorem 1 and

checking that the tree of infinite leftmost geodesics behaves well in the scaling limit, we obtain a precise description of
the geodesic rays in Ph. Let B be the infinite tree in which every vertex has exactly two children, except the root which
has only one.

Theorem 3. The infinite geodesic rays of Ph form a tree Tg(Ph) that is distributed as a Yule tree with parameter 2
√

2,
i.e. the tree B in which the lengths of the edges are i.i.d. exponential variables with parameter 2

√
2.

Once again, this behaviour is very different from the non-hyperbolic setting: in the Brownian plane, there is only one
geodesic ray (this is Proposition 15 of [17], and is an easy consequence of the local confluence of geodesics proved in
[30] for the Brownian map). We also note that the rate 2

√
2 of exponential growth of Tg(Ph) is the same as the rate of

exponential growth of the perimeters and volumes of the hulls of Ph [14, Corollary 1].

The skeleton decomposition. Our main tool for proving these results will be the skeleton decomposition of planar trian-
gulations introduced by Krikun [27] for the type-II UIPT. See also [18] for the adaptation to the (slightly easier) type-I
case. This decomposition encodes a triangulation by a reverse forest, where leftmost geodesics from the root pass between
the trees and between their branches. The infinite forest describing the UIPT consists of a single tree, which can be seen
as a reverse Galton–Watson tree with critical offspring distribution, started at time −∞, and conditioned to have exactly 1
vertex at time 0 and to die at time 1. We obtain a similar description for the infinite forest encoding Tλ for 0 < λ < λc , but
here the offspring distribution is subcritical. A key feature is that the forest now contains infinitely many infinite trees. The
parts of Tλ described by each of these trees are the strips delimited by the leftmost geodesic rays. Finally, let us highlight
that the construction of infinite reverse Galton–Watson trees that we present in Section 2.6 holds for any subcritical or
critical Galton–Watson process and might be of independent interest.

Structure of the paper. The structure of the paper is as follows. In Section 1, we recall some combinatorial results about
planar triangulations, and we recall the definition and some basic properties of the maps Tλ and their halfplanar analogs.
In Section 2, we prove Theorem 1 by computing the skeleton decomposition of Tλ. Section 3 is devoted to the proof of
Theorem 2, and Section 4 to the proof of Theorem 3. In the Appendix, we prove a technical result needed in Section 4,
which shows that a wide class of events related to geodesics are closed for the Gromov–Hausdorff distance.

1. Combinatorics and preliminaries

1.1. Combinatorics

For n ≥ 0 and p ≥ 1, a triangulation of the p-gon with n inner vertices is a planar map with n + p vertices and a
distinguished face called the outer face, in which all faces except perhaps the outer face are triangles, and such that the
boundary of the outer face is a simple cycle of length p. It is equipped with a root edge such that the outer face touches
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the root edge on its right. We consider type-I triangulations, which means we allow triangulations containing loops and
multiple edges. We denote by Tn,p the set of triangulations of the p-gon with n inner vertices.

The number of triangulations with fixed volume and perimeter can be computed by a result of Krikun, as a special case
of the main theorem of [28]:

#Tn,p = p(2p)!
(p!)2

4n−1(2p + 3n − 5)!!
n!(2p + n − 1)!! ∼

n→+∞ c(p)λ−n
c n−5/2, (3)

where λc = 1
12

√
3

and

c(p) = 3p−2p(2p)!
4
√

2π(p!)2
∼

p→+∞
1

36π
√

2
12p√

p. (4)

For p ≥ 1 and λ ≥ 0, we write wλ(p) = ∑
n≥0 #Tn,pλn. Note that by the asymptotics (3), we have wλ(p) < +∞ if and

only if λ ≤ λc. We finally write Wλ(x) = ∑
p≥1 wλ(p)xp . Formula (4) of [28] computes Wλ after a simple change of

variables:

Wλ(x) = λ

2

((
1 − 1 + 8h

h
x

)√
1 − 4(1 + 8h)x − 1 + x

λ

)
, (5)

where h ∈ (0, 1
4 ] is given2 by (1). From this formula, we easily get

wλ(1) = 1

2
− 1 + 2h

2
√

1 + 8h
(6)

and, for p ≥ 2,

wλ(p) = (2 + 16h)p
(2p − 5)!!

p!
(1 − 4h)p + 6h

4(1 + 8h)3/2
. (7)

We also define a Boltzmann triangulation of the p-gon with parameter λ as a random triangulation T such that P(T =
t) = λn

wλ(p)
for every n ≥ 0 and t ∈ Tn,p .

1.2. Planar and halfplanar hyperbolic type-I triangulations

We recall from [14] the definition of the random triangulations Tλ for 0 < λ ≤ λc. A finite triangulation with a hole of
perimeter p is a rooted map with a distinguished face called the hole in which all the faces are triangles except perhaps
the hole, and where the boundary of the hole is a simple cycle of length p. The difference with a triangulation of the
p-gon is that we do not require the root to lie on the boundary. Let t be a finite triangulation with a hole of perimeter p

and let T be an infinite, one-ended triangulation of the plane. We write t ⊂ T if T can be obtained by filling the hole of
t with an infinite triangulation of the p-gon. For 0 < λ ≤ λc, the distribution of Tλ can be characterized as follows. For
any finite triangulation t with a hole of perimeter p, we have

P(t ⊂ Tλ) = cλ(p)λ|t |,

where |t | is the total number of vertices of t and

cλ(p) = 1

λ

(
8 + 1

h

)p−1 p−1∑
q=0

(
2q

q

)
hq, (8)

where h is as in (1). Equivalently, we can compute the generating function

Cλ(x) =
∑
p≥1

cλ(p)xp = x

λ(1 − 1+8h
h

x)
√

1 − 4(1 + 8h)x
. (9)

2Note that our h corresponds to the h3 of Krikun.
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Note that the numbers cλc (p) are equal to the c(p) defined by (4) and Tλc corresponds to the type-I UIPT [18,36]. As in
the type-II case [16], the triangulations Tλ exhibit a spatial Markov property similar to that of the UIPT: if t is a finite
triangulation with a hole of perimeter p, conditionally on t ⊂ Tλ, the distribution of the infinite triangulation that fills
the hole of t only depends on p. We denote by T

p
λ a triangulation with this distribution. By a simple root transformation

(more precisely duplicating the root edge, adding a loop in between and rooting the map at this new loop, see Figure 2 of
[18]), triangulations of the plane are equivalent to infinite triangulations of the 1-gon. In particular, the image of Tλ under
this root transformation is T1

λ, so studying one or the other are equivalent. In particular, the root transformation does not
affect leftmost geodesics from the root, so all the results we will first obtain about geodesic rays in T

1
λ are immediate to

transfer to Tλ.
We also define the halfplanar analog of Tλ, that we will denote by Hλ. The goal of the next paragraphs is to adapt

to the type-I setting results from [7] and [16] that are already well-known in the type-II setting. This will only be used
in Section 3 to study the random walk on Tλ, so all the rest of Section 1 can be skipped in the first read-through.
A triangulation of the halfplane is an infinite planar map in which all the faces are triangles except one called the
outer face, whose boundary is simple and infinite. Triangulations of the halfplane are rooted in such a way that the root
edge touches the outer face on its right. We note that Angel and Ray build in [7] a family (HII

α )2/3<α<1 of hyperbolic
triangulations of the halfplane in the type-II setting and explain in Section 3.4 how to “add loops” to obtain type-I
triangulations. The triangulations Hλ we define are a particular case of their construction. However, as in [14] and in
order to limit the computations, we prefer to construct the maps Hλ directly instead of relying on the type-II case.

The law of Hλ is characterized by the following. Let t be a triangulation of the p-gon with a marked segment of edges
∂outt on its boundary, such that ∂outt contains the root edge. Such triangulations will be called marked triangulations. Let
∂int = ∂t \ ∂outt . We write |t |in for the number of vertices of t that do not lie on ∂outt . We also write |∂int | (resp. |∂outt |) for
the number of edges on ∂int (resp. ∂outt ). We write t ⊂Hλ if Hλ can be obtained by gluing a triangulation of the halfplane
H to t in such a way that ∂t ∩ ∂H = ∂int .

Proposition 1.1. For any 0 < λ ≤ λc, there is a unique (in distribution) random triangulation Hλ of the halfplane such
that for every marked triangulation t , we have

P(t ⊂Hλ) =
(

8 + 1

h

)|∂int |−|∂outt |
λ|t |in .

Proof. Uniqueness is stanard. To prove existence, we construct this triangulation by peeling along the same lines as in
[7]. If Hλ exists, let f0 be its triangular face that is adjacent to the root. Then f0 has one of the three forms described by
Figure 2. Moreover, we have P(Case I occurs) = λ(8 + 1

h
) = 1√

1+8h
. By summing over all possible ways to fill the green

zone, we also have

P(Case IIi occurs) = P(Case IIIi occurs) =
(

8 + 1

h

)−i

wλ(i + 1)

for all i ≥ 0. If we sum up these probabilities, we obtain

1√
1 + 8h

+ 2
∑
i≥0

(
8 + 1

h

)−i

wλ(i + 1) = 1√
1 + 8h

+ 2

(
8 + 1

h

)
Wλ

(
h

1 + 8h

)
= 1 (10)

by (5). Since these probabilities sum up to 1, we can construct Hλ by peeling with the transitions described above.
Everytime case IIi or IIIi occurs, we fill the green bounded region with a Boltzmann triangulation of the (i + 1)-gon
with parameter λ. As in [7] (see also [16] in the planar case), we can check that we indeed obtain a triangulation of the
halfplane, that its distribution does not depend on the choice of the peeling algorithm, and that the random triangulation
we obtain has the right distribution. �

Fig. 2. The three cases of peeling. In the two last cases, the parameter i ≥ 0 corresponds to the number of edges of ∂Hλ that f0 separates from infinity.
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We now state a coupling result between Tλ and Hλ similar to the one stated in [6] and (implicitly) [16] in the type-II
case. We recall that a peeling algorithm is a way to assign to every triangulation with a hole an edge on its boundary
(see e.g. [16, Section 1.3]). To any peeling algorithm is naturally associated a filled-in exploration of Tλ. By filled-in,
we mean that every time the face just explored separates a finite region from infinity, the interior of the finite region is
entirely discovered.

Lemma 1.2.

(i) For 0 < λ ≤ λc, the triangulation Hλ is the local limit as p → +∞ of Tp
λ .

(ii) For 0 < λ < λc, consider a filled-in peeling algorithm A with infinitely many peeling steps, and let T be the part of
Tλ that is discovered by A . Let (Ti)i∈I be the infinite connected components of Tλ \ T and, for every i ∈ I , let ei

be an edge of ∂T that is glued to Ti , chosen in a way that only depends on T . Then conditionally on T , the maps Ti

rooted at ei are independent copies of Hλ.

Proof. (i) If p ≥ 1 and t is a marked triangulation with |∂outt | ≤ p, let t0 be a triangulation with a hole of perimeter p

and let t0 + t be a triangulation obtained by gluing ∂outt to a segment of ∂t0. Then by the definition of Tp
λ , we have

P
(
t ⊂ T

p
λ

) = P(t0 + t ⊂ Tλ)

P(t0 ⊂ Tλ)
= cλ(p + |∂int | − |∂outt |)

cλ(p)
λ|t |in

−−−−→
p→+∞

(
8 + 1

h

)|∂int |−|∂outt |
λ|t |in

= P(t ⊂Hλ),

which is enough to conclude.
(ii) We first note that there are infinitely many peeling steps and all the finite holes are filled-in, so every connected

component of Tλ \ T is halfplanar. The second point then follows from the first one since the perimeter of the region
discovered after n peeling steps a.s. goes to +∞ as n → +∞. See the proof of Lemma 2.16 in [6] for the same result in
the type-II case. Note that for λ = λc, we have T = Tλ a.s. by Corollary 7 of [19], so the statement (ii) is irrelevant. �

2. The skeleton decomposition of hyperbolic triangulations

The aim of this section is to prove Theorem 1. It is organized as follows. In Section 2.1, we describe the finite skeleton
decomposition, which associates to every finite triangulation a finite forest, and its infinite counterpart. In Section 2.2,
we compute the distribution of the skeletons of the hulls of Tλ. This characterizes the skeleton of Tλ entirely, but in a
form that is not convenient for the proof of Theorem 1. In Section 2.3, we explain why the infinite skeleton of Tλ is
related to infinite leftmost geodesics in the triangulation. Section 2.4 contains a description of the strips S0

λ and S1
λ by the

distribution of their hulls, without a proof of their existence. In Section 2.5, we use all that precedes to prove Theorem 1.
Finally, Section 2.6 is devoted to the construction of S0

λ and S1
λ .

2.1. The skeleton decomposition of finite and infinite triangulations

The finite setting: Skeleton decomposition of triangulations of the cylinder. We first recall the skeleton decomposition
of triangulations introduced by Krikun [27,29] for type-II triangulations and quadrangulations, and described in [18] for
type-I triangulations (see also [8,34]). This decomposition applies to so-called triangulations of the cylinder. Most of the
presentation here is adapted from [18].

Definition 2.1. Let r ≥ 1. A triangulation of the cylinder of height r is a rooted planar map in which all faces are triangles
except two distinguished faces called the top and the bottom faces, such that the following properties hold. The boundaries
of the top and bottom faces are simple cycles. The bottom face lies on the right of the root edge. Finally, every vertex
incident to the top face is at distance r from the boundary of the bottom face, and every edge adjacent to the top face is
also adjacent to a face whose third vertex is at distance r − 1 from the boundary of the bottom face.

If 	 is a triangulation of the cylinder of height r , we write ∂	 and ∂∗	 for the boundaries of the bottom and top
faces. Let p = |∂	| and q = |∂∗	|. The skeleton decomposition encodes 	 by a forest of q plane trees and a family of
triangulations of polygons indexed by the vertices of this forest. For 1 ≤ j ≤ r − 1, we define the ball Bj (	) to be the
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Fig. 3. A triangulation of the cylinder 	 and its skeleton Skel(	) ∈ F ′
4,8,3 in purple. The cycles ∂j 	 are in blue, and the root edge is in red. The

leftmost geodesics from the vertices of ∂∗	 to ∂	 are in orange. The green holes must be filled by triangulations of polygons.

map formed by all the faces of 	 having at least one vertex at distance at most j − 1 from ∂	, along with their vertices
and edges. We also define the hull B•

j (	) as the union of Bj (	) and all the connected components of its complement,
except the one that contains ∂∗	. It is easy to see that B•

j (	) is a triangulation of the cylinder of height j . We denote by
∂j	 the top boundary of B•

j (	), with the conventions ∂0	 = ∂	 and ∂r	 = ∂∗	.
If 1 ≤ j ≤ r , every edge of ∂j	 is incident to exactly one triangle whose third vertex belongs to ∂j−1	. Such triangles

are called downward triangles at height j . We can define a genealogy on
⋃r

j=0 ∂j	 by saying that e ∈ ∂j	 for j ≥ 1 is
the parent of e′ ∈ ∂j−1	 if the downward triangle adjacent to e is the first one that one encounters when moving along
∂j−1	 in clockwise order starting from the middle of the edge e′ (see Figure 3). We obtain q trees rooted on ∂∗	. Let
(t1, . . . , tq) be the forest obtained by listing these trees in clockwise order in such a way that the root edge of 	 lies in t1.
This forest is called the skeleton of 	 and we denote it by Skel(	). Note that t1 has a distinguished vertex at height r . The
set of possible values of Skel(	) is called the set of (p, q, r)-admissible forests and is described by the next definition.

