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Abstract. This paper concerns the parabolic Anderson equation

du 1 ga+riwH
i y_
a2 ot dxy -+ 0xg
generated by a (d + 1)-dimensional fractional noise with the Hurst parameter H = (Hy, Hy, ..., Hy) with special interest in the setting

that some of Hy, ..., Hy are less than half. In the recent work (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 941-976), the case of
the spatial roughness has been investigated. To put the last piece of the puzzle in place, this work investigates the case when Hy < 1/2
with the concern on solvability, Feynman—Kac’s moment formula and intermittency of the system.

Résumé. Cet article concerne I’équation d’ Anderson parabolique

du 1 gatiwH

—=-Aut+u——m

a2 ot dxy -+ 0xg
engendrée par un bruit fractionnaire de dimension d + 1 avec un parametre de Hurst H = (Hy, Hy, ..., H;), en portant une attention
particuliere au cas ou certains des parametres Hy, ..., H; sont inférieurs a 1/2. Le cas rugueux en espace avait fait ’objet du travail

récent (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 941-976). Pour mettre en place la derniere piece du puzzle, cet article examine
le cas Hy < 1/2 en se penchant sur les problemes de résolution, de la formule des moments de Feynman—Kac et de 1’intermittence du
systeme.
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1. Introduction
In this paper we consider the parabolic Anderson equation

Bt x)=FAu(t,x) +OWH@E, x)out,x) (t,x) e Rt xR

1.1
u(0, x) = uo(x) xeR? (1)
with the fractional Gaussian noise
) gd+1yH
WHG, x)=———(t,x1,...,x4) where x = (x1, ..., xq) (1.2)
0t dxy--- 0xg
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given as the formal derivative of a fractional Brownian sheet WH(t, x) (7, x) € RT x R?) with the Hurst index H =
(Hy, Hy, ..., H;) (0 < Hy, ... H; < 1) that is defined as a mean zero Gaussian field with the covariance function

E{WH(s, )Wt »)} = Qo(s, ) Q(x, y) (1.3)

where

d
Qo(s. 1) = Rig(s.1) and  Q(x,y) =[] R, (x;.y))

j=1

and

1
Ry, (u,v) = {|u|2H.i _|_|U|2H./ — |u —v|2Hi} u,veRj=0,1,...,d.

u tt)

In(1.1), 8 > Ois a given constant and the notation
initial condition

©” represents the Wick product. For simplicity we assume the bounded

0 < inf wup(x) < sup up(x) < oo. (1.4)
xeRd xeRd

The fractional Gaussian noise appears to be one of the most interesting Gaussian noises partially because it presents
a full spectrum of very different behaviors along the change of Hurst parameter H. The parabolic Anderson equation
of fractional Gaussian noise has been extensively investigated. The case when Hy, ..., Hy > 1/2 is fully understood as
far as question of existence/uniqueness is concerned. We cite the references [3,5-7], [10,12,14,17,20] and [22] for an
incomplete list. In this case, the Dalang’s condition

d
d—ZHj<1 (1.5)

gives the precise criteria as when the system (1.1) is solvable.

A recent development in literature (see, e.g., [2,8,9,12,13,16,18] and [21])) is to consider the case when the fractional
noise WH is rough, i.e., Hj < 1/2 for some 0 < j <d. In [8], the author shows (Theorem 1.2 and 1.3, [8]) that for
Hy > 1/2, the parabolic Anderson equation (1.1) admits a unique solution (in the sense detailed later) under the condition

{d —H<1 (1.6)
4(1 — Hp) +2(d — H) + (d« — 2H,) < 4.

Here and elsewhere in the paper, we adopt the notations

d
Jo={1<j<d:Hj<1/2}, d,=#{J,},H=) Hjand H,=» Hj.
j=1 jels

The last missing piece of the puzzle in the setting of fractional Gaussian noise is the case when Hy < 1/2, i.e., the
noise WH is rough in time. It forms the main topic of this work. The relevant papers that the author is aware of are [4,8,13]
and [19]. Theorem 1.2 in the recent paper by Deya [13] includes the setting of rough time in (1 + 1)-dimension. It should
be pointed that the solution in [13] is defined in a way different from ours. As evidence, it is not hard to see that Deya’s
formulation (Theorem 1.2, [13]) for solvability is very different from the one given in this paper (see (1.19) below). When
the time-space derivative WH is replaced by time-derivative noise dWH /3¢, the time is allowed to be rough, as claimed
in [4]. Finally, Proposition 4.4 in [19] and Proposition 1.4 in [8] suggest a possibility of rough time in our regime. On the
other hand, there has not been any conclusion showing that WH is allowed to be rough while the equation (1.1) remains
solvable in the sense of Definition 1.1 below.

To clarify what we mean by solving the equation (1.1), we introduce the following definition.

Definition 1.1. An adapted random field {u(z, x); (t, x) € RT x R?} is a solution to the equation (1.1), if for any (¢, x) €
Rt x R?, u(r, x) € £L*(Q2, A, P), the process

{Pr—s(c — u(s, 1o, (s); (5, y) e RT x R}
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is Skorokhod integrable with respect to the Gaussian differential WH(8s, 8y), and u(z, x) satisfies
t
u(t,x) = py*uo(x) + / / Pr—s(x — Y)u(s, )WH(8s,8y)  (t,.x) eRT x R (1.7)
0 JRd

where ps(y) ((s, y) € RT x R?) is the Brownian semi-group and the stochastic integral appearing on the right hand side
is the Skorokhod integral.

We point the references [17] or [19] for the background of the Skorokhod integration and some other material on
Malliavin calculus needed in this paper.
Once the equation (1.1) is solved, it is expected that the solution yields the Feynman—Kac moment representation

Eu™(t, x)
m
_Ex|:eXp{92 Z / / yo(s—r)y(B (s) — Bi(r) drds} 1_[ B () :| (1.8)
1<j<k<m j=1
forx e R andm =2, 3, ..., where “E,” denotes the expectation with respect to the independent d-dimensional Brownian
motions Bi(t), ..., By (t) with B1(0) =--- = B,,(0) = x and yo(-) and y () are time and space covariance functions of

the generalized Gaussian field WH determined by the relation
Cov(WH (s, x), WH(, ») =yo(s =Dy (x =y)  (5,2), (1, y) e RY x RY, (1.9)

When Hy > 1/2, the time covariance yy(-) is explicitly given as

{m(u) — Ho(2Ho — D]u|~@2H0) a5 Hy > 1 110)

yo(u) = 8o(u) as Hy= 1% (u eR).

For the reason that the function Ho(2Hy — 1)|u|~?~2H0) is no longer non-negative definite as Hy < 1/2, it can not be
chosen as a covariance function. The way to extend the above expressions to the setting Hy < 1/2 relies on the Fourier
transform

I'(2Hp + 1) sinw Hy

= [A]172Ho g), (1.11)

yo(u) = fR M uo(dn)  with o(dh) =

partially for the fact that (1.10) and (1.11) are consistent as Hy > 1/2. When extended to the setting Hy < 1/2, the
constant
I'(2Hp + 1) sinw Hy
2

appearing in (1.11) is identified by the constraint

1 pl
/0/0)/0(s—r)dsdr=1, (1.12)

the relation

1 1
/ f yo(s —r)dsdr =
0 Jo R

and the identity (A.2), Lemma A.1 in Appendix below.
It should be pointed out that when Hy < 1/2, the above Fourier transform is not point-wisely defined. Instead, y(-) is
given as generalized function defined by the linear form

2

1
e ds| uo(dhr)

['(2Hy + 1) sinm Hy
2w

(o, ¥) = / M2 FEQY )AL e SR)
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on the Schwartz space S(R) of rapidly decreasing functions on R, where F (i) is the Fourier transform of :
FHo = f My uydu heR.
R

As Hy < 1/2, y(-) is no longer non-negative in any reasonable sense, for the function |A|'=>0 is not non-negative
definite. A simple but heuristic way to show it is to take ¢ = 1:

/ you) du = (yp, 1) = / IR 2080 (1) da = (0120 = 0.
R R

Similarly, with possible roughness in space, y (-) is formally given as

d
y() = / ¢S u(dg)  with u(dé) = Cy (H |sj|1—2f'-f> d§ xeR? (1.13)
R .
j=1
where we adopt the notation § = (§1,...,&,) and
d .
'2H; + 1) sinm H;
Cy= ]_[1 = :
j=

In literature po(dA) and w(d§) are called spectral measures of y(-) and y (-), respectively.
Since yy(-) exists as a generalized function in this paper, we seek a more comprehensive way to re-write the Feynman—
Kac moment representation. Given two independent d-dimensional Brownian motion B; and By, set

1 ~
0,(B. B)=Ho/ u(dé)/ [s70=2H0 4 (¢ — )=(1-2H0)} 6 (B=B) 4
R4 0

H()(l _ 2H0) / /t /l‘ [ei§~BS _ei§~B,-][efi§~§S _e*if'l}‘r]
_— d dsd 1.14
$ = [ e [ e sdr (1.14)

whenever the integrals on the right hand side are properly defined.
Theorem 1.2. Let 1/4 < Hy < 1/2. Under the assumption
4(1 —=2Hp) +2(d — H) 4+ (dy —2Hy) <2 (1.15)

the parabolic Anderson equation (1.1) admits a unique solution u(t, x) in the sense of Definition 1.1. Further, we have
the Feynman—Kac moment representation

m
Eu™(t,x) = E, |:exp{92 > QB Bk)} I u()(Bj(t)):| (r,x) e R* x R? (1.16)
1<j<k<m j=1
form=2,3,..., where By, ..., By, are independent d-dimensional Brownian motions with B;(0) =--- = B,,(0) = x.

One of the major ingredients of this paper is to establish the decomposition
ropt -
/ / yo(s —r)y(Bs — B,)drds
0 Jo
1 ~
_ Ho/ u(ds)/ (s (=2H0) 4 (; _ 5)=(1=2H0)} i5-(B=Bo) g
R4 0

H()(l _ 2H0) / /t /l [ei$~BS _ ei?Br][e—iEEs _ e—ié~§r]
_— d dsd 1.17
el ICI | o sdr (117

for two independent d-dimensional Brownian motions B and B. Consequently, (1.8) and (1.16) are consistent.



