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Abstract. We prove the following indistinguishability theorem for k-tuples of trees in the uniform spanning forest of Zd : Suppose that
A is a property of a k-tuple of components that is stable under finite modifications of the forest. Then either every k-tuple of distinct
trees has property A almost surely, or no k-tuple of distinct trees has property A almost surely. This generalizes the indistinguishability
theorem of the author and Nachmias (2016), which applied to individual trees. Our results apply more generally to any graph that has
the Liouville property and for which every component of the USF is one-ended.

Résumé. Dans cet article, nous prouvons le théorème d’indistinguabilité suivant pour les k-uplets d’arbres dans le modèle de forêt
couvrante uniforme sur Zd : supposons que A est une propriété d’un k-uplet de composantes connexes qui est stable par modification
finie de la forêt, alors ou bien chaque k-uplet satisfait la propriété A presque sûrement, ou bien aucun ne la satisfait presque sûrement.
Ce résultat étend le théorème d’indistinguabilité de l’auteur et de Nachmias (2016) qui ne couvrait que le cas d’arbres pris individuelle-
ment. Notre résultat s’applique plus généralement à tout graphe vérifiant la propriété de Liouville et pour lequel toutes les composantes
connexes de la FCU ont un seul bout.
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1. Introduction

The uniform spanning forests are infinite-volume analogues of uniform spanning trees, and can be defined for any con-
nected, locally finite graph G as weak limits of the uniform spanning trees on certain finite graphs derived from G. These
limits can be taken with respect to two extremal boundary conditions, leading to the free uniform spanning forest (FUSF)
and wired uniform spanning forest (WUSF). For many graphs, such as the hypercubic lattice Z

d , the FUSF and WUSF
coincide and we speak simply of the USF. Being an open condition, connectivity is not necessarily preserved by taking
weak limits, and it is possible for the USF to be disconnected. Indeed, Pemantle [25] proved that the USF of Zd is a.s.
connected if and only if d ≤ 4. More generally, Benjamini, Lyons, Peres, and Schramm [4,22] proved that the WUSF of
an infinite graph G is a.s. connected if and only if two independent random walks on G intersect infinitely often a.s.

This disconnectivity leads us to consider the following natural question: If the USF is disconnected, how different can
the different components of the forest be? For instance, is it possible that some are recurrent while others are transient?
Similarly, could it be possible that there exists a single “thick” component that occupies a positive density of space, while
all other components are “thin” and have zero spatial density? Benjamini, Lyons, Peres, and Schramm [4] conjectured
the following answer to questions of this nature: If G = (V ,E) is transitive and unimodular (e.g., if G is a Cayley graph
of a finitely generated group) and F is either the WUSF or FUSF of G, then the components of F are indistinguishable
from each other. This means that for every measurable set A ⊆ {0,1}E of subgraphs of G that is invariant under the
automorphisms of G, either every component of F is in A a.s. or none of the components of F are in A a.s. This con-
jecture followed earlier work of Lyons and Schramm [23], who proved an analogous theorem in the context of Bernoulli
percolation. The conjecture regarding the USF was verified (in slightly greater generality) by the author and Nachmias
[16], while partial progress was also made in the independent work of Timár [29]. In the setting of Bernoulli percolation,
various extensions and generalizations of the Lyons–Schramm theorem have subsequently been obtained by Häggström,
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Peres, and Schonmann [13], Aldous and Lyons [1], Martineau [24], and Tang [28]. Besides their intrinsic probabilistic
interest, such indistinguishability theorems have also found applications in ergodic theory, see e.g. [7,10,12,30].

In this paper, we are interested in a form of indistinguishability that holds not only for individual components of the
forest, but rather for arbitrary finite collections of components. Our results are motivated by our work with Yuval Peres
on the adjacency structure of the trees in the USF of Zd [18], in which we use the results of this paper as a zero-one law
to boost positive-probability statements to almost-sure statements. A remarkable feature of the results we obtain is that,
unlike in [16,23], we do not require any kind of homogeneity assumptions on G (such as transitivity or unimodularity),
nor do we require any kind of automorphism-invariance type assumptions on the properties we consider. Rather, the
primary assumption we make on G is that it is Liouville, i.e., does not admit non-constant bounded harmonic functions.
We also restrict attention to tail properties of tuples of components, which are stable under finite modifications of the
forest. Heuristically, one can think of our proof as lifting the tail triviality of the random walk (which is equivalent to the
Liouville property) to indistinguishability of trees in the USF, which is itself a strong form of tail triviality.

Let us now give the definitions required to state our main theorems. Let G be a graph, and let k ≥ 1. We equip the
set �k(G) := {0,1}E × V k with its product topology and associated Borel σ -algebra. We think of this set as the set
of subgraphs of G rooted at an ordered k-tuple of vertices. A measurable set A ⊆ �k(G) is said to be a k-component
property if

(
ω, (ui)

k
i=1

) ∈ A =⇒ (
ω, (vi)

k
i=1

) ∈ A
for all (vi)

k
i=1 ∈ V k such that ui is

connected to vi in ω for each i = 1, . . . , k.