Definition 2.2. Let p,q, r ≥ 1: a (p, q, r)-pre-admissible forest is a sequence f = (t1, . . . , tq) of plane trees equipped
with a distinguished vertex ρ such that:

• the maximal height of the trees ti is r ,
• the total number of vertices at height r in the trees ti is p,
• ρ lies at height r .

We write Fp,q,r for the set of (p, q, r)-pre-admissible forests. If furthermore ρ ∈ t1, we say that f is (p, q, r)-admissible,
and we write F ′

p,q,r for the set of (p, q, r)-admissible forests.

Let f = (t1, . . . , tp) ∈ Fp,q,r . Most of the time, we will represent f with the roots of the trees ti on the top. Hence,
if x ∈ ti is a vertex of f , we define the reverse height of x in f as r minus the height of x in ti , and we write it hrev

f (v).
In particular, the roots of the trees ti have reverse height r and ρ has reverse height 0. Although quite unusual, this
convention is natural because the reverse heights in Skel(	) match the distances to the root in the triangulation 	. It will
also be more convenient when we will deal with reverse forests with infinite height.

The forest Skel(	) is not enough to completely describe 	: if we consider all the downward triangles of 	, there is a
family of holes, each of which is naturally associated to an edge of

⋃r
j=0 ∂j	. If e ∈ ∂j	 with 1 ≤ j ≤ r , the associated

hole is bounded by the edges of ∂j−1	 that are children of e and by two vertical edges connecting the initial vertex of e

to two vertices of ∂j−1	. This hole has perimeter ce + 2, where ce is the number of children of e, so it must be filled by
a triangulation of a (ce + 2)-gon. If ce = 0, it is possible that the hole of perimeter 2 is filled by the triangulation of the
2-gon consisting of a single edge, which means that the two vertical edges are simply glued together.

If f is a (p, q, r)-admissible forest, let f ∗ be the set of those vertices v of f such that hrev
f (v) > 0. The decomposition

we just described is a bijection between triangulations of the cylinder 	 with height r such that ∂	 = p and ∂∗	 = q , and
pairs consisting of a (p, q, r)-admissible forest f and a family (Mv)v∈f ∗ of maps such that Mv is a finite triangulation of
a (cv + 2)-gon for every v.

Moreover, this decomposition encodes informations about leftmost geodesics from the vertices of ∂∗	 to ∂	: as can
be seen on Figure 3, these geodesics (in orange on Figure 3) are the paths going between the trees of Skel(	). These
geodesics cut 	 into q slices, each of which contains an edge of ∂∗	. Moreover, the slice containing the ith edge of ∂∗	
can be completely described by the ith tree ti of Skel(	) and the maps Mv for v ∈ ti .
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Fig. 4. A forest f of height 4 and the forests B2(f ) and B ′
2(f ). The ancestors lie on the top and the distinguished vertex is in red.

The infinite setting: Infinite reverse forests. If f ∈ Fp,q,r and 0 ≤ j ≤ r , let x
j

1 , . . . , x
j
s be the vertices of f lying at

reverse height j in f , from left to right. For every 1 ≤ i ≤ s, let t
j
i be the tree of descendants of x

j
i . Let also i0 be

the index such that the distinguished vertex belongs to t
j
i0

. We define Bj (f ) as the forest (t
j

1 , . . . , t
j
s ), with the same

distinguished vertex as f (see Figure 4), and B ′
j (f ) as the forest (t

j
i0
, t

j

i0+1, . . . , t
j
s , t

j

1 , . . . , t
j

i0−1). Note that Bj (f ) ∈
Fp,s,j and B ′

j (f ) ∈ F ′
p,s,j , but it is not always the case that Bj (f ) ∈ F ′

p,s,j . Note also that if v is a vertex of Bj (f ),
then hrev

Bj (f )(x) = hrev
B ′

j (f )
(x) = hrev

f (x).

Definition 2.3. Let p ≥ 1. A p-pre-admissible infinite forest is a sequence f = (fr)r≥1 of forests of plane trees such that

(i) for every r ≥ 1, there is q ≥ 1 such that the forest fr is (p, q, r)-pre-admissible,
(ii) for every s ≥ r ≥ 1, we have Br(fs) = fr .

We write Fp,∞,∞ for the set of p-pre-admissible infinite forests. We will also write Br(f) = fr for r ≥ 1.

Note that f ∈ Fp,∞,∞ can also be seen as an increasing sequence of finite graphs, and therefore as an infinite graph.
We call infinite reverse trees the connected components of f. If v is a vertex of f, we have v ∈ fr for r large enough. Note
that hrev

fr
(v) does not depend on r as long as v ∈ fr . We call it the reverse height of v in f and denote it by hrev

f (v). We
also write f∗ for the set of vertices of f that do not lie at reverse height 0.

Definition 2.4. A p-pre-admissible forest f is called p-admissible if the distinguished vertex lies in the leftmost infinite
tree of f, i.e. if for every r ≥ 0, the leftmost vertex of f at reverse height r is in the same infinite tree as the distinguished
vertex. We write F ′

p,∞,∞ for the set of p-admissible infinite forests.

Skeleton decomposition of infinite triangulations of the p-gon. We now introduce the skeleton decomposition of infinite
triangulations of the p-gon. Let T be an infinite, one-ended triangulation of the p-gon. For every r ≥ 1, the hull B•

r (T ) is
a triangulation of the cylinder of height r , so we can define its skeleton f ′

r = Skel(B•
r (T )) ∈ F ′

p,q,r for some q . It is also
easy to see that the forests f ′

r are consistent in the sense that B ′
r (f

′
s ) = f ′

r for every s ≥ r ≥ 1. We claim that such a family
(f ′

r ) always defines an infinite p-admissible forest. More precisely, if f ∈ F ′
p,∞,∞ and r ≥ 1, let B ′

r (f) be the reordered
ball of radius r in f (that is, the ball Br(f) in which the trees have been cyclically permutated so that the distinguished
vertex lies in the first tree). Then there is a unique f ∈ F ′

p,∞,∞ such that B ′
r (f) = f ′

r for every r ≥ 1. We do not prove
this formally, but explain how to build f from (f ′

r ): for any s ≥ r , the forest Br(f
′
s ) is a cyclic permutation of f ′

r , and
this cyclic permutation does not depend on s for s large enough. Hence, we can set fr = Br(f

′
s ) for s large enough and

f = (fr)r≥1. Therefore, there is a unique p-admissible forest, that we denote by Skel(T ) and call the skeleton of T , such
that B ′

r (Skel(T )) = Skel(B•
r (T )) for every r ≥ 1. As in the finite case, the skeleton decomposition establishes a bijection

between one-ended infinite triangulations of the p-gon and pairs consisting of a p-admissible infinite forest f and a family
(Mv)v∈f∗ of maps such that Mv is a finite triangulation of a (cv + 2)-gon for every v.

Remark 2.5. In order to define the skeleton decomposition, it would have been more convenient to define an infinite
reverse forest f as the sequence (B ′

r (f)) instead of (Br(f)). The reason why we chose this definition is that it will later
make the decomposition of an infinite forest in infinite reverse trees much more convenient to define.

2.2. Computation of the skeleton decomposition of the hulls of Tλ

We now compute the law of the skeletons of the hulls of Tp
λ . The map T

p
λ can be seen as a triangulation of the cylinder

with infinite height. For every r ≥ 1, the map B•
r (T

p
λ ) is a triangulation of the cylinder of height r with bottom boundary

length equal to p.
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Lemma 2.6. Let 0 < λ ≤ λc. Let 	 be a triangulation of the cylinder of height r . We write p (resp. q) for the length of
its bottom (resp. top) boundary. Let f = Skel(	) ∈ F ′

p,q,r . Then

P
(
B•

r

(
T

p
λ

) = 	
) = q hλ(q)

p hλ(p)

∏
v∈f ∗

θλ(cv)
∏

v∈f ∗

λ|Mv |

wλ(cv + 2)
,

where:

• cv is the number of children of v in f ,
• h ∈ (0, 1

4 ] is given by (1),
• hλ(p) = 1

p
(8 + 1

h
)−pcλ(p),

• θλ is the offspring distribution whose generating function gλ is given by

gλ(x) =
∑
i≥0

θλ(i)x
i = 1

x
− (1 − x)(1 − √

1 − 4hx)

2hx2
. (11)

Proof. The proof is exactly the same as in the case λ = λc (Lemma 2 in [18]), up to changes of notation (the ρ of [18]
corresponds to our λ and the α corresponds to 8 + 1

h
). The same computations yield

θλ(i) = 1√
1 + 8h

(
h

1 + 8h

)i

wλ(i + 2), (12)

and the computation of gλ follows from (5). �

Let p,q, r ≥ 1 and f ∈ F ′
p,q,r . We sum the formula of Lemma 2.6 over all families (Mv)v∈f ∗ such that Mv is a

triangulation of a (cv + 2)-gon for every v. By the definition of wλ(i + 2), we have
∑

n≥0 #Ti+2,n
λn

wλ(i+2)
= 1 for every

i ≥ 0, so we get

P
(
Skel

(
B•

r

(
T

p
λ

)) = f
) = qhλ(q)

phλ(p)

∏
v∈f ∗

θλ(cv). (13)

Note that (13) describes explicitly the distribution of B ′
r (Skel(Tp

λ )), so we completely know the law of Skel(Tp
λ ). As

we will see in Section 2.3, this is in theory enough to prove Theorem 1. However, infinite leftmost geodesics are not
very tractable in this characterization. Hence, we will need to find another construction of the Skel(Tp

λ ) and prove it is
equivalent to (13). This will be the main goal of the rest of Section 2. Before moving on to the proof of Theorem 1, we
end this subsection with a few remarks about the perimeter process of Tλ.

We notice that (13) can be used to study the perimeter process of Tλ in the same way as the perimeter process of Tλc

is studied in [27] and [34]. More precisely, by the same computation as in the proof of Lemma 3 in [18], by summing
(13) over all (p, q, r)-admissible forests, we obtain

P
(∣∣∂B•

r

(
T

p
λ

)∣∣ = q
) = hλ(q)

hλ(p)
Pq

(
Xλ(r) = p

)
,

where Xλ is the Galton–Watson process with offspring distribution θλ. Since we know that (|∂B•
r (Tλ)|)r≥0 is a Markov

chain (by the spatial Markov property) and has the same transitions as the perimeter process of T1
λ, we even get, for every

p,q ≥ 1 and s ≥ r ≥ 0,

P
(∣∣∂B•

s (Tλ)
∣∣ = q

∣∣∣∣∂B•
r (Tλ)

∣∣ = p
) = hλ(q)

hλ(p)
Pq

(
Xλ(s − r) = p

)
. (14)

Let mλ = ∑
i≥0 iθλ(i) be the mean number of children. By (11), we can compute mλ = g′

λ(1) and obtain (2). In
particular, we have mλ ≤ 1, with equality if and only if λ = λc. Hence, the Galton–Watson process Xλ is subcritical for
λ < λc. We can therefore see the perimeter process of Tλ for λ < λc as a time-reversed subcritical branching process.
Note that the perimeters and volumes of the hulls in Tλ are already quite well-known. Sharp exponential growth for a
fixed λ < λc is proved in Section 2 of [16], whereas the near-critical scaling limit as λ → λc is studied in Section 3 of
[14]. Equation (14) together with Lemma 2.8 can give explicit formulas for the generating function of the perimeters of
the hull, so it should be possible to recover these results by using the same techniques as in [34], but we do not do this in
this work.
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Fig. 5. An infinite 1-admissible forest f in which 4 trees t1, t2, t3 and t4 reach reverse height 4. In red, the tree U(f) and the names of some of its
vertices. In the proof of Proposition 2.13 for r = 4, the pr

j
are equal to 2, 1, 2 and 1 and the h(fj ) are equal to 4, 0, 3 and 2.

2.3. Slicing the skeleton

The goal of this subsection is twofold. First, we explain the link between the skeleton decomposition and the infinite
leftmost geodesics of an infinite triangulation. Second, we introduce some formalism, that will later allow us to obtain a
construction of Skel(Tλ) that is more suitable for our purpose than (13).

Decomposition of a 1-admissible forest in reverse trees. An infinite 1-admissible forest f may contain several infinite
reversed trees, and we will need to study the way these trees are placed with respect to each other. This can be encoded by
a genealogical structure, which is described by the red tree on Figure 5. If t is one of the infinite trees of f, let hrev

min(t) be
the reverse height of the lowest vertex of t. We consider the set of pairs (t, i) where t is an infinite tree of f and i ≥ hrev

min(t).
If i > hrev

min(t), the parent of (t, i) is (t, i − 1). If i = hrev
min(t) > 0, let t′ be the first infinite tree on the left of t such that

hrev
min(t

′) ≤ i − 1 (note that t′ always exists because f is admissible). Then the parent of (t, i) is (t′, i − 1). Finally, if i = 0,
then (t, i) has no parent. This genealogy is encoded in an infinite plane tree with no leaf that we denote by U(f) (see
Figure 5). More intuitively, the tree U(f) is the tree whose branches pass between the infinite trees of f. Note that the
genealogy in U(f) is “reversed” compared to the genealogy in f: the parent of a vertex x of U(f) lies below x, whereas in
the forest f, the parent of a vertex lies above it. Therefore, the heights in U(f) match the reverse heights in f. We also write
Br(U(f)) for the subtree of U(f) whose vertices are the (t, i) with i ≤ r . Note that the tree Br(U(f)) is not a function of
Br(f) (it is impossible by looking at Br(f) to know if two vertices belong to the same infinite tree). Finally, it is easy to
see that a 1-admissible forest is completely described by the tree U(f) and the infinite trees it contains.

Leftmost infinite geodesics and decomposition of the skeleton in reverse trees. Let T be an infinite triangulation of a
1-gon, let ρ be its root vertex (i.e. the unique point on its boundary), and let f = Skel(T ). We have seen that for every
r ≥ 0, the paths going between the trees of Br(f) correspond to the leftmost geodesics from ρ to the vertices of ∂B•

r (T )

(cf. Figure 3). Therefore, infinite paths started from ρ in U(f) correspond to leftmost geodesic rays in T , so the tree of
leftmost infinite geodesics in T is isomorphic to U(f).

The skeleton decomposition of infinite strips. We will also need to describe the skeleton decomposition of strips, which
are infinite triangulations with two infinite geodesic boundaries. They correspond to the S0 and S1 appearing in Theo-
rem 1.

Definition 2.7. An infinite strip is a one-ended planar triangulation bounded by two infinite geodesics γ� (on its left) and
γr (on its right), and equipped with a root vertex ρ, such that:

(i) ρ is the only common point of γ� and γr ,
(ii) for every i, j ≥ 0, the path γr is the only geodesic from γr(i) to γr(j),

(iii) γr and γ� are the only leftmost geodesic rays in S.

Exactly as for infinite triangulations of the p-gon, if S is an infinite strip, we define its ball Br(S) of radius r as the
union of all its faces containing a vertex at distance at most r − 1 from ρ. We also define its hull B•

r (S) of radius r as
the union of Br(S) and all the finite connected components of its complement. To define the skeleton of an infinite strip
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Fig. 6. An infinite strip S and its skeleton.

S, we note that there is a simple transformation that associates to S an infinite triangulation of the p-gon, where p is
the number of edges on ∂B•

1 (S). More precisely, we write S̃ for the map obtained by rooting S \ B•
1 (S) at the leftmost

edge of ∂B•
1 (S) and gluing γ� and γr together. We define the skeleton of S as the skeleton of S̃ (see Figure 6). Like for

triangulations of the plane, the skeleton decomposition is a bijection between infinite strips and pairs consisting:

• on the one hand of an infinite reverse tree t that is rooted at its leftmost vertex of reverse height 0,
• on the other hand of a family of maps (Mv)v∈t such that Mv is a triangulation of a (cv + 2)-gon for every v.