796 X. Chen

Recall (Theorem 1.2 and 1.3, [8]) that when Hy > 1/2, the parabolic Anderson equation (1.1) admits a unique solution
under the assumption (1.6). Together with Theorem 1.2, a complete picture emerges on the solvability for the parabolic
Anderson equation with fractional Gaussian noise. On the other hand, by the moment representation (1.8) (with m = 2)
and the square integrability requirement in Definition 1.1, a necessary condition for solvability is

t t
Eoexp{GZ/O /0 yo(s —r)y(Bs — B,)dsdr} <oo Vi>0. (1.18)

Evidence suggests that this does not happen without (1.6) when Hy > 1/2 or without (1.15) when Hy < 1/2. In the special
case whend =1, Hy=1/2 and H < 1/2, for instance, it is proved (p.75, [11]) that a condition necessary for

1 1 2 1 2
EOU / So(s—r)y(Bs—Es)dsdr] =E0U y(Bs—gs)ds] <0
0 JO 0

is H > 1/4, which is the second part in (1.6). The argument used there strongly (but not conclusively) suggests that the
conditions

4(1 — Hy) +2(d — H) + (dx —2H,) <4 and 4(1 —2Hy) +2(d — H) + (dy — 2H,) <2

might be necessary for

1 1 2
EO[/ / VO(S—”))/(BS—Er)dsdr} < 00
0 JO

in the settings Hy > 1/2 and Hy < 1/2, respectively.
As for the necessity of “d — H < 1” in (1.6), we consider the case of non-rough fractional noise with Hy > 1/2 for
simplicity. Given A > 0

1 1
Eoexp{A/ / yo(s —r)y(Bs — Br)dsdr}
0 Jo

1 pl
> Egexpi i vo(s —r)y(Bs — B,)dsdr l{maxlBs| <€, max |B;| < 6]
0 Jo s<I1 s<1

1 pl 2
> exp{ky(Ze)/() /0 yo(s —r)ds dr}(IP’o{rglfaf& |Bs| < 6})
=exp{AC(H)e 2" M exp|—2(1 +o(1))Cae 2} (e — 0T)

where C(H) > 0 depends only on H, C4 > 0 is the universal constant appearing in the small ball probability for d-
dimensional Brownian motions, and we used (1.12) in the last step. As € — 0T, the right hand side tends to infinity for
allA>0asd — H > 1, and for large A > 0 as d — H = 1. By the Brownian scaling and by the time-space homogeneities
of yo(-) and y (), therefore, (1.18) is impossible whend — H > 1.

Applying the criteria (1.6) and (1.15) to the (1 4 1)-dimension (i.e., the case when d = 1, H = (Hy, H)), we obtain
“the domain of solvability”

Hy > % and H > % : automatically solvable

Ho>1 and H<l: solvableif Ho+H >3 (1.19)
Hy<l and H=1: solvableif 4Hy+H >2 '
Ho<% and H<%: solvable if 2H0+H>§

and its graphic illustration in Figure 1.
The next problem is on the intermittency of the solution. Recall (Theorem 1.5, [8]) that when Hy > 1/2, for any m > 2,

2Hy+H—d

lim ¢~ =@ logEu™ (¢, x) = ki (H)0* H (1.20)

t—00

with 0 < k,u (H) < 0o under the assumption (1.6). Notice that % >1,=1and <1 for Hy > 1/2, = 1/2 and

< 1/2, respectively. Does it suggest a sub-linear growth for log Eu" (¢, x) as Hy < 1/2? The following partial result for
m = 2 (known as weak intermittency in literature) tells a different story.
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Solvable

=

=l
—

Fig. 1.

Theorem 1.3. Under the assumption of Theorem 1.2, there is a constant k (H) > 0 depending only on H= (Hy, ..., Hy)
such that

1 2
Jim log Eu?(t, x) = k (H)§ ZAo+H=a (1.21)

For any m > 2, Theorem 1.3 and the Feynman—Kac moment representation (1.16) suggest the pattern of intermittency
described by the limit

1 2
tlim A logEu" (¢, x) = kpy (H)O 2Ho+H=4  ;p =23, ... (1.22)
—00

in the setting of Hy < 1/2. Establishing (1.22) with «,, (H) being identified will be an interesting problem. In addition,
the high moment asymptotics

logEu™(¢,x) (m — 00)

and related behaviors of the system need to be investigated. The comparison between (1.20) and (1.21) indicates a sub-
stantially new moment asymptotic behavior for Hy < 1/2. We leave this pursue to the future study.

We now highlight some of the new ideas we introduce and new challenges we face in this paper. By a procedure
through Itd6-Wiener expansion (briefly reviewed in Section 2), solving (1.1) and investigating its intermittency become,
respectively, the exponential integrability and exponential asymptotics for the conditional covariance formally represented
as

t t
Cov(f WH(S,B,_S)ds,/ WH(s,B,_S)ds’B,B>
0 0
t pt . ~
= / w(dé) / / vo(s — r)e's B=B) g dr. (1.23)
R4 0 JO

By Taylor expansion, the exponential integrability is installed by sufficiently sharp bounds for the n-moment (n =
1,2,...) of the Brownian Hamiltonian given on the right hand side, which usually contain the factorial multiple (n!)?H)
(see (4.20) below for the ultimate bounds in our setting). To ensure the requested exponential integrability, it is impor-
tant to have p(H) < 1. Taking the risk of technicality and ignoring the fact that the time covariance yy(-) exists only as
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generalized function, we conduct the formal computation

t t ~ n
Eo |:/ /,L(d«‘;:)/. / yo(s — r)e'sBse=i8Br g dr:|
R4 0 Jo

n n n
= / y,(dé)/ 1_[ vo(sk — 1) | | Eo 1_[ '8k By Eo 1_[ e 15 Br ) ds dr
®4y" (0,712 k=1 k=1

k=1
forany n =1, 2, .... Here and elsewhere in the paper, we adopt the simplified notations

p(d§) = pu(déy) - - - u(déy), ds=dsi---ds, and dr=dry---dr,

in the context whenever it becomes obvious. To handle the Brownian expectations on the right hand side, a treatment
frequently appearing in this work (and in literature as well) is the time re-arrangement. Write

[0, 612 ={(s1,...,80) €[0,2]"; 51 <+ < s}

By permutation invariance, the n-moment is equal to

n n n
n! / u(dé)/ (H Yo(sk — rk)) (Eo 1_[ eig’f'Bfk> (]Eo l_[ e_if"‘B’k> dsdr.
(R [0.47% x[0.11" \j_| i

k=1

On [0, ¢]2,

n ) n n

]EO 1_[ elSk.Bxk = ]EO exp{i Z( Ek) : (BSk - B.S‘kl)}
k=1 k=1 \j=k
1 n n 2
ZGXP{—EZ ZSk (Sk =sk—1) ¢ (s0=0).

k=1lj=k

So we have

n

t t ~ 7
Eo |:/ u(dé)/ / vo(s — r)e'sBse 5B gg dr
R4 0 JO J

1 n n
! / H(d§) / expl—= &
Ry (0,612 x[0,]" 2 2 Jgk

k=1

2 n
(sx — Skl)} (EO l_[ e_iSk'B’k) dsdr.

k=1

From the above computation, we see that the factorial n! appears as the cost for s-time-permutation. By a trick of time-
exponentiation, the actual cost for this job is less than n!. Should we pay another n! for getting the r-expectation evaluated?
First, doing so would rule out any chance for the needed exponential integrability in the setting Hy < 1/2 regardless how
Hi, ..., Hy are restricted. Second, the proposed payment is some what un-necessary as most of the mass concentrates
near the diagonal {s = r}.? To a degree, therefore, re-arranging “s; < --- < s,” already puts extra weight on the same
order “r; < --- < r,”. The challenge is how to carry out this idea mathematically.

This is a long existing problem even for the setting Hy > 1/2. In most publications in literature, the choice is often
between the double permutation and the adoption of the obvious bound

n
0<Eg 1_[ e 18k Bry <1I1.
k=1

This compromised treatment may still allow for the needed exponential integrability in some cases when Hy > 1/2 but
often brings some extra restriction for solvability of (1.1). When Hy < 1/2, the above bound is completely in-applicable
as yp(-) is sign-switching.

2For comparison, we list the easy case Hy = 1/2 in which yg(-) = §p(-), double time-integral in (1.23) becomes a single time-integral and one permu-
tation takes care of the computation.
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In the recent paper [8], a new idea has been developed for Hy > 1/2 which effectively lowers the cost of n! by
replacing the double time-integrals by a “g-multiple” but “time-free” integral with 8 ~ 2Hy. On the other hand, the
setback in Hy < 1/2 (Proposition 1.4, [8]) indicates a much more drastic measure is needed.

A major step in this work is the covariance decomposition given in Theorem 3.1 below which has been re-written in
(1.17). In the decomposition (1.17), the first term is in a form of single time-integral to which only one time-rearrangement
is needed for computing its n-moment. To bound the moment of the second term, we can lower the cost of n! by using
the Holder continuity of the Brownian motions, a property that had not been made relevant to this type of the problems in
which it was widely believed that Brownian motions typically take small values.

The new type of Brownian Hamiltonians appearing in the decomposition of (1.17) poses a new challenge when it comes
to the problem of intermittency such as the one stated in Theorem 1.3. As the first term in the decomposition (1.17) is
asymptotically negligible (Lemma 5.1), the main challenge is on the handling of the second term. A key observation
(Lemma 5.2) is that the double integral of the second term is indeed one-dimensional (as far as the large ¢-behavior is
concerned) due to high concentration of the mass near diagonal. This fact allows us to develop a strategy in connection
to the spectral representation of the self-adjoint operators in establishing the limit in Theorem 1.3. To fully understand
the intermittency in the case Hy < 1/2, new ideas have to be developed in future study for the Brownian Hamiltonians
appearing in the decomposition of Theorem 3.1.