In other words, A is a k-component property if it is invariant under replacing the root vertices with other root vertices
from within the same components. We call A a multicomponent property if it is a k-component property for some k.
Given a k-component property A , we say that a k-tuple of components K1, . . . ,Kk of a configuration ω ∈ {0,1}E has
property A if (ω, (vi)

k
i=1) ∈ A whenever u1, . . . , uk are vertices of G such that ui ∈ Ki for every 1 ≤ i ≤ k.

Given a vertex v of G and a configuration ω ∈ {0,1}E , let Kω(v) denote the connected component of ω containing v.
We say that a k-component property A is a tail k-component property if

(
ω, (vi)

k
i=1

) ∈ A =⇒ (
ω′, (vi)

k
i=1

) ∈ A
∀ω′ ∈ {0,1}E such that ω	ω′ is finite and
Kω(vi)	Kω′(vi) is finite for every i = 1, . . . , k,

where 	 denotes the symmetric difference. In other words, tail multicomponent properties are stable under finite modifi-
cations to ω that result in finite modifications to each of the components of interest Kω(v1), . . . ,Kω(vk). For example, if
G is locally finite then the set Ak of (ω, (vi)

k
i=1) such that Kω(vi) contains infinitely many vertices adjacent to Kω(vj ) for

every 1 ≤ i < j ≤ k is a tail k-component property for each k ≥ 2. Note that in the case k = 1, tail component properties
are related to the robust component properties that were considered in the context of Bernoulli percolation by Häggström,
Peres, and Schonmann [13].

We now state our result in the case G = Z
d . The general result is given below. A reformulation of both results in the

language of measurable equivalence relations is given in Section 4.

Theorem 1.1. Let d ≥ 5 and let F be the uniform spanning forest of Zd . Then for each k ≥ 1 and each tail k-component
property A ⊆ �k(Z

d), either every k-tuple of distinct connected components of F has property A almost surely or no
k-tuple of distinct connected components of F has property A almost surely.

The general form of our result will require the underlying graph to be Liouville, i.e., not admitting any non-constant
bounded harmonic functions. Note that if G is Liouville then its free and wired uniform spanning forests coincide [4,
Theorem 7.3], so that we may speak simply of the USF of G. Our proof will also require that every component of the
USF of G is one-ended almost surely. Here, an infinite graph is said to be one-ended if deleting any finite set of vertices
from the graph results in at most one infinite connected component. In particular, a tree is one-ended if it does not contain
a simple bi-infinite path. It is known that every component of the wired uniform spanning forest is one-ended almost
surely in several large classes of graphs [1,4,14,15,17,20,25], including all transitive graphs not rough-isometric to Z

[20]. In particular, Theorem 1.2 applies to all of the transitive graphs of polynomial growth that are studied in [18]. (The
condition that G is one-ended in the following theorem is in fact redundant, being implied by the other hypotheses.)

Theorem 1.2. Let G = (V ,E) be a infinite, one-ended, connected, locally finite graph, and suppose that G is Liouville.
Let F be the uniform spanning forest of G, and suppose further that every component of F is one-ended almost surely. Then
for each k ≥ 1 and each tail k-component property A ⊆ �k(G), either every k-tuple of distinct connected components
of F has property A almost surely or no k-tuple of distinct connected components of F has property A almost surely.
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The special case of Theorem 1.1 concerning a single component (i.e., k = 1) is essentially equivalent to [3, The-
orem 4.5], which was not phrased in terms of indistinguishability. Theorem 1.2 is also closely related to [16, Theo-
rem 1.20], which implies in particular that components of the wired uniform spanning forest of any transitive graph are
indistinguishable from each other by automorphism-invariant tail properties. See Section 3 for a discussion of how The-
orem 1.2 can fail in the absence of the assumption that G is Liouville, even if we require that G is a Cayley graph and A
is automorphism invariant.

We will assume that the reader is familiar with the definition of the uniform spanning forest and with Wilson’s algo-
rithm, referring them to e.g. [21] for background otherwise.

2. Proof

Indistinguishability is closely related to tail-triviality. Let � be a measurable space, let I be a countable set, and let
�I = {(ωi)i∈I : ωi ∈ � for every i ∈ I } be equipped with the product σ -algebra F . For each subset J of I , we define
FJ to be the sub-σ -algebra of F of events depending only on (ωi)i∈J . The tail σ -algebra of �I is defined to be the
intersection

T =
⋂

{FJ : I \ J is finite}.

An �I -valued random variable A = (Ai)i∈I is said to be tail-trivial if it has probability either zero or one of belonging
to any set in the tail σ -algebra T .

The following was proven by Benjamini, Lyons, Peres, and Schramm [4, Theorem 8.3], generalizing a result of Pe-
mantle [25].

Theorem 2.1. Let G = (V ,E) be an infinite, connected, locally finite graph, and let F ∈ {0,1}E be either the free or
wired uniform spanning forest of G. Then F is tail-trivial.

In particular, if the USF of G has only one component a.s. then Theorem 1.2 is implied by Theorem 2.1. Thus, it
suffices to prove Theorem 1.2 in the case that the USF of G has more than one component with positive probability, in
which case G must be transient.