The fact that t must be connected follows from the uniqueness of the leftmost geodesic rays γ� and γr in a strip (recall
that the trees of the skeleton are separated by infinite leftmost geodesics). Note that this time, the triangulations filling the
holes are indexed by t and not t∗ since the Mv for v at reverse height 0 are used to encode B•

1 (S) (see Figure 6).
Finally, let T be an infinite triangulation of a 1-gon, and let f be its skeleton. As we have seen above, the tree U(f) can

be seen as the tree of leftmost infinite geodesics of T . Moreover, U(f) cuts T into strips, whose skeletons are the infinite
reverse trees of f. This reduces the proof of Theorem 1 to the study of Skel(T1

λ).

2.4. The distribution of S0
λ and S1

λ

The goal of this subsection is to describe (without to build them explicitly) the strips S0
λ and S1

λ in a way that will allow us
to prove Theorem 1. This description will involve the quasi-stationary distribution of the branching process Xλ. Hence,
we start with two explicit computations about Xλ. First, we give an explicit formula for the iterates of the generating
function gλ. We define g◦r

λ by g◦0
λ = Id and g

◦(r+1)
λ = gλ ◦ g◦r

λ for every r ≥ 0. Note that g◦r
λc

is explicitly computed in
[18]: we have

g◦r
λc

(x) = 1 −
(

r + 1√
1 − x

)−2

(15)

for every x ∈ [0,1]. The iterates of gλ in the subcritical case are also computed in [34], with different notations. Note that
when λ → λc in the formula below, we recover (15).

Lemma 2.8. Let 0 < λ < λc . For every r ≥ 0, we have

g◦r
λ (x) = 1 − 1 − 4h

4h sinh2(argsh
√

1−4h
4h(1−x)

+ rbλ)
,

where bλ = argch 1√
4h

= − 1
2 lnmλ, and h is as in (1).

Proof. This computation is already done in Section 3.1 of [34], with different notation. In [34], the function ϕt (u) for
0 ≤ t ≤ 1 is defined by

ϕt (u) = ρs

αt

∑
i≥0

(αt)iwρs(i + 2)ui,

where α = 1
12 , ρ = 1

12
√

3
= λc and s = t

√
3 − 2t . For t = 12h

1+8h
, we have s = λ

λc
, so by (12), we have ρs

αt
(αt)iwρs(i +

2) = θλ(i) for every i ≥ 0, and our function gλ corresponds to the ϕt of [34] for t = 12h
1+8h

. Our formula follows then

immediately from Lemma 3 of [34]. Finally, using (2), it is easy to check that e−2bλ = mλ. �
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Remark 2.9. It is also possible to prove the last lemma directly by using (14). Indeed, the probability must add up to 1
when we sum them over q , which shows that (hλ(p)) is an invariant measure for Xλ. If we write Hλ(x) = ∑

p≥1 hλ(p)xp ,
this easily gives

Hλ

(
gλ(x)

) = Hλ(x) + Hλ

(
gλ(0)

)
,

so g◦r
λ (x) = H−1

λ (Hλ(x) + rHλ(gλ(0))). Since Hλ can be explicitly computed, this also gives the result.

Our second computation deals with the quasi-stationary measure of Xλ. We first recall a few facts about quasi-
stationary measures of Galton–Watson processes (see for example Chapter 7 of [10]). For every p ≥ 1, the ratio
P1(Xλ(n)=p)
P1(Xλ(n)=1)

, where P1 is the distribution of Xλ started from 1, is nondecreasing in n and converges to πλ(p) < +∞.
Moreover, let �λ be the generating function of (πλ(p))p≥1. In our case, it is explicit:

Lemma 2.10. For 0 < λ < λc, we have

�λ(x) = 1√
1 − 4h

(
1 − (1 − x)

( √
1 − 4h + 1√

1 − 4h + √
1 − 4hx

)2)
.

We also have

�λc(x) = 2

(
1√

1 − x
− 1

)
.

In particular, we have �λ(θλ(0)) = �λ(1 − h) = 1−√
1−4h

2h
.

Proof. By the definition of πλ(p), we have

�λ(x) = lim
n→+∞

g◦n
λ (x) − g◦n

λ (0)

(g◦n
λ )′(0)

.

Hence, by using Lemma 2.8, the computation of �λ(x) is straightforward. Note that the case λ = λc already appears in
[18] (in the proof of Lemma 3). �

We can now describe the distribution of S0
λ and S1

λ . We will first admit the existence of reverse trees with a certain
distribution (described by the next lemma), and later (Section 2.6) build these trees by a spine decomposition approach.

Lemma 2.11. There are two infinite reverse trees τ 0
λ and τ 1

λ whose distributions are characterized as follows. For every
r ≥ 0 and every forest (t1, . . . , tp) of height exactly r , we have

P
(
Br

(
τ 0

λ

) = (t1, . . . , tp)
) = πλ(p)m−r

λ

�λ(θλ(0))

p∏
i=1

∏
v∈ti

θλ(cv) (16)

and, if f has only one vertex at height r ,

P
(
Br

(
τ 1

λ

) = (t1, . . . , tp)
) = πλ(p)m−r

λ

θλ(0)

p∏
i=1

∏
v∈ti

θλ(cv), (17)

where cv is the number of children of v for every vertex v.

Moreover, let τ 1,∗
λ be the tree τ 1

λ in which we have cut the only vertex at reverse height 0. The reverse heights in τ 1,∗
are shifted by 1, so that the minimal reverse height in τ 1,∗ is 0. This allows us to define the two strips that appear in
Theorem 1.

Definition 2.12. We denote by S0
λ (resp. S1

λ) the random infinite strip whose skeleton is τ 0
λ (resp. τ 1,∗

λ ) and where
conditionally on the skeleton, all the holes are filled with independent Boltzmann triangulations with parameter λ.

The reason why we need to replace τ 1
λ by τ 1,∗

λ in this last definition is linked to the root transformation between Tλ

and T
1
λ, and will be explained in details in the end of Section 2.5 (see Figure 7).



1142 T. Budzinski

2.5. Proof of Theorem 1

The goal of this subsection is to prove Theorem 1. For this, we build a random infinite 1-admissible forest Fλ directly in
terms of its decomposition in reverse infinite trees, and we show that it has the same distribution as Skel(T1

λ).
We recall that μλ(0) = 0 and μλ(k) = mλ(1 − mλ)

k−1 for k ≥ 1. We have seen that an infinite 1-admissible forest f is
completely described by the tree U(f) and the infinite trees that f contains. Therefore, there is a unique (in distribution)
random 1-admissible forest Fλ such that U(Fλ) is a Galton–Watson tree with offspring distribution μλ and, conditionally
on U(Fλ):

(i) the trees of Fλ are independent,
(ii) the unique tree that reaches reverse height 0 has the same distribution as τ 1

λ,
(iii) all the other trees have the same distribution as τ 0

λ described above.

A more rigorous (but heavier) way to define F would be to build explicitly Br(F) by concatenating independent forests
of the form Bj (τ

0) and Bj (τ
1).

In order to prove that Fλ has indeed the same distribution as Skel(T1
λ), we need to introduce one last notation. Let f be

a 1-admissible forest, and let r ≥ 1. Let � be the number of infinite reverse trees of f that intersect Br(f), and let tr1, . . . , tr�
be these trees, from left to right. For every 1 ≤ j ≤ �, we denote by pr

j (f) the number of vertices of trj whose reverse
height in f is exactly r (see Figure 5 for an example). Note that for each 1 ≤ j ≤ �, the trees of Br(f) that belong to trj are
pr

j (f) consecutive trees of Br(f). Therefore, if we already know Br(f), knowing the values pr
j (f) is equivalent to knowing

which of the trees of Br(f) lie in the same infinite reverse tree of f. We write B̃r (f) for the pair (Br(f), (pr
1(f), . . . , p

r
�(f))).

The reason why we introduce this object is that its distribution for f = Fλ will be easier to compute.
The key result is the next proposition. As explained in Section 2.1, a 1-admissible forest f is characterized by its

reordered balls B ′
r (f), so the distribution of Skel(T1

λ) is characterized by the distribution of its reordered balls. Therefore,
the next proposition will imply that Fλ and Skel(T1

λ) have the same distribution, which implies Theorem 1.

Proposition 2.13. For every r ≥ 0, the forests B ′
r (Fλ) and Skel(B•

r (T1
λ)) have the same distribution.

Proof. In all this proof, we will fix 0 < λ ≤ λc and omit the parameter λ in the notation. The idea of the proof is the
following: we will first compute the law of B̃r (F), then that of Br(F) and finally that of B ′

r (F).
First, we know that Br(U(F)) is a tree with height r in which all the leaves lie at height r . Moreover, if t is such a tree,

we have

P
(
Br

(
U(F)

) = t
) =

∏
v∈t<r

m(1 − m)cv−1 = m|t<r |(1 − m)|t |−1−|t<r |, (18)

where t<r is the set of vertices of t at height strictly less than r , and cv is the number of children of a vertex v.
Now let (f, (p1, . . . , p�)) be a possible value of B̃r (F), i.e. f = (t1, . . . , tp) is a forest of height r , the positive integers

p1, . . . , p� satisfy p1 +· · ·+p� = p, and f has a unique vertex at reverse height 0 which lies in one of the trees t1, . . . , tp1 .
For every 1 ≤ j ≤ �, we write fj = (tp1+···+pj−1+1, . . . , tp1+···+pj

) and h(fj ) for the height of the forest fj . Each of these
forests corresponds to one of the infinite trees that reach reverse height r .

We now check that the tree Br(U(F)) is a measurable function of B̃r (F) (although not of Br(F)). The reader may find
helpful to look at Figure 5 while reading what follows. We consider the tree u whose vertices are the pairs (j, i) with
1 ≤ j ≤ � and r − h(fj ) ≤ i ≤ r , and in which:

(i) the pair (1,0) is the root vertex,
(ii) if i > r − h(fj ), then the parent of (j, i) is (j, i − 1),

(iii) if i = r − h(fj ), then the parent of (j, i) is (k, i − 1), where k is the greatest integer such that k < j and h(fk) ≥
r − i + 1.

This is the natural analog of U(f) for the finite forest f (cf. Figure 5). Note that for every 1 ≤ j ≤ �, there are exactly
h(fj ) + 1 vertices of u of the form (j, i), exactly one of which lies at height r . Hence, we have

�∑
j=1

h(fj ) = |u<r |. (19)

It is easy to see that if B̃r (F) = (f, (p1, . . . , p�)), then Br(U(F)) = u. It is also possible to read the heights h(fj ) on the
tree u: first, we have h(f1) = r . Moreover, if 2 ≤ j ≤ �, let xj be the j th leaf in u starting from the left. Then h(fj ) is
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the smallest h such that the ancestor of xj at height r − h is not the leftmost child of its parent (cf. Figure 5). Hence,
conditionally on Br(U(F)) = u, the forest B̃r (F) is a concatenation of � independent forests of heights h(f1), . . . , h(f�).
The first forest has the same distribution as Br(τ

1) and, for j ≥ 2, the j th forest has the same distribution as Bh(fj )(τ
0).

By combining this observation with (18) and Lemma 2.11, we obtain

P
(
B̃r (F) = (

f, (pi)1≤i≤�

)) = m|u<r |(1 − m)|u|−|u<r |−1 × π(p1)m
−r

θ(0)

∏
v∈f1

θ(cv)

×
�∏

j=2

π(pj )m
−h(fj )

�(θ(0))

∏
v∈fj

θ(cv)

= m
|u<r |−∑�

j=1 h(fj )
(1 − m)|u|−|u<r |−1

θ(0)�(θ(0))�−1

�∏
j=1

π(pj ) ×
∏
v∈f

θ(cv)

= 1

θ(0)

(
1 − m

�(θ(0))

)�−1 �∏
j=1

π(pj ) ×
∏
v∈f

θ(cv), (20)

where in the end, we used (19). Moreover, by Lemma 2.10, we can compute 1−m
�(g(0))

= √
1 − 4h.

We now compute the distribution of Br(F): let f = (t1, . . . , tp) be a possible value of Br(F), and let i0 be the index
such that the only vertex of reverse height 0 belongs to ti0 . We need to sum (20) over all the possible values of � ≥ 1
and p1, . . . , p� ≥ 1 such that

∑�
j=1 pj = p and p1 ≥ i0 (by construction of F, the lowest vertex always belongs to the

leftmost infinite tree). We obtain

P
(
Br(F) = f

) = 1

θ(0)

(∑
�≥1

(1 − 4h)
�−1

2
∑

p1+···+p�=p
p1≥i0

�∏
j=1

π(pj )

) ∏
v∈f

θ(cv). (21)

Now let f ′ = (t1, . . . , tp) be a possible value of B ′
r (F), i.e. a forest of height r in which the only vertex of reverse

height 0 lies in t1. To obtain P(B ′
r (F) = f ′), we need to sum Equation (21) over all the forests one may get by applying a

cyclic permutation to the trees of f ′. The values of p and
∏

v∈f θ(cv) are the same for all these forests, but the value of
i0 ranges from 1 to p, so we have

P
(
B ′

r (F) = f ′) = 1

θ(0)

(
p∑

i0=1

∑
�≥1

(1 − 4h)
�−1

2
∑

p1+···+p�=p
p1≥i0

�∏
j=1

π(pj )

) ∏
v∈f

θ(cv)

= 1

θ(0)

(∑
�≥1

(1 − 4h)
�−1

2
∑

p1+···+p�=p

p1

�∏
j=1

π(pj )

) ∏
v∈f

θ(cv).

By comparing this to (13), we only need to prove that for every p ≥ 1,

∑
�≥1

(1 − 4h)
�−1

2
∑

p1+···+p�=p

p1

�∏
j=1

π(pj ) = phλ(p)

hλ(1)
. (22)

It is enough to show that the generating functions of both sides coincide. But the generating function of the left-hand side
is

∑
p≥1

(∑
�≥1

(1 − 4h)
�−1

2
∑

p1+···+p�=p

p1

�∏
j=1

π(pj )

)
yp =

∑
�≥1

(1 − 4h)
�−1

2 y �′(y)�(y)�−1

= y �′(y)

1 − √
1 − 4h�(y)

,
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Fig. 7. On the left, the strip S1,+ and its skeleton τ1. On the right, the strip S1 and its skeleton τ1,∗. The root transformation contracting the face f1
(whose sides are in red on the left) sends the first strip to the second. The skeletons are in violet.

which is explicitly known by Lemma 2.10. On the other hand, we recall from Lemma 2.6 that hλ(p) = 1
p
(8+ 1

h
)−pcλ(p).

Hence, the generating function of the right-hand side of (22) is

1

cλ(1)

(
8 + 1

h

)∑
p≥1

(
8 + 1

h

)−p

cλ(p)yp = 1

y

1

cλ(1)

(
8 + 1

h

)
Cλ

(
h

1 + 8h
y

)
,

where Cλ is given by (9). Hence, it is easy to check that the generating functions of both sides of (22) coincide, which
concludes the proof. �

End of the proof of Theorem 1. By Proposition 2.13, the skeleton of T1
λ has the same distribution as Fλ. In particular, the

infinite leftmost geodesics are the paths separating infinite trees in Fλ, so their union is isomorphic to U(Fλ). Moreover,
consider the strips delimited by U(Fλ) in T

1
λ. Let e1 be the root edge of T1

λ (i.e. the loop on its boundary). The skeletons of
the strips that are not adjacent to e1 are independent copies of τ 0 and all the holes are filled with independent Boltzmann
triangulations with parameter λ, so these strips are independent copies of S0.