Theorem 3.1 is partially inspired by a recent development in [4] where the time-space derivative WH is replaced by the
time-derivative d WH /0t with Hy < 1/2. In Theorem 2.2, [4] (in connection to (2.6), [4]), the covariance decomposition

t t
Cov(f WH(ds,bt_s),f WH(ds,I;t_s)>
0 0

t
— Ho /0 [s702H0 4 (¢ — )=0-2H0} (b, By)

t pt Iy r
+ Ho(1 — 2Ho)f / Qs by) = Qs br) 4 g, (1.24)
0 Jo

|s _r|2—2H0

is established for every pair of deterministic 8-Holder continuous function b; and bs (s € [0,¢]) with BH + Hy > 1,

where Q(x, y) is the space covariance function of the fractional Brownian sheet wH(¢, x) given in (1.3). We point also

to [24] for its application in the intermittency for the parabolic Anderson equation with time-derivative Gaussian noise.
By Theorem 3.1, on the other hand, (1.23) can be re-written formally as

t t
COV(/ WH(s,B,,s)ds,/ WH(s,B,s)ds|B,B)
0 0
t
= HO/ [s7U72H0) (1 — 5)U=2H0) Yy (B, — By) ds
0

t rty(By—B,)—y(B;— B
+ Ho(1 — 2H) v(Bs = B)—vB = B) (1.25)
0 Jo ls — r|2=2Ho

Here we recall that y(x,y) = y(x — y) is the space covariance of WH(I, x). The striking similarity between (1.24)
and (1.25) suggests a general formula for covariance of the Gaussian integrals with rough time component. The ideas
developed in connection to (1.24) and (1.25) may lead to a better understand of the parabolic Anderson equation with the
general rough Gaussian noise.

Despite of the similarity in formulation, the tool for covariance decomposition in this paper is drastically different
from the one developed in [4] where the proof is essentially analytic. Our argument is probabilistic and largely relies on
the distributional properties of the Brownian motions.

The rest of the paper is organized as following: In Section 2, a brief review of the treatment of It6-Wiener expansion that
re-formulates Theorem 1.2 and Theorem 1.3 into the problems on exponential integrability and exponential asymptotics
for the Brownian Hamiltonian given in (1.23). Section 3 is devoted to the covariance decomposition (Theorem 3.1).
The main topics in Section 4 and Section 5 are, respectively, the exponential integrability and exponential asymptotic
surrounding the covariance decomposition developed in Theorem 3.1.
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2. Solution in Ito—Wiener chaos expansion

In this section, we reduce the problem of solvability and Feynman—Kac moment representation to the problem on the
exponential integrability for the Brownian Hamiltonian appearing in (1.23). The material presented in this section is
essentially known (see, e.g., [17]). For the reader’s convienience, it is briefly reviewed here without proof.

Iterating the mild equation (1.7) infinitely many times, we have formally expand the solution u(¢, x) (if exists) into the
form

w(t,x) =Y Li(fu(1,x) (t,x)eRT xR @.1)

n=0

where for each n, I,,(f,, (-, t, x)) is given as a n-multiple Skorokhod integral with the symmetrified integrand

fn(s],.x], ‘-'7s}’l7xn; t?'x)
1 n—1
= 1Pi=sow (X — X (n)) <l_[ Potest)—So ) Ko (k+1) — xo(k))) (Psoq1y * 10) (X5 (1)) 10,177 (5) (2.2)
k=1
and integration element 6 WH(Ssy, 8x1) - - -0 WH(8s,,, 8x,), where o denotes the permutation on {1, ..., n} determined by

the order 0 < s5(1) < -+ < Sg(m) <t. By the L£?-orthogonality of the expansion,

o
Eul(t,x)= Y nl| fuCot,2) |30 (1.2) €RT x RY (2.3)
n=0

A careful computation shows that for each n > 0,

92n t t - n 5
|}In(fn(-,t,x))||i®n:WEX{UO /0 VO(S—V)V(Bs—Br)drdS:| uo(B(t))uo(B(t))}~

where the notation E, stands for the expectation with respect to two independent Brownian motions B and B with
Bo = Bo = x; yo(-) and y (-) for the covariance functions given in (1.11) and (1.13), respectively. In connection to (2.3),

t t
Eu’(t, x) = E, |:exp{92/0 /O vo(s —r)y(B(s) — B(r))dr ds}uo(B(t))uo(B(t))] (2.4)

With the bounded initial condition (1.2), the above heuristic derivation can be made into a mathematical statement that
the parabolic Anderson equation (1.1) has a (unique) solution in the sense of Definition 1.1, provided

t t
Eo exp{C/ / yo(s —r)y(Bs — B,)dr ds} <o VC,t>0. 2.5)
0 JO

Notice that (2.4) is the Feynman—Kac moment representation (1.8) with m = 2. In general, the It6-Wiener chaos
expansion in (2.1) morally supports the symbolic expression
)]

r 92 r
u(t,x)=E, [exp{ef WH(s, B,_y)ds — > Var(f WH(s, B,_,) ds
0 0
where the Brownian motion B, is independent of WH. By a formal use of Fubini theorem (known also Replica in litera-
ture)

m t
Eum(t,x)=E®Ex|:exp{92/ WH(s, Bj(t—s))ds
=170
92 " n
__ZVar</ WH s Bj(t —s) ds‘B )]nuo(Bj(t)):|
Jj=1
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92 m r,
=E,|exp — Var / WH(s, Bj(t —s))ds|Bi, ..., Bn
, 0
j=1

%Xz: </ WH(s, Bj(t — s)) ds‘B )}Jli[]uo(Bj(t)):|.

By variance decomposition,

m t
Var(Z/ WH(s,Bj(t—s))ds‘Bl,...,Bm>
j=17°

= ZV&r(/(; WH(S, Bj(t —s)) ds‘Bj)

j=1

'
+2 Z Cov(/ (s B(t—s))ds / WH(S,Bk(t—S))dS‘Bj,Bk)

1<j<k<m

and
t t
C0V</ WH(s, B;(t — 5)) ds, / H(s, Bi(t — ) ds‘B],Bk)
0 0

t pt
2/0 ,/0 yo(s—r)y(Bj(s)—Bk(r))drds

801

we have the Feynman—Kac moment representation given in (1.8). The above argument can be made mathematically
rigorous, provided that the exponential integrability given in (2.5) holds. Under the assumption in Theorem 1.2, (1.8) and

(1.16) are equivalent, as a consequence of Theorem 3.1.

According to the above discussion, the proof of Theorem 1.2 is reduced to the establishment of the exponential inte-

grability given in (2.5).

Without a proper assumption, the Brownian time-integral in (2.5) does not have to make sense as yo(-) (and possibly

y (-)) exists only as generalized function in our setting. It is defined as the L2(2, A, Py)-limit

t pt topt
/0 /0 (s —r)y(Bs — By)drds= lim / / YoN(s —r)ym(Bs — By)drds
0

M,N—o Jo

for a sequence of “reasonable” and pointwise-defined yp x(-) and yp/(-), whenever the limit exists.

In view of (1.11) and (1.13), for instance, we may choose
v = [ n) ad = [ e
[-N.N] [—M, M}
By straightforward computation, the random sequence
1 t ~
Quv= [ [ vonts = ropu(s, - Bdrds
0 JO
can be rewritten as

t pt -
Qu.n = / po(di)u(ds) / f o6 8 B=B)) gy i
[-N.NIx[-M ,M]¢ 0 Jo

and satisfies

EolQum v — Qum,n]1"

n
= / HoGIL(dE)) / Eo [ 6560 ) g
((=N",NIx[=M',M"1A\[=N ,N1x[—M, M4 [0,1"

k=1

2

2.6)

Q@.7)
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forany n > 1, N’ > N and M’ > M. Therefore, the random integrals linked by equality

t t t t ~
/ f Yo(s — )y (Bs — B,)drds =/ Mo(dk)u(dé;‘)/ f T is (Bs=Br) gy g (2.8)
0 JO Rd+!1 0 JO
are well-defined as the limits in (2.6) and live in £"($2, A, Py) for all n > 1 if and only if
n 2
/ o) (d§) / o [ [e!® B0 ) ds| <00 n=1,2,.... (2.9)
(Rd+l)ﬂ [0,£]" k=1

In this case

t t n
Eo[/ / Yo(s — )y (By — E»drds}
0 JO

n
/ Bo [ [ oot 68600 ) g
0.1 k=1

By Taylor expansion, the exponential integrability in (2.5) or the existence/uniqueness of the parabolic Anderson
equation (1.1) relies on the bound for the high dimensional integral on the right hand side of (2.10). In Proposition 1.4,
[8], the bound

2

=/ o) (de) n=1,2,.... (2.10)
(Rdﬂ)n

n 2
/ pmo(A)u(d§) / Eo 1_[ ol Case e BG) | g6
(Rd+l ) [0’1],1 bl
< (n!)(d—H)+(2—2Ho)Cntn(ZHo—i-H—d) n=1.2.... o1

is established under the assumption in Theorem 1.2 for a constant C > 0 independent of ¢ and n. Consequently, the
Brownian Hamiltonians in (2.8) are well-defined and have all finite positive moments. On the other hand, the bound in
(2.11) is insufficient for the needed exponential integrability (2.5) as (d — H) +(2—2Hy) >2—2Hp > 1 when Hy < 1/2.
Substantial improvement has to be made in order to establish (2.5).

3. Covariance decomposition
The requested improvement is based on the following theorem.

Theorem 3.1. Under the assumption of Theorem 1.2,

ropt ~
[ Mo(dk),u(dé)f f M) 18 (Bs=Br) gy i
Rd+!1 0 0
t ~
= HO/ /‘L(ds)/ {S*(I*ZHO) +(t _s)*(l*ZHo)}eiE(BSfBS)ds
R4 0

R f (dé) f | f R e T 3.1)
s — sdar a.s. .
2 Ra" 0 Jo |s —r|2=2Ho

for every t >0, where B; and E, are independent Brownian motions starting at 0.
Further, two integrals on the right hand side are well-defined and have all finite positive moments.