Recall that the lazy random walk on a graph is the random walk that stays where it is with probability 1/2 at each
step, but otherwise chooses a uniform edge emanating from its current location just as the usual random walk does. Note
that we can use lazy random walks instead of simple random walks when sampling the WUSF of a graph using Wilson’s
algorithm, since doing so does not affect the law of the resulting forest. This will be useful to us thanks to the following
well-known theorem due to Blackwell [6] and Derriennic [8]; see also [21, Corollary 14.13 and Theorem 14.18]. (Laziness
is used in this theorem to avoid parity issues.)

Theorem 2.2. Let G = (V ,E) be an infinite, connected, locally finite graph, and let X ∈ V N be a lazy random walk on
G started at some vertex v. Then G is Liouville if and only if X is tail-trivial.

It will also be useful for us to use the following well-known equivalence between tail-triviality and asymptotic inde-
pendence: See e.g. [21, Proposition 10.17] or [11, Proposition 7.9].

Proposition 2.3. Let � be a measurable space, let I be a countable set, let A = (Ai)i∈I be an �I -valued random variable
with law P, and let (Kn)n≥0 be an increasing sequence of finite subsets of I such that

⋃
n≥0 Kn = I . Then A is tail-trivial

if and only if for every event A ⊆ �I for which P(A ∈ A ) > 0 we have that

lim
n→∞ sup

{∣∣P(A ∈ A and A ∈ B) − P(A ∈ A )P(A ∈ B)
∣∣ : B ∈FI\Kn

} = 0 (2.1)

and hence that

lim
n→∞ sup

{∣∣P(A ∈ B | A ∈ A ) − P(A ∈ B)
∣∣ : B ∈FI\Kn

} = 0. (2.2)

In other words, A is tail-trivial if and only if the total variation distance between the distribution of (Ai)i∈I\Kn and the
conditional distribution of (Ai)i∈I\Kn given {A ∈ A } converges to zero as n → ∞ for every event A ⊆ �I .
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Let us note also that if �1, �2 are measurable spaces, I is a countable set, A is an �I
1 valued random variable and

B1, . . . ,Bk are independent, tail-trivial, �I
2-valued random variables, then (Xi)i∈I = ((Ai, (B

j
i )kj=1))i∈I is a tail trivial

(�1 × �k
2)

I -valued random variable.
Our first step towards Theorem 1.2 is the following lemma. Given u = (u1, . . . , uk), we write W (u) for the event that

the vertices u1, . . . , uk are all in distinct components of F.

Lemma 2.4. Let G = (V ,E) be an infinite, transient, Liouville graph, let F be the uniform spanning forest of G, and
suppose that every component of F is one-ended almost surely. Let u = (u1, . . . , uk) be a k-tuple of vertices of G, and
let X = (X1, . . . ,Xk) be a k-tuple of independent lazy random walks on G, independent of F, such that X0 = u. If
P(W (u)) > 0, then for every tail k-component property A we have that

P
(
(F,u) ∈ A | W (u)

) = lim
m→∞P

(
(F,Xm) ∈ A

)
. (2.3)

In particular, the right hand limit exists.

Before beginning the proof of this lemma, let us note the following. Suppose that G is an infinite, transient, Liouville
graph whose USF is disconnected with positive probability. Then whenever X and Y are independent lazy random walks
on G, we have by [4, Theorem 9.2] that X and Y intersect only finitely often with positive probability. Since the event
that both walks are transient and intersect only finitely often is a tail event, we deduce that X and Y intersect only finitely
often almost surely. It follows that if X1, . . . ,Xk are independent lazy random walks on G, then

lim
m→∞P

((
Xi

n+m

)
n≥0 and

(
X

j
n+m

)
n≥0 intersect for some 1 ≤ i < j ≤ k

) = 0. (2.4)

In particular, it follows from [4, Theorem 9.4] that the USF of G has infinitely many connected components almost surely.
The proof of Lemma 2.4 will also apply the following simple measure-theoretic lemma.

Lemma 2.5. Let (Xi)i≥1 and X be random variables defined on a shared probability space (�,P) and taking values in
a locally compact Hausdorff space X. Let (Bi)i≥1 ⊆ � and B ⊆ � be measurable with P(B) > 0. Suppose further that
the following hold:

1. Xi and X have the same distribution for every i ≥ 1.
2. Xi converges to X in probability as i → ∞.
3. P(Bi	B) → 0 as i → ∞.

Then P(X ∈ A | B) = limi→∞ P(Xi ∈ A | Bi) for every Borel set A ⊆X.