The case of the strip containing e1 needs to be handled more carefully because of the presence of the bottom boundary
(actually, this is not exactly a strip in the sense of Definition 2.7). More precisely, let S1,+ be the random strip obtained
from τ 1 as on the left part of Figure 7, where all the green holes are filled with independent Boltzmann triangulations with
parameter λ. Then the strip of T1

λ adjacent to e1 has skeleton τ 1 and its holes are filled with Boltzmann triangulations,
but it has a bottom boundary of length one, so it has the same distribution as S1,+.

Finally, we recall that Tλ is the image of T1
λ by the following root transformation. Let f1 be the face of T1

λ adjacent to
its boundary loop e1. We obtain Tλ by contracting e1 and gluing together the two other sides of f1. This transformation
does not affect the tree of infinite leftmost geodesics and the strips that are not adjacent to e1. Its effect on the strip S1,+
adjacent to e1 is described on Figure 7, and the strip we obtain is then S1. Note also that the root edge on the right of
Figure 7 may be on the boundary of the strip, but in this case it is necessarily on the left boundary, so S1 is always the
strip containing the face on the right of the root edge, as in the statement of the Theorem. This proves Theorem 1. �

2.6. Construction of reverse Galton–Watson trees and infinite strips

Our goal in this subsection is to construct the reverse subcritical trees τ 0 and τ 1 and to prove Lemma 2.11 and a few
useful estimates. We will also show that τ 0 is the local limit as n → +∞ of a subcritical Galton–Watson tree conditioned
to die at generation n, seen from its last generation. This is different from the more usual Galton–Watson tree conditioned
to survive [26], where the tree is seen from its root. Moreover, τ 1 is just τ 0, conditioned to have only one vertex at reverse
height 0. Our trees will be built by a spine decomposition approach, which will be useful to obtain geometric estimates
on these trees in Section 4. Since our proofs hold in a more general setting, we present the results of this subsection for
any critical or subcritical Galton–Watson process, and denote by g the generating function of the offspring distribution.
The trees τ 0

λ and τ 1
λ that we need are obtained by taking g = gλ.

We start with a vertical half-line which is infinite on the top side, that we call the spine. The root of the tree will be
the lowest point on the spine. For every r ≥ 1, we sample a random pair (Lr,Rr) of integers such that all these pairs are
independent and, for every i, j ≥ 0, we have

P(Lr = i,Rr = j) = g◦r (0) − g◦(r−1)(0)

g◦(r+1)(0) − g◦r (0)
θ(i + j + 1) g◦(r−1)(0)i g◦r (0)j . (23)
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Fig. 8. Construction of the tree τ0. Every vertex lies below its parent.

To check that (23) defines a probability measure, we just need to sum the right-hand side over pairs (i, j) with a fixed
value of k = i + j and then sum over k. Similarly, by a straightforward computation, we obtain

E[Lr + Rr ] = g◦r (0)g′(g◦r (0)) − g◦(r−1)(0)g′(g◦(r−1)(0))

g◦(r+1)(0) − g◦r (0)
− 1. (24)

We call sr the vertex at height r in the spine. For all r ≥ 2, let t r1 , . . . , t rLr
be Lr independent Galton–Watson trees

with offspring distribution θ conditioned on having height at most r − 2. We graft Lr edges to the left of the vertex
sr , and the trees t r1 , . . . , t rLr

to the other ends of these edges. Similarly, for all r ≥ 1, let ur
1, . . . , u

r
Rr

be Rr independent
Galton–Watson trees with offspring distribution θ conditioned on having height at most r − 1. We graft Rr edges to the
right of sr and the trees ur

1, . . . , u
r
Rr

to the other ends of these edges (see Figure 8).

We denote by τ 0 the infinite tree we obtain, and we define a genealogy on it: for every r ≥ 1, the children of sr are
sr−1 and the roots of the trees t ri and ur

j . Inside the trees t ri and ur
j , the genealogy is the usual one in a Galton–Watson

tree. We fix the reverse height of the root at 0 and declare that the parent of a vertex of reverse height r has reverse height
r + 1 (it corresponds to the height of the vertices on Figure 8). By the conditioning we have chosen for the trees t ri and
ur

j , every vertex of the tree has a nonnegative reverse height, and the root is the leftmost vertex with reverse height 0.

Lemma 2.14. For every r ≥ 0, the tree τ 0 has a finite number of vertices at height r .

Proof. We fix r ≥ 0 and take r ′ > r , and we define Ar ′
r as the event{

one of the trees grafted at sr ′ reaches reverse height r in τ 0
}
.

We want to show that P(Ar ′
r ) decreases fast enough in r ′. Consider one of the trees t r

′
i grafted on the left of the spine

at sr ′ . This is a Galton–Watson tree conditioned to have height at most r ′ − 2, so the probability that t r
′

i has height at

least r ′ − r − 1 is g◦(r′−1)(0)−g◦(r′−r−1)(0)

g◦(r′−1)(0)
. The denominator is larger than 1

2 for r ′ large enough. Hence, the probability

that one of the Lr ′ trees grafted on the left of sr ′ reaches reverse height r is at most 2(g◦(r ′−1)(0) − g◦(r ′−r−1)(0))E[Lr ′ ].
Similarly, the probability of the analog event on the right is at most 2(g◦r ′

(0) − g◦(r ′−r−1)(0))E[Rr ′ ]. Therefore, for r ′
large enough, we have

P
(
Ar ′

r

) ≤ 2
(
g◦r ′

(0) − g◦(r ′−r−1)(0)
)
E[Lr ′ + Rr ′ ].

Moreover, the right-hand side of (24) can be rewritten g̃(xr )−g̃(xr−1)

xr+1−xr
, where we write xr = g◦r (0) and g̃(x) = xg′(x)−g(x)

for x ∈ [0,1]. We want to prove
∑

r ′>r P(Ar ′
r ) < +∞, that is

2
∑
r ′>r

xr ′ − xr ′−r−1

xr ′+1 − xr ′

(
g̃(xr ′) − g̃(xr ′−1)

)
< +∞. (25)

Since g is 1-Lipschitz, the sequence (xr ′+1 − xr ′)r ′≥0 is nonincreasing, so we have

xr ′ − xr ′−r−1

xr ′+1 − xr ′
≤ (r + 1)

xr ′−r − xr ′−r−1

xr ′+1 − xr ′
= (r + 1)(xr ′−r − xr ′−r−1)

g◦(r+1)(xr ′−r ) − g◦(r+1)(xr ′−r−1)
→ r + 1

(g◦(r+1))′(1)



1146 T. Budzinski

as r ′ → +∞. In particular, in (25), the first factor is bounded while the second is nonnegative and telescopic, so the sum
converges. Therefore, a.s. Ar ′

r does not occur for r ′ large enough, which proves the lemma. �

For r ≥ 0, let dr(τ
0) be the tree of descendants of the r th vertex sr of the spine.

Lemma 2.15. The tree dr(τ
0) has the same distribution as a Galton–Watson tree with offspring distribution θ , condi-

tioned to have height exactly r .

Proof. Let t be a finite plane tree of height r . Let s0(t) be its leftmost vertex of reverse height 0 and let sr (t) be its root.
Let (s0(t), s1(t), . . . , sr (t)) be the unique geodesic path from s0(t) to sr (t). For every 1 ≤ i ≤ r , let �i(t) (resp. ri(t)) be
the number of children of si(t) on the left (resp. on the right) of si−1(t), and let (vi

j (t))1≤j≤�i (t) (resp. (wi
j (t))1≤j≤ri (t))

be those children. Finally, for every i and j , let t ij (t) (resp. ui
j (t)) be the tree of descendants of vi

j (t) (resp. wi
j (t)). Then

we have

P
(
dr

(
τ 0) = t

) =
r∏

i=1

P
(
Li = �i(t),Ri = ri(t)

) ×
r∏

i=1

(
�i (t)∏
j=1

P
(
t ij = t ij (t)

) ×
ri (t)∏
j=1

P
(
ui

j = ui
j (t)

))
. (26)

Moreover, by definition of t ij and ui
j , we have

P
(
t ij = t ij (t)

) = 1

g◦(r−1)(0)

∏
v∈t ij (t)

θ(cv) and P
(
ui

j = ui
j (t)

) = 1

g◦r (0)

∏
v∈ui

j (t)

θ(cv).

By combining this with (23) and (26), we obtain

P
(
dr

(
τ 0) = t

) = 1

g◦(r+1)(0) − g◦r (0)

∏
v∈t

θ(cv),

which concludes. �

Now let r ≥ 0. By Lemma 2.14, there is r ′ ≥ r such that all the vertices of reverse height at most r lie in dr ′(τ 0).
Hence, τ 0 is the a.s. local limit as r ′ → +∞ of dr ′(τ 0) rooted at its leftmost vertex of height r ′. By Lemma 2.15, this
proves that τ 0 is the local limit (in distribution) as r ′ → +∞ of Galton–Watson trees conditioned on extinction at time
r ′, seen from the last generation.

In particular, for every r ≥ 0, let Y(r) be the number of vertices of τ 0 at reverse height r . Then (Y (−r))r≤0 is
the limit in distribution as n → +∞ of a Galton–Watson process with offspring distribution θ , started from 1 at time
−n and conditioned on extinction at time exactly 1. Hence, Y has the same distribution as the reverse Galton–Watson
process described by Esty in [22], started from 0 at time −1. In particular, by Equation 3 of [22], we obtain explicitly the
distribution of Y(r).

Lemma 2.16. For all r ≥ 0 and p ≥ 1, we have

P
(
Y(r) = p

) = π(p)m−r

�(θ(0))

(
g◦(r+1)(0)p − g◦r (0)p

)
.

We also define τ 1 as the tree τ 0, conditioned on Y(0) = 1. We can now prove Lemma 2.11.

Proof of Lemma 2.11. We start with the first part of the lemma (i.e. the part related to τ 0).
Let R be the smallest r ′ such that sr ′ is an ancestor of all the vertices at reverse height r in τ 0. For every r ′ > r , the

event {R ≤ r ′} depends only on the trees t ij and ui
j for i > r ′, so it is independent of the tree dr ′(τ 0). We write Y(r, r ′)

for the number of descendants of sr ′ at reverse height r , and Br ′
r (τ 0) for the forest consisting of the trees of descendants

of these vertices. We have

P
(
Br

(
τ 0) = (t1, . . . , tp)

) = lim
r ′→+∞

P
(
R ≤ r ′,Br

(
τ 0) = (t1, . . . , tp)

)
= lim

r ′→+∞
P
(
R ≤ r ′,Br ′

r

(
τ 0) = (t1, . . . , tp)

)
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= lim
r ′→+∞

P
(
R ≤ r ′)

P
(
Y

(
r, r ′) = p

)
× P

(
Br ′

r

(
τ 0) = (t1, . . . , tp)

∣∣Y (
r, r ′) = p

)
.

But by Lemma 2.15, the tree dr ′(τ 0) has the same distribution as a Galton–Watson tree conditioned to have height r ′.
From here, it is easy to show that the distribution of Br ′

r (τ 0) conditioned on Y(r, r ′) = p is that of a Galton–Watson forest
of p trees conditioned to have height r , i.e.

P
(
Br ′

r

(
τ 0) = (t1, . . . , tp)|Y (

r, r ′) = p
) = 1

g◦(r+1)(0)p − g◦r (0)p

p∏
i=1

∏
v∈ti

θ(cv).

On the other hand, by using again the independence of {R ≤ r ′} and dr ′(τ 0), we have

lim
r ′→+∞

P
(
R ≤ r ′)

P
(
Y

(
r, r ′) = p

) = lim
r ′→+∞

P
(
R ≤ r ′, Y

(
r, r ′) = p

)
= lim

r ′→+∞
P
(
R ≤ r ′, Y (r) = p

)
= P

(
Y(r) = p

)
= π(p)m−r

�(θ(0))

(
g◦(r+1)(0)p − g◦r (0)p

)
by Lemma 2.16, which proves the first part of the lemma.

Given the definition of τ 1, the proof of the second part is now easy. For every forest (t1, . . . , tp) of height r with
exactly one vertex at reverse height 0, we have

P
(
Br

(
τ 1) = (t1, . . . , tp)

) = P
(
Br

(
τ 0) = (t1, . . . , tp)

∣∣Y(0) = 1
)

= P(Br(τ
0) = (t1, . . . , tp))

P(Y (0) = 1)
.

By Lemma 2.16 we have P(Y (0) = 1) = θ(0)
�(θ(0))

, so the second part of the lemma follows from the first one. �

We end up this subsection by showing that the strips S0
λ and S1

λ constructed from τ 0
λ and τ 1

λ are in some sense very
close to each other. This will allow us in Section 4 to conclude a strip verifies a property if the other does, and therefore
to avoid annoying case distinctions.

Lemma 2.17. Let λn → λc and let (An) be measurable events. Then the following two assertions are equivalent:

(i) P(S0
λn

∈ An) −−−−→
n→+∞ 0,

(ii) P(S1
λn

∈ An) −−−−→
n→+∞ 0.

Proof. We will show that the strips S0
λn

and S1
λn

are absolutely continuous with respect to each other, uniformly in n. For

this, we recall that τ 1,∗ is the tree τ 1 in which we have cut the only vertex at reverse height 0, and we have shifted the
reverse heights by 1. We will first prove that τ 1,∗ has the same distribution as τ 0 biased by Y(0), and then extend this
absolute continuity relation to the strips.

Indeed, for any forest f ∈ Fp,q,r , we have

P
(
Br

(
τ 1,∗) = f

) =
∑

v∈f \f ∗
P
(
Br+1

(
τ 1) = f +

v

)
,

where f \ f ∗ is the set of vertices of f at reverse height 0, and f +
v is the forest of F1,q,r+1 obtained by adding a unique

child to v in f . By the second part of Lemma 2.11, we obtain

P
(
Br

(
τ 1,∗) = f

) = θ(1)

θ(0)
pπ(q)m−r−1

∏
v∈f

θ(cv).
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Combined with the first part of Lemma 2.11, this yields

P(Br(τ
1,∗) = f )

P(Br(τ 0) = f )
= θ(1)

θ(0)

�(θ(0))

m
p. (27)

In other words, the forest Br(τ
1,∗) has the distribution of Br(τ

0), biased by Y(0). Since it is true for all r , we can
conclude that τ 1,∗ has the distribution of τ 0 biased by Y(0). Since S1 is constructed from τ 1,∗ in the exact same way as
S0 is constructed from τ 0, we deduce that S1

λn
has the same distribution as S0

λn
biased by Yλn(0). It remains to prove that

this absolute continuity is “uniform in n”.
More precisely, if (An) is a sequence of measurable events, for any n ≥ 0, we have

P
(
S1

λn
∈ An

) =
E[Yλn(0)1S0

λn
∈An

]
E[Yλn(0)] . (28)

Moreover, (27) shows that

E
[
Yλ(0)

] = θλ(0)

θλ(1)

mλ

�λ(θλ(0))
= 1 − h

2h(1 − h)

1 − 2h − √
1 − 4h

1 − √
1 − 4h

,

which is continuous at λ = λc. Therefore, the denominator in (28) converges to a positive limit, so it is enough to prove
that P(S0

λn
∈ An) → 0 if and only if E[Yλn(0)1S0

λn
∈An

] → 0. The indirect implication is immediate since Yλn(0) ≥ 1. To

prove the direct one, it is enough to check the variables Yλn(0) are uniformly integrable. We know that they converge to
Yλc (0) in distribution. By the Skorokhod representation theorem, we may assume the convergence is almost sure. Since
we also have convergence of the expectations by (28), by Scheffé’s Lemma we have Yλn(0) → Yλc (0) in L1. In particular,
the family (Yλn(0)) is uniformly integrable, which proves the direct implication and finally the lemma. �

3. The Poisson boundary of Tλ

The goal of this section is to prove Theorem 2. We fix 0 < λ < λc until the end of the section and omit the parameter λ in
most of the notation.