Proof. For N > 0, consider the decomposition

t ot _ -
/ uo(dk)u(dé)/ / M) 18 (Bs=Br) gy g
[-N.N]xR4 0 Jo

t ot -
:/ /Lo(dk)u(dS)/ / M 18 (Bs=Bs) gy g
[-N,N]xR9 0 Jo
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1 topto . ' o .
— 5/[;]\/ Ny /Lo(d)»)u(dg)/ / el)n(S*l‘)[elé"BS —e’g'Br][e*lf'B.s —eflé‘Br]drds

eirs _ pir(s—1) ‘ N
/ s / </ uo(dw) BB g
1 1 : . . ~
— E Ad [,L(ds)/o /0 (/N el)»(s—r)u/o(d)\')> [eléjBJ _ elg'Br][e—lg'BJ _ _’S B ]drds

In view of (1.11),

N gihs _ pirs=1) T'(2Hy+ DsintHy (N ;54 SIAE=D) sgn(A)
———————o(da) = . {ei* — V=
_N iA 2mi _N (A
_ T'2Ho + 1) sinm Ho /N Jiss S8 dx+/ Jiri—s) S8R
27i _N |A[2Ho -N |A|2Ho
_ T'QHo+ Dsinw Hy | [V sin(is) " Nsin(A(t — 5)) "
- T 0 )\'ZH() 0 )\’ZH() '
With integration by parts,
N : N
; I'(2H 1 H
/ M6 o (d) = (2Hp + 1)sinm Hy / 5 1-2Ho cos(A(s — ) di
_N T 0

_ I'QHy + 1) sin Hy {Nl—ZHo sin(N(s —r)) _ 1 —2Hy [N sin(r|s —r|) d)»}.

T (s—r) ls =rl Jo A2Ho

Summarizing our computation,

/ Ho(dX)(dE) f t / s 5 BB g g
[=N.N]xR? 0 Jo

['(2Ho + 1) sinw H X At — ; 3
_ I 0+n)smﬂ O{f (dg)/ (/ ST;HS)dA+A sm(}»(th s)) )lf'(BS—Bs)dS

2H0 sin(hls —rl) O\ [efBs — eib-Brj[e=i€Be _ =it Br)
+ f u(d 5)/ / (/ 3 dk) T drds

N1 ZHO/ / Sm((N<S )r))[ iS'Bx—eié'Br][eif'Ev_eié-Er]drds}.
s—r

Consider the further decompositions

t sin(As) s1n(k(t—s)) i€-(By—By
/Rdu(dg)/o (/0 S i+ /O S )sw B g

° sinA " (=2 —(1=2H) ) i&-(By—By)
- 32H, dA {s + (=) fe'S TR ds
0 0

—/ u(dé)/ s~ 2”’0)/ UL s)—“—ZHo)/C>O sind -\ ieB-Bo g
R 22H0 N(t—s) A0

ot N sin(ils —r)) [i6Bs _ oit-Br[e=i&-Bs _ p=it-Br]
d di drd
/Rdu( E)/O/(;(/O 2Hy ) 5 —7] rds
o sink [elf By _ lE By][e i By _ e*ii"'gr]
= <f0 "2 )/R u(ds)/ / e i ds
Lopty 1 gina [ef6Bs — ei$~Br][efié~§s _ efig.E,]

- d d din dr ds.
/Rd u( S)/Rd ( ‘5)/0 /0 (/I‘Vs—rl 22Ho ) s — r[2—2Ho rds

and

803

(3.2)

(3.3)

(3.4)



804 X. Chen

For any even n > 2, write

(1-2Hp) sin (1-2Hp) sin £-(Bs—By) "
E (d)/<‘ 0/ dk+(t 5)” o/ d)\)l s —By ds]
0|:/]R (s A2Ho N(i—s) A2Ho

= [, wao [ (H{¢N<sk>+goN(t—sk>}) (Eol'[e’wfk—gsv) ds
Ry 0.0\

k=1

By the fact that
sin A
<pN(s)Es—“—2H0>f 3T dr— 0 (N — o0),
Ns

by the bound |gy (s)| < Cs~(172H0) and by the fact (Lemma 4.1 in the next section)

n n
/ u(dé)/ [Tlsc 72 4 (¢ — s~} ) (B [ [ 6 P55 ) dis
(R‘l)” [0,1]" kel ke

t . ~ n
:EOU M(dg)/ {s(]2H0)+(t_s)(12H0)}elé'(3sBs)dsi| oo
R4 0

the second term in (3.3) converges to zero in L" (Pg) as N — oo. Consequently,

tr (N sin(rs) N in(A(f — 5)) _ -
li d —dx SV ) g e (Bs=Bs) g
NS R4 = 5)/0 </0 A2Ho +/0 22Ho )e s
 sinA ! i -
- e —(1-2Hy) | (; _ o\~(1-2Hp)) ,i&-(Bi~By)
- </0 32Ho dl)/o R A ds (3.5)

in all positive moments.
Similarly, using Lemma 4.2 in the next section one can show that the second term in (3.4) converges to zero in L" (Pp)
as N — oo and therefore,

' t et N sin(ils — r|) [ei6Bs — eié-B,][e—ié-Ex _ e—ig»ﬁ,]
lim u(dé) S dx drds
N—oo Jrd o Jo 0 Ao |S — I’|

 sinA ! ! [giE'BS — eiS'Br][e_[E'Ey _e—iéj'gr]
=() s @) [ @] | PR dr ds (3.6)

in all positive moments.
Combining (3.2), (3.5) and (3.6) together, in view of Lemma 3.2 below,

topt ' ~
/ ,uo(d)»)u(dé)/ / e 18 (Bs=Br) g1 g
Rd+1 0 0

I'(2Hp + 1) sinw Hy  sin A
T 0 k2H0

t ~
) {/d“(df)f [s=1=2HD 4 (¢  5)=(1=2H0)} jiE-Be=BD) g
R 0

2H0 [ei€Bs iE-B,][e—iE-ES _ e—is-fs‘,]
/ u(d S)/ / 5 P2 drds a.s.

Finally, the identity (3.1) follows from

I'(2Hp + 1) sinw Hy f sin A
T 0

which is established in (A.1), Lemma A.l in Appendeix below. (|
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Lemma 3.2. In the assumption of Theorem 1.2,

lim Nl—zH()/ (dé)\/\ / Sln(N(S r))[ i&-By _ e—ié-Br][e—ié-gs _ e—i&-gr]dr ds =0

N—o0 (s—r)

in all positive moments.

Proof. Write
/ 1(d8) / f Sm(g(s_)r))[ié‘B“—e*is'B’][e*"E'EY—e’ié‘E’]drds
—r

:/ /,L(df)/ / (/ e”‘(sr)d)»)[eis'B“ —eiié'B’][efié'E‘ —eiiéﬁf]drds
R4 0o Jo \J-N

and notice
t t X i . Lo~ L~
/ M(dé)/. / </ elk(s—r) d)\.) [e’E'Bs _ e_’E'Br][e_lg'Bs _ e—lS-Br]dr ds
R4 0 JO R
t pt ~ o~
=/ u(dé)/ / So(s —r)[e's'BS —e_lg'B’][e_’é‘B“ —e_’g'B’]drds =0.
R4 0 JO
We have
[ maey [ [ e it B
Rd (s —71)
= —f d}\,l,l,(dg)/ ‘/‘tei)‘(s_r)[eig'B: _ e_l'g'Br][e_iE'Es _ e_iS'Er]dr ds
[-N,NJ¢xR4 0 Jo
:2/ dip(d§) ft/te”‘(‘g_r)eig'Bfeis'(B‘f_E’)drds
[-N,N]¢xRd 0 Jo

t pt -
- 2/ d)»/_,b(dé)/ / el)‘(sfr)elé'(Bs*Bs) drds.
[—N,N]"X]Rd 0o Jo
Let n > 2 be an arbitrary but fixed even natural number. For the first term on the right hand side,
t t - n
N(1—2H0)"E0 [/ drp(dE) / / piMs=r) yi& Bs ,i&(Bs—Br) . dsi|
[-N,NJ¢xR4 o Jo

n
Eo ! sk Ek-BG) | g6
/[O,t]" ( 1_[

k=1

2

=N(1—2H0)n/ d)\.pb(dg)
( NN]L‘XRd)Il

F(2QHy+ 1)sinm Hy\ "
< ( - ) / jo(dA)u(dE)
JT ([7N,N]C><]Rd)"

—0 (N— o0)

k=1

where the last step follows from (2.11).

n
Eo ol PrsitEiBsi)) | g6
v/[O,t]" ( l_[

805

3.7

(3.8)



806 X. Chen

As for the second term on the right hand side of (3.8), by a computation similar to the treatment for the first term in
(3.2),

t opt -
N(I—ZHQ)/ d)‘-ﬂ(dé)f / eik(‘v—r)eig(BS—B:)drds
[—N,NJ*xR4 0 Jo

t ~
=2/ M(dé)/ [Un () +yn(t —s))es BB gs
R4 0
t—N—! _ N
=2f M(dé)/ {Un () + ¥t —s))es BB g
R4 N-1
N~! 5
+2/dﬂ(d§)/ [Un () +Yn(t —s) )5 B8 gg
R 0
t ~
w2 [ ey [ s by =)0 ag
R¢ 1—N-!
with

o0 o1 )\'
U (s) = NHHO/ sink oo
Ns A

It is easy to see that the sequence
{UNG) + YN =)}y y-1y(5)

is uniformly bounded and converges to zero pointwisely on s € [0, ] as N — oo. Hence,
t—N~! ‘ N n
IEO [/d //L(dg)/. 1 {wN(s) + wN(t - s)}els‘(B»rst) ds}
R N-

- } - - i&-(By,—Byy)
_/(Rd)n M(dS)[N—l,tN—‘]" (H{l/fN(Sk)-i‘lﬂN(t Sk)}> (Eone & (Bs, —Bsy )ds

k=1 k=1

— 0 (N— o0)

as ((4.1), [8))

n
/ lu(dg) IEO l_[ e’-{‘-k'(Bxk_Bsk) ds < Cn(n!)d—th(H+l—d) < 00,
(Rd)n [0,1]" k1