Proof. By [27, Theorem 3.14], for every ε > 0 there exists a continuous function fε :X →R such that E[|fε(X)−1(X ∈
A)|] ≤ ε. We have by the triangle inequality that

∣∣P(X ∈ A,B) − P(Xi ∈ A,Bi)
∣∣ ≤ E

[∣∣1(X ∈ A)1(B) − 1(Xi ∈ A)1(Bi)
∣∣]

≤ E
[∣∣1(X ∈ A) − fε(X)

∣∣1(B)
] +E

[
fε(X)

∣∣1(B) − 1(Bi)
∣∣]

+E
[∣∣fε(X) − fε(Xi)

∣∣1(Bi)
] +E

[∣∣fε(Xi) − 1(Xi ∈ A)
∣∣1(Bi)

]

≤ 2E
[∣∣1(X ∈ A) − fε(X)

∣∣] +E
[
fε(X)

∣∣1(B) − 1(Bi)
∣∣]

+E
[∣∣fε(X) − fε(Xi)

∣∣],
where we used the fact that X and Xi have the same distribution in the third inequality. Applying the dominated conver-
gence theorem we deduce that

lim sup
i→∞

∣∣P(X ∈ A,B) − P(Xi ∈ A,Bi)
∣∣ ≤ 2E

[∣∣1(X ∈ A) − fε(X)
∣∣] ≤ 2ε.

The claim follows since ε > 0 was arbitrary. �

Proof of Lemma 2.4. Let (vi)i≥0 be an enumeration of the vertices of G and let (Y i,m)i≥0,m≥0 be a collection of
independent lazy random walks, independent of X and of F, such that Y i,m is started at vi for every i ≥ 0 and m ≥ 0.
Let G be a uniform spanning forest of G sampled using Wilson’s algorithm, beginning with the walks X1, . . . ,Xk , and
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then using the walks Y 0,0, Y 1,0, . . . . Similarly, for each m ≥ 1, let Gm be a uniform spanning forest of G sampled using
Wilson’s algorithm, beginning with the walks (X1

n+m)n≥0, . . . , (X
k
n+m)n≥0 and then using the walks Y 0,m,Y 1,m, . . . . We

clearly have that (Gm,Xm) and (F,Xm) have the same distribution for every m ≥ 0. Unlike F, the forests Gm are not
independent of the random walks X.

For each m ≥ 0, we will define a sequence of forests Fm,R which interpolate between F and Gm. The future of a vertex
v in F, denoted futF(v), is defined to be the set of vertices on the unique infinite simple path starting at v in F, including v

itself. The past of a vertex v in F is defined to be the set of all vertices u such that v is in the future of u. For each integer
R ≥ 0, let FR be the subgraph of F induced by the set

⋃{
futF(v) : v ∈ V \ B(u1,R)

}
,

where B(u1,R) denotes the graph-distance ball of radius R around u1 in G. For each R ≥ r ≥ 0, let Cr,R be the event that
FR does not intersect the set

⋃k
i=1 B(ui, r). A vertex v of G is contained in the forest FR if and only if its past intersects

V \B(u1,R). Since every component of F is one-ended almost surely, the past of each vertex of G is finite almost surely.
We deduce that

⋂
R≥0 FR =∅ almost surely and hence that limR→∞ P(Cr,R) = 1 for every r ≥ 0.

Now, for each m ≥ 0 and R ≥ 0, we define a forest Fm,R = ⋃
i≥0 F

i
m,R , where the forests Fi

m,R are defined recursively

as follows. Let F0
m,R = FR . For each 1 ≤ i ≤ k, given F

i−1
m,R , stop the random walk (Xi

n+m)n≥0 when it first visits the

set of vertices already included in F
i−1
m,R . Take the loop-erasure of this stopped path, and and let Fi

m,R be the union of

Fi
m,R with this loop-erased path. Similarly, if i > k, stop the random walk (Y

i−k−1,m
n )n≥0 when it first visits the set of

vertices already included in F
i−1
m,R , take the loop-erasure of this stopped path, and and let Fi

m,R be the union of F
i−1
m,R

with this loop-erased path. We refer to this procedure as completing the run of Wilson’s algorithm. It follows from [16,
Lemma 4.1] that each of the forests Fm,R is distributed as the uniform spanning forest of G. (Indeed, we can think of the
forests Fm,R as being sampled using Wilson’s algorithm, except that we are choosing which vertices to start our random
walks from using a well-ordering of the vertex set that is not an enumeration.)

It is not hard to see that Fm,R converges to Gm almost surely as R → ∞ (with respect to the product topology
on {0,1}E). Indeed, it follows from the transience of G that the loop-erasure of (X1

n+m)n≥0 stopped when it first hits
FR converges almost surely to the loop-erasure of the unstopped walk as R → ∞, and applying a similar argument
inductively we deduce that Fi

m,R converges almost surely as R → ∞ to the forest generated by the first i steps of the
application of Wilson’s algorithm used to generate Gm; the claim that Fm,R converges to Gm almost surely follows by
taking i to infinity.

For each m ≥ 0 and R ≥ 0, let Wm be the event that the vertices {Xi
m : 1 ≤ i ≤ k} are all in different components of

Gm, and let Bm,R to be the event that the vertices {Xi
m : 1 ≤ i ≤ k} are all in different components of the forest Fm,R \FR .

Thus, the event Bm,R occurs if and only if for each 1 ≤ i ≤ k the walk (Xi
n+m)n≥0 first hits the set of vertices included in

F
i−1
m,R at a vertex of FR . It is easily seen that limR→∞ P(Wm	Bm,R) = 0 for each m ≥ 0.