3.1. Construction of the geodesic boundary

We start by defining precisely the compactification of T that we will afterwards prove to be a realization of its Poisson
boundary. We recall that ∂Tg is the set of ends of the tree Tg , i.e. the set of infinite self-avoiding paths from the root in
Tg . If γ, γ ′ ∈ ∂Tg , we write γ ∼ γ ′ if γ = γ ′ or if γ and γ ′ are the left and right boundaries of one of the copies of S0

or S1 (cf. left part of Figure 1). Note that a.s., every ray of Tg branches infinitely many times, so no ray is equivalent to
two distinct other rays. It follows that ∼ is a.s. an equivalence relation, for which countably many equivalence classes
have cardinal 2, and all the others have cardinal 1. We write ∂̂Tg = ∂Tg/ ∼, i.e. we identify two geodesic rays if they are
the left and right boundaries of the same strip. We also write γ → γ̂ for the canonical projection from ∂Tg to ∂̂Tg . If S

is one the copies of S0 or S1 appearing in the strip decomposition, then the two geodesics bounding S correspond to the
same point of ∂̂Tg , that we denote by γ̂S .

Our goal is now to define a topology on T ∪ ∂̂Tg . It should be possible to define it by an explicit distance, but such
a distance would be tedious to write down, so we prefer to give an “abstract” construction. Let S and S′ be two distinct
strips appearing in the strip decomposition of T (cf. left part of Figure 1). Consider the smallest r such that S and S′ both
intersect B•

r (T). Then T \ (B•
r (T) ∪ S ∪ S′) has two connected components, that we denote by (S,S′) and (S′, S) (the

vertices on the geodesics bounding S and S′ do not belong to (S,S′) and (S′, S)). We also write

∂g

(
S,S′) = {

γ̂
∣∣γ is a ray of Tg such that γ (i) ∈ (

S,S′) for i large enough
}

We define ∂g(S
′, S) similarly. Note that ∂g(S,S′) and ∂g(S

′, S) are disjoint, and their union is ∂̂Tg \ {γ̂S, γ̂S′ }.

Definition 3.1. The geodesic compactification of T is the set T∪ ∂̂Tg , equipped with the topology generated by

• the singletons {x}, where x is a vertex of T,
• the sets (S,S′) ∪ ∂g(S,S′), where S and S′ are two distinct strips appearing in the strip decomposition of T.
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This topology is separated (if γ̂1 �= γ̂2, then there are two strips separating γ1 and γ2) and has a countable basis, so
it is induced by a distance. Moreover, any open set of our basis intersects T, so T is dense in T ∪ ∂̂Tg . The end of
this subsection is devoted to the proof of two very intuitive topological properties of the geodesic compactification. The
second one states that the boundary ∂̂Tg is homeomorphic to the circle, which is natural since this is also the standard
topology on the space of ends quotiented by our equivalence relation.

Lemma 3.2. The space T∪ ∂̂Tg is compact.

Proof. Let (xn) be a sequence with values in T∪ ∂̂Tg . We first assume xn ∈ T for every n. We may assume d(ρ, xn) →
+∞. If there is a strip S that contains infinitely many xn, then γ̂S is a subsequential limit of (xn). We now assume it is
not the case. We recall that for every vertex v of Tg , the slice S[v] is the part of T lying between the leftmost and the
rightmost rays passing through v, above v (see Figure 1). We will construct a ray γ of Tg step by step, in such a way that
for every k ≥ 0, there are infinitely many points xn in S[γ (k)].

Assume we have already built γ (0), . . . , γ (k). If γ (k) has only one child in Tg , then γ (k + 1) must be this child. If
γ (k) has d ≥ 2 children, we call them y1, . . . , yd . Then S[γ (k)] is the union of the slices S[yi] for 1 ≤ i ≤ d and of the
d − 1 strips whose lowest vertex is γ (k). We know that S[γ (k)] contains infinitely many of the vertices xn, but the d − 1
strips contain finitely many of them. Therefore, there is an index 1 ≤ i0 ≤ d such that S[yi0 ] contains infinitely many of
them. We choose γ (k + 1) = yi0 . We can check that the class γ̂ of the geodesic we built is a subsequential limit of (xn),
which concludes the case where xn ∈ T for every n.

Finally, let δ be a distance on T ∪ ∂̂Tg that generates its topology, and let (xn) be any sequence in T ∪ ∂̂Tg . If
xn ∈ ∂̂Tg , let yn ∈ T be such that δ(xn, yn) ≤ 1

n
(it exists by density). If xn ∈ T, we take yn = xn. By the first case (yn)

has a subsequential limit, so (xn) also has one. �

Lemma 3.3. The boundary ∂̂Tg is homeomorphic to the circle.

Proof. We build an explicit homeomorphism. Consider a ray γ of Tg . For every i ≥ 0, let cγ (i) be the number of children
of γ (i) in Tg . We denote these children by x0, . . . , xcγ (i)−1 and we denote by jγ (i) the index j ∈ {0,1, . . . , cγ (i) − 1}
such that γ (i + 1) = xj . We also define

� : ∂Tg −→R/Z,

γ −→
∑
k≥0

jγ (k)∏k
i=0 cγ (i)

(mod 1).

If γ� and γr are the left and right boundaries of a copy of S0, then there is i0 such that:

• for i < i0, we have cγr (i) = cγ�
(i) and jγr (i) = jγ�

(i),
• we have cγr (i0) = cγ�

(i0) and jγr (i0) = jγ�
(i0) + 1,

• for i > i0, we have jγ�
(i) = cγ�

(i) − 1 and jγr (i) = 0,

which implies �(γ�) = �(γr). Moreover, if γ� and γr are respectively the leftmost and rightmost rays of Tg , then
�(γ�) = �(γr) (the sum is equal to 0 for γ� and to 1 for γr ). Hence, we have �(γ ) = �(γ ′) as soon as γ ∼ γ ′, so �

defines an application from ∂̂Tg to R/Z. The verification that this application is a homeomorphism is easy and left to the
reader. �

3.2. Proof of Theorem 2

We first argue why the second point of Theorem 2 is an easy consequence of the first one. Assume the first point is proved.
Since ∂̂Tg is homeomorphic to the circle, we can embed T∪ ∂̂Tg in the unit disk D in such a way that ∂̂Tg is sent to ∂D

(we do not describe the embedding explicitly). In this embedding, the simple random walk converges to a point of ∂D

and the law of the limit point is a.s. non-atomic. Therefore, by Theorem 1.3 of [24], ∂̂Tg is a realization of the Poisson
boundary of T.

The idea of the proof of the first point is to first show that two independent random walks are quite well separated in
terms of ∂̂Tg . Let X1 and X2 be two independent simple random walks started from ρ. By Proposition 11 of [16] we
know that T is transient and does not have the intersection property (although [16] deals with type-II triangulations, all
the arguments of the proof still hold in our case). Hence, the complement of {X1

n|n ∈ N} ∪ {X2
n|n ∈ N} has two infinite

connected components with infinite boundaries. We denote them by [X1,X2] and [X2,X1]. By point (ii) of Lemma 1.2
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applied to the peeling along X1 and X2 (see also Section 3.2 of [16] for a similar argument), the halfplanar triangulations
[X1,X2] and [X2,X1] are independent copies of H=Hλ.

Therefore, we will need to study geodesics in halfplanar triangulations.

Definition 3.4. Let H be a halfplanar triangulation and ∂H its boundary. An infinite geodesic away from the boundary
is a sequence (γ (n))n≥0 of vertices of H such that for any n ≥ 0:

(i) the vertices γ (n) and γ (n + 1) are neighbours,
(ii) we have d(γ (n), ∂H) = n.

Remark 3.5. Contrary to geodesics away from a point, the existence of such geodesics is not obvious. For example, they
do not exist in the UIHPT Hλc .

Lemma 3.6. Almost surely, there is a geodesic away from the boundary in Hλ.

Proof. We write Pr = |∂B•
r (T)| and Lr = |∂B•

r (T) ∩ Tg|. We recall that Tg is a Galton–Watson tree with offspring
distribution μ given by Theorem 1. In particular, we have

∑
i≥0 iμ(i) = m−1

λ and
∑

i≥0(i log i)μ(i) < +∞, so by the
Kesten–Stigum Theorem mr

λLr converges a.s. to a positive random variable. On the other hand, as in Section 2 of [16],
it holds that mr

λPr converges a.s. to a positive random variable ([16] only deals with type-II triangulations but all the
arguments of the proof still work in the type-I case). Hence, there is a constant c > 0 such that, for r large enough,

P(Lr ≥ cPr) ≥ 1

2
.

Therefore, if zr is a random vertex chosen uniformly on ∂B•
r (T), for r large enough we have P(zr ∈ Tg) ≥ c

2 . Hence, for
any s > 0, with probability at least c

2 , there is a point x ∈ ∂B•
r+s(T) at distance exactly s from zr .

But H is the local limit as r → +∞ of T \ B•
r (T) (rooted at a uniform edge on its boundary), so if ρ denotes the root

vertex of H, for any s ≥ 0, we have

P
(
there is x ∈ H such that d(x,ρ) = d(x, ∂H) = s

) ≥ c

2
.

This event is nonincreasing in s, so with probability at least c
2 it occurs for every s. By a compactness argument, with

probability at least c
2 , there is an infinite geodesic away from the boundary γ with γ (0) = ρ. Finally, we claim that

H is invariant under root translation, and that the root translation is ergodic, which is enough to conclude. Indeed, by
local limit, the invariance is a consequence of the invariance of Tp for every p under re-rooting along the boundary. The
ergodicity is proved in the type-II case in [7] (this is Proposition 1.3), and the proof adapts well here. �

We can now show that X1 and X2 are a.s. separated by an infinite leftmost geodesic.

Lemma 3.7. Almost surely, there is a ray γ̂ of Tg such that for n large enough, we have γ̂ (n) ∈ [X1,X2], and the same
is true for [X2,X1].

Proof. In this proof, we will write H = [X1,X2] to avoid too heavy notations. Let γ be an infinite geodesic away from
the boundary in H , which exists by Lemma 3.6. For n ≥ 0, let (γn(i))0≤i≤d(ρ,γ (n)) be the leftmost geodesic from ρ to
γ (n) (cf. Figure 9). For n ≥ i ≥ d(ρ, γ (0)), we have i ≤ n = d(γ (n), ∂H) ≤ d(γ (n),ρ) so γn(i) is well defined, and

d
(
γ (n), γn(i)

) = d
(
ρ,γ (n)

) − i (since γ is a geodesic)

≤ n + d
(
ρ,γ (0)

) − i (by the triangular inequality)

≤ n

= d
(
γ (n), ∂H

)
,

so γn(i) ∈ H . But by a compactness argument, there is an infinite path γ̃ in T such that for any i, there are infinitely
many n such that γ̃ (i) = γn(i). It easy to check that γ̃ is an infinite leftmost geodesic in T. Moreover, since γn(i) ∈ H

for n ≥ i ≥ d(ρ, γ (0)), we have γ̃ (i) ∈ H for i large enough, so there is an infinite leftmost geodesic of T that lies in H

eventually. �
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Fig. 9. From an infinite geodesic away from the boundary in H , we can build an infinite leftmost geodesic in T, that lies in H eventually.

Fig. 10. Proof that Acc(X) is an arc circle: assume X oscillates between γ1 and γ2 and there is γ ′ ∈ (γ̂2, γ̂1) that X intersects only finitely many times.
Then X intersects infinitely many times every γ with γ̂ ∈ (γ̂1, γ̂2).

Proof of Theorem 2. We can now prove the convergence of the simple random walk to a point of ∂̂Tg . If X is a simple
random walk, we write Acc(X) for the set of accumulation points of X on ∂̂Tg . By Lemma 3.2, it is enough to prove that
Acc(X) is reduced to a point. We first claim that Acc(X) is a circle arc of ∂̂Tg . Indeed, assume γ̂1 �= γ̂2 are two points of
Acc(X). Then ∂̂Tg \{γ̂1, γ̂2} has two connected components, that we denote by (γ̂1, γ̂2) and (γ̂2, γ̂1). To oscillate between
γ̂1 and γ̂2, the walk X must intersect infinitely many times either all the γ such that γ̂ ∈ (γ̂1, γ̂2) or all the γ such that
γ̂ ∈ (γ̂2, γ̂1) (see Figure 10). In both cases, Acc(X) contains one of the two arcs from γ̂1 to γ̂2. Hence, Acc(X) is closed
and connected, so it is a circle arc.

Now let ν be a probability measure with no atom and full support on ∂̂Tg (for example, one can consider the exit
measure of the nonbacktracking random walk on Tg). Either Acc(X) is a singleton, or it has positive measure, so it is
enough to show that P(ν(Acc(X)) > 0) = 0. By Lemma 3.7, we know that if X1 and X2 are two independent simple
random walks started from ρ, then there are two rays of Tg lying respectively in [X1,X2] and [X2,X1] eventually, so
they separate X1 and X2. Therefore, Acc(X1) ∩ Acc(X2) contains at most two points, so ν(Acc(X1) ∩ Acc(X2)) = 0
a.s.. Let Xi for i ∈ N be infinitely many independent simple random walks started from ρ. We have∑

i≥0

ν
(
Acc

(
Xi

)) = ν

(⋃
i≥0

Acc
(
Xi

)) ≤ 1.

But the ν(Acc(Xi)) are i.i.d. (conditionally on T), so they must be 0 a.s.. Therefore, Acc(X) cannot have positive measure
so it is a.s. a point.

Hence, the simple random walk a.s. converges to a point of ∂̂Tg , so it defines an exit measure on ∂̂Tg , that we denote
by ν∂ . We now prove that ν∂ is nonatomic. Once again, our main tool is Lemma 3.7. Assume ν∂ has an atom with positive
probability, and let (Xi)1≤i≤4 be four independent SRW started from ρ. For every 1 ≤ i ≤ 4, let Xi∞ be the limit of Xi in
∂̂Tg . Then P(X1∞ = X2∞ = X3∞ = X4∞) > 0. If this happens, we can assume (up to a factor 1

24 ) that they lie in clockwise
order, and that ∂̂Tg \ {X1∞} lies in the part between X4 and X1. By Lemma 3.7, there are at least one ray of Tg between
X1 and X2, one between X2 and X3 and one between X3 and X4 (cf. Figure 11). Hence, there are at least three rays of Tg
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Fig. 11. Sketch of the proof that ν∂ is nonatomic: if X1, . . . ,X4 are four independent simple random walks, then there are three infinite leftmost
geodesics (in red) between X1 and X4, so there is a slice S[y] there. The hulls of the four random walks are in green.

in the part between X1 and X4 that does not contain ∂̂Tg \ {X1∞}. In particular, two of them are not equivalent for ∼ (we
recall that the equivalence classes have cardinal at most 2). Hence, the part lying between X1 and X4 containing X2 and
X3 (the left part on Figure 11) also contains a slice of the form S[y] (see Figure 1), so X1∞ �= X4∞. We get a contradiction.

We finally show that ν∂ has full support. Since ν∂ is nonatomic, we have ν∂({γ̂S1}) = 0 a.s. Hence, a.s., we have
Xn ∈ S[ρ] = S for n large enough. Therefore, we also have

P
(∀k ≥ 0,Xk ∈ S[ρ]∣∣X0 = ρ

)
> 0 a.s.