We now use the bound [y (s) + ¥ (t —s)| < CN'=2H0 on [0, N"'TU [ — N™', 1]. First,
Nﬁ] . ~ n
Eo[/Rd M(dé)/o {¥n() + N — s)}elf'(BS—Bx)ds]

n ~
,LL(dE) ]EO eiSk‘(Bsk_Bsk) ds
[O,N_]]” l—[

< CnNn(l—ZHo)/
k=1

Ry

S Cn(n!)deN}’LﬂfZHo)an(H‘Fl7(1) N O (N N OO)

where the second step follows from (4.1), [8] with r = N —1 and the last step follows from the fact that 1 — 2Hjy <
H + 1 — d in the assumption (1.6).
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Similarly,

t ‘ - n
Eo[/ u(df)/ {KﬁN(S)+1ﬁN(t—s)}els‘(B~“_BS)ds}
R4 t—N-1

n

< cnNn(-2H) / L (dE) Bo [ ] e/ BaB) | ds

(Rd)n [Z‘—N_l g =1

1 n no ~

— CnNn(l—zH()) f I/L(dé) expy —= ng (t _ N—l) / EO l_[ el‘Ek'(Bsk*Bxk) ds

(Rd)n 2 =1 [(),N_l]" k=1

n ~

< ¢ N"(1=2Ho) f w(dé) Eo 1—[ et By =Bs) ) g

Ry NP\

where the second step follows from the independence of the Brownian increment. As we have seen, the right hand side
goes to 0 as N — oo.
Summarizing our computation since (3.8), we have proved (3.7). U

4. Moment bounds in Theorem 3.1

In connection to the decomposition in (3.1), set

t ) ~

£,=/ M(dg)/ [s7(72H0) 4 (¢ — )~ (172H0) ) o8- (Be=Bo) g @.1)
R4 0

t pt [,iE-Bs _ LiE-Bf,—i&-Bs _ ,—i£-Br

[e/é ¢S Brle e ]
= d dsdr. 4.2
M, /Rdu( s>/0 fo "7 sdr 42)

In this section we provide the moment bounds for £; and M, that are sufficient for (2.5) (and therefore for Theo-
rem 1.2). First we establish

Lemma 4.1. Under the assumption of theorem 1.2

EoL! < (n)d-HF(U=2H0) cnynCHotH=d) ¢ 0 p=1,2,... (4.3)
where C > 0 is a constant in dependent of t and n.
Proof. By the Brownian scaling and homogeneity of the space covariance,

L, L 2ot (4.4)
All we need is to prove (4.3) witht =1, i.e.,

EoL! < (n)d-H+U=2Hoecn p— 1 2 (4.5)

In the rest of the paper, we use the same notation “C” for possibly different positive constants that are independent of n
and 7.
Notice that

{By — Byis > 0} £ (v2By: s > 0}.
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We have

t ~ n
Eo[ / w(de) / S_(I_ZHO)eiS'(BS_BS)ds}
R4 0

n
:/ /L(ds)/ Hsk—(l—2H0) (Eoeiﬁé-Bxk)ds
Rd)n [0,7]" k=1

( 0

n
— n!/ w(dg) 1_[ sk—(l—2H0) (Eoeiﬁgh&k) ds
Ry [0,71%

k=1

n

<ot [ ) [ Tlox = s 0720 ) (Boe V3 B as
Ry 0.0 \;_;
where (and elsewhere) we adopt the notations that so = 0 and

[0, 112 = {(s1.....80) €0, 2]"; 51 <+ < s}

and the last step follows from permutation invariance.

By independent Brownian increment, for any (s1, ..., s,) € [0, #]%
n ) n n
Eo [TV Bx = Eq exp{iﬁZ(Z g,-) - (By, — Bskl)}
k=1 k=1 \j=k

D&

j=k

n 2
:exp{—z (sk—sk_l)}.

k=1

Hence,

~ n
]E0|:/ u(dé)/ts‘(l—ZHo)eiS-(B.s—Bs>ds:|
R4 0

n
<n! / p(df) (H(Sk —spp) "0 exp{—
Ry [0,71%

k=1

2
(sx — Skl)}) ds

D&
=k

By Lemma 2.2.7, [6], therefore,

00 t . - n
/ e_tEo[/ M(dé)/ S_(I_ZHO)els'(BS_B‘)ds] dt
0 R4 0
n 00 n 2
§n!/ /L(ds)l—[/ ey~ (U72H0) exp ! — Zgi t}dt
®?y" k=170 =k
n n 2y —2Hy,
=n!l"(2—2H0)”/ @) [+ ¢
R4y k=1 =k

<nlC" (4.6)

where the last step follows from Lemma 3.2, [8] and the fact that

2(d — H) + (dy — 2H,)

2H
0> 5

under the assumption in Theorem 1.2.
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Similarly, with the convention s, 41 = ¢

t _ 5 n
Eo[/ M(dé)f (t —s)_(l_zHO)e‘S‘(Bs—Bs)ds}
R4 0

n n
<n! / §(de) (sie1 — 50707280 ) expl =37
Ry [0.412 \ k=1

We have

00 ' . - n
/ e 'Ey |:/ ,u(dé)/ (t —s)_(l_ZHO)els'(BS_BS)ds] dt
0 R4 0

n 00 n
<n! / r@d| ] / eI exp !~ ",
(R =270 =k
J
2y -1,
® } I

; ( /O“’ezexp:_

D&
j=k

:nzr(z—zHo)"”/ ) M(dg):ur
))l

D&
j=k

=n!F(2—2H0)”/ p@d [T+ D ¢
@D k=1 =k
Combining (4.6) and (4.7)

t
/ e "EoL) dt <n!C".
0

On the other hand, by (4.4),

t [ee}
/ e "EBoLl dt = L] / e~ "@HTH=) gy — T (n(2Ho + H — d) + 1)Eo L].
0 0

Finally, the bound (4.5) follows from Stirling formula.

Lemma 4.2. Under the assumption of Theorem 1.2, for any B > 1 — 2H there is a constant C > 0 such that

EoM!" < (n)d-+26cnn@lotH=d) 5 0 p=1,2,....

Proof. By (1.15) we may make

1 2d-H —H
1=2Hy<f <3~ « ):(d* 23

Notice that

t ot —i-By _ ,—i&B,
_ ig-B, L€ e ]
M,—Z/Rdu(dé)/o /0 e S dsdr

and

d -
M, S PP =\

2
(sx — Sk—l)} ds.

k=2

2 o0
t} dz) (/ ¢~ (1=2Ho) o=t dt)
0

2\ —2H,
} <n!C".
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All we need is the bound

1 el [e—iaES _ e—ig-E,] n
Eo w(dg) s Bs dsdr| < @)@ —H+28cn (4.12)
Rd 0 Jo |s —r|2=2Ho

forn=1,2,....
By Fubini theorem,

iz L 6B _ pit-B 4

EO[/R M(dé)/ ./ s—r|2 2Hy dsdr:|
= I,L(d%')f EO eiék'BSk f |Sk _rk| (2—2Hp)

/(Rd)n [0,1]" 1!:[1 [0.1] 1—[

n
X (Eo l_[[efis"'BSk - eié"'B’k]) dr} ds
k=1
n
<2 [ wae [ (BT [ ([Tl e
R [0,1]* 11:[1 [0,1]7 l_[
n
X (Eo l_[ ) dr} ds
k=1

where the inequality follows from
in gk (B Sk rk) .

2

sin %_k . (Bskz_ Brk)

*iSk‘Bxk — e*isk'Brk 2ls

le

Further, pick 1 — 2Hy < 81 < B. By the fact that 28 < 1, |sin(-)| < |sin(-)|*# < |- |?#

(e ) (11 )
(0.1 k=1
1 n n n n 2/3
1 28 _ - |—(2-2Hyp) o
5(2) (1‘[|sk| )/{O’Hn@[lm il )(Eol"[wsk Brk|) dr

Ek ' (Bsk - Brk)
2

sin

k=1 k=1
—((2—2Ho)—p1)
l n n |B _B | 2/3”
= <§> 1_[ &I |Eo  sup (%) / H sk — ril dr
k=1 s,re7[50,1] |S _ r|ﬁ [0,1]"
SFr

n 26n
By, — B
fC”(l_hskFﬁ)Eo sup <%>

= s,rel0,1] —r|28
k=1 oot ls —r|

where the last step follows from that fact that

—(@—2Ho)~p1) X
) dr = ]‘[/ Isg — r|~(@2HO=B) g < "
k=170

for a C > 0 independent of s1, ..., s,,as (2—2Hy) — B1 < 1.
Summarizing our computation

e éBr_fis-Er] n
EO[/R M(dé)// 155 — dsdr]
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n |By — B, \*"" - 26, . i&-B
<C'Eo sup (——5- n@)| [ 115! Eo [ J o5 ) ds
4% dyn n
s,rel0,1] |S _r|2ﬂ (R9) k=1 [0,1] k=1
SFEr
|Bs — B[\ " ' "
=C"Ey sup <7ﬂ1> ]EOU u(d§)|§|2ﬂ/ e’f‘Bxds] (4.13)
s,re0,1] |S—V|ﬁ R4 0
S#T
For any ¢ > 0,
' 1
s d _ _ _ e
/ pu(de)ElP? / ¢t B ds g1 7IDP / pu(de)El? f ¢t B ds (4.14)
R4 0 R4 0
and
r n
Eo[ | waeers [ e ds}
R4 0
n n )
=/ u(ds§) l—[|§k|2ﬁ / Eone’s"‘Bfk ds
(R k=1 [0.1]" k=1
n n .
=n! / n@)| [T1a™ f Eo [ [ ) ds
®y" bl 0.\
n n 1 n 2
=n! d 2B —= i — Sk—1) (-
”/(Rd)n“( s><£[l|sk| )Eexp{ 225 (sk — Sk 1)}
= = Jj=k
Therefore,
o0 r n
[ e—’Eo[ | wiaeers [ e ds} dr
0 R4 0
n n 00 1 n 2
=n!/ n@s)( [ Tlel* ]"[/ eexpy—3|D_Ej| 1t
&<y k=1 k=170 j=k
n n 1 n 2y -1
=”’/,, M(dg)(n|§k|2ﬁ>n{l+§ D& } :
(RS k=1 k=1 =k
Set nx = Z';:k &j (k=1,...,n). By the fact that 0 < 28 < 1 and with the convention 7,41 =0
n n n )
[Ti6® =TT i = e P2 < [T (e +|mesn 122
k=1 k=1 k=1
. 2(k)B . 1 2 * . 1 2 2
< <2" 1+ = <2"3" 1+ =
<> JTm*®F < Z]‘[{ +2|77k|} < 1"[{ +2|77k|}
I k=1 I k=1 k=1
where the summation is over all possible maps I: {1, ..., n} —> {0, 1, 2} and the last follows from the fact that #(I) < 3".