Now, for each m ≥ 0, R ≥ 0 and 1 ≤ � ≤ k, let τ�(m,R) be the first time after time m that the walk X� hits the set
of vertices included in FR . Write τ (m,R) = (τ�(m,R))k�=1 and Xτ (m,R) = (X�

τ�(m,R))
k
�=1. On the event Bm,R , the vertex

Xi
m is connected in Fm,R to the vertex Xi

τi(m,R). Since A is a tail multicomponent property, we deduce that

Bm,R ∩ {
(Fm,R,Xm) ∈ A

} = Bm,R ∩ {
(FR,Xτ (m,R)) ∈ A

}

up to a null set. Moreover, observe that τ�(m,R) = τ�(0,R) for every 1 ≤ � ≤ k and every m ≤ r on the event Cr,R , so
that if r ≥ m then

Cr,R ∩ B0,R ∩ Bm,R ∩ {
(Fm,R,Xm) ∈ A

}

= Cr,R ∩ B0,R ∩ Bm,R ∩ {
(FR,Xτ (m,R)) ∈ A

}

= Cr,R ∩ B0,R ∩ Bm,R ∩ {
(F0,R,u) ∈ A

}

up to null sets, and taking probabilities we have that

P
(
(F0,R,u) ∈ A | Cr,R ∩ B0,R ∩ Bm,R

) = P
(
(Fm,R,Xm) ∈ A | Cr,R ∩ B0,R ∩ Bm,R

)
.

Using Lemma 2.5 to take the limit as R → ∞ on both sides, we obtain that

P
(
(G0,u) ∈ A | W0,Wm

) = P
(
(Gm,Xm) ∈ A | W0,Wm

)
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for every m ≥ 0. The event Wm is contained in the event that none of the random walks (Xi
n+m)n≥0 intersect each other.

If k = 1, then Wm trivially has probability one for every m ≥ 0. Otherwise, k > 1 and our assumption that P(W ) > 0
implies that F is disconnected with positive probability, so that the event Wm has probability converging to 1 as m → ∞
by (2.4). In either case, we deduce that

P
(
(G0,u) ∈ A | W0

) = lim
m→∞P

(
(Gm,Xm) ∈ A | W0

)
. (2.5)

In particular, the right-hand limit exists.
Since G is Liouville, the sequence of random variables ((Xn+m)n≥0)m≥0 is tail-trivial. Moreover, for each m ≥ 0

the forest Gm is conditionally independent given the random variables (Xn+m)n≥0 of the walks (Xn)
m
n=0 and the forests

(Gi )
m−1
i=1 , and it is easily deduced that the sequence of random variables (Gm, (Xn+m)n≥0)m≥0 is also tail-trivial. Applying

Proposition 2.3 we deduce that

lim
m→∞

∣∣P(
(Gm,Xm) ∈ A | W0

) − P
(
(Gm,Xm) ∈ A

)∣∣ = 0. (2.6)

The claim follows by combining (2.5) and (2.6) and using that (F,Xm) and (Gm,Xm) are equidistributed. �

Corollary 2.6. Let G = (V ,E) be an infinite, transient, Liouville graph, let F be the uniform spanning forest of G, and
suppose that every component of F is one-ended almost surely. Then for each tail k-component property A there exists a
constant P(A ) such that

P
(
(F,u) ∈ A | W (u)

) = P(A ) (2.7)

for every u ∈ V k with P(W (u)) > 0.

Proof. Let A be a tail k-component property. Let u = (u1, . . . , uk) and u′ = (u′
1, . . . , u

′
k) be two k-tuples of vertices of

G such that P(W (u)),P(W (u′)) > 0. Let X = (X1, . . . ,Xk) be a k-tuple of independent lazy random walks, independent
of F, with X0 = u. Let M = maxd(ui, u

′
i ), and let M be the event that XM = u′, which is easily seen to have positive

probability. It follows by Lemma 2.4, the Liouville property, Proposition 2.3, and the Markov property of the lazy random
walk that

P
(
(F,u) ∈ A | W (u)

) = lim
m→∞P

(
(F,Xm) ∈ A

) = lim
m→∞P

(
(F,Xm) ∈ A | M )

= P
((
F,u′) ∈ A | W (

u′))

as claimed. �

It remains to prove that P(A ) ∈ {0,1} for every tail k-component property A .
Our next goal is to establish a conditional version of Lemma 2.4. Let r ≥ 1. By a slight abuse of notation, write

F ∩ B(u1, r) to denote the set of edges of F that have both endpoints in the graph-distance ball B(u1, r) of radius r

around u1, and B(u1, r) \ F to denote the set of edges that have both endpoints in the ball B(u1, r) and are not contained
in F. For each r ≥ 1, let Gr be the σ -algebra generated by F∩B(u1, r). Similarly, for each R ≥ 1, let GR be the σ -algebra
generated by the restriction of F to the complement of the ball B(u1,R).