Now fix r > 0, condition on B•
r (T) and take x ∈ Tg such that d(ρ, x) = r . Since S[x] has the same distribution as S[ρ]

(see Figure 1), we have

P
(∀k ≥ 0,Xk ∈ S[x]∣∣X0 = x

)
> 0 a.s.

Hence, we have P(Xk ∈ S[x] for k large enough|X0 = ρ) > 0 a.s. If this occurs, then X∞ is of the form γ̂ , where γ (k) ∈
S[x] for k large enough. Therefore, we have

ν∂

({
γ̂
∣∣γ lie in S[x] eventually

})
> 0 a.s.

Almost surely, this holds for every x ∈ Tg , which is enough to ensure that ν∂ has full support. This ends the proof of
Theorem 2. �

Remark 3.8. We end this section with a remark about the Gromov boundary [23], which is another natural notion of
boundary for an infinite graph G = (V ,E). Let C(G) be the space of functions f : V → R equipped with the product
topology. We say that two functions of C(G) are equivalent if they are equal up to an additive constant. We quotient C(G)

by this equivalence relation to obtain the quotient space C(G)/R. If x ∈ V , we define fx ∈ C(G)/R by fx(y) = dG(x, y)

for any y ∈ V . The Gromov compactification Ĝ of G is the closure of {fx |x ∈ V } in C(G)/R and the Gromov boundary
∂GrG of G is the set Ĝ \ {fx |x ∈ V }.

It is easy to show that for any geodesic ray γ , the sequence fγ (n) converges in C(G)/R, so it defines a point fγ ∈ ∂GrT.
A natural question is to ask whether there is a natural correspondence between ∂̂Tg and ∂GrT. The answer is no.

To prove it, we show that if γ1 and γ2 are respectively the left and right boundary of the same strip, then fγ1 �=
fγ2 . Indeed, let n be such that γ1(n) /∈ γ2. We have fγ1(γ1(n)) − fγ1(ρ) = −n by definition of fγ1 . But if we had
fγ2(γ1(n)) − fγ2(ρ) = −n, this would mean that there is m > n such that d(γ2(m), γ1(n)) − d(γ2(m),ρ) = −n, i.e.
d(γ2(m), γ1(n)) = m−n. Take such an m minimal. Then by concatenating γ1 from ρ to γ1(n) and a geodesic from γ1(n)

to γ2(m), we obtain a geodesic from ρ to γ2(m) that lies strictly to the left of γ2. This contradicts the fact that γ2 is a
leftmost geodesic in T. This suggests that ∂GrT should not be homeomorphic to the circle, but rather to a Cantor set.

4. The tree of infinite geodesics in the hyperbolic Brownian plane

4.1. The tree Tg(Ph)

The goal of this section is to take the scaling limit of Theorem 1 and to prove Theorem 3. For all this section, we fix
a sequence (λn) of numbers in (0, λc] such that λn = λc(1 − 2

3n4 ) + o( 1
n4 ). We know, by the main result of [14], that
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Fig. 12. Proposition 4.2: almost surely, for any x, none of these two cases occurs.

1
n
Tλn converges for the local Gromov–Hausdorff distance to Ph. Therefore, it seems reasonable that Tg(Ph) should be

the scaling limit of the trees Tg
λn

. This scaling limit is easy to describe. We recall that B is the infinite tree in which every
vertex has exactly two children, except the root which has one. For α > 0, we denote by Yα the Yule tree of parameter α,
i.e. the tree B in which the lengths of the edges are i.i.d. exponential variables with parameter α.

Lemma 4.1. The trees 1
n

Tg
λn

converge for the local Gromov–Hausdorff distance to Y2
√

2.

Sketch of proof. We recall that Tg
λn

is a Galton–Watson tree with offspring distribution μλn , where μλn(k) = mλn(1 −
mλn)

k−1 for every k ≥ 1, and mλ is explicitly given by (2). We can compute mλn = 1 − 2
√

2
n

+ O( 1
n2 ). Let μ̃λ be the

distribution defined by μ̃λ(1) = mλ and μ̃λ(2) = 1 − mλ, and let T̃g
λ be a Galton–Watson tree with offspring distribution

μ̃λ. Then T̃g
λ is a copy of B where the length of each edge is a geometric variable of parameter 1 − mλ, so 1

n
T̃g

λn

converges to Y2
√

2. Moreover, Tg
λ can be obtained by adding children to some of the vertices of T̃g

λ with two children.

Since μλn([3,+∞[) = O( 1
n2 ), the probability to affect a vertex is of order 1

n2 . The number of vertices at height of order

n in Tg
λn

is of order n, so the difference bewteen Tg
λn

and T̃g
λn

does not affect the scaling limit. �

However, taking the scaling limit of Tg
λn

is not enough to obtain a description of infinite geodesics in Ph. Three
different kinds of problems could prevent this:

(i) it is not completely clear that the infinite geodesics in Ph form a tree,
(ii) two different discrete leftmost geodesics might be too close and collide in the scaling limit,

(iii) discrete paths that are not infinite leftmost geodesics might become infinite geodesics in the scaling limit.

We take care of item (i) right now, while the goal of Lemmas 4.3 and 4.5 will be to rule out items (ii) and (iii).
The fact that the infinite geodesics of Ph indeed form a tree is a quite strong result, that follows from the confluence

of geodesics properties in the Brownian map. More precisely, it will be a consequence of [5, Proposition 28], which we
recall here (see also Figure 12). We write m∞ for the Brownian map, and denote its root by ρ.

Proposition 4.2 ([5]). Almost surely, for any x ∈ m∞, if γ and γ ′ are two geodesics from ρ to x that coincide on a
neighbourhood of x, then γ = γ ′.

We write Tg(Ph) for the set of those points of Ph that lie on an infinite geodesic of Ph started from ρ. By local
isometry of the Brownian plane and the Brownian map and scale invariance of the Brownian plane [17], Proposition 4.2
also holds for the Brownian plane. By the absolute continuity relations of [14], it also holds for Ph. We claim that it
implies that for every x ∈ Tg(Ph), there is a unique geodesic from ρ to x in Ph. Indeed, let x ∈ Tg(Ph) and let γ be an
infinite geodesic of Ph passing through x. Let γ ′ be a geodesic from ρ to x. Finally, let y be a point on the ray γ such
that d(ρ, y) > d(ρ, x). The concatenation γ ′′ of γ ′ and the part of γ between x and y is a geodesic from ρ to y that
coincides with γ in a neighbourhood of y. By Proposition 4.2, the path γ ′′ must coincide with γ , so γ ′ must coincide
with γ , which proves our claim.

We equip Tg(Ph) with its natural tree metric: if x, y ∈ Tg(Ph), the intersection of the geodesics from ρ to x and y

is compact so there is a unique point z on it that maximizes d(ρ, z). We write dTg(Ph)(x, y) = dPh(x, z) + dPh(z, y).
Equipped with this distance Tg(Ph) is a real tree. However, it is not obvious that it is locally compact (for example it is
not if Ph is replaced by R2 equipped with the Euclidean norm).

4.2. Two lemmas about near-critical strips

We first show that two disjoint geodesics in Tg
λ are quite well-separated, which rules out problem (ii). We denote by γ�

and γr the left and right boundaries of the infinite strip S1
λn

.

Lemma 4.3. Let b > a > 0 and ε > 0. Then there is δ > 0 such that, for n large enough, the following holds:

P
(∀i, j ∈ [an,bn], dS1

λn

(
γ�(i), γr (j)

) ≥ δn
) ≥ 1 − ε.
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Note that this lemma is very similar to Lemma 3.4 of [31]. However, the slices considered here are not exactly the
same, and the lemma of [31] only gives the result with positive probability.

Proof. The idea of the proof is as follows: assume that two points on γr and γ� at height in [a, b] are too close from
each other. Then with positive probability S1

λ is the only strip of Tλn that reaches height b. In this case, we have a small
separating cycle in Tλn , which becomes a pinch point in the scaling limit. This contradicts the homeomorphicity of Ph to
the plane (this is Proposition 18 of [14], and a consequence of the homeomorphicity of the Brownian map to the sphere
[32]).

More precisely, assume the lemma is not true. Then up to extraction, for all δ > 0 and for n large enough, we have

P
(∃i, j ∈ [an,bn], dS1

λn

(
γ�(i), γr (j)

)
< δn

) ≥ ε.

Note that if this happens, then by the triangle inequality we must have |i − j | < δn.
On the other hand, by Theorem 1, the probability that the tree Tg

λn
has only one vertex at height (b + 1)n is

μλn(1)(b+1)n = m
(b+1)n
λn

−→ e−2
√

2(b+1). Since the tree Tg
λn

is independent of the strip S1
λn

, for n large enough, the

following event occurs with probability at least 1
2e−2

√
2(b+1)ε:{

there are i, j ∈ [an,bn] with dS1
λn

(
γ�(i), γr (j)

)
< δn

}
AND{
S1

λn
is the only strip of Tλn at height (b + 1)n

}
.

If this event occurs, the hull of radius (b + 1)n in Tλn is the hull of radius (b + 1)n in S1
λn

, where the boundary

geodesics γ� and γr have been glued together. Hence, by concatenating the geodesic in S1
λn

between γ�(i) and γr(j) and
a portion of γ� = γr of length |i − j |, we get a cycle of length not greater than 2δn, at height at least (a − δ)n, and that
separates ρ from infinity. In other words, for all δ > 0, with probability at least 1

2e−2
√

2(b+1)ε, the following event occurs:{
there is a point z ∈ Tλn with a − δ ≤ 1

n
d(ρ, z) ≤ b + δ such that for any continuous path p from ρ to infinity,

there is a point y of p such that
1

n
d(y, z) ≤ 2δ

}
.

This last property is closed for the Gromov–Hausdorff topology. To prove it properly, we would need to replace the
path to infinity by a path to a point x at distance from ρ large enough so that x cannot lie in B•

(b+1)n(Tλn), and then to
replace the continuous path by a δ-chain. We omit the details here, see Appendix of [14] for something very similar.

Hence, by the main Theorem of [14], for any δ > 0, with probability at least 1
2e−2

√
2(b+1)ε, there is a point z ∈ Ph

with a − δ ≤ d(ρ, z) ≤ b + δ such that any continuous path from ρ to infinity contains a point at distance at most δ from
z. Since this event is nondecreasing in δ, with probability at least 1

2e−2
√

2(b+1)ε it occurs for every δ > 0. If it does, let
zn be such a point for δ = 1

n
, and let z be a subsequential limit of (zn). Then we have a ≤ d(ρ, z) ≤ b and every infinite

path from ρ to infinity must contain z. Hence, there is a single point that separates the origin from infinity in Ph, which
is impossible by homeomorphicity of Ph to the plane. �

The next lemma shows that for any x ∈ Tλn , there is a geodesic from x to ρ that coincides with a leftmost infinite
geodesic on a quite long distance. Combined with the uniqueness of geodesics between ρ and points of Tg(Ph), this will
rule out problem (iii). We consider a strip S0

λn
and we denote by γ� and γr its left and right geodesic boundaries.

Definition 4.4. Let x ∈ S0
λn

and a > 0. We say that x is a-close to the boundary if there is a geodesic γ from ρ to x that
contains either γ�(i) for every 0 ≤ i ≤ a, or γr(i) for every 0 ≤ i ≤ a.

Lemma 4.5. Let ε, r > 0.

(i) There is C > 0 such that for n large enough

P
(
every x ∈ ∂B•

Cn

(
S0

λn

)
is (rn)-close to the boundary

) ≥ 1 − ε.
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(ii) There is C′ > 0 such that for n large enough

P
(
every x ∈ S0

λn
\ BC′n

(
S0

λn

)
is (rn)-close to the boundary

) ≥ 1 − 2ε.

Note that we gave two quite similar versions of the lemma. The version (i) is the most natural to prove, whereas (ii)
passes more easily to the Gromov–Hausdorff limit and is the one we will use later.

Proof. (i) We recall that τ 0
λn

is the skeleton of S0
λn

. We first argue that showing point (i) of the lemma is equivalent to

bounding the heights of the trees grafted on the spine of τ 0. Let k > 0 (we will precise its value later). We denote by
x1, . . . , xp+1 the vertices of ∂B•

k (S0
λn

) that lie on the right of the spine of τ 0, from left to right. For 1 ≤ i ≤ p, let also ti

be the subtree of descendants of the edge {xi, xi+1} in τ 0. For 1 ≤ i ≤ p, let also γi be the leftmost geodesic from xi to
ρ. It is clear (see Figure 6) that the distance between xi and the point at which γi and γr merge is equal to the maximum
of the heights of the trees starting between xi and γr . Hence, we have γi(j) ∈ γr as soon as j is greater than the heights
of all the trees ti , ti+1, . . . , tp . Therefore, if we denote by Hr

λn
(k) the height of the forest (t1, . . . , tp), then for any i, there

is a geodesic from xi to ρ that contains γr(j) for 0 ≤ j ≤ k − Hr
λn

(k). We can do the same reasoning for vertices on the

left of the spine. We denote by H�
λn

(k) the height of the forest that is defined similarly on the left of the spine, and write

Hλn(k) = max(H�
λn

(k),Hr
λn

(k)). It is then enough to find C such that for n large enough:

P
(
Hλn(Cn) ≤ (C − r)n

) ≥ 1 − ε. (29)

We write Pλn(Cn) = |∂B•
Cn(S

0
λn

)| − 2 (this is the number of vertices of τ 0 at height Cn that are not on the spine).
Conditionally on Pλn(Cn), all the trees of descendants of the vertices xi are independent Galton–Watson trees conditioned
on extinction before a finite time �Cn�, so we have

P
(
Hλn(Cn) ≤ (C − r)n

∣∣Pλn(Cn) = p
) =

(
g

◦�(C−r)n�
λn

(0)

g
◦�Cn�
λn

(0)

)p

≥ g
◦�(C−r)n�
λn

(0)p.

By Lemma 2.8, we get

g
◦�(C−r)n�
λn

(0) = 1 − 2

sinh2(
√

2(C − r))

1

n2
+ o

(
1

n2

)
,

so g
◦�(C−r)n�
λn

(0) ≥ 1 − z

n2 for n large enough, where z = 3
sinh2(

√
2(C−r))

. Hence, we get

P
(
Hλn(Cn) ≤ (C − r)n

) ≥ E

[(
1 − z

n2

)Pλn (Cn)]
.

By using the distribution of PCn given by Lemma 2.16, we obtain

E

[(
1 − z

n2

)Pλn (Cn)]
= m

−�Cn�
λn

�λn(θλn(0))

×
(

�λn

((
1 − z

n2

)
g

◦(�Cn�+1)
λn

(0)

)
− �λn

((
1 − z

n2

)
g

◦�Cn�
λn

(0)

))
≥ 1

�λn(θλn(0))
× m

−�Cn�
λn

×
(

1 − z

n2

)
× (

g
◦(�Cn�+1)
λn

(0) − g
◦�Cn�
λn

(0)
)

× �′
λn

((
1 − z

n2

)
g

◦�Cn�
λn

(0)

)
.

by convexity of �λn . We can now compute everything using Lemmas 2.8 and 2.10. As n → +∞, the first factor goes to
1
2 , the second one goes to e2

√
2C , the third one goes to 1. Moreover, by Lemma 2.8 we have

g
◦�Cn�
λn

(0) = 1 − 2

sinh2(
√

2C)

1

n2
+ O

(
1

n3

)
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and, if xn = 1 − c

n2 + o( 1
n2 ), by (11) we have

gλn(xn) − xn ∼
n→+∞

2c
√

c + 2

n3
,

so the fourth factor is equivalent to 4
√

2 cosh(
√

2C)

sinh3(
√

2C)

1
n3 . Finally, by taking the derivative of Lemma 2.10, we get

�′
λn

(
1 − c

n2
+ o

(
1

n2

))
= 1√

2(
√

2 + √
c + 2)2

n3 + o
(
n3).