Therefore, we have the bound

o0 t n
f e—’Eo[/ M(d§)|§|2ﬁ/ eig'Bde} dt
0 R4 0

n K 2y —(1-28)
n X n
e [ IMesizel o s
R =k
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where the last step follows from Lemma 3.2, [8] and the fact (from (4.9)) that

| -ap KA+l m 20

On the other hand, in view of (4.14)

o0 t n
/ e’Eo[ / w(de)|E PP / e"f'Bsds} di
0 R4 0

[ n. proo
ZEO[/ M(ds)lélzﬂ/ E’S'B‘ds:|/ o1 nQHH—d) g
R4 0 0

1 n
=F(n(2H0+H—d))EO[/du(d§)|§|2ﬁ/ !5 Bs ds:| )
R 0

By Stirling formula

1 n
Eo[ /R ) p(de)|E|* fo eisBs ds} < (n)=i+Bcn, (4.15)

Consider the Banach space C#1/2P)[0, 1] of the functions f on [0, 1] satisfying the Holder continuity

171 _ Lf(s)— f()l
fligiyep = SJS;IO?J] s —rp/em =
SFEr
By the fact that 81 /(28) < 1/2, By (s € [0, 1]) is B1/(28)-Holder continuous and therefore can be viewed as a mean-zero
Gaussian random variable taking values in C#1/#)[0, 1]. By the Gaussian integrability (see, e.g., Corollary 3.2, [23]),
there is a constant ¢ > 0 such that

|Bs — B,
Eoexp{c Su[gum =Eoexp{cllBIlj, jop) } < 00
s,rel0,
SFEI

Consequently, there is a constant C > 0 such that

Bs — B:|\"
Eo sup (%) <m)'?c" n=1,2,....
s,rel0,1] |s—r|ﬁ
SFEr

In particular, we have the bound

B.— B 2Bn
Eo sup (%) <mhfc" n=1,2,.... (4.16)
s,rel0,1 — 7|2
vrse;’[ér 1 |S r|25
Finally, the desired bound (4.12) follows from (4.13), (4.15) and (4.16). U

Notice that (d — H) + (1 —2Hp) < 1 under the assumption in Theorem 1.2. Applying Taylor expansion in Lemma 4.1,
Epexp{CL;} <oco C,t>0. 4.17)

By the fact that (d — H) + 28 < 1 under (4.9), by Lemma 4.2
Egpexp{CM;} <0 C,t>0 (4.18)

under the assumption in Theorem 1.2.
By the covariance decomposition in Theorem 3.1,

t t ~
Eoexp{C / wo(dr)n(dE) / / e’k(“_r)e’é‘(B‘_Br)drds} < 0. (4.19)
Rd+!1 0 0

Equivalently, we have (2.5) which is sufficient for validating Theorem 1.2.
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Remark 4.3. With the covariance decomposition in Theorem 3.1, the bounds we establish in this section substantially
improve (2.11) obtained in [8] and more significantly, are sharp enough for the exponential integrability given in (4.19).
On the other hand, they are not optimal. For the sake of possible link to the future investigation, we confirm the conjecture
made in [8] stating that

2

f po(M)u(d§)
(Rd+l)/1

n
/ By [ [ e/es+B60) ) g
04"\ =1

< (n)U—HO+U=2H) cnynQHo+H—d) ) 1 o (4.20)
Indeed, according to the development for moment asymptotics in the next section
1 t ro X ~
lim —logEy exp{/ /L()(d)u),u(d%')/ / M7 iE (Bs=Br) g ds} < 0.
t—>oo Rd+1 o Jo
By (2.10), in addition,

n n ~ n
Eo[/ Mo(d,\)u(dg)f f el“s—”e'f‘(Bx—Br)drds] >0 n=1,2,....
Rd+!1 0 0

Consequently,

1 nopeno . = n
—Eo[/ po(dA)u(de) / f e’A(S_’)els'(B-‘_B')drds}
l’l' RA+1 0 0
n n ) . ~
SEoexp{/ uo(d)»)u(dé)/ / e’k(sr)els'(g‘B’)drds}SC”
Rd+!1 0 0

for some constant C > 0 independent of n = 1, 2, . ... By the Brownian scaling, on the other hand,

n n ~ n
]E0|: / wo(dr)w(d§) f f M) pi6 (Bs=Br) g ds}
Rdﬂ 0 0

1 1 ~
— nn(2H0+H7d)E0 / Mo(d)\')ll/(ds)/ / ei)\(Sfr)eiE(BS*Br) dr ds "
Rd+1 0 0

n
Eo o' sk t+Ek-BGsi)) | g6
/[0,1]” ( 1_[

k=1

2

= p"2HotH =) / 1o(M) 1 (dE)
(Rd+1)ﬂ

where the last step follows from (2.10). By a standard use of Stirling formula, we have (4.20) in the case ¢ = 1. Finally,
(4.20) with the full generality follows from scaling.

5. Moment asymptotics in Theorem 1.3

In this section we prove Theorem 1.3. By the Feynman—Kac moment representation in (1.16) with m = 2 and by the
initial condition given in (1.4), a simple argument reduces proof to the setting uo(x) = 1, in which

g2 Ho(1 — Hp)

Eu(t, x) = By exp{92H0£, + 3

/\/lt} 5.1
where £; and M, are defined in (4.1) and (4.2).

Lemma 5.1. Forany C >0

_2H0+H7d
limsupt™ =@ logEgexp{C|L;|} < co. (5.2)

1—0o0
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Proof. Given the conjugate number p, g > 1, by Hélder inequality
t ~
Eoexp{C/ ;L(dé)/ S_(1_2H0)gl%-'(BS_Bs)dS}
R4 0

1/2 . . 1/p
< [Eoexp{Cp/H;d I,L(df;:)/o S7(172H0)el§'(3.§73x) ds}}

t

. . l/q
X [Eoexp{Cq/ w(d&) s—(l—ZHo)el?(Bs—Bs)ds” .
R4

t/2

Notice that

1/2 ) - J (1 2Ho+H—d 1 . .
/ M(dé)/ S—(I—ZHO)elf'(Bs—Bx) ds = (_) / M(dé')/ S_(l_zHO)e’%_'(Bx—Bx) ds.
Rd 0 2 R4 0

Taking p = 22Ho+H=d Jeads to

t _ }
Eoexp{C/ u(dg)/ S_<1_2H0)el§'(BS_Bs)dS}
R4 0

t ~

<E exp{Cq/ u(dg) | s—(172Ho) oi&(Bs—By) ds}. (5.3)
R t/2

For any integer n > 1

! ~ n
]Eo[/ w(dg) s—(l—ZHo)eiS(Bx—Bs)ds]
R4 /2

n —(1-2Hp) n ]
= [, wao [ “ By TT e Bt | s
/(R")" [t/2,1]" l_[ 1_[

k=1 k=1

2\ "(1—2Ho) n —(1=2Hp) n i
=\7 u(d§) Sk Eo o8By —Bs) | ¢
O o (1) (e

2 n(1—2Hy) r B n
= <—) EO[/ M(dé)/ el‘i:'(BxBx)ds} .
t RY 0

By Taylor expansion,

t ~
Eo exp{Cq/ w(dé) S—(1—2Ho)et§'(Bs—Bs)dS}
R4 /2

2 1-2Hy r _
<Ey exp{Cq <?> /Rd lt(df)/ els‘(Bs_Bs)dS}
0

2Hy+H—d
:Eoexp{CqZI_zHO/ M(dé)/
R4 0

{ T-@—H)
where the last step follows from the Brownian scaling.
Given t1, tp > 0, by Markov property

Hh+t N
Eoexp{0q21—2H° / n(de) / ews—mds}
R4 0
oo -
sEoexp{qul‘MO/ M(dé)/ el$~(Bs—B.;)dS}
R4 0

n -
x sup Ey 7 exp{Cqu_zHO /l;{du(dg)/(; el$~(Bs—Bs)ds}

(x,%)

eia(Bs—Bs)ds} (5.4)

where “E(, z)” is the Brownian expectation with By = x and By=%.
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In addition, the moment representation shows that

I - n no ; n
E %) [/Rd M(dé)/o 6’5'(B‘Y3f)ds] S}EO[/Rd M(dg)/o eté'(Bst)ds}

815

for every n = 1,2, .... Applying the Taylor’s expansion leads to the same comparison in exponential moment. Conse-

quently,

ti+n -
]Eoexp{CqZI_ZHO/ H(dg)f ezs-(Bs—Bgds}
R4 0
no -
SEoexp{Cq212H0/ M(dé)/ el?(BsB,r)dS}
R4 0

5 ~
X]Eoexp{CqZI_zHof ,u(dé;‘)/ e'5'<Bs—Bs>ds}.
R4 0

Therefore, the argument by sub-additivity leads to

1 r ~
lim —logIEoexp{Cq21_2H°/ ,u(dé)/ e’g'(BS_Bf)ds} < 00.
t—>oo f R4 0

Applying this to (5.4) and noticing —Zﬂ"&i];;i >0,

_ 2Hy+H-d t . -
limsupt™ T-@-H) log[Egexp Cq/ w(d§) s_(l_ZHO)e’E'(BJ_BS)ds} < 00.
R4

t—00 t/2
Combining this with (5.3), we conclude
2Hy+H—d

t ] -
limsupt™ =@ log[Egexp C/ ,u(dé)/ s(IZHO)e""’:'(BSBf)ds} < 00.
R4 0

t—00

Using Holder inequality again

t ) .
Eoexp{C/ /L(dé)f (t—s)_(l_zHO)e‘S'(BS_BS)ds}
R4 0
t/2 ) - 1/p
< [Eoexp{pCf ,u(d?;)/ (t—s)_(l_ZHO)e’S'(BS_B‘V)ds”
R4 0

t ) _ 1/q
% [EO exp{qC/ w(d€) (r — S)*(172H0)elé.(B.chs) ds” )
R4 t/2

By a procedure similar to the proof of (5.6)
_ 2 -
- ~my P 2t s BB
limsupr T-@-H) logEgexpy pC n(d§) (t—s) e ds < oo.
Rd 0

t—0o0

In addition, write

/ /./L(dg) /t ([ — s)7<172H0)ei§'(BS*BS) ds
R4 /2

. s 5/t —(1-2Hy) _ B oz s
— u(dé)els (Btj2—Bi)2) Z_g 1€ ABay2)+s=Bi2)=(B(t/2)+s=Bi2)} g¢
R? 0o \2