Lemma 2.7. Let G = (V ,E) be an infinite, one-ended, transient, Liouville graph, let F be the uniform spanning forest
of G, and suppose that every component of F is one-ended almost surely. Let u = (u1, . . . , uk) be a k-tuple of vertices of
G, and let X = (X1, . . . ,Xk) be a k-tuple of independent lazy random walks on G, independent of F, such that X0 = u.
If P(W (u)) > 0, then for every tail k-component property A we have that

P
(
(F,u) ∈ A | Gr ,W (u)

) = lim
m→∞P

(
(F,Xm) ∈ A | Gr

)
a.s. (2.8)

In particular, the right hand limit exists almost surely.

Before beginning the proof, let us recall that the Liouville property can equivalently be defined in terms of the triviality
of invariant events, rather than tail events. The invariant σ -algebra of V N is defined to be the set of all measurable sets
I ⊆ V N such that (vi)i≥1 ∈ I if and only if (vi+1)i≥1 ∈ I . A graph is Liouville if and only if the lazy random walk
has probability either zero or one of belonging to any set in the invariant σ -algebra [21, Corollary 14.13].
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Proof. Write W = W (u). Let A ⊂ E be such that F ∩ B(u1, r) = A with positive probability, and let B be the set of
edges that have both endpoints in B(u1, r) but are not in A. Let Ĝ = (V̂ , Ê) be the graph obtained from G by contracting
every edge in A and deleting every edge in B . Note that, since G is one-ended and every component of F is almost
surely infinite, every two vertices of G are almost surely connected by a path in G that does not use any edges of
B(u1, r) \ F, and it follows that Ĝ is connected. Let F̂ a wired uniform spanning forest of Ĝ independent of F. By the
spatial Markov property of the uniform spanning forest (see e.g. [17, Section 2.2.1]), the conditional distribution of F
given F∩ B(u1, r) = A coincides with the distribution of F̂∪ A (after appropriate identification of edges).

Let π : V → V̂ be the function sending each vertex of V to its image following the contraction, and for each v ∈ V̂

let π−1(v) be an arbitrarily chosen vertex of G such that π(π−1(v)) = v. Let π−1(v) = (π−1(v1), . . . , π
−1(vk)) for each

v ∈ V k and define

Â = {
(ω,v) ∈ {0,1}Ê × V̂ k : (ω ∪ A,π−1(v)

) ∈ A
}
,

which does not depend on the arbitrary choices used to define π−1 since A is a multicomponent property. It is easily
verified that Â is a tail k-component property, and that

P
(
(F,u) ∈ A | F∩ B(u1, r) = A,W

) = P
((̂
F,π(u)

) ∈ Â | Ŵ )
, (2.9)

where Ŵ is the event that π(u1), . . . , π(uk) are all in different components of F̂.
Let X̂ = (X̂�)k�=1 be independent lazy random walks on Ĝ that are conditionally independent of F and F̂ given Gr and

satisfy X̂0 = π(u). Let T� and T̂� be the last times that the walks X� and X̂� visit B(u1, r) and π(B(u1, r)) respectively,
and write T = (T1, . . . , Tk) and T̂ = (T̂1, . . . , T̂k). Define XT+1 := (X�

T�+1)
k
�=1 and X̂T̂+1 := (X̂�

T̂�+1
)k�=1. Observe that,

since Ĝ is connected, the supports of the random variables XT+1 and π−1(X̂T̂+1) are both equal to the set of vertices
v ∈ V \ B for which the random walk started at v has a positive probability not to hit B(u1, r). Similarly, the support
of the random variable (T,XT+1) is contained in the support of (T̂,π−1(X̂T̂+1)). Furthermore, for every t ∈ N

k and
v = (v1, . . . , vk) ∈ V k such that T = t and XT+1 = v with positive probability, we have the equality of conditional
distributions

(
Law of

(
π−1(X̂T̂+n)

)
n≥1 given T̂ = t and π−1(X̂T̂+1) = v

)

= (
Law of (XT+n)n≥1 given T = t and XT+1 = v

)
. (2.10)

Similarly, for every v = (v1, . . . , vk) ∈ V k such that T = t and XT+1 = v with positive probability, we have the equality
of conditional distributions

(
Law of

(
π−1(X̂T̂+n)

)
n≥1 given π−1(X̂T̂+1) = v

) = (
Law of (XT+n)n≥1 given XT+1 = v

)
. (2.11)

Indeed, both sides of both (2.10) and (2.11) are equal to the law of a k-tuple of independent lazy random walks on G,
started at the vertices (v�)

k
�=1 and conditioned not to return to B(u1, r).