By putting all these estimates together we obtain

E

[(
1 − z

n2

)Pλn (Cn)]
−−−−→
n→+∞ e2

√
2C cosh(

√
2C)

sinh3(
√

2C)

(
1 +

√
z + coth2(

√
2C)

)−2
.

This goes to 1 as C → +∞ (remember that z = 3
sinh2(

√
2(C−r))

with r fixed), so if C is chosen large enough, then

E[(1 − z

n2 )Pλn (Cn)] ≥ 1 − ε for n large enough. This proves (29) and the version (i) of the lemma.

(ii) This is quite easy using version (i). Let C be given by point (i). Note that if any x ∈ ∂B•
Cn(S

0
λn

) is (rn)-close to the

boundary, then so is any x′ ∈ S0
λn

\ B•
Cn(S

0
λn

). Indeed, any geodesic γ from x′ to ρ must contain a point x ∈ ∂B•
Cn(S

0
λn

),
and we can replace the portion of γ between x and ρ by a geodesic that coincides with γ� or γr between height 0 and rn.

Hence, it is enough to find C′ such that with probability 1 − ε, any point x′ ∈ S0
λn

such that d(x′, ρ) ≥ C′n is not in

B•
Cn(S

0
λn

). In other words, we want to prove that the radius of 1
n
B•

Cn(S
0
λn

) from ρ is tight as n → +∞. Since S0
λn

can
be embedded in Tλn in a way that preserves the distances from ρ, this is a consequence of the local Gromov–Hausdorff
tightness of 1

n
Tλn . �

Note that by Lemma 2.17, Lemma 4.3 holds if we replace S1
λn

by S0
λn

and Lemma 4.5 also holds if we replace S0
λn

by

S1
λn

. We will use these results for both S0
λn

and S1
λn

.

4.3. Identification of the geodesic tree via Gromov–Hausdorff-closed events

The last two lemmas together with Lemma 4.1 and the fact that Tg(Ph) is a tree are basically enough to prove Theorem 3.
However, to prove it properly, we need to express the distribution of Tg(Ph) in terms of closed events for the Gromov–
Hausdorff topology, which turns out to be a bit technical.

Let t be a (finite or infinite) plane tree with a root vertex ρ. If v ∈ V (t) \ {ρ}, we write pv for its parent. Let (hv)v∈V (t)
be a family of nonnegative numbers satisfying hρ = 0 and hv > hpv for every v ∈ V (t) \ {ρ}. We write t[h] for the metric
space obtained from t by giving, for every v ∈ V (t) \ {ρ}, a length hv − hpv to the edge between pv and v. We also recall
that B is the infinite tree in which every vertex has two children, except the root which has only one.

We will now define a large family of events, whose probability will characterize the distribution of a random tree of
the form B[H ]. Let t be a finite binary tree (that is, a tree in which every vertex has 0 or 2 children, except the root
which has exactly one). We write V ∗(t) for the set of vertices of t that are not leaves and not ρ. Let r > 0, and let
(av)v∈V ∗(t), (bv)v∈V ∗(t) be such that 0 < av < bv < r for every v ∈ V ∗(t). We write A t

r (a, b) for the set of unbounded
trees T (considered as metric spaces) such that Br(T) is of the form t[h], where hρ = 0, hv = r if v is a leaf of t and
av ≤ hv ≤ bv for every v ∈ V ∗(t).

In order to prove Theorem 3, we will estimate the probability that Tg(Ph) belongs to A t
r (a, b). Unfortunately, for the

reasons listed in of Section 4.1, the events {Tg(X) ∈ A t
r (a, b)} are not closed for the Gromov–Hausdorff distance. To

compute P(Tg(Ph) ∈ A t
r (a, b)) from our discrete estimates, we need to approximate the event {Tg(X) ∈ A t

r (a, b)} by
closed events. Since such approximations are tedious to write down explicitly in the general case, we will focus on the
case where t = t0 is the binary tree with two leaves and one vertex of degree 3. Note that |V ∗(t0)| = 1, so a and b are just
two real numbers.

Let C > r and let R ≥ C + 1. If δ, ε > 0, we write A δ,ε
r,C,R(a, b) for the set of compact metric spaces (X,d) satisfying

the following property.

“There are points x0, x1 and x2 in X and geodesics γ1 (resp. γ2) from x0 to x1 (resp. to x2) such that:

(i) d(ρ, x0) = a,
(i) d(ρ, x1) = d(ρ, x0) + d(x0, x1) = r and d(ρ, x2) = d(ρ, x0) + d(x0, x2) = r ,
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(iii) for every x ∈ X with d(ρ, x) > C, the distance d(ρ, x) is equal to d(ρ, x1) + d(x1, x) or to d(ρ, x2) + d(x2, x) (it
may be equal to both),

(iv) there are two points y, z ∈ X with d(ρ, y) ≥ R and d(ρ, z) ≥ R such that d(ρ, y) = d(ρ, x1) + d(x1, y) and
d(ρ, z) = d(ρ, x2) + d(x2, z),

(v) if u ∈ γ1 and v ∈ γ2 with d(ρ,u) > b + 2ε and d(ρ, v) > b + 2ε, then d(u, v) ≥ δ.”

We refer to the Appendix for the proof that this event is closed for the pointed Gromov–Hausdorff topology. More
precisely, it is easy to check that A δ,ε

r,C,R(a, b) is simply generated by geodesics as in Definition A.3, so by Proposition A.4

it is closed. By the convergence of 1
n
Tλn to Ph, we have

P
(
BR(Ph) ∈ A δ,ε

r,C,R(a, b)
) ≥ lim sup

n→+∞
P

(
1

n
BRn(Tλn) ∈ A δ,ε

r,C,R(a, b)

)
. (30)

We now try to estimate the right-hand side. By Lemma 4.1, we have

lim
n→+∞P

(
1

n
Tg

λn
∈ A t0

r (a, b)

)
= P

(
Y2

√
2 ∈ A t0

r (a, b)
)
. (31)

Note that to deduce (31) from Lemma 4.1, we need to show P(Y2
√

2 ∈ ∂A t0
r (a, b)) = 0, where ∂A t0

r (a, b) is the boundary

of A t0
r (a, b) in the space of rooted metric trees, equipped with the local Gromov–Hausdorff distance. This is true because

if T ∈ ∂A t0
r (a, b), then T must have a branching point at height exactly a, b or r , which a.s. does not happen.

If the event in the left-hand side of (31) occurs, let x0 be the unique point of Tg
λn

at height an, and let x1 (resp. x2) be

the vertex on the left (resp. right) branch of Tg
λn

at height rn. Then the vertices x0, x1 and x2 and the geodesics γ1 and

γ2 joining x1 and x2 to x0 in Tg
λn

satisfy assumptions (i) and (ii) in the definition of A δ,ε
r,C,R(a, b). Since the tree Tg

λn
is

infinite, they also satisfy assumption (iv) for any R > 0.
We now fix ε > 0 and apply Lemma 4.5 (version (ii)) to the two strips S1

λn
and S0[x0] (the strip whose lowest point is

x0). Lemma 4.5 shows that there is C > 0 such that, with probability at least 1 − 4ε, for any x in one of the two strips S1
λn

and S0(x0) such that d(x,ρ) > Cn, there is a geodesic from ρ to x that coincides with γ1 between ρ and x1 or with γ2

between ρ and x2. We claim that this is also the case if x does not belong to one of these two strips. Indeed, a geodesic
from x to ρ must hit the boundary of one of the two strips above x1 or x2 (cf. Figure 13). Therefore, the probability that
1
n

Tg
λn

∈ A t0
r (a, b) but assumption (iii) is not satisfied for C is at most 4ε.

Finally, if 1
n

Tg
λn

∈ A t0
r (a, b) but assumption (v) is not satisfied for some 0 < δ < ε, there are two vertices v1 on γ1 and

v2 on γ2, at distance from ρ between (b + 2ε)n and rn, such that dTλn
(v1, v2) < δn. A geodesic from v1 to v2 must cross

either S1
λn

or S0[x0] and, since δ < ε, it must stay at distance at least (b + ε)n from ρ. Therefore, there are two vertices v′
1

on γ1 and v′
2 on γ2, at distance from ρ between (b + ε)n and (r + ε)n, such that dS1

λn
(v′

1, v
′
2) < δn or dS0[x0](v

′
1, v

′
2) < δn.

By applying Lemma 4.3 to S1
λn

between heights b + ε and r + ε, and to S0[x0] between heights ε and r + ε, we can find
δ > 0 such that this occurs with probability at most 2ε. Hence, for every ε > 0, there is δ > 0 such that the probability
that 1

n
Tg

λn
∈ A t0

r (a, b) but assumption (v) is not satisfied is at most 2ε.

Fig. 13. If x /∈ S1
λ ∪ S0[x0], then any geodesic from x to ρ must cross the boundary of one of the two strips S1

λ and S0[x0] above x1 or x2. Therefore,
for every x with d(ρ, x) ≥ Cn, we have a geodesic (in red) from x to ρ that passes through x1 or x2.
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Therefore, for all ε > 0, there are C > r and δ > 0 such that, for any R ≥ C + 1,

lim inf
n→+∞P

(
1

n
BRn(Tλn) ∈ A δ,ε

r,C,R(a, b)

)
≥ P

(
Y2

√
2 ∈ A t0

r (a, b)
) − 6ε,

so by (30),

P
(
BR(Ph) ∈ A δ,ε

r,C,R(a, b)
) ≥ P

(
Y2

√
2 ∈ A t0

r (a, b)
) − 6ε.

Since the event {BR(X) ∈ A δ,ε
r,C,R(a, b)} is nonincreasing in R, we obtain that for any ε > 0, we have

P
(∃C > r,∃δ > 0,∀R ≥ C + 1,BR(Ph) ∈ A δ,ε

r,C,R(a, b)
) ≥ P

(
Y2

√
2 ∈ A t0

r (a, b)
) − 6ε.

Finally, the event above is increasing in ε so

P
(∀ε > 0,∃δ > 0,∃C > 0,∀R ≥ C + 1,BR(Ph) ∈ A δ,ε

r,C,R(a, b)
) ≥ P

(
Y2

√
2 ∈ A t0

r (a, b)
)
. (32)

Lemma 4.6. Almost surely, if

∀ε > 0,∃δ > 0,∃C > 0,∀R ≥ C + 1, BR(Ph) ∈ A δ,ε
r,C,R(a, b),

then Tg(Ph) ∈ A t0
r (a, b).

Proof. Fix C, δ and ε and assume that BR(Ph) ∈ A δ,ε
r,C,R(a, b) for any R ≥ C + 1. Let x0, x1 and x2 be given by the

definition of A δ,ε
r,C,R(a, b). We first check that these points do not depend on the parameters δ, ε, C and R. By assumption

(iv), the points x1 and x2 lie on geodesics of length C +1 started from ρ. We claim they are the only two points at distance
r from ρ satisfying this property. Indeed, if y is a point with d(ρ, y) = C + 1 and γ a geodesic from ρ to y, let z be the
point of γ such that d(ρ, z) = C. By assumption (iii) and the fact that Ph is a length space, there is a geodesic γ ′ from z

to ρ passing through x1 or x2. By concatenating γ ′ from ρ to z and γ from z to y, we obtain a geodesic from ρ to y that
coincides with γ between z and y. By Proposition 4.2, this geodesic must be equal to γ , so γ must pass through x1 or x2.

Hence, if BR(Ph) ∈ A δ,ε
r,C,R(a, b), then x1 and x2 are the only two points at distance r from ρ that lie on a geodesic

of length C + 1 started from ρ. In particular, they do not depend on δ, ε and R. Moreover, let C′ ≥ C, and assume that
BR(Ph) ∈ A δ,ε

r,C,R(a, b) and BR(Ph) ∈ A δ,ε
r,C′,R(a, b) for all R ≥ C′. Then the two points at distance r from ρ that lie on a

geodesic of length C′ + 1 from ρ are the same as the two points that lie on a geodesic of length C + 1 started from ρ, so
the points x1 and x2 do not depend on C. Similarly, the point x0 is the only point at distance a from the root that lies on
a geodesic of length C + 1, so it does not depend on δ, ε, C, R. Hence, we can find x0, x1 and x2 in Ph and γ1, γ2 such
that:

• assumptions (i) and (ii) in the definition of A δ,ε
r,C,R(a, b) are satisfied,

• there is C > 0 such that assumption (iii) is satisfied,
• for every R ≥ C + 1, assumption (iv) is satisfied,
• for every ε > 0, there is δ > 0 such that assumption (v) is satisfied, which means that the geodesics from ρ to x1 and

x2 are disjoint between heights b (excluded) and r (included).

Since assumption (iv) is satisfied for any R large enough, there are arbitrarily large geodesics started from ρ passing
through x1. By a compactness argument, there are infinite geodesics started from ρ and passing through x1, and the same
is true for x2. By assumption (iii), the points x1 and x2 are the only ones with this property. By assumptions (i) and (v),
the branching point between the geodesics from ρ to x1 and x2 lies between heights a and b, so Tg(Ph) ∈ A t0

r (a, b). �

The end of the proof of Theorem 3 is now easy. By Lemma 4.6 and (32), we get

P
(
Tg(Ph) ∈ A t0

r (a, b)
) ≥ P

(
Y2

√
2 ∈ A t0

r (a, b)
)
.

The general case for t can be treated along the same lines. This shows that the distribution of Tg(Ph) dominates that of
Y2

√
2. Since they are both probability measures, they are the same.
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Appendix: A Gromov–Hausdorff closedness result

The goal of this appendix is to prove Proposition A.4. It shows that a wide class of events related to geodesics are closed
for the Gromov–Hausdorff distance. We believe it might be of interest in other settings. We write G for the space of
pointed compact metric spaces, equipped with the Gromov–Hausdorff distance. We will be interested in some events
depending on a metric space (X,d,ρ) ∈ G .

Definition A.1. We say that a subset A of G is simply generated by points if it has the following form. Let k ≥ 1, and
let F ⊂ R

(k+2)2
be closed. Then A is the set of those (X,d,ρ) ∈ G for which there are (xi)0≤i≤k in X with x0 = ρ such

that, for any xk+1 ∈ X, the matrix(
d(xi, xj )

)
0≤i,j≤k+1

lies in F .

A simple example of such a subset would be the set of metric spaces that can be covered by k balls of radius r for
some fixed k ≥ 1 and r .

Lemma A.2. Any subset of G that is simply generated by points is closed.

Proof. Assume that A is simply generated by points and let k and F be as above. Let (Xn, dn,ρn) converge to a space
(X,d,ρ) with Xn ∈ A for every n. By Gromov–Hausdorff convergence, we can embed X and all the Xn isometrically
in a space (Z,dZ) such that the Hausdorff distance Dn between Xn and X goes to 0.

For every n, let xn
0 , . . . , xn

k ∈ Xn satisfy the condition given by Definition A.1. We take yn
0 , . . . , yn

k ∈ X such that
dZ(xn

i , yn
i ) ≤ 2Dn. For all 0 ≤ i ≤ k, let yi be a subsequential limit of (yn

i )n≥0 in X (which exists by compactness). To
complete the proof that X ∈ A , all we need to show is that y0 = ρ and that for any yk+1 ∈ X, we have(

d(yi, yj )
)

0≤i,j≤k+1 ∈ F.