By the independence of the Brownian increment, one can directly check that forn =1,2, ...,

t - n
]E[f w@de) [ (¢ — 5)=(=2H0) ig(B= ) ds}
R? 12

l‘/2 t —(1—-2Hy) ) . n
SE[/ M(dé)/ <_ _s) eza(BsBS)ds] .
R4 0 2

(5.5)

(5.6)

(5.7)
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Consequently,

t ~
]EOeXP{CIC/ udé) | (- s)_(l_ZH")elg'(Bs_B‘)ds}
R4 /2

12 /4 —(1-2Hy) )
SEOCXP{C]C/ /,L(dé‘)/ (— —s) 615‘(35—Bs)ds}
R4 0 2

1 2Hy+H—d t ) -
=, exp{qC<§> f M(dé:)/ (r — S)—(l—ZHo)elé.(B.v—B:) ds}.
R4 0

Taking g = 22HotH—d gjyes

t ~
EoeXP{C [ e [ @ —s>-<1—2Ho>eff-<Bs—Bs>ds}
R4 0

1/2 _ .
<Ey exp{pC/ M(df)/ (r — s)*(lszo)ezé-(Bsz,r) ds}.
R4 0

Summarizing the discussion, we have
2Hy+H—d t . ~
limsupz™ - logEg exp{pC/ /L(dé)/ (t— s)f(lszO)e’S'(B“BS) ds} < 00. (5.8)
R4 0

t—00

Combining (5.7) and (5.8),

_ 2Hp+H—d
limsupt™ T-@1 logEgexp{CL;} < oco.

t—00

This can be easily strengthened into (5.2) as the relation
Eoexp{C|£t|} <2Egexp{CL,}. 5.9

Indeed, by Taylor expansion and by the fact that EoL} > 0forn=1,2,...,

00 (—1)" ©
Egexp{—CL;} = Z C"EoL} < Z —C"EoL! =Egexp{CL;}.
n=0 n! n=0 n! U

Notice that % < 1l as Hy < 1/2. A standard argument of exponential approximation by Holder inequality shows

that £; in (5.1) does not make contribution to the asymptics stated in Theorem 1.3. By the scaling in (4.11), all we need
is to show there is a constant co(H) > 0O such that

1
[lim ?log]Eo exp{M;} = co(H). (5.10)
— 00

which leads to (1.21) with

1
e (H) = (M) T ).

Lemma 5.2. For any C > 0,

1
limsup — log Eg exp{C M,} < cc. (5.11)

t—oo I

Proof. For any bounded set D C RT x R™, set

i&-By _ it By, —i&- By _ ,—itBy
M(D):/ M(dé)/ Le g |C " ysar. (5.12)
R4 D

|S _ r|2*2H0




Parabolic Anderson model with a fractional Gaussian noise that is rough in time

In this notation, M, = M([0, t]?). Notice that forn =1, 2, ... .,

EoMn(D)zf ,u(di-')/ <H Ik _rk|—(2—2H0))
(R4 D\,

In particular, Eg M" (D) is monotonic in D. Consequently,

2
n
Eo l_[(eis’B-‘k — eiS'B’k) dsdr.
k=1

Eoexp{CM(D)} <Egexp{CM(D)} Dc D

Therefore, it suffices to show that

lim sup % log Eg exp{C/\/l ([0, 4N]2)} < 00.

N—o0
Consider the decomposition
[0,4N1> C{(s5,)I0<s < 1,0<r <1+s}U{(s, )|l <s <4N,|r —s| <1}
U{(s,r)Il <s <4N,1+s<r <4N}U{(s, )1 <r <4N,1+r <s <4N}
=DoUD;UDyUD;3 (say).

So we have

Eoexp{CM([0,4N1?)} < Egexp{CM(DyU Dy U D, U D3)}
= Egexp{C(M(Dp) + M(D1) + M(D2) + M(D3))}.
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(5.13)

(5.14)

(5.15)

Notice that Dy is independent of N and by (4.18) and (5.14), M (Dy) exponential integrable. Notice also that M (D;) 4

M(D3). By Holder inequality, all we need is to show

1
limsupﬁlog]Eoexp{CM(Dj)} <oo j=1,2.

N—o0
Write
4N—-1 4N-1
D= |J{e.nkss<k+1lr—s<1}= ] G
k=1 k=1
and
4N —1 N-—1 N-—1 N-—1 N-—1
MD) =Y MG =) MG+ Y MGur)+ Yy M(Gar2) + Y M(Gury3).
k=1 k=1 k=0 k=0 k=0
By Markov property,

N—1 N—1
Eoexp{C ZM(GW} < (sup E(xj)exp{CM(Gl)}) :
k=1 (0. %)

Notice that foreachn=1,2, ...,

E,5M"(G)
n n . .
= /Rd ) M(d,i:)/n (1_[ sk — rk|—(2—2Ho)> |:E0 H(ezé'(x+Bsk) _ elé'(x+Brk)):|
RE) G1 \k=1 k=1

n
X |:IE0 l_[(e_i‘?'(i+83'k) — e_ig'(’z+B’k)):| dsdr
k=1

(5.16)
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_ 4 _ o [-2-2Ho) - F
/(W)nm s>/67(1"[|sk - )exp{ (Zsk) (x x)}

2
n
x |Eo l_[(ei“?'(x+3.rk) _ ei§~(x+3rk)) dsdr

k=1

2
< / p(dg) / 1‘[|sk ry| G720 EOH (e CFBy) — o8 CHB) | s dr
®?y Gt bl
=EoM"(G) Vx,ieR?.
We have
sup E¢; 5 exp{C./\/l(Gl)} §]Eoexp{CM(G1)} < 00. 5.17)
(x,%)
Hence,

N-1
1
llmsup—log]Eoexp C E M(Gy) p < 00.
N—o0 k=1

The same conclusion can be extended to all four summations in the decomposition of M(D;). By Holder inequality we
have proved (5.16) for j = 1.
We now exam (5.16) for j = 2.

[ei%"B.r _ eif'Br][e*if'Eq _ e*i?j'g,.]
M(Dy) = /Rd wu(d§) F12-2H0 dsdr

Dy |S -

¢i6-(Bs—By) '€ (Br—By)
= d ————dsd d —————-dsd
/Rd wds) D, s —r|>72Ho ’ r+[RdM( 5 D, |s — r|*2Ho e

i&-(Bs—B,) i§-(Bs—B)
— d ————dsdr — d ——————dsdr.
fRd“( D o T = /Rd“( D oy s B

The last two terms on the right hand side are identical in law. Similar to (5.9),

i (B;—By)
szOCXP{C[Rd n(d§) Dzmdsdr}.

ls (Bs—
Eoexp{ ‘/ w(dé§) A mdsdr
2

To establish (5.16) for j = 2, therefore, all we need is to show

1 ¢i-(B=By)
li}{]n_f;lopﬁloglEoexp / ,u(dé)/ 5 |2 Ho dsdr < oo, (5.18)
1 o1& (Bs—By)
limsup — log Eg ex / (d )/ dsdr; < o0, (5.19)
tmsup - log Fo exp n(dg 2|_|22H
lé (Br—By)
hmsup—log]Eoexp / ,u(dé)/ Ly dsdr < oo. (5.20)
N—o00 I
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To prove (5.18), notice that foranyn =1, 2, ...,

¢i&-(Bi~Br)

n
E d —dsd
o[/wu( o[ s r]

n
= p(d§) ds|Eo [ | %P
\/(\Rd)n [0,4N1]" l_[

k=1

n n
X f H(rk — sk)_<2_2H°) Eo 1_[ e~ Br ) gy
[s1-+LAN D x sy +14NT \ | palle
[e9) n no
< (/ V_(2_2H0) dr) / /L(ds) Eo Helfk-B;k ds
1 Ry 04N\ )

4N n
=C”E0[/ ,u(dé)/ elf'Bxds]
R4 0

where the inequality is costed by the actions of replacing the second Eg-expectation by 1, and the integration domain
[s1 + 1,4N] x --- x [s, + 1,4N] by [s; + 1,00) X --- X [s, + 1, 00); and the last step is supported by the fact that
2—2Hy> 1.

By (5.5) (with a travail notation adjustment) and the fact that B — B 4 V2B,
1 ro
lim —logEoexp{C/ u(dé)/ /6 Bs ds} <00
t—0o0 t ]Rd 0

which leads to (5.18).
The same computation leads to

¢i&(Bs—By) n N - n
]Eo[/ p(d§) Wdsdr] gC"EO[/ M(dg)/ elfwsﬂv)ds} :
Rd Dy s — 7= Rd 0

So we have (5.19).
As for (5.20),

6 (B:—By) n
E d  dsd
o[/Rdu( O f s rj|

n ~
:/ w(d§&) dr (Eo He_isk'(B’k_Brk))
(Rd)n [1,4N]"

k=1
n
X (ry — sk)f(zfzﬂ(’) ds
/[‘O,rl—l]x-ux[(),rn—l] (,[[1
e’} n 4N ) . n
=< </ s_(Z_ZHO)ds) Eo[/ M(dE)/ e'é'(B’_B’)dri| .
1 R4 0
So (5.20) follows from (5.5). O

To complete the proof of Theorem 1.3, we prove that the limit in (5.10) exists and is positive. For any ¢ > 0, define the
linear operator 7; on £2(R*/) as

T, f(x, %) =E( 5 [exp{M:} f (B, B)]  f € L2(R*).