We deduce from (2.10) that Ĝ is Liouville: If I ⊆ V̂ N is an invariant event, then I ′ = {(vn)n≥0 ∈ V N : (π(vn))n≥0 ∈
I } is also an invariant event, and hence that

P
((

X1
n

)
n≥1 ∈ I ′) = P

((
X1

T1+n

)
n≥1 ∈ I ′) ∈ {0,1}

since G is Liouville, from which it follows that P((X1
T1+n)n≥1 ∈ I ′ | X1

T1
) ∈ {0,1} almost surely. The equality of the

supports of X1
T1+1 and of X̂1

T̂1+1
and of the conditional laws (2.10) then implies that P(X̂1 ∈ I ) is also equal to either

zero or one, and since I was arbitrary it follows that Ĝ is Liouville as claimed. Thus, applying Lemma 2.4 to both G

and Ĝ yields that

P
(
(F,u) ∈ A | W ) = lim

m→∞P
(
(F,Xm) ∈ A

)
(2.12)

and

P
((̂
F,π(u)

) ∈ Â | Ŵ ) = lim
m→∞P

(
(̂F, X̂m) ∈ Â

)
. (2.13)
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Let t and v be such that T = t and XT+1 = v with positive probability. Conditioning on F and applying Proposition 2.3
we deduce that

lim
m→∞

∣∣P(
(F,Xm) ∈ A | F,T = t,XT+1 = v

) − P
(
(F,Xm) ∈ A | F)∣∣ = 0 (2.14)

almost surely, and hence that

lim
m→∞

∣∣P(
(F,Xm) ∈ A | F∩ B(u1, r) = A,T = t,XT+1 = v

)

− P
(
(F,Xm) ∈ A | F∩ B(u1, r) = A

)∣∣ = 0. (2.15)

Applying a similar analysis to Ĝ yields that

lim
m→∞

∣∣P(
(̂F, X̂m) ∈ Â | T̂ = t,π−1(X̂T̂+1) = v

) − P
(
(̂F, X̂m) ∈ Â

)∣∣ = 0. (2.16)

On the other hand, the spatial Markov property of the USF and the equality of conditional laws (2.10) implies that

P
(
(F,Xm) ∈ A | F∩ B(u1, r) = A,T = t,XT+1 = v

)

= P
(
(̂F, X̂m) ∈ Â | T̂ = t,π−1(X̂T̂+1) = v

)
(2.17)

for every m ≥ 1 + max1≤i≤k ti . Together, (2.15), (2.16), and (2.17) imply that

lim
m→∞

∣∣P(
(F,Xm) ∈ A | F∩ B(u1, r) = A

) − P
(
(̂F, X̂m) ∈ Â

)∣∣ = 0 (2.18)

almost surely, which yields the claim when combined with (2.12) and (2.13). �

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By Corollary 2.6, it remains to prove only that P(A ) ∈ {0,1} for every tail k-component property
A . We continue to use the notation of Lemmas 2.4 and 2.7. Since

⋃
r≥0 Gr generates the product σ -algebra of {0,1}E , it

suffices to prove that

P
(
(F,u) ∈ A | Gr ,W

) = P
(
(F,u) ∈ A | W ) = P(A ) a.s. (2.19)

for every tail k-component property A , every u = (u1, . . . , uk) ∈ V k with P(W (u)) > 0, and every r ≥ 1. By Lemmas 2.4
and 2.7, to prove (2.19) it suffices to prove that

lim
m→∞P

(
(F,Xm) ∈ A

) = lim
m→∞P

(
(F,Xm) ∈ A | Gr

)
a.s. (2.20)

Let Dm,R be the event that the future of X�
m in F is contained in the complement of B(u1,R) for every 1 ≤ � ≤ k, and

let Em,R = {(F,Xm) ∈ A } ∩ Dm,R . In particular, X�
m ∈ V \ B(u1,R) for every 1 ≤ � ≤ k on the event Em,R . Moreover,

since F is one-ended almost surely and G is transient, we have that P(Dm,R) → 1 as m → ∞ and hence that

lim
m→∞

∣∣P(Em,R) − P
(
(F,Xm) ∈ A

)∣∣ = 0

for every R ≥ 1. Thus, there exists a sequence m(R) growing sufficiently quickly that

lim
R→∞

∣∣P(Em(R),R) − P
(
(F,Xm(R)) ∈ A

)∣∣ = 0. (2.21)

Let A be a set of edges such that P(F ∩ B(u1, r) = A) > 0. Since A is a tail property and every component of F is
one-ended almost surely, the event Em,R is measurable (up to a null set) with respect to the σ -algebra generated by GR

and Xm. Thus, by tail-triviality of the uniform spanning forest, conditioning on X and applying Proposition 2.3 yields
that

lim
R→∞

∣∣P({
F∩ B(u1, r) = A

} ∩ Em(R),R | X
) − P

(
F∩ B(u1, r) = A

)
P(Em(R),R | X)

∣∣ = 0
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almost surely. Taking expectations over X, we deduce that

lim
R→∞

∣∣P({
F∩ B(u1, r) = A

} ∩ Em(R),R

) − P
(
F∩ B(u1, r) = A

)
P(Em(R),R)

∣∣ = 0.

Dividing through by P(F∩ B(u1, r) = A) then yields that

lim
R→∞

∣∣P(
Em(R),R | F∩ B(u1, r) = A

) − P(Em(R),R)
∣∣ = 0

and applying (2.21) we deduce that

lim
R→∞

∣∣P(
(F,Xm(R)) ∈ A | F∩ B(u1, r) = A

) − P
(
(F,Xm(R)) ∈ A

)∣∣ = 0.