The first point is easy because the distances dZ(ρ,ρn), dZ(ρn, y
n
0 ) and d(yn

0 , y0) all go to 0 along some subsequence.
Moreover, let yk+1 ∈ X. There is xn

k+1 ∈ Xn such that dZ(xn
k+1, yk+1) ≤ 2Dn. For every 0 ≤ i, j ≤ k + 1, we then have

d(yi, yj ) = lim
n→+∞d

(
xn
i , xn

j

)
along some subsequence. But we know that for all n we have (d(xn

i , xn
j ))0≤i,j≤k+1 ∈ F , so we can conclude. �

Definition A.3. We say that a subset A of G is simply generated by geodesics if it has the following form. Let k ≥ 1, and
let F ⊂ R

(2k+2)2
be closed. Then A is the set of those (X,d,ρ) ∈ G for which there are (xi)0≤i≤k in X with x0 = ρ and

geodesics (γi)1≤i≤k from ρ to xi , satisfying the following property. For any (xk+i )1≤i≤k such that xk+i ∈ γi for every i,
and for every x2k+1 ∈ X, the matrix(

d(xi, xj )
)

0≤i,j≤2k+1

lies in F .

For example, the events studied in Section 4.3 are simply generated by geodesics. A simpler example of such an event
would be “there are k geodesics such that any point lies at distance at most r from one of these geodesics”.

Proposition A.4. Any subset of G that is simply generated by geodesics is closed.

To go from Lemma A.2 to Proposition A.4, we will need the following definition.

Definition A.5. Let � ≥ 0, and let x, y be two points of a metric space (X,d). An �-geodesic chain from x to y is a finite
sequence (x(i))0≤i≤2� of points of X such that

(i) x(0) = x and x(2�) = y,
(ii) d(x(i), x(i + 1)) = 1

2� d(x, y) for any 0 ≤ i ≤ 2� − 1.
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Proof of Proposition A.4. Let A be a subset of G that is simply generated by geodesics. For � > 0, we write A � for
the subset of G we obtain if we replace continuous geodesics by �-geodesic chains in Definition A.3. Then A � is simply
generated by points (because the conditions in the definition of an �-geodesic chain are closed), so A � is closed by
Lemma A.2. Hence, to conclude, it is enough to show

A =
⋂
�≥0

A �.

The inclusion from left to right is immediate since any continuous geodesic contains an �-geodesic chain. Now let
(X,d,ρ) ∈ ⋂

�≥0 A �. For every � ≥ 0 and 1 ≤ i ≤ k, let (x�
i ) in X and let (γ �

i (j))0≤j≤2� be �-geodesic chains from

ρ to x�
i satisfying the assumptions of Definition A.3. Up to extraction, we may assume that for every 1 ≤ i ≤ k,

the points x�
i converge to a point xi ∈ X. Up to further extraction, by a diagonal argument, for every t of the form

j
2m with 0 ≤ j ≤ 2m, the sequence (γ m+�

i (2�j))�≥0 converges to a point γi(t). Moreover, for all such t , t ′, we have
d(γi(t), γi(t

′)) = |t − t ′|d(ρ, xi), so we can extend (γi(t))0≤t≤1,t=j/2m to a continuous geodesic from ρ to xi . It is then
easy to check that the geodesics γi satisfy the required hypothesis. �

Acknowledgements

I thank Nicolas Curien for carefully reading several earlier versions of this manuscript, and Itai Benjamini for his question
about bi-infinite geodesics. I am also grateful to the anonymous reviewers for their useful comments. I acknowledge the
support of ANR Liouville (ANR-15-CE40-0013) and ANR GRAAL (ANR-14-CE25-0014).

References

[1] C. Abraham. Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2) (2016) 575–595.
MR3498001 https://doi.org/10.1214/14-AIHP657

[2] L. Addario-Berry and M. Albenque. The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45 (5)
(2017) 2767–2825. MR3706731 https://doi.org/10.1214/16-AOP1124

[3] O. Angel. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 (5) (2003) 935–974. MR2024412
https://doi.org/10.1007/s00039-003-0436-5

[4] O. Angel, T. Hutchcroft, A. Nachmias and G. Ray. Unimodular hyperbolic triangulations: Circle packing and random walk. Invent. Math. 206 (1)
(2016) 229–268. MR3556528 https://doi.org/10.1007/s00222-016-0653-9

[5] O. Angel, B. Kolesnik and G. Miermont. Stability of geodesics in the Brownian map. Ann. Probab. 45 (5) (2017) 3451–3479. MR3706747
https://doi.org/10.1214/16-AOP1140

[6] O. Angel, A. Nachmias and G. Ray. Random walks on stochastic hyperbolic half planar triangulations. Random Structures Algorithms 49 (2)
(2016) 213–234. MR3536537 https://doi.org/10.1002/rsa.20625

[7] O. Angel and G. Ray. Classification of half planar maps. Ann. Probab. 43 (3) (2015) 1315–1349. MR3342664 https://doi.org/10.1214/13-AOP891
[8] O. Angel and G. Ray. The half plane UIPT is recurrent. Probab. Theory Related Fields 170 (3) (2018) 657–683. MR3773797 https://doi.org/10.

1007/s00440-017-0767-z
[9] O. Angel and O. Schramm. Uniform infinite planar triangulations. Comm. Math. Phys. 241 (2–3) (2003) 191–213. MR2013797 https://doi.org/10.

1007/978-1-4419-9675-6_16
[10] K. B. Athreya and P. E. Ney. Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 196. Springer-Verlag, Berlin, 1972.

MR0373040
[11] J. Beltran and J.-F. Le Gall. Quadrangulations with no pending vertices. Bernoulli 19 (2013) 1150–1175. MR3102547 https://doi.org/10.3150/

12-BEJSP13
[12] I. Benjamini and R. Tessera. First passage percolation on a hyperbolic graph admits bi-infinite geodesics. Electron. Commun. Probab. 22 (2017)

paper no. 14. MR3615665 https://doi.org/10.1214/17-ECP44
[13] J. Bettinelli, E. Jacob and G. Miermont. The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection. Electron. J. Probab.

19 (2014) paper no. 74. MR3256874 https://doi.org/10.1214/EJP.v19-3213
[14] T. Budzinski. The hyperbolic Brownian plane. Probab. Theory Related Fields 171 (1) (2018) 503–541. MR3800839 https://doi.org/10.1007/

s00440-017-0785-x
[15] T. Budzinski. Supercritical causal maps: Geodesics and simple random walk, 2018. Available at arXiv:1806.10588.
[16] N. Curien. Planar stochastic hyperbolic triangulations. Probab. Theory Related Fields 165 (3) (2016) 509–540. MR3520011 https://doi.org/10.

1007/s00440-015-0638-4
[17] N. Curien and J.-F. Le Gall. The Brownian plane. J. Theoret. Probab. 27 (4) (2014) 1249–1291. MR3278940 https://doi.org/10.1007/

s10959-013-0485-0
[18] N. Curien and J.-F. Le Gall. First-passage percolation and local modifications of distances in random triangulations, 2015. Available at

arXiv:1511.04264.
[19] N. Curien and J.-F. Le Gall. Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat. 53 (1) (2017) 322–357.

MR3606744 https://doi.org/10.1214/15-AIHP718
[20] N. Curien and L. Ménard. The skeleton of the UIPT, seen from infinity. Ann. Henri Lebesgue 1 (2018) 87–125.

http://www.ams.org/mathscinet-getitem?mr=3498001
https://doi.org/10.1214/14-AIHP657
http://www.ams.org/mathscinet-getitem?mr=3706731
https://doi.org/10.1214/16-AOP1124
http://www.ams.org/mathscinet-getitem?mr=2024412
https://doi.org/10.1007/s00039-003-0436-5
http://www.ams.org/mathscinet-getitem?mr=3556528
https://doi.org/10.1007/s00222-016-0653-9
http://www.ams.org/mathscinet-getitem?mr=3706747
https://doi.org/10.1214/16-AOP1140
http://www.ams.org/mathscinet-getitem?mr=3536537
https://doi.org/10.1002/rsa.20625
http://www.ams.org/mathscinet-getitem?mr=3342664
https://doi.org/10.1214/13-AOP891
http://www.ams.org/mathscinet-getitem?mr=3773797
https://doi.org/10.1007/s00440-017-0767-z
http://www.ams.org/mathscinet-getitem?mr=2013797
https://doi.org/10.1007/978-1-4419-9675-6_16
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=3102547
https://doi.org/10.3150/12-BEJSP13
http://www.ams.org/mathscinet-getitem?mr=3615665
https://doi.org/10.1214/17-ECP44
http://www.ams.org/mathscinet-getitem?mr=3256874
https://doi.org/10.1214/EJP.v19-3213
http://www.ams.org/mathscinet-getitem?mr=3800839
https://doi.org/10.1007/s00440-017-0785-x
http://arxiv.org/abs/arXiv:1806.10588
http://www.ams.org/mathscinet-getitem?mr=3520011
https://doi.org/10.1007/s00440-015-0638-4
http://www.ams.org/mathscinet-getitem?mr=3278940
https://doi.org/10.1007/s10959-013-0485-0
http://arxiv.org/abs/arXiv:1511.04264
http://www.ams.org/mathscinet-getitem?mr=3606744
https://doi.org/10.1214/15-AIHP718
https://doi.org/10.1007/s00440-017-0767-z
https://doi.org/10.1007/978-1-4419-9675-6_16
https://doi.org/10.3150/12-BEJSP13
https://doi.org/10.1007/s00440-017-0785-x
https://doi.org/10.1007/s00440-015-0638-4
https://doi.org/10.1007/s10959-013-0485-0


Geodesics in hyperbolic random triangulations 1161

[21] N. Curien, L. Ménard and G. Miermont. A view from infinity of the uniform infinite planar quadrangulation. ALEA Lat. Am. J. Probab. Math.
Stat. 10 (1) (2013) 45–88. MR3083919

[22] W. Esty. The reverse Galton–Watson process. J. Appl. Probab. 12 (1975) 574–580. MR0375490 https://doi.org/10.1017/s0021900200048397
[23] M. Gromov. Hyperbolic manifolds, groups and actions. In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference

(State Univ. New York, Stony Brook, N.Y., 1978) 183–213. Ann. of Math. Stud. 97. Princeton Univ. Press, Princeton, N.J., 1981. MR0624814
[24] T. Hutchcroft and Y. Peres. Boundaries of planar graphs: A unified approach. Electron. J. Probab. 22 (2017) paper no. 100. MR3733658

https://doi.org/10.1214/17-EJP116
[25] H. Kesten. Aspects of first passage percolation. In École d’été de probabilités de Saint-Flour, XIV—1984 125–264. Lecture Notes in Math. 1180.

Springer, Berlin, 1986. MR0876084 https://doi.org/10.1007/BFb0074919
[26] H. Kesten. Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 (4) (1986) 425–487. MR0871905
[27] M. Krikun. A uniformly distributed infinite planar triangulation and a related branching process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat.

Inst. Steklov. (POMI) 307(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10) (2004) 141–174, 282–283. MR2050691 https://doi.org/10.1007/
s10958-005-0424-4

[28] M. Krikun. Explicit enumeration of triangulations with multiple boundaries. Electron. J. Combin. 14 (1) (2007) paper no. 61 (electronic).
MR2336338

[29] M. Krikun. Local structure of random quadrangulations. Available at arXiv:0512304.
[30] J.-F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2010) 287–360. MR2746349 https://doi.org/10.1007/

s11511-010-0056-5
[31] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. MR3112934 https://doi.org/10.1214/

12-AOP792
[32] J.-F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (3) (2008) 893–918.

MR2438999 https://doi.org/10.1007/s00039-008-0671-x
[33] C. Marzouk. Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Structures Algorithms 53 (2018) 448–503.

MR3854042 https://doi.org/10.1002/rsa.20773
[34] L. Ménard. Volumes in the uniform infinite planar triangulation: From skeletons to generating functions. Combin. Probab. Comput. 27 (6) (2018)

946–973. MR3872310 https://doi.org/10.1017/S0963548318000093
[35] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2) (2013) 319–401. MR3070569

https://doi.org/10.1007/s11511-013-0096-8
[36] R. Stephenson. Local convergence of large critical multi-type Galton–Watson trees and applications to random maps. J. Theoret. Probab. 31 (1)

(2018) 159–205. MR3769811 https://doi.org/10.1007/s10959-016-0707-3

http://www.ams.org/mathscinet-getitem?mr=3083919
http://www.ams.org/mathscinet-getitem?mr=0375490
https://doi.org/10.1017/s0021900200048397
http://www.ams.org/mathscinet-getitem?mr=0624814
http://www.ams.org/mathscinet-getitem?mr=3733658
https://doi.org/10.1214/17-EJP116
http://www.ams.org/mathscinet-getitem?mr=0876084
https://doi.org/10.1007/BFb0074919
http://www.ams.org/mathscinet-getitem?mr=0871905
http://www.ams.org/mathscinet-getitem?mr=2050691
https://doi.org/10.1007/s10958-005-0424-4
http://www.ams.org/mathscinet-getitem?mr=2336338
http://arxiv.org/abs/arXiv:0512304
http://www.ams.org/mathscinet-getitem?mr=2746349
https://doi.org/10.1007/s11511-010-0056-5
http://www.ams.org/mathscinet-getitem?mr=3112934
https://doi.org/10.1214/12-AOP792
http://www.ams.org/mathscinet-getitem?mr=2438999
https://doi.org/10.1007/s00039-008-0671-x
http://www.ams.org/mathscinet-getitem?mr=3854042
https://doi.org/10.1002/rsa.20773
http://www.ams.org/mathscinet-getitem?mr=3872310
https://doi.org/10.1017/S0963548318000093
http://www.ams.org/mathscinet-getitem?mr=3070569
https://doi.org/10.1007/s11511-013-0096-8
http://www.ams.org/mathscinet-getitem?mr=3769811
https://doi.org/10.1007/s10959-016-0707-3
https://doi.org/10.1007/s10958-005-0424-4
https://doi.org/10.1007/s11511-010-0056-5
https://doi.org/10.1214/12-AOP792

	Introduction
	Leftmost geodesic rays
	Hyperbolicity properties related to geodesics
	Poisson boundary
	Geodesic rays in the hyperbolic Brownian plane
	The skeleton decomposition
	Structure of the paper

	Combinatorics and preliminaries
	Combinatorics
	Planar and halfplanar hyperbolic type-I triangulations

	The skeleton decomposition of hyperbolic triangulations
	The skeleton decomposition of ﬁnite and inﬁnite triangulations
	The ﬁnite setting: Skeleton decomposition of triangulations of the cylinder
	The inﬁnite setting: Inﬁnite reverse forests
	Skeleton decomposition of inﬁnite triangulations of the p-gon

	Computation of the skeleton decomposition of the hulls of T lambda
	Slicing the skeleton
	Decomposition of a 1-admissible forest in reverse trees
	Leftmost inﬁnite geodesics and decomposition of the skeleton in reverse trees
	The skeleton decomposition of inﬁnite strips

	The distribution of Slambda0 and Slambda1
	Proof of Theorem 1
	Construction of reverse Galton-Watson trees and inﬁnite strips

	The Poisson boundary of Tlambda
	Construction of the geodesic boundary
	Proof of Theorem 2

	The tree of inﬁnite geodesics in the hyperbolic Brownian plane
	The tree Tg(Ph)
	Two lemmas about near-critical strips
	Identiﬁcation of the geodesic tree via Gromov-Hausdorff-closed events

	Appendix: A Gromov-Hausdorff closedness result
	Acknowledgements
	References