The idea is to show that the limit

1
lim — log sup (£, Ty f) = co(H) (5.21)
t—>o0 t feF
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exists and is positive for a sub-class F of £2(R%), The unfortunate fact is that the family {7;; t > 0} does not have semi-
group structure (i.e., the structure defined by 751, = T; o Ty). In the following we try to capture some useful properties of
T; that allows our technique get through.

First, we claim that for each r > 0, T; is bounded, i.e., there is a constant C; > 0 such that
12 - 2, = ~ 2 (2d
/ [T,f(x,x)] dxdx < Ct/ fcx,x)dxdx feLl (]R ) (5.22)
R2d R2d
Indeed,
12 - ~ 12 -
/ [T,f(x, x)] dxdx = / (E(x,,g)[exp{M,}f(B,, B,)]) dxdx
R2d R2d
< [ By expl2 M) (B 1251 B) dx
< (Boexp{2M;}) / Eof?(e+ B X+ By dx di
R
where the last step follows from the relation (5.17) (with G| being replaced by [0, 11%). Hence, (5.22) follows from
/ Eo f2(x + B;, % + B;)dx d& =EO/ f2(x+ B;, i+ B)dxdi = / F2(x, %) dx dx.
R2d R2d R2d
Next, we claim that for each > 0, T; is self-adjoint:

(&. i f) =(Tig. f) f.geL(R™M). (5.23)

To simply our notation in the following argument, we denote M; as M; (B, E).

.1y = [ et DB [exp{Mix + 8.5 + B)) S+ B3+ By avas
:Eo{/zdg(x,i)exp{Mt(x +B,i+B))f(x+B, i+ Et)dxdi}
R
=E0{/2dg(x — B, X — B)exp{M(x — B, + B,% — B, + E)}f(x,i)dxd)?}
R

- /M f(x, H)Eo[exp{M;(x — B; + B, ¥ — B, + B)}g(x — B,, % — By)]dx d¥
R

where the third step follows from translation invariance.
Notice that

Mt(X_Bt—}—B,i—ét—FE)

1 t eié'(x By Bt)_eié'(x B, Bl)le ié'(x By Bt)_e ié'(x B, Bll
d 0 0

= TR dsdr
o [eE OB =By _ gi& (A Bror =B |[p—if G+ Bis—By) _ o=i&(i+Br—By
= d dsdr
/du( E)/O /0 s — r|>—2Ho

=M (x + 8.3+ B)

where
Bs=Bi—s — By and ,gs = gt—s - Et 0O=<s=<p

are two independent Brownian motions with Sy = Bo=0and B; = —By, f; = — B, under Eo. Summarizing our compu-

tation,

(6. T, f) = fR £ D Eo[exp{ M (x + B, & + P))g(x + B 5+ B dx di = (Trg. f).
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In connection to (5.21), set
F={fi f,5)=F)fE Nl 2wy =1, f =0, 1l cray V 1 Fll goo ey < 0}

For any D C [0, t]2, it is straightforward to check that

/RM [ DB o {M(D)" f (B, Br)} dx d&

= ) / Isk — 7 |—<2—2Ho>)
/(.Rd)n D" </£[l k k

F(f) <Z§k> <Eof(B,) H[eiS'Bsk _ eiE.B,k])
k=1

k=1

2

X dsdr (5.24)

foranyn=1,2,...and f € F, where

FPE) = /R Fwerar e,

By Taylor expansion, the quantity
/H; L F 0 DB 5 [exp{M(D)} £ (Br. B)]dx di

is monotonic in D. Taking D = [0, t]2 in (5.24) one can also see that

sup(f, T; f)>1 Vt>0. (5.25)
feF

We now prove that
<faTn‘lt()f)z<f77}()f)"1 f6F5[0>07m=27456""' (526)

Indeed, by the relation

: 12
Dy = J[(j = Do, jto]” € [0, mto]?

T

j=l

and monotonicity

U1 = [ DB [expMD} £ (B, B ] drd
In addition, by Markov property one can check that
Eq. o) [exp{M (D)} f(B;, B)]dx di = T" f (x, %).
Thus,
(f. T Y = (. T f)
By the spectral theory for self-adjoint operator on Hilbert space, there is a measure 1 y(d2) on R such that

1y @) =gy =1 and (f.T,f) = fR A p(dR).

Further,

(£ 7o f) = /R Mg (dh).
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Notice that the function ¢(1) = A" is convex on R when m is even. Since p f(d) is a probability measure, by Jensen’s
inequality,

/kmuf(d)»)z (/ wf(dw) = (£ To /)"
R R

Combining our argument, we have proved (5.26).
By (5.26) and by the monotonicity of the quadratic function (f, T; f) in ¢ for any f € F,

1 1
liminf —log sup (f, T; f) = —log sup ( f, T3, f)- 5.27)
100t feF fo feF

Taking limsup on the right hand side over 7y — oo leads to the existence of the limit in (5.21) with co(H) being a possibly
extended real number. Further, taking #p = 1 in (5.27),

co(H) = log sup (f, T1f) >0
feF

where the last step follows from (5.25) with r = 1.

Finally, we prove that (5.10) holds with the same co(H) which automatically leads to co(H) < oo according to
Lemma 5.2.

Given f € F,

T f) = /R Do [expl M) £ (B, B dvdi

< e [ £ DB expMi)drd
< NSl gooaay 1 f 11 2 maay Eo exp{M;}

where the last step follows from (5.17) (with G| being replaced by [0, 7]?).
By (5.26) and monotonicity,

1 1
liminf —log Egexp{M;} > —log(f, T3, f) fe€F.
t—o0 ft [0
Taking the supremum over f and then letting ) — oo on the right hand side,
o1
lltm mf; log Eg exp{M;} > co(H). (5.28)
— 00
On the other hand,
Boexp [ M(I1LP)) = [ ;i DB explMioi)dx i
where pj(x, (x) is the density of (B, El). Notice that
/ p1(x, H)E 5)exp{M;—1} dx dx
RZd\[_ZZJZ]Zd
< Eoexp{M;_1} pi(x, X)dxdx

RZd\[_IZ’tZ]Zd

= Po{max]|Bi|oo, |Biloc} = 1*}Eo exp{M,_1}.
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Further, write

/ p1(x, HDE 5)exp{M;—1}dx dx
[71‘2),2]261
= [, P oMo )1 o (B, B v
[_IZJZ]Z({
+/ . pl(x,)?)E(x,);) [CXP{M;_l}1R2d\[,t2‘l2]2d(B;, E,)] dx dx
[—2=,27]

<@n™ / B [expl Moo ppa(Br. By dx di
[—17,27]%

+ (Eg expl2M;_1}) ' (Po{max{| B: oo, | Brloo > 12}) /2.

Notice that f;(x, X) = (21‘)_2d1[_t2’[2]d (x)1[_s2 4274 (X) is in F. Summarizing our estimate,

Eoexp{M([1,11%)} < 20> sup, (f. T f)

+ (Egexp{2M,_1})/* (Bo{max{| B |oo, | B |0 = 1))/
+ Po{max{|Bi]oo, |B1loc} > 1?}Eg exp{M,_1}.

By (5.21), by Lemma 5.2 and by the Gaussian tail,

lim sup%logEo exp{M([1,11%)} < co(H).

t—00

Given the conjugate numbers p,g > 1

Eo exp{p_lj\/l,} < (Eo exp{./\/l([l, t]2)})l/p(Eo exp{(p - 1)_1/\/1([0, 1]2)})1/11.

So we have

1
lim sup A logEgexp{p~'M,} < p~'co(H).

—>00
By scaling,

_ d [ S
p 1M,=/\/l,p where 1, =tp 2HotH=d,

By variable substitution

1 S
limsup — log Eg exp{ M ([0, 11*)} < p~! p 7077~ co(H).

t—>o0 [
Letting p — 17 on the right hand side leads to the upper bound for (5.10).
Appendix
Here we establish two identities on gamma functions that have been used in this paper.

Lemma A.1. Forany 0 < Hy <1,

/‘X’ sinhA 7w Hy

o A2Ho "7 I'(2Hy 4+ 1)sin(Hon)’
1

/ / o ds 27

RIJO

2
A1 72Ho gy = : )
I'(2Hy + 1) sin(Hym)

823

(A.1)

(A.2)
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Proof. To prove (A.1), we begin with Hankel’s representation ([15])

I'(z) _ /ookz_le_‘”\dk
s< 0

with z #£0, —1, —2, ... and | arg(s)| < . Here we point out the gamma function I"(z) can be extended analytically into
C\ {0, -1, —2,...} by the limit (eq. 6.1.2. [1])

1 .nt
mZ’lli)I‘gomZ(Z-i— 1)---(z+n).
Taking s = —i and z = 1 — 2Hj in Hankel’s representation gives

1200 Ve opy = [T 0
exp ITTF ( — ()) = ) m .
Comparing the imaginary part,
° sin A . (1-=2H),
| 2 d)\ = sin TTL’ I'(1 — 2Hy) = cos(t Hy)I' (1 — 2H)).
Recall Euler’s reflection formula (eq. 6.1.17, [1])
b4
Frrd—z)=—— z¢Z.
sin(7rz)
Taking z = 2Hy,

/"o sinA  mcos(w Ho) . T _ T
o A2Ho "7 T'(2Hp)sinQmHp) 2I'(2Hp)sin(wHy)  T'(2Ho + 1) sin(rr Hp)

where the last step follows from the fact that I'(2Hy + 1) = 2HpI"(2Hp).
As for (A.2)

//leiksds
RI[JO

2 e“‘—l 2
|K|]72H0d)L=/ |—| |)L|172H0d)\
R iA

-2 00 o3
=4/ sin“(1/2) dA:S/ sin“(A/2) A
R 0

|A|2H0+l )\'2H0+1
4 (> 1 d 2 [ sinA
- —/ L 6in2(0/2) ) da = —/ M2
Hy Jo A2Ho\ dA Hy Jo A2Ho
2 /4 _ 2w
" HyT(QHy+ Dsin(wHy)  T'(2Hy + 1) sin(r Hp)
where the fourth equality follows from integration by parts and the sixth equality from (A.1). |
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