Since A was arbitrary, the claimed equality (2.20) follows. �

3. The Liouville property is necessary

Suppose G is a non-Liouville graph such that every component of the USF of G is one-ended almost surely. Let A
be a non-trivial invariant event for the random walk on G and let h(v) = Pv(A ) be the associated bounded harmonic
function. It follows from the martingale convergence theorem that h(Xn) → 1(A) almost surely as n → ∞ whenever X

is a random walk on G. Thus, by Wilson’s algorithm, almost surely for every tree of F, the value of h converges as we
move progressively higher up the tree. Thus, we can assign a value of either zero or one to each tree of F, and the value
of the tree is a tail component property. Moreover, it is easy to see that there must be trees with both values zero and one
a.s. This shows that, without the Liouville condition, Theorem 1.2 always fails even in the case k = 1.

If G is a transitive graph, it is natural to consider tail multicomponent properties that are invariant under the automor-
phisms of G. In this case, [16, Theorem 1.20] implies the indistinguishability of individual components of the WUSF
by automorphism invariant tail properties, corresponding to the case k = 1 of Theorem 1.2. The question of whether a
similar result holds for larger k seems to depend on the symmetries of G. For example, if G is the 7-regular triangulation,
then we can consider the circle packing of G into the unit disc (see e.g. [26] and references therein), which is unique
up to Möbius transformations and reflections. Every tree in the wired uniform spanning forest of G has a unique limit
point in the unit circle under this embedding [5], and we can define a tail 4-component property by asking whether, given
some 4-tuple of trees, the cross-ratio of their limit points has absolute value greater than one. Some 4-tuples of trees in
the WUSF will satisfy this property while others will not, so that it is possible to distinguish 4-tuples of distinct trees in
the WUSF via tail 4-component properties. On the other hand, the unit circle is the Poisson boundary of G [2] and hence,
intuitively, all the tail information about a collection of trees should be contained in their collection of limit points. Since
the group of Möbius transformations of the unit disc acts 3-transitively on the unit circle, it is plausible that it should be
impossible to distinguish 3-tuples of distinct trees in the WUSF of this graph via multicomponent properties.

4. Measurable equivalence relation formulation

In this section we briefly outline an equivalent formulation of Theorem 1.2 in the language of measurable equivalence
relations. The theory of measurable equivalence relations often enjoys significant overlap with probability theory, and in
particular with the theory of group-invariant percolation processes, but differences in terminology and notation can make
it difficult for researchers in one area to read papers in the other. Translations between the two languages such as that
given in this section can help to remedy this a little. Background on measurable equivalence relations can be found in e.g.
[9,19].

Recall that a Borel equivalence relation is an equivalence relation E on a standard Borel space X such that E is a
measurable subset of X2. Given a Borel equivalence relation E on a standard Borel space X, a set A ⊆ X is said to
be E-invariant if A = {x ∈ X : ∃y ∈ A such that xEy}. Given a Borel equivalence relation E ⊆ X2 and a collection of
measures (μi)i∈I on X, we say that the pair (E, (μi)i∈I ) is ergodic if for every set E-invariant Borel set A ⊆ X we either
have that μi(A) = 0 for every i ∈ I or that μi(X \ A) = 0 for every i ∈ I .

Let G be a connected, locally finite graph, let k ≥ 1 and let the set �k(G) := {0,1}E × V k be equipped with its
product topology and associated Borel σ -algebra, which makes it into a standard Borel space. We define the k-component
equivalence relation E

comp
k ⊆ �k(G)2 by

(
ω, (ui)

k
i=1

)
E

comp
k

(
ω′, (vi)

k
i=1

) ⇐⇒ ω = ω′ and vi is connected to
ui in ω for every 1 ≤ i ≤ k
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and the k-tail equivalence relation Etail
k ⊆ �k(G)2 by

(
ω, (ui)

k
i=1

)
Etail

k

(
ω′, (vi)

k
i=1

) ⇐⇒ ui = vi for every 1 ≤ i ≤ k, ω	ω′ is finite and
Kω(vi)	Kω′(vi) is finite for every i = 1, . . . , k,

where Kω(v) denotes the component of v in ω. Finally, we define the tail k-component equivalence relation Etc
k ⊆ �k(G)

to be the join E
comp
k ∨ Etail

k , that is, the smallest equivalence relation containing both E
comp
k and Etail

k . In this language,
k-component properties are the same thing as E

comp
k -invariant Borel sets, and tail k-component properties are the same

thing as Etc
k -invariant Borel sets.

The following theorem is a reformulation of Theorem 1.2 in this language.

Theorem 4.1. Let G = (V ,E) be a infinite, one-ended, connected, locally finite graph, let k ≥ 1, and suppose that G is
Liouville. Let F be the uniform spanning forest of G, and suppose further that every component of F is one-ended almost
surely. For each v = (v1, . . . , vk) ∈ V k , let μv be the measure on �k(G) defined by

μv(A ) = P
(
(F,v) ∈ A and v1, v2, . . . , vk are all in distinct components of F

)

Then the pair (Etc
k , (μv)v∈V k ) is ergodic.
